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Rigid and Articulated Point Registration with

Expectation Conditional Maximization
Radu Horaud, Florence Forbes, Manuel Yguel, Guillaume Dewaele, and Jian Zhang

Abstract— This paper addresses the issue of matching rigid and
articulated shapes through probabilistic point registration. The
problem is recast into a missing data framework where unknown
correspondences are handled via mixture models. Adopting a
maximum likelihood principle, we introduce an innovative EM-
like algorithm, namely the Expectation Conditional Maximization
for Point Registration (ECMPR) algorithm. The algorithm allows
the use of general covariance matrices for the mixture model
components and improves over the isotropic covariance case.
We analyse in detail the associated consequences in terms of
estimation of the registration parameters, and we propose an
optimal method for estimating the rotational and translational
parameters based on semi-definite positive relaxation. We extend
rigid registration to articulated registration. Robustness is en-
sured by detecting and rejecting outliers through the addition of
a uniform component to the Gaussian mixture model at hand. We
provide an in-depth analysis of our method and we compare it
both theoretically and experimentally with other robust methods
for point registration.

Index Terms— Point registration, feature matching, articulated
object tracking, hand tracking, object pose, robust statistics,
outlier detection, expectation maximization, EM, ICP, Gaussian
mixture models, convex optimization, SDP relaxation.

I. INTRODUCTION, RELATED WORK, AND CONTRIBUTIONS

In image analysis and computer vision there is a long tradition

of algorithms for finding an optimal alignment between two sets

of points. This is referred to as the point registration (PR) prob-

lem, which is twofold: (i) Find point-to-point correspondences

and (ii) estimate the transformation allowing the alignment of

the two sets. Existing PR methods can be roughly divided into

three categories: The Iterative Closest Point (ICP) algorithm [1],

[2] and its numerous extensions [3]–[8], soft assignment methods

[9]–[12], and probabilistic methods [13]–[18] to cite just a few.

ICP alternates between binary point-to-point assignments and

optimal estimation of the transformation parameters. Efficient

versions of ICP use sampling processes, either deterministic or

based on heuristics [3]. Sampling strategies can be cast into more

elaborate outlier rejection methods such as [4] which applies a

robust loss function to the Euclidean distance, thus yielding a

non-linear version of ICP called LM-ICP. Another standard robust

method is to select trimmed subsets of points through repeated

random sampling, such as the TriICP algorithm proposed in [5].

In [6] a maximum-likelihood non-linear optimizer is bootstrapped

by combining ICP with a RANSAC-like trimming method [19].

Although ICP is attractive for its efficiency, it can be easily

trapped in local minima due to the strict selection of the best
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point-to-point assignments. This makes ICP to be particularly

sensitive both to initialization and to the choice of a threshold

needed to accept or to reject a match.

The nearest-point strategy of ICP can be replaced by soft

assignments within a continuous optimization framework [9],

[10]. Let mji be the positive entries of the assignment matrix

M, subject to the constraints
∑

j mji = 1,
∑

i mji = 1. When

there is an equal number of points in the two sets, M is a

doubly stochastic matrix. This introduces nonconvex constraints:

Indeed, the PR problem is solved using Lagrange parameters and

a barrier function within a constrained optimization approach [9].

The RPM algorithm [10] extends [9] to deal with outliers. This

is done by adding one column and one row to matrix M, say M̃.

Several data points are allowed to be assigned to this extra column

and, symmetrically, several model points may be assigned to this

extra row. Therefore, the resulting algorithm must provide optimal

entries for M̃ and satisfy the constraints on M, thus providing

one-to-one assignments for inliers, and many-to-one assignments

for outliers, i.e., several entries are allowed to be equal to 1 in both

the extra row and the extra column. As a consequence, M̃ is not

doubly stochastic anymore and hence the convergence properties

as described in [20] are not guaranteed in the presence of outliers.

Probabilistic point registration uses, in general, Gaussian mix-

ture models (GMM). Indeed, one may reasonably assume that

points from the first set (the data) are normally distributed

around points belonging to the second set (the model). Therefore,

the point-to-point assignment problem can be recast into that

of estimating the parameters of a mixture. This can be done

within the framework of maximum likelihood with missing data

because one has to estimate the mixture parameters as well as the

point-to-cluster assignments, i.e., the missing data. In this case

the algorithm of choice is the expectation-maximization (EM)

algorithm [21]. Formally, the latter replaces the maximization

of the observed-data log-likelihood with the maximization of

the expected complete-data log-likelihood conditioned by the

observations. As it will be explained in detail in this paper, there

are intrinsic difficulties when one wants to cast the PR problem

in the EM framework. The main topic and contribution of this

paper is to propose an elegant and efficient way to do that.

In the recent past, several interesting EM-like implementations

for point registration have been proposed [13]–[16]. In [13] the

posterior marginal pose estimation (PMPE) method estimates the

marginalized joint posterior of alignment and correspondence

over all possible correspondences. This formulation does not lead

to the standard M-step of EM and, in particular, it does not

allow the estimation of the covariances of the Gaussian mixture

components. The complete-data posterior energy function is used

in [14]. This leads to an E-step which updates a set of continuous

assignment variables which are similar but not identical to the
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standard posterior probabilities of assigning points to clusters

[22]. It also leads to an M-step which involves optimization of a

non-linear energy function which is approximated for simplifica-

tion. The algorithms proposed in [13] and [14] do not lead to the

true maximum-likelihood (ML) solution.

In [14] as well as in [15] and [16] a simplified GMM is used,

namely a mixture with a spherical (isotropic) covariance common

to all the components. This has two important consequences.

First, it significantly simplifies the estimation of the alignment

parameters because the Mahalanobis distance is replaced by the

Euclidean distance: this allows the use of a closed-form solution

to find the optimal rotation matrix [23]–[26], as opposed to an

iterative numerical solution as proposed in [27]. Second, it allows

connections between GMM, EM, and deterministic annealing

[28]: The common variance is interpreted as a temperature and

its value is decreased at each step of the algorithm according

to an annealing schedule [9], [10], [14]–[16]. Nevertheless, the

spherical-covariance assumption inherent to annealing has a num-

ber of drawbacks: anisotropic noise in the data is not properly

handled, it does not use the full Gaussian model, and it does not

fully benefit from the convergence properties of EM because it

anneals the variance rather than considering it as a parameter to

be estimated.

Another approach is to model each one of the two point sets

by two probability distributions and to measure the dissimilarity

between the two distributions [18], [29]–[31]. For example, in

[18], each point set is modelled by a GMM where the number

of components is chosen to be equal to the number of points.

In the case of rigid registration, this is equivalent to replace the

quadratic loss function with a Gaussian and to minimize the sum

of these Gaussians over all possible point pairs. The Gaussian acts

as a robust loss function. However there are two major drawbacks:

The formulation leads to a non-linear optimization problem which

must be solved under the nonconvex rigidity constraints, which

require proper initialization. Second, the outliers are not explicitly

modeled.

This paper has the following original contributions:

• We formally cast the PR problem into the framework of

maximum likelihood with missing data. We derive a max-

imization criterion based on the expected complete-data

log-likelihood. We show that, within this context, the PR

problem can be solved by an instance of the the expec-

tation conditional maximization (ECM) algorithm. It has

been proven that ECM is more broadly applicable than EM

while it shares its desirable convergence properties [32]. In

ECM, each M-step is replaced by a sequence of conditional

maximization steps, or CM-steps. As it will be explained

and detailed in this paper, ECM is particularly well suited

for point registration because the maximization over the

registration parameters cannot be carried out independently

of the other parameters of the model, namely the covariances.

For these reasons we propose the Expectation Conditional

Maximization for Point Registration algorithm (ECMPR).

• The vast majority of existing rigid point registration methods

use isotropic covariances for reasons that we just explained.

In the more general case of anisotropic covariances, we

show that the optimization problem associated with rigid

alignment cannot be solved in closed-form. The iterative

Fig. 1

AN ILLUSTRATION OF THE POINT REGISTRATION METHOD APPLIED TO

THE PROBLEM OF ALIGNING AN ARTICULATED MODEL OF A HAND TO A

SET OF 3D POINTS. THE 3D DATA ARE OBTAINED BY STEREO

RECONSTRUCTION FROM AN IMAGE PAIR (TOP). THE HAND MODEL

CONSISTS OF 3D POINTS LYING ON 16 HAND PARTS (ONE ROOT PART, I.E.,

THE PALM, AND 3 ADDITIONAL PARTS FOR EACH FINGER). THE MODEL

CONTAINS 5 KINEMATIC CHAINS, EACH ONE IS COMPOSED OF THE PALM

AND ONE FINGER, I.E., 4 PARTS. HENCE, THE PALM, OR THE ROOT PART,

IS COMMON TO ALL THE KINEMATIC CHAINS. THIS ARTICULATED MODEL

HAS 27 DEGREES OF FREEDOM (3 TRANSLATIONS AND 3 ROTATIONS FOR

THE PALM, 5 ROTATIONS FOR THE THUMB AND 4 ROTATIONS FOR THE

INDEX, MIDDLE, RING, AND BABY FINGERS). THE RESULT OF THE

ECMPR-ARTICULATED ALGORITHM IS SHOWN PROJECTED ONTO THE

LEFT IMAGE (BOTTOM-LEFT) AND AS AN IMPLICIT SURFACE DEFINED AS

A BLENDING OVER THE 16 HAND PARTS (BOTTOM-RIGHT).

numerical solution proposed in [27] estimates the motion

parameters without estimating the covariances. We propose

and devise a novel solution to this problem which consists

in transforming the nonconvex problem into a convex one

using semi-definite positive (SDP) relaxation [33]. Hence,

rigid alignment in the presence of anisotropic covariance

matrices is amenable to a tractable optimization problem.

• We extend the rigid alignment solution just mentioned to

articulated alignment. Based on the fact that the kinematic

motion of an articulated object can be written as a chain of

constrained rigid motions, we devise an incremental solution

which iteratively applies the rigid-alignment solution just

mentioned to the rigid parts of the kinematic chain. There

are a few methods for aligning articulated objects via point

registration. In [7] ICP is first applied independently to each

rigid part of the articulated object and next, the articulated

constraints are enforced. The articulated ICP method of

[8] alternates between associating points from the two sets

and estimating the articulated pose. The latter is done by

minimizing a non-linear least-square error function which

ensures that the rigid body parts are in an optimal pose while



3

the kinematic joint constraints are only weakly satisfied.

Our approach has two advantages with respect to these

methods. First, rather than ICP, we use ECM which has

proven convergence properties and which can handle inliers

and outliers in a principled way. Second, our incremental

rigid alignment formulation naturally enforces the kinematic

constraints. As a consequence, these constraints hold exactly

and there is no need to enforce them a posteriori. Moreover,

the articulated registration method that we propose takes full

advantage of the rigid point registration algorithm, which

is quite different from data-point-to-object-part registration

[34]–[38]. We note that our method is similar in spirit with

[39]. However, the latter suffers from the limitations of ICP.

• One important property of any point registration method

is its robustness to outliers. Our method has a built-in

outlier model, namely a uniform component that is added to

the Gaussian mixture to account for non-Gaussian data, as

suggested in [40]. This adds an improper uniform-density

component to the mixture. In theory it is attractive to

incorporate the estimation of the uniform parameters into

the EM algorithm. In practice, this requires an in-depth

analysis of ML for the mixture in the presence of several

parametric component models, which is an unsolved problem

[41], [42]. We propose a treatment of the uniform component

on the basis of considerations and properties that are specific

to point registration. This modifies the expressions of the

posteriors without adding any extra free parameters in the

maximization step and without altering the general structure

of the algorithm. Hence, the convergence proofs of ECM

[32] and of EM [21], [43], [44] carry over in this case.

Our approach to outlier rejection differs from existing meth-

ods currently used in point registration. Non-quadratic robust

loss functions are proposed in [4] and in [17] but the

drawback is that the optimization process can be trapped in

local minima. This is not the case with our method because

of the embedding of outlier rejection within EM. Other

robust techniques such as RANSAC [6], [19], least median

of squares (LMS) [45], or least trimmed squares (LTS) [5],

[46] must consider a very large number of subsets sampled

from the two sets of points before a satisfactory solution

can be found. Moreover, there is a risk that the two trimmed

subsets which are eventually selected (a data subset and a

model subset) contain outlying data that lead to a good fit.

These random sampling issues are even more critical when

one deals with articulated objects because several subsets

of trimmed data points must be available, i.e., one trimmed

subset for each rigid part.

• We perform extensive experiments with both the ECMPR-

rigid and ECMPR-ariculated point registration algorithms.

We thoroughly study the behaviour of the method with

respect to (i) the initial parameter values, (ii) the amount

of noise added to the observed data, (iii) the presence of

outliers, and (iv) the use of anisotropic covariances instead of

isotropic ones. We illustrate the effectiveness of the method

in the case of tracking a complex articulated object – a

human hand composed of 5 kinematic chains, 16 parts, and

27 degrees of freedom, as shown in Fig. 1.

The remainder of this paper is organized as follows. In section

II the PR problem is cast into the framework of ML. In section III

the expected complete-data log-likelihood is derived. In section

IV the EM algorithm for point registration, ECMPR, is formally

derived. The algorithm is applied to rigid point sets (section V)

and to articulated point sets (section VI). Experimental results

obtained both with simulated and real data are described in

section VII.

II. PROBLEM FORMULATION

A. Mathematical notations

Throughout the paper, vectors will be in slanted bold style

while matrices will be in bold style. We will consider two sets of

3-D points. We denote by Y = {Y j}1≤j≤m the 3-D coordinates

of a set of observed data points and by X = {Xi}1≤i≤n the

3-D coordinates of a set of model points. The model points

lie on the surface of either a rigid or an articulated object.

Hence, each model point may undergo either a rigid or an

articulated transformation which will be denoted by µ : R3 → R
3.

The 3-D coordinates of a transformed model point µ(Xi;Θ)

are parameterized by Θ. In the case of rigid registration, the

parameterization will consist of a 3×3 rotation matrix R and

a 3×1 translation vector t. Hence, in this case we have:

µ(Xi;Θ) = RXi + t, Θ := {R, t}. (1)

We will refer to the parameter vector Θ as the registration param-

eters. Section VI will make explicit the registration parameters in

the case of articulated objects.

A parameter overscripted by ∗, e.g., Θ∗, denotes the optimal

value of that parameter. The overscript ⊤ denotes the transpose

of a vector or of a matrix. ‖X − Y ‖2 is the squared Euclidean

distance and ‖X−Y ‖2
Σ

is the squared Mahalanobis distance, i.e.

(X − Y )⊤Σ−1(X − Y ) where Σ is a 3×3 symmetric positive

definite matrix.

B. Point registration, maximum likelihood, and EM

In this paper we will formulate point registration as the estima-

tion of a mixture of densities: A Gaussian mixture model (GMM)

is fitted to the data set Y such that the centers of the Gaussian

densities are constrained to coincide with the transformed model

points µ(Xi;Θ), Xi ∈ X . Therefore, each density in the mixture

is characterized by a mean vector µi and a covariance matrix Σi.

In the standard mixture model approach both the means and

the covariances are the free parameters. Here the means are

parameterized by the registration parameters which enforce prior

knowledge about the transformation that exists between the two

sets of points. Therefore, the observed-data log-likelihood is a

function of both the registration parameters and of the covariance

matrices:

L(Θ,Σ1, . . . ,Σn|Y) = logP (Y;Θ,Σ1, . . . ,Σn) (2)

The direct maximization of L over these parameters is intractable

due to the presence of missing data, namely the unknown assign-

ment of each observed data point Y j to one of the mixture’s

components. Let Z = {Zj}, 1 ≤ j ≤ m be these missing data

which will be treated as a set of hidden random variables. Each

variable Zj assigns an observed data point Y j to a model point

Xi, 1 ≤ j ≤ n, or to an outlier class indexed by n+ 1.
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Dempster, Laird & Rubin [21] proposed to replace L with

the expected complete-data log-likelihood conditioned by the

observed data, where the term complete-data refers to both the

observed data Y and the missing data Z , and where the expecta-

tion is taken over the missing data (or the hidden variables):

E(Θ,Σ1, . . . ,Σn|Y,Z) = EZ [logP (Y,Z;Θ,Σ1, . . . ,Σn)|Y]

(3)

Expectation maximization (EM) [21], is an iterative method

for finding maximum likelihood estimates in incomplete-data

problems like the one just stated. It has been proven that the

EM algorithm converges to a local maximum of the expected

complete-data log-likelihood (E) and that the maximization of E
also maximizes the observed-data log-likelihood L [43], [44].

C. The proposed method

As it will be explained in detail below, in the case of point

registration, EM must be replaced by ECM. This will yield the

following method:

1) Provide initial values for the model parameters;

2) E-step. Compute the posterior probabilities given the cur-

rent estimates of the registration parameters (Θq) and of

the covariance matrices Σq = (Σq
1, . . . ,Σ

q
n):

αq
ji = P (Zj = i|Xj ;Θ

q,Σq)

3) CM-steps. Maximize the expectation in (3) with respect to:

a) The registration parameters, conditioned by the cur-

rent covariance matrices:

Θ
q+1 = argmax

Θ

EZ [logP (Y,Z;Θ,Σq)|Y]

b) The covariance matrices conditioned by the newly

estimated registration parameters:

Σ
q+1 = argmax

Σ

EZ [logP (Y,Z;Θq+1,Σ)|Y]

4) Check for convergence.

III. POINT REGISTRATION AND GAUSSIAN MIXTURES

In order to estimate the registration parameters, one needs

to find correspondences between the observed data points and

the model points. These correspondences are the missing data

and will be treated as hidden variables within the framework

of maximum likelihood. Hence, there is a strong analogy with

clustering. An observed data point Y j could be assigned either

to a Gaussian cluster centered at µ(Xi;Θ), or to a uniform

class defined in detail below. In section II-B we already briefly

introduced the hidden variables Z = {Zj}1≤j≤m which describe

the assignments of the observations to clusters, or equivalently,

the data-point-to-model-point correspondences. More specifically,

the notation Zj = i (or Z : j → i) means that the observation

Y j matches the model point Xi while Zj = n + 1 means that

the observation Y j is an outlier.

We also denote by pi = P (Zj = i) the prior probability that

observation Y j belongs to cluster i with center µ(Xi;Θ) and

by pn+1 = P (Zj = n + 1) the prior probability of observation

j to be an outlier. We also denote by P (Y j |Zj = i), ∀j ∈

{1, . . . ,m}, ∀i ∈ {1, . . . , n+1} the conditional likelihood of Y j ,

namely the probability of Y j given its cluster assignment.

The likelihood of an observation j given its assignment to clus-

ter i is drawn from a Gaussian distribution with mean µ(Xi;Θ)

and covariance Σi:

P (Y j |Zj = i) = N (Y j |µ(Xi;Θ),Σi), ∀i, 1 ≤ i ≤ n (4)

Similarly, the likelihood of an observation given its assignment

to the outlier cluster is a uniform distribution over the volume V

of the 3-D working space:

P (Y j |Zj = n+ 1) = U(Y j |V, 0) =
1

V
(5)

Since {Zj = 1, . . . , Zj = n,Zj = n + 1} is a partition of the

event space of Zj , the marginal distribution of an observation is:

P (Y j) =

n+1∑

i=1

piP (Y j |Zj = i) (6)

By assuming that the observations are independent and identically

distributed, the observed-data log-likelihood L, i.e., eq. (2) writes:

logP (Y) =

m∑

j=1

log

(
n∑

i=1

piN (Y j |µ(Xi;Θ),Σi) +
pn+1

V

)

(7)

The observed-data log-likelihood is conditioned by the registra-

tion parameters Θ (which constrain the centers of the Gaussian

clusters), by n covariance matrices Σi, by n + 1 cluster priors

pi subject to the constraint
∑n+1

i=1 pi = 1, and by the uniform-

distribution parameter V . In the next section we will discuss

the choice of the priors and the parameterization of the uniform

distribution in the specific context of point registration.

It will be convenient to denote the parameter set by:

Ψ = {Θ,Σ1, . . . ,Σn} (8)

A powerful method for finding ML solutions in the presence of

hidden variables is to replace the observed-data log-likelihood

with the complete-data log-likelihood and to maximize the ex-

pected complete-data log-likelihood conditioned by the observed

data. The criterion to be maximized (i.e., eq. (3)) becomes [47]:

E(Ψ|Y,Z) =
∑

Z

P (Z|Y,Ψ) logP (Y,Z;Ψ) (9)

IV. EM FOR POINT REGISTRATION

In this section we formally derive the EM algorithm for robust

point registration. We start by making explicit the posterior

probabilities of the assignments conditioned by the observations

when both the observed data and the model data are described by

3-D points; Using Bayes’ rule we have:

αji = P (Zj = i|Y j) =
P (Y j |Zj = i)P (Zj = i)

P (Y j)
(10)

In general, EM treats the priors pi = P (Zj = i) as parameters. In

the case of point registration we propose to specialize the priors

as follows:

pi =

{
pin = v

V if 1 ≤ i ≤ n

pout = V−nv
V if i = n+ 1

(11)
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where v = 4πr3/3 is the volume of a small sphere with radius r

centered at a model point Xi. We assume nv ≪ V . By combining

eqs. (4), (5), (6), and (11) we obtain, for all i = 1 . . . n:

αji =
|Σi|−

1

2 exp
(
− 1

2‖Y j − µ(Xi;Θ)‖2
Σi

)
∑n

k=1 |Σk|−
1

2 exp
(
− 1

2‖Y j − µ(Xk,Θ)‖2
Σk

)
+ ∅3D

(12)

where ∅3D corresponds to the outlier component in the case of

3-D point registration:

∅3D = 1.5
√
2πr−3

(13)

Note that there is a similar expression in the case of 2-D point

registration, namely ∅2D = 2r−2 and that this can be generalized

to any dimension. The posterior probability of an outlier is given

by:

αj n+1 = 1−
n∑

i=1

αji (14)

Next we derive an explicit formula for E in eqs. (3) and (9). For

that purpose we expand the complete-data log-likelihood:

logP (Y,Z;Ψ) = log

m∏

j=1

P (Y j , Zj ;Ψ)

= log

m∏

j=1

P (Y j |Zj ;Ψ)P (Zj)

= log

m∏

j=1

n+1∏

i=1

{
piP (Y j |Zj = i;Ψ)

}δiZj

where δizj is the Kronecker symbol defined by:

δiZj
=

{
1 if Zj = i

0 otherwise
(15)

Therefore, eq. (3), i.e., E(Ψ|Y,Z) can be written as:

EZ




m∑

j=1

n+1∑

i=1

δiZj

(
log pi + logP (Y j |Zj = i,Ψ)

)
| Y




=

m∑

j=1

n+1∑

i=1

EZ [δiZj
|Y]
(
log pi + logP (Y j |Zj = i,Ψ)

)
(16)

where the conditional expectation of δiZj
writes

EZ [δiZj
|Y] =

n+1∑

k=1

δikP (Zj = k|Y j) = αji (17)

By replacing the conditional probabilities with the normal and

uniform distributions, i.e., (4) and (5), and by neglecting constant

terms, i.e., terms that do not depend on Ψ, eq. (16) can be written

as:

E(Ψ) = −1

2

m∑

j=1

n∑

i=1

αji

(
‖Y j − µ(Xi;Θ)‖2Σi

+ log |Σi|
)

(18)

It was proven that the maximizer of (18) also maximizes the

observed-data log-likelihood (7) and that this maximization may

be carried out by the EM algorithm [43], [44]. Nevertheless,

there is an additional difficulty in the case of point registration.

In the standard EM, the free parameters are the means and the

covariances of the Gaussian mixture and the estimation of these

parameters is quite straightforward. In the case of point regis-

tration, the means are constrained by the registration parameters

and, moreover, the functions µi(Xi;Θ) are complicated by the

presence of the rotation matrices, as detailed in section V. In

practice, the estimation of Θ is conditioned by the covariances.

The simultaneous estimation of all the model parameters within

the M-step would lead to a difficult non-linear minimization

problem. Instead, we propose to minimize (18) over Θ while

keeping the covariance matrices constant, which leads to (19)

below, and next we estimate the empirical covariances Σi using

the newly estimated registration parameters. This amounts to

replace EM by ECM [32]. In practice we obtain two conditional

minimization steps, using α
(q)
ij given by (12) and (14):

Θ
q+1 = argmin

Θ

1

2

m∑

j=1

n∑

i=1

αq
ji‖Y j − µ(Xi;Θ)‖2

Σ
q
i

(19)

and for all i = 1 . . . n,

Σ
q+1
i =

∑m
j=1 α

q
ji(Y j − µ(Xi;Θ

q+1))(Y j − µ(Xi;Θ
q+1))⊤

∑m
j=1 α

q
ji

(20)

It is well known (e.g. [47], [48]) that when the mean µi of one

of the Gaussian components collapses onto a specific data point

while the other data points are “infinitely” away from µi, the

entries of the corresponding covariance matrix Σi tend to zero.

Since [49], the phenomenon has been well studied for Gaussian

mixtures. Under suitable conditions, constrained global maximum

likelihood formulations have been proposed, which present no

singularities and a smaller number of spurious maxima (see [48]

and the references therein). However, in practice these studies

do not always lead to efficient EM implementations. Thus, in

order to avoid such degeneracies, the covariance is artificically

fattened as follows. Let QDQ⊤ be the eigendecomposition of

Σi and let’s replace the diagonal matrix D with D + εI. We

obtain Σε
i = Q(D+ εI)Q⊤ = Σi + εI. Hence, adding εI, where

ε is a small positive number slightly fattens the covariance matrix

without affecting its characteristics (eccentricity and orientation

of the associated ellipsoid). A more theoretical analysis and other

similar transformations of problematic covariance matrices are

proposed in [48] but the straightforward choice above provided

satisfying results.

Alternatively, one may model all the components of the mixture

with a common covariance matrix:

Σ
q+1 =

m∑
j=1

n∑
i=1

αq
ji(Y j − µ(Xi;Θ

q+1))(Y j − µ(Xi;Θ
q+1))⊤

∑m
j=1

∑n
i=1 α

q
ji

(21)

When the number of data points is small, it is preferable to use

(21), e.g., Fig. 2.

Notice that (19) can be further simplified by introducing the

virtual observation W i and its weight λi that are assigned to a

model point Xi:

W i =
1

λi

m∑

j=1

αjiY j (22)

λi =

m∑

j=1

αji (23)
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By expanding (19), substituting the corresponding terms with (22)

and (23), and by neglecting constant terms the minimizer yields

a simpler expression:

Θ
q+1 = argmin

Θ

1

2

n∑

i=1

λqi ‖W
q
i − µ(Xi;Θ)‖2

Σ
q
i

(24)

It is worth noticing that the many-to-one assignment model de-

veloped here has a one-to-one (data-point-to-model-point) struc-

ture: The virtual observation W i (corresponding to a normal-

ized sum over all the observations weigthed by their posteriors

{Y j , αji}, 1 ≤ j ≤ m) is assigned to the model point Xi.

Eq. (24) will facilitate the development of an optimization method

for the rigid and articulated point registration problems as outlined

in the next sections. Moreover, the minimization of (24) is

computationally more efficient than the minimization of eq. (19)

because it involves fewer terms.

V. RIGID POINT REGISTRATION

In this section we assume that the model points lie on a rigid

object. Therefore:

Θ := (R, t)⊤ . (25)

Eq. (1) holds in this case and (24) becomes:

Θ
∗ = argmin

R,t

1

2

n∑

i=1

λi‖W i −RXi − t‖2Σi
(26)

Minimization with respect to the translation parameters is easily

obtained by taking the derivatives of (26) with respect to the 3-D

vector t and setting these derivatives to zero. We obtain:

t
∗ =

(
n∑

i=1

λiΣ
−1
i

)−1 n∑

i=1

λiΣ
−1
i (W i −RXi) (27)

By substituting this expression in (26), we obtain:

R
∗ = argmin

R

1

2

n∑

i=1

λi

(
X

⊤
i R

⊤
Σ

−1
i RXi + 2X⊤

i R
⊤
Σ

−1
i t

∗

−2X⊤
i R

⊤
Σ

−1
i W i − 2t∗

⊤
Σ

−1
i W i + t

∗⊤
Σ

−1
i t

∗
)

(28)

The minimization of (28) must be carried out in the presence of

the orthonormality constraints associated with the rotation matrix,

i.e., RR⊤ = I and |R| = +1.

A. Isotropic covariance model

Eq. (28) significantly simplifies when isotropic covariance

matrices are being used, namely Σi = σ2
i I3. In this case, the

criterion above has a much simpler form because the Mahalanobis

distance reduces to the Euclidean distance. We obtain:

t
∗ =

∑n
i=1 λiσ

−2
i (W i −RXi)(∑n
i=1 λiσ

−2
i

) (29)

and:

R
∗ = argmin

R

1

2

n∑

i=1

λiσ
−2
i

(
2X⊤

i R
⊤
t
∗ − 2X⊤

i R
⊤
W i

−2t∗
⊤
W i + t

∗⊤
t

)
(30)

The vast majority of existing point registration methods use an

isotropic covariance. The minimizer of (30) can be estimated in

closed-form using one of the methods proposed in [23], [24], [26].

B. Anisotropic covariance model

In this section we provide a solution for (28) in the general case

i.e. when the covariances are anisotropic. Our formulation relies

on transforming (28) into a constrained quadratic optimization

problem and on using semi-definite positive (SDP) relaxation to

solve it, as detailed below. We denote by r the 9 × 2 vector

containing the entries of the 3×3 matrix R, namely r := vec(R).

We also denote by ρ the following rank-one positive symmetric

matrix:

ρ := rr
⊤

(31)

By developing and regrouping terms, (28) can be written as the

following quadratic minimization criterion subject to orthogonal-

ity constraints:
{

r∗ = argmin 1
2

(
r⊤Ar + 2b⊤r

)

r⊤∆klr = δkl, k = 1, 2, 3; l = 1, 2, 3.
(32)

The entries of the 9×9 real symmetric matrix A and that of

the 9×1 vector b are easily obtained by identification with the

corresponding terms in (28); The entries of A and of b are derived

in the Appendix. The entries of the six 9×9 matrices ∆kl are

easily obtained from the constraint RR⊤ = I.

As already outlined, one fundamental tool for solving such

a constrained quadratic optimization problem is SDP relaxation

[33], [50]. Indeed, a quadratic form such as r⊤Ar can equiva-

lently be written as the matrix dot-product 〈A, rr⊤〉1. Using the

notation (31) one can rewrite (32):




(ρ∗, r∗) = arg min
(ρ,r)

1
2

(
〈A,ρ〉+ 2b⊤r

)

〈∆kl,ρ〉 = δkl, k = 1, 2, 3; l = 1, 2, 3.

ρ = rr⊤

(33)

In (33) everything is linear except the last constraint which is

nonconvex. As already noticed, matrix rr⊤ is a rank-one positive

symmetric matrix. Relaxing the positivity constraint to semi-

definite positivity amounts to taking the convex hull of the rank-

one positive symmetric matrices. Within this context, (33) relaxes

to: 



(ρ∗, r∗) = arg min
(ρ,r)

1
2

(
〈A,ρ〉+ 2b⊤r

)

〈∆kl,ρ〉 = δkl, k = 1, 2, 3; l = 1, 2, 3.

ρ � rr⊤

(34)

To summarize, rigid point registration with anisotropic covari-

ances, i.e. (28), can be formulated as the convex optimization

problem (34). It is well known that this generally provides a very

good initial solution to a standard non-linear optimizer such as the

one proposed in [27]. Finally, this yields the following algorithm

illustrated in Fig. 2:

The ECMPR-rigid algorithm:

1) Initialization: Set Rq = I, tq = 0. Choose the initial

covariance matrices Σ
q
i , i = 1 . . . n.

2) E-step: Evaluate the posteriors αq
ji from (12) and (14), W

q
i

from (22), and λqi from (23), using the current parameters

Rq , tq , and Σ
q
i .

3) CM-steps:

1The dot-product of two n × n matrices A = [Aij ] and B = [Bij ] is

defined as 〈A,B〉 :=
n∑

i=1

n∑

j=1

AijBij .
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(a) 2-nd iteration (b) 6-th iteration (c) 35-th iteration

Fig. 2

ILLUSTRATION OF THE ECMPR-RIGID ALGORITHM. THERE ARE 15 MODEL POINTS (FILLED BLUE CIRCLES) AND 25 DATA POINTS, 15 INLIERS (FILLED

GREEN SQUARES) THAT CORRESPOND TO MODEL POINTS THAT WERE ROTATED, TRANSLATED AND CORRUPTED BY ANISOTROPIC GAUSSIAN NOISE,

AND 10 OUTLIERS (EMPTY RED SQUARES) DRAWN FROM A UNIFORM DISTRIBUTION. IN THIS EXAMPLE WE MODELED ALL THE COMPONENTS OF THE

MIXTURE MODEL WITH A COMMON COVARIANCE MATRIX (SHOWN WITH ELLIPSES), AS IN (21). THE LINES CORRESPOND TO CURRENT

DATA-TO-MODEL ASSIGNMENTS. THE ALGORITHM CONVERGED AT THE 35-TH ITERATION. THERE ARE 12 DATA-POINT-TO-MODEL-POINT

ASSIGNMENTS AND 7 DATA-POINT-TO-OUTLIER-CLASS ASSIGNMENTS CORRESPONDING TO THE GROUND TRUTH. THIS EXAMPLE CORRESPONDS TO THE

SECOND ROW IN TABLE I. SEE SECTION VII FOR MORE DETAILS.

a) Use SDP relaxation to estimate the new rotation

matrix Rq+1 by minimization of (28) with the current

posteriors αq
ji and the current covariances Σ

q
i ;

b) Estimate the new translation vector tq+1 from (27)

using the new rotation Rq+1, the current posteriors,

and the covariance matrices;

c) Estimate the new covariances from (20) or from (21)

with the current posteriors, the new rotation matrix,

and the new translation vector.

4) Convergence: Compare the new and current rotations. If

‖Rq+1−Rq‖2 < ε then go to the Classification step. Else,

set the current parameter values to their new values and

return to the E-step.

5) Classification: Assign each observation to a model point

(inlier) or to the uniform class (outlier) based on the

maximum a posteriori (MAP) principle:

zj = argmax
i

αq
ji.

VI. ARTICULATED POINT REGISTRATION

A. The kinematic model

In this section we will develop a solution for the articulated

point registration problem. We will consider the case of an open

kinematic chain. Such a chain is generally composed of rigid

parts. Two adjacent parts are mechanically linked. Each link has

one, two or three rotational degrees of freedom. i.e., spherical

motions. In addition we assume that the root part of such an

open chain may undergo a free motion with six degrees of

freedom. Consequently the articulated object motions considered

here are combinations of free and constrained motions. This is

more general than traditional open or closed kinematic chains

considered in standard robotics [51].

More precisely, any rigid part p, 1 ≤ p ≤ P , moves with

respect to the root part p = 0 through a chain of constrained

motions. The root part itself undergoes a free motion with up to

six degrees of freedom, three rotations and three translations. We

assume that a partition of the set of model points is provided,

X = {X0, . . .Xp, . . .XP }; Each subset of model points Xp =

{X(p)
i }, 1 ≤ i ≤ np is attached to the pth rigid part of the

articulated object. It is worthwhile to point out that a partitioning

of the set of observations is not required in advance and is merely

an output of our method. The model point X
(p)
i belonging to part

p is transformed with:

µ(X
(p)
i ;Θ) = R(Θ)X

(p)
i + t(Θ), Θ := {Θ0, . . .Θp} (35)

The main difference between rigid and articulated motion is

that in the former case, (i.e., eq. (1)) the rotation matrix and

translation vector are the free parameters while in the latter case,

(i.e., eq. (35)) the motion of any part is constrained by both

the kinematic parameters Θ1, . . .Θp and by the motion of the

root part Θ0. For convenience we will adopt the homogeneous

representation of the Euclidean group of 3-D rigid displacements.

Hence the rotation matrix and the translation vector can be

embedded into a 4×4 displacement matrix Tp(Θ). The latter may

well be written as a chain of homogeneous transformations:

Tp(Θ) = Q0(Θ0)Q1(Θ1) . . .Qp(Θp) (36)

• Q0 describes the free motion of the root part parameterized

by Θ0 = {vec(R0), t0}.

• Each transformation Qp, 1 ≤ p ≤ P has two components: A

fixed component that describes a change of coordinates, and

a constrained motion component parameterized by one, two

or three angles [37].

Therefore, the estimation of the parameter vector Θ amounts

to solving a difficult inverse kinematic problem, namely a set
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 3

ILLUSTRATION OF THE ECMPR-ARTICULATED ALGORITHM. THE ARTICULATED OBJECT CONSISTS OF 4 RIGID PARTS. (A)–(C): 1ST, 4TH AND 25TH

ITERATIONS OF ECMPR-RIGID USED TO REGISTER THE ROOT PART, I.E., p = 0; THE ALGORITHM CONVERGED IN 25 ITERATIONS. (D)–(F): THE

UNMATCHED DATA (THE OUTLIERS), ARE USED TO REGISTER THE SECOND PART, p = 1, IN 13 ITERATIONS. (G)–(I): THE THIRD PART, p = 2, IS ALIGNED

WITH THE REMAINING DATA AFTER 13 ITERATIONS. (J)–(K): THE FOURTH PART, p = 3, IS REGISTERED WITH THE REMAINING DATA IN 4 ITERATIONS.

of non-linear equations that are generally solved using iterative

optimization methods requiring proper initialization.

Rather than estimating the problem parameters simultaneously,

in this section we devise a closed-form solution which is based on

the formulation developed in section V. We propose the ECMPR-

articulated algorithm which is built on top of the ECMPR-rigid

algorithm and which solves for the free and kinematic parameters

incrementally by considering a single rigid part at each iteration.

This contrasts with methods that attempt to estimate all the

kinematic parameters simultaneously from data-point-to-object-

part associations, as done in previous approaches [34]–[38]. The

motion of the root part of the articulated object is parameterized

by a rotation and a translation, while the motion of each one

of the other parts is parameterized by a rotation, hence Θ0 =

{vec(R0), t0} and Θp = {vec(Rp)}, for all p = 1 . . . P , and:

Q0 =

[
R0 t0
0 1

]
, Qp =

[
Rp 0

0 1

]
. (37)

Moreover, eq. (36) can be written as T0 = Q0, T1 = T0Q1, or

more generally ∀p, 1 ≤ p ≤ P :

Tp = Tp−1Qp (38)

which can be expanded as:

Tp =

[
R0,p−1Rp t0,p−1

0⊤ 1

]
(39)

where the rotation matrix R0,p−1 and the translation vector

t0,p−1 are associated with Tp−1 describing the articulated pose

of body part p− 1.

B. The pose of an articulated shape

As already mentioned, there are np model points X
(p)
i associ-

ated with the pth body part. Using the set of available observations

together with current estimates of their posterior probabilities

one can easily compute the set of np virtual observations W i

and their weights λi. Therefore, the criterion (26) allows rigid

registration of the root part as well as registration of the pth body

part conditioned by the articulated pose of the (p−1)th body part:

Θ
∗
0 = arg min

R0,t0

1

2

n0∑

i=1

λi‖W i −R0X
(0)
i − t0‖2Σi

(40)

R
∗
p = argmin

Rp

1

2

np∑

i=1

λi‖W i −R0,p−1RpX
(p)
i − t0,p−1‖2Σi

(41)

By introducing the following substitutions:

Up = R0,p−1RpR
⊤
0,p−1 (42)

V
(p)
i = R0,p−1X

(p)
i (43)

the minimization of (41) becomes:

U
∗
p = argmin

Up

1

2

np∑

i=1

λi‖W i −UpV
(p)
i − t0,p−1‖2Σi

(44)
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Therefore, if the transformation Tp−1 is known, the parameters

of the transformation Qp can be obtained by minimization of

(44) and from (42) and (43), which is strictly equivalent to the

minimization of (26). To summarize, we obtain the following

algorithm illustrated in Fig. 3:

The ECMPR-articulated algorithm:

1) Rigid registration of the root part: Initialize the current

set of data points Y(0) with the whole data set. Apply the

ECMPR-rigid algorithm to the data set Y(0) and to the set

of model points associated with the root part, X0, in order to

estimate the pose of the root part. Compute T0 using (37).

Classify the data points into inliers and outliers. Remove

the inliers from Y(0) to generate a new data set Y(1).

2) For each p = 1 . . . P , rigid registration of the pth part:

Apply the ECMPR-rigid algorithm to the current set of

data points Y(q) and to the set Xp. Estimate Rp from (42)

and (44). Compute Qp and then Tp using (37) and (38).

Classify the data points into inliers and outliers. Remove

the inliers from Y(q) to generate Y(q+1).

VII. EXPERIMENTAL RESULTS

We carried out a large number of experiments with both

algorithms. ECMPR-rigid was applied to simulated data to assess

the performance of the method with respect to (i) the initialization

parameters, (ii) the amplitude of Gaussian noise added to the

data, and (iii) the percentage of outliers drawn from a uniform

distribution. ECMPR-rigid was also applied to a real data set

and compared with TriICP. ECMPR-articulated was applied to a

simulated data set to illustrate the method, Fig. 3 as well as to

the problem of hand tracking with both real and simulated data.

In all the experiments described in this section, ECMPR-

rigid’s parameters were initialized the same way: the rotation is

initialized with the identity matrix and the translation with the

zero vector. Notice that ECMPR-rigid resides in the inner loop

of ECMPR-articulated, i.e., section VI-B.

A. Experiments with ECMPR-rigid

We carried out several experiments with ECMPR-rigid and with

the Trimmed Iterative Closest Point algorithm (TriICP) [5], which

is a robust implementation of ICP using random sampling. These

experiments are summarized in Table I and on Fig. 2 and Fig. 4.

In all these experiments we considered 15 model points cor-

responding to the clusters’ centers in the mixture model, as well

as 25 observations: 15 inliers and 10 outliers. The inliers are

generated from the model points: they are rotated, translated, and

corrupted by noise. All the outliers in all the experiments are

drawn from a uniform distribution spanning the bounding box of

the set of observations.

In the examples shown in Table I and on Fig. 2 the inliers are

rotated by 250 and then translated using a randomized vector. The

first example (first row in Table I) is noise free. We simulated

anisotropic Gaussian noise that was added to the inliers in

the second and third examples. This noise is centered at each

inlier location and is drawn from two one-dimensional Gaussian

probability distributions with two different variances along each

dimension. The variances were allowed to vary between 10% and

100% of box bounding the set of observations. In all the reported

experiments, ECMPR-rigid was initialized with a null rotation

angle (the identity matrix), a null translation vector, and with large

variances. We used the same data with TriICP. Unlike our method,

ICP methods require proper initialization, in particular in the

presence of outliers. TriICP embeds multiple initializations using

a random sampling strategy, which explains the large number of

iterations of this method [5].

Additionally, we performed a large number of trials with

ECMPR-rigid in the anisotropic covariance case (second row in

Table I). The inliers are rotated with an angle that varies between

00 and 1800. For each angle we performed 1,000 trials. Fig. 4

shows the percentage of correct matches (a), the relative error in

rotation (b), and the relative error in translation (c) as a function

of the ground-truth rotation angle between the sets of data and

model points. The plotted curves correspond to the mean values

and to the variances computed over 1,000 trials for each rotation.

ECMPR-rigid behaves very well in the presence of both high-

amplitude anisotropic Gaussian noise and outliers. The anisotropic

covariance model advocated in this paper yields better results

than the isotropic model both in terms of parameter estimation

and number of correct assignments. The errors in rotation and

translation are consistent with the level of noise added to the

inliers; Overall the performance of ECMPR-rigid is very robust in

the presence of outliers. This is a crucial feature of the algorithm

that directly conditions the robustness of ECMPR-articulated,

since the former resides in the inner loop of the latter.

To farther assess the algorithms’ performance, we computed the

percentage of correct matches (see Table I), namely the number of

observations that were correctly classified over the total number of

observations. In case of ECMPR-rigid, this classification is based

on the maximum a posteriori (MAP) principle: each observation

j is assigned to the cluster k (either a Gaussian cluster for a

model point or a uniform class for an outlier) such that k =

argmaxi(αji). This implies that each data point, which is not an

outlier, is assigned to one model point but there may be several

data points assigned to the same model point. ICP algorithms

use a different assignment strategy, namely they retain the closest

data point for each model point and they apply a threshold to

this point-to-point distance to decide whether the assignment

should be validated or not. For these reasons, the counting of

matches has a different meaning with ECMPR and with ICP. For

example, in the case of an anisotropic covariance model (Table I

second row and Fig. 2), ECMPR assigned 3 outliers to 3 model

points while 3 inliers were incorrectly assigned. In the case of

an isotropic covariance model (Table I, third row), 4 outliers

were assigned to 4 model points while 8 inliers were incorrectly

assigned. In the presence of both anisotropic noise and outliers,

TriICP rejected 18 data points, namely 10 outliers and 8 inliers.

Comparing correct matches then may not be straightforward. A

more meaningful comparison can be made by looking at the

transformation estimation. It appears that ECMPR has superior

performance with smaller rotation and translation errors.

As we already mentioned and as observed by others, the

initialization of TriICP (and more generally of ICP algorithms) is

crucial to obtain a good match. Starting from any initial guess,
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TABLE I

SUMMARY OF EXPERIMENTS WITH SIMULATED DATA USING ECMPR-RIGID AND TRIICP.

Algorithm Simulated

noise

Covariance

model

Number of

iterations

Error in

rotation (%)

Error in

translation (%)

Correct

matches (%)

Process.

time (ms)

ECMPR – anisotropic 20 0.0 0.0 100 16.8

ECMPR (Fig. 2) anisotropic anisotropic 36 1.5 5.6 76 31.4

ECMPR anisotropic isotropic 35 8.1 26.3 52 16.8

TriICP – – 217 0.0 0.0 100 67.2

TriICP anisotropic – 215 10.3 6.5 28 63.2

ICP converges very fast (4 to 5 iterations on average). However,

ICP is easily trapped in a local minimum. To overcome this

problem, TriICP combines ICP with a random sampling method:

The space of rotational parameters is uniformly discretized and

an initial solution is randomly drawn from this space.

TABLE II

COMPARISON BETWEEN ECMPR-RIGID AND ICP APPLIED TO THE

STEREO DATA OF FIG. 5.

Algorithm Number of
iterations

Number of
inliers

Translation
error (%)

Minimization
error (mm)

ECMPR 12 95 12.5 4.6

ICP (Worst) 4 227 34.6 6.0

ICP (Best) 6 177 22.4 4.9

We also applied both ECMPR-rigid and ICP to real data

obtained with a stereo camera pair as shown on Fig. 5 and

Table II: The two stereo image pairs of a walking person were

grabbed at two diffierent time instances. Two sets of 3D points

were reconstructed from these two image pairs, Fig. 5-(c). The

first set has 223 “model” points and the second set has 249 “data”

points. These 3D points belong either to the walking person or

to the static background. Fig. 5-(d) shows the matches found by

ECMPR-rigid and Fig. 5-(e) shows the matches found by ICP.

Table II summarizes the results. Both algorithms were initialized

with R = I and t = 0. The error in translation is computed with

‖t − tg‖/‖tg‖ where t is the estimated translation vector and

tg is the ground truth. The minimization error is computed with

the square root of 1/nin

∑nin

i=1 ‖Y i − RXi − t‖2 where nin is

the number of inliers estimated by each algorithm. ICP was run

with different threshold values. In all cases (ECMPR and ICP)

the rotation matrix is correctly estimated.

B. Experiments with ECMPR-articulated

We tested ECMPR-articulated on a hand-tracking task, with

both simulated and real data. We note that recent work in this

topic uses specific constraints such as skin texture, skin shading

[52] or skin color [53] that are incorporated into the hand model,

together with a variational framework [52] or a probabilistic

graphical [53] model that are tuned to the task of hand tracking.

We did not attempt to devise such a special-purpose hand tracker

from our general-purpose articulated registration algorithm.

The hand model used in all our experiments consists in five

kinematic chains that share a common root part – the palm.

Each kinematic chain is composed of four rigid parts, one part

for the palm and three other parts for the phalanges composing

each finger. Altogether, the kinematic hand model has 16 rigid

parts and 21 rotational degrees of freedom (5 rotations for the

thumb and 4 rotations for the other fingers). With the additional

six degrees of freedom (three rotations and three translations)

associated with the free motion of the palm, the hand has a total

of 27 degrees of freedom. Each hand-part is modeled with an

ellipsoid with fixed dimensions. Model points are obtained by

uniformly sampling the surface of each one of these ellipsoids.

This representation also allows to define an articulated implicit

surface over the set of ellipsoids [35], [38], [54], [55]. Here

we only use this implicit surface representation for visualization

purposes.

A commonly used strategy, in almost every articulated ob-

ject tracking algorithm, is to specify joint-limit constraints thus

preventing impossible kinematic poses. It is straightforward to

impose such linear constraints into our convex optimization

framework, i.e., section V-B. Indeed, inequality constraints can

be incorporated into (34) without affecting the convexity nature

of the problem. In practice we did not implement joint-limit con-

straints and hence the solutions found in the examples described

below correspond exactly to (34).

In the case of simulated data, we animated the hand model just

described in order to produce realistic articulated motions and to

generate sets of model points, one set for each pose of the model.

In practice, all the experiments described below used 15 model

points for each hand part which corresponds to a total of 240

model points namely X
(p)
i with 1 ≤ i ≤ 15 and 0 ≤ p ≤ 15.

In order to simulate realistic observations we added Gaussian

noise to the surface points. The standard deviation of the noise

was 10% of the size of the bounding box of the data set. We also

added outliers drawn from a uniform distribution defined over the

volume occupied by the working space of the hand. In all these

simulations the data sets contain 30% of outliers, i.e., there are

240 model points, 240 inliers and 72 outliers.

Fig. 6 and Fig. 7 show two experiments performed with

simulated hand motions. Each one of these simulated data (top

rows) contains a sequence of 120 articulated poses. We applied

our registration method to these sequences, we estimated the kine-

matic parameters, and we compared them with the ground truth.

ECMPR-articulated is applied in parallel to the five kinematic

chains. First, ECMPR-rigid registers the root part (the hand palm)

common to all the chains. Second, ECMPR-rigid is applied to the

first phalanx of the index, middle, ring, and baby fingers. Third,

it is applied to the second phalanx, etc.

Fig. 6 shows a sequence of simulated poses (top row) and

the results obtained with our algorithm (middle and bottom
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Fig. 4

STATISTICS OBTAINED WITH ECMPR-RIGID OVER A LARGE NUMBER OF

TRIALS. THE PERCENTAGE OF CORRECT MATCHES (A), AND RELATIVE

ERRORS IN ROTATION (B) AND TRANSLATION (C) ARE SHOWN AS A

FUNCTION OF THE GROUND-TRUTH ROTATION ANGLE BETWEEN THE SET

OF DATA POINTS AND THE THE SET OF MODEL POINTS, IN THE PRESENCE

OF OUTLIERS. ALL THE RUNS OF THE ALGORITHM WHERE INITIALIZED

WITH A ZERO ROTATION ANGLE. THE THREE PLOTS CORRESPOND TO THE

MEANS (CENTRAL CURVES) AND TO THE MEANS +/- THE STANDARD

DEVIATION (UPPER AND LOWER CURVES) COMPUTED OVER 1,000 TRIALS.

rows). When starting with a large covariance, ECMPR correctly

estimated the articulated poses of the simulated hand (middle

row). Starting with small covariances is equivalent to consider

the data points that are in the neighbourhood of the model points

and to disregard data points that are farther away from the current

model point positions. In this case the trajectory of the thumb has

been correctly estimated but the other four fingers failed to bend

(bottom row). Notice, however, that in both cases the tracker has

been able to “catch up” with these finger motions and to reduce

the discrepancy between the estimated trajectories and the ground

truth. The simulated trajectories and the estimated trajectories of

the first and second phalanges of the index finger are shown on

Fig. 8. Fig. 7 shows another experiment on a different simulated

sequence.

(a) First image pair

(b) Second image pair

(c) 3D point sets (d) ECMPR-rigid (e) ICP

Fig. 5

COMPARISON BETWEEN ECMPR-RIGID AND ICP APPLIED TO STEREO

DATA. (A) THE FIRST STEREO IMAGE PAIR OF A WALKING PERSON. (B)

THE SECOND STEREO PAIR. THE PERSON PERFORMED A TRANSLATIONAL

MOTION OF 280 MM TOWARDS THE CAMERA AND FROM RIGHT TO LEFT.

(C) THE TWO SETS OF 3D POINTS BEFORE REGISTRATION (223 MODEL

POINTS AND 249 DATA POINTS). THE RESULT OF MATCHING WITH (D)

ECMPR AND WITH (E) ICP ARE SHOWN SUPERIMPOSED ONTO THE LEFT

IMAGE OF THE FIRST PAIR. IN THIS EXAMPLE, ECMPR FOUND 95 INLIERS

WHILE ICP FOUND 177 INLIERS. BOTH ALGORITHMS ESTIMATED THE

CORRECT ROTATION. ICP FAILED TO ESTIMATE THE CORRECT

TRANSLATION (SEE TABLE II FOR A QUANTITATIVE COMPARISON).
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Fig. 6

TOP ROW: THE GROUND-TRUTH OF THE SIMULATED POSES AND THE

SIMULATED DATA (INLIERS AND OUTLIERS). MILDDLE ROW: A CORRECT

REGISTRATION RESULT. BOTTOM ROW: ECMPR FAILED TO CORRECTLY

ESTIMATE ALL THE KINEMATIC PARAMETERS DUE TO AN IMPROPER

INITIALIZATION OF THE COVARIANCE MATRIX.

Fig. 7

ANOTHER SIMULATED SEQUENCE AND THE RESULT OF ECMPR.

These experiments yielded very good results. As expected,

the percentage of outliers barely affected the registration re-

sults. These experiments confirmed the importance of using an

anisotropic covariance model as well as the fact that covariance

initialization is crucial. All the instances of the ECMPR-rigid

algorithm (embedded in ECMPR-articulated) are initialized with

large spherical covariances. While this increases the number

of EM iterations, it allows the algorithm to escape from local

minima.

We then tested our method with real data consisting in several

hand motions observed with a stereoscopic camera system, Fig 1.

Each data sequence that we used contains 100 image pairs gath-

ered at 20 frames per second. We run a standard stereo algorithm

to estimate 3-D points. This yielded 500 to 1000 reconstructed

points at each time step. The noise associated with these stereo

data is inherently anisotropic because of the inaccuracy in depth.

Moreover, there are many outliers that correspond either to data

points which do not lie on the hand or to stereo mismatches.

The results of applying ECMPR to these data sets are illustrated

on Figs. 9, 10 and 11. In the first and second examples the hand

performs a grasping movement. In the third example the hand

rotates around an axis roughly parallel to the image plane. In

all these cases the algorithm selected, on average, 250 inliers

per frame; This number roughly corresponds to the number of

model points being considered (240). All the other data points
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(a) Ground-truth parameters

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  20  40  60  80  100  120

time (frames)

1st index phalanx angle

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  20  40  60  80  100  120

time (frames)

2nd index phalanx angle

(b) Correct parameter estimation
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(c) Incorrect parameter estimation

Fig. 8

(A) SIMULATED TRAJECTORIES OF TWO ANGULAR JOINTS ASSOCIATED

WITH THE FIRST AND SECOND PHALANGES OF THE INDEX FINGER. (B)

GOOD ESTIMATION OF THESE ANGLE VALUES. (C) BAD ESTIMATION OF

THE ANGLE VALUES DUE TO IMPROPER INITIALISATION OF THE

COVARIANCE MATRIX IN ECMPR. THESE TRAJECTORIES CORRESPOND

TO THE EXAMPLES SHOWN IN FIG. 6.

were assigned to the outlier class. Notice that the number of data

points vary a lot (500 to 1000 observations at each frame) and

that the outlier rejection mechanism that we propose in this paper

does not need to know in advance the percentage of outliers.

Note that along these motion sequences the hand flips from

one side to another side while the positions and orientations

of the fingers vary considerably. This means that it is often

the case that almost all the model points that were currently

registered, may suddenly disappear while other model points

suddenly appear. This is one of the main difficulties associated

with registering articulated objects. Therefore, during the track-

ing, the algorithm must perform some form of bootstrapping,

i.e., it must establish data-point-to-model-point assignments from

scratch. Re-initialization of the covariance matrix at each time

step, along the lines described above, is crucial to the success of

the registration/tracking algorithm.

VIII. CONCLUSIONS

In this paper we addressed the problem of matching rigid

and articulated shapes through robust point registration. The
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Fig. 9

THE IMAGE OF A HAND AND THE RESULT OF TRACKING FOR A GRASPING

MOVEMENT.

proposed approach has its roots in model-based clustering [22].

More specifically, the point registration problem is cast into the

framework of maximum likelihood with hidden variables [21],

[43], [44]. We formally derived a variant of the EM algorithm

which maximizes the expected complete-data log-likelihood. This

guarantees maximization of the observed-data log-likelihood. We

showed that it is convenient to replace the standard M-step

by three conditional maximization steps, or CM-steps, while

preserving the convergence properties of EM.

Our approach differs significantly from existing methods for

point registration, namely ICP and its variants [1]–[8], soft assign-

ment methods [9]–[11], as well as various EM implementations

[13]–[18]: The ECMPR-rigid and -articulated algorithms that we

proposed fit a set of model points to a set of data points where

each model point is the center of a Gaussian component in a

mixture model. Each component in the mixture may have its

own anisotropic covariance. Our method treats the data points

and the model points in a non-symmetric way, which has several

advantages: It allows to deal with a varying number of observa-

tions, either larger or smaller than the number of model points,

it performs robust parameter estimation in the presence of data

corrupted with noise and outliers, and it is based on a principled

probabilistic approach.

More specifically, the method guarantees robustness via a

uniform component added to the Gaussian mixture model. This

built-in outlier rejection mechanism differs from existing outliers

Fig. 10

A SIMILAR GRASPING MOVEMENT BUT THE HAND IS VIEWED FROM

ABOVE.

detection/rejection strategies used in conjunction with point reg-

istration, such as methods based on non-linear loss functions that

can be trapped in local minima, or methods based on random

sampling which are time-consuming and that can only deal with

a limited number of outlying data.

In particular we put emphasis on a general model that uses

anistropic covariance matrices, in which case the rotation associ-

ated with rigid alignment cannot be found in closed-form. This

led us to approximate the associated non-convex optimization

problem with a convex one. Namely, we showed how to transform

the non-linear problem into a constrained quadratic optimization

one and how to use semi-definite positive relaxation to solve it

in practice.

We provided in detail the ECMPR-rigid algorithm. We showed

how this algorithm can be incrementally applied to articulated

registration using a novel kinematic representation that is well

suited in the case of point registration.

In general, ECMPR performs better than ICP. In particular it is

less sensitive to initialization and it is more robust to outliers. In

the future we plan to investigate various ways of implementing

our algorithm more efficiently. Promising approaches are based

on modifying the standard E-step. A fast but suboptimal “winner

take all” variant is Classification EM, or CEM, which consists in

forcing the posterior probabilities to either 0 or 1 after each E-

step [56]. We plan to study CEM in the particular context of point

registration and, possibly, derive a more efficient implementation
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Fig. 11

A ROTATIONAL MOVEMENT OF THE HAND AROUND AN AXIS PARALLEL TO

THE IMAGE PLANE CAUSES THE FINGERS TO DISAPPEAR FROM THE

LEFT-HAND SIDE OF THE IMAGE AND APPEAR AGAIN ONTO THE

RIGHT-HAND SIDE. THESE OCCLUSIONS HAVE AS A RESULT A VERY

COARSE INITIALIZATION OF THE CURRENT POSE. IN SPITE OF THIS

PROBLEM THE TRACKER PERFORMS QUITE WELL DUE TO

RE-INITIALIZATION OF THE COVARIANCE MATRIX AT EACH TIME STEP OF

THE TRACKER.

of ECMPR. This may also lead to a probabilistic interpretation of

ICP, and hence to a better understanding of the links existing be-

tween probabilistic and deterministic registration methods. Other

efficient variants of the E-step are based on structuring the data

using either block-like organizations [57], or KD-trees [58]. We

also plan to implement KD-trees in order to increase the efficiency

of ECMPR.

APPENDIX

EXPANSION OF A AND b IN EQ. (32)

By expanding (28), substituting the optimal translation with

(27) and rearranging terms, one obtains the following expressions

for the 9×9 matrix A and the 9×1 vector b:

A = N−M
⊤
KM (45)

b = M
⊤
p− q (46)

with:

N9×9 =

n∑

i=1

λiXiX
⊤
i ⊗Σ

−1
i

M3×9 =

n∑

i=1

λiX
⊤
i ⊗Σ

−1
i

K3×3 =

(
n∑

i=1

λiΣ
−1
i

)−1

p3×1 = K

(
n∑

i=1

λiΣ
−1
i W i

)

q9×1 = vec

(
n∑

i=1

λiΣ
−1
i W iX

⊤
i

)

The Kronecker product between the m× n matrix/vector A and

the p × q matrix/vector B is the mp × nq matrix/vector defined

by:

A⊗B =




A11B . . . A1nB

...
...

Am1B . . . AmnB




Moreover, vec(A) returns the mn× 1 vector:

vec(A) = (A11 . . . Amn)
⊤
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