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Abstract

Multiview image sequence processing has been the focus of considerable attention in recent literature. This paper

presents an efficient technique for object-based rigid and non-rigid 3D motion estimation, applicable to problems

occurring in multiview image sequence coding applications. More specifically, a neural network is formed for the

estimation of the rigid 3D motion of each object in the scene, using initially estimated 2D motion vectors corresponding

to each camera view. Non-linear error minimization techniques are adopted for neural network weight update.

Furthermore, a novel technique is also proposed for the estimation of the local non-rigid deformations, based on the

multiview camera geometry. Experimental results using both stereoscopic and trinocular camera setups illustrate and

evaluate the proposed scheme.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Depth understanding is an important element of

enhanced perception and tele-presence in image

communication [10,29,3]. A direct way of inferring

the depth information is provided by stereo and

multi-ocular vision [4,22]. Stereoscopic, or in

general multiview video, can provide more vivid

and accurate information about the scene struc-

ture than simple video. Therefore, multiview video

processing has been the focus of considerable

attention in recent literature [8,14,21,24,25]. In a

multiview image sequence, each different view is

recorded with a difference in the observation

angle, creating an enhanced 3D feeling to the

observer, and increased ‘‘tele-presence’’ e.g. in

teleconferencing.

Model-based coding has long attracted consid-

erable attention as a promising alternative to

block-based encoding for the analysis and coding
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of stereo and multiview image sequences, achieving

excellent performance, and producing fewer block-

ing artifacts than those commonly in block-based

hybrid DCT coders at moderate and low bit rates

[15,30]. The derivation of 3D models directly from

images, usually requires estimation of dense dis-

parity fields, post-processing to remove erroneous

estimates and fitting of a surface model to the

calculated depth map. Current model-based image

coding schemes may be divided into two broad

categories. The first category [2,9,11,31] is knowl-

edge-based and uses human head models for coding

primarily video-conferencing scenes. The second

analysis-by-synthesis group of methods [5,12,15] is

suitable for the coding of more general classes of

images. The ability of model-based coding techni-

ques to describe a scene in a structural way, in

contrast to traditional waveform-based coding

techniques, opens new areas of applications [1].

Video production, realistic computer graphics,

multimedia interfaces and medical visualization are

some of the applications that may benefit by

exploiting the potential of model-based schemes.

In [14] an algorithm was presented which

optimally models each scene using a hierarchical

structure derived directly from intensity images.

The wireframe model consists of adjacent triangles

that may be split into smaller ones, over areas that

need to be represented in higher detail. In [13,26]

the 3D model is initialized by adapting a 2D

wireframe to the foreground object. Using depth

and multiview camera geometry the 2D wireframe

is reprojected in the 3D space, forming a consistent

wireframe for all views.

In all model- and object-based monoscopic

image sequence coding schemes, motion estima-

tion and motion compensated prediction are used

to reduce temporal redundancy. Similarly, coding

of stereo and multiview images may be based on

disparity compensation or the best of motion and

disparity compensation [14,25].

An efficient approach for 3D motion estimation

between two or more consecutive time frames

using neural networks was presented in [6,7]. In

this approach, the initial 3D correspondence was

first found, using a feature extraction procedure

and matching of the corresponding feature points

by a Hopfield neural network. Following this, a

neural network was designed to estimate the rigid

3D motion parameters of the moving object, based

on this initial 3D correspondence. The non-rigid

3D motion was also estimated based on the initial

3D correspondence by the set of neural networks

described in [7]. However, the establishment of an

initial 3D correspondence is not an easy task in

real scenes [16] and thus this algorithm cannot be

used successfully in image sequence coding appli-

cations.

In [29] a neural network approach was intro-

duced for estimating the 3D motion parameters of

the rigid 3D scene objects, from monoscopic image

sequences using initial 2D motion vectors on the

camera image plane. The authors adapted the

results of [6] for the solution of coding-oriented

motion estimation problems, where only 2D

motion vectors rather than 3D correspondences

are initially available. The initial 2D motion field

was obtained by a simple block matching motion

estimation between the consecutive frames. The

technique in [29] was seen to improve the 3D

motion estimates of [6,7], even in cases where 3D

correspondences were known with accuracy.

In the present paper, we extend this technique so

as to make it applicable for multiview image

sequences. In this case, initial 2D vectors are

available at the projections of the 3D nodes on all

the image planes of a multiview camera geometry.

This is seen to improve significantly the results in

[29], in all examined cases, even in the presence of

measurement noise. The rigid 3D motion of each

articulated object in the scene, is estimated using a

neural network based on the available 2D motion

information on the image planes of the multiview

camera geometry. The weights of the neural

network are updated using non-linear error mini-

mization techniques. The technique in [29] is also

extended by developing a novel approach for

flexible 3D motion estimation of each node of the

object model. The performance of the rigid and

non-rigid 3D motion estimation techniques is

evaluated experimentally on both synthetic and

real 3D object motion, assuming stereo and

trinocular camera setups. The basic approach of

the paper may easily be extended to any multiview

system using arbitrary number and arrangements

of cameras.
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The paper is organized as follows. In Section 2

the camera geometry of the system is briefly

described. The rigid 3D motion estimation proce-

dure for each articulated 3D object is discussed in

Section 3, while in Section 4 a robust rigid 3D

motion estimation via outlier removal is presented.

The non-rigid 3D motion estimation procedure for

each node of the objects is elaborated in Section 5.

Experimental results given in Section 6 demon-

strate the performance of the proposed methods.

Finally, conclusions are drawn in Section 7.

2. Camera model

A camera model describes the projection of 3D

points onto a camera target. The model used here

is the CAHV model introduced in [32] (Fig. 1).

This model describes extrinsic camera parameters

such as position and orientation and intrinsic

camera parameters such as focal length and

intersection between optical axis and image plane.

The experimental results in the present paper

were obtained using a stereo setup (c ¼ left, right)

and a trinocular camera setup (c=left, top, right).

The latter is increasingly being used in teleconfer-

ence applications whenever higher tele-presence is

desired [28]. For each camera c the model contains

the following parameters: (a) position of the

camera Cc; (b) optical axis Ac; i.e. the viewing

direction of the camera (unit vector), (c) horizontal

camera target vector Hc (x-axis of the camera

target), (d) vertical camera target vector Vc (y-axis

of the camera target) and sx; sy the pixel size.

In the aforementioned camera model we shall

assume that the camera parameters are estimated at

an initial calibration stage using the techniques in

[17]. We also assume that the radial distortion is

compensated prior to any other operation, at an

initialization stage, following camera calibration.

According to this model, the projection of a 3D

point P; with coordinates relative to world coordi-

nate system, onto the image plane ðX0
c;Y

0
cÞ is [32]

X 0
c ¼

ðP� CcÞ �Hc

ðP� CcÞ � Ac

; Y 0
c ¼

ðP� CcÞ � Vc

ðP� CcÞ � Ac

: ð1Þ

The coordinates ðX0
c;Y

0
cÞ are camera centered

(image plane coordinate system) with the unit

pel. The origin of the coordinate system is the

center point of the camera. The coordinates of

a point relative to the picture coordinate system

ðXc;YcÞ are given by ðXc;YcÞ ¼ ðX 0
c þOx;c;Y

0
c þ

Yc

Vc

x

y

z

Image Plane

World Coordinate System

P

τcCamerac
_

c

(Oxc,Oyc) Xc’

Xc

Yc’ pc

Ac

Sc

Hc

Cc

Fig. 1. The CAHV camera model.
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Oy;cÞ; where ðOx;c;Oy;cÞ is the center of the image

plane in the picture coordinate system.

Conversely, given its position ðXc;YcÞ on the

camera plane, the 3D position of a point can be

determined by

P ¼ Cc þ tc � ScðXc;YcÞ; ð2Þ

where ScðXc;YcÞ is the unit vector pointing from

the camera c to the point in the direction of the

optical axis and tc is the distance between the 3D

point and the center of camera c:

3. Rigid 3D motion estimation from trinocular and

stereo image sequences

Let us assume the availability of a 3D model of

the scene, along with a valid articulation at time

instant t: The following motion model is used for

each object in the scene:

pðtþ 1Þ ¼ R � pðtÞ þ T; ð3Þ

or equivalently; Pðtþ 1Þ ¼ M � PðtÞ; ð4Þ

where M is the homogeneous matrix of the form

M ¼
R T

0 1

" #

; or equivalently;

M ¼

W1

W2

W3

W4

2

6

6

6

4

3

7

7

7

5

¼

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

0 0 0 1

2

6

6

6

4

3

7

7

7

5

; ð5Þ

and PðtÞ ¼ ½pðtÞ 1	T is the corresponding homo-

geneous 3D point. The formulation of Eq. (4) may

represent non-rigid as well as rigid motion. In the

specific case of rigid motion,

where ½Tx;Ty;Tz	
T is the translation vector, k ¼

½kx; ky; kz	
T is the axis and y is the angle of rotation.

One method for the extraction of vector k from the

w terms of M; which was experimentally found to

be robust and very accurate is the following [30,6]:

kx ¼ sgnðw32 � w23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w11 � cosðyÞ

1� cosðyÞ

s

;

ky ¼ sgnðw13 � w31Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w22 � cosðyÞ

1� cosðyÞ

s

;

kz ¼ sgnðw21 � w12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w33 � cosðyÞ

1� cosðyÞ

s

; ð7Þ

where

sgnðxÞ ¼
þ if xX0;

� if xp0

(

ð8Þ

and

cosðyÞ ¼
1

2
ðw11 þ w22 þ w33 � 1Þ: ð9Þ

Observing also that two of ðkx; ky; kzÞ suffice to

describe the rotation axis vector k (since k is a unit

vector, hence k2x þ k2y þ k2z ¼ 1), we conclude that

in the case of rigid motion only six parameters

suffice to characterize M:

Let us also assume that 2D motion vector

measures are available at the projections of the

nodes of the 3D model on the image planes of the

left, top and right camera (in the case of trinocular

vision), or of the left and right camera (in case of

stereo vision) found by means of an initial 2D

motion estimation procedure, applied on the three

image planes (two, in the case of stereo). This

information, consisting of 2D vectors ½ #d
ðcÞ
xðikÞ;

#d
ðcÞ
yðikÞ	;

will be used for the estimation of the rigid 3D

motion parameters of the object, by minimizing

the following error measures for the projection of

the ith vertex P
ðkÞ
i ðtÞ; 1pip3; of the kth triangle of

the object on the image plane of camera c (where

c ¼ l, t, r, left, top and right camera, respectively,

in the case of trinocular vision),

e
ðcÞ
xðikÞ ¼ ðd

ðcÞ
xðikÞ �

#d
ðcÞ
xðikÞÞ

2

M ¼

k2xð1� cosðyÞÞ þ cosðyÞ kxkyð1� cosðyÞÞ � kz sinðyÞ kxkzð1� cosðyÞÞ þ ky sinðyÞ Tx

kxkyð1� cosðyÞÞ þ kz sinðyÞ k2yð1� cosðyÞÞ þ cosðyÞ kykzð1� cosðyÞÞ � kx sinðyÞ Ty

kxkzð1� cosðyÞÞ � ky sinðyÞ kykzð1� cosðyÞÞ þ kx sinðyÞ k2z ð1� cosðyÞÞ þ cosðyÞ Tz

0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

; ð6Þ
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and

e
ðcÞ
yðikÞ ¼ ðd

ðcÞ
yðikÞ �

#d
ðcÞ
yðikÞÞ

2
; ð10Þ

where

#d
ðcÞ
xðikÞ ¼

ðMP
ðkÞ
i ðtÞ � CcÞ �Hc

ðMP
ðkÞ
i ðtÞ � CcÞ � Ac

�
ðP

ðkÞ
i ðtÞ � CcÞ �Hc

ðP
ðkÞ
i ðtÞ � CcÞ � Ac

;

ð11Þ

#d
ðcÞ
yðikÞ ¼

ðMP
ðkÞ
i ðtÞ � CcÞ � Vc

ðMP
ðkÞ
i ðtÞ � CcÞ � Ac

�
ðP

ðkÞ
i ðtÞ � CcÞ � Vc

ðP
ðkÞ
i ðtÞ � CcÞ � Ac

;

ð12Þ

and d
ðcÞ
xðikÞ and d

ðcÞ
yðikÞ are the x- and y- components of

the initially estimated 2D motion vectors on the

image plane of camera c: Note that 1pkpM

assuming that the wireframe of the object consists

of M triangles.

Other error measures may be determined if

it is assumed that the structure of the 3D model of

the rigid object remains unchanged and thus

the distances between the vertices of each triangle

remain constant with time. Let A
ðkÞ
ij be the distance

between vertices i and j of the working triangle, at

time t and #A
ðkÞ
ij the distance between the same

vertices at time tþ 1: If Eq. (4) is used, the

following error measures are defined:

e
ðkÞ
1 ¼ ðjP

ðkÞ
1 ðtÞ � P

ðkÞ
2 ðtÞj � jMðP

ðkÞ
1 ðtÞ � P

ðkÞ
2 ðtÞÞjÞ2

¼ ½A
ðkÞ
12 � #A

ðkÞ
12 	

2
;

e
ðkÞ
2 ¼ ðjP

ðkÞ
1 ðtÞ � P

ðkÞ
3 ðtÞj � jMðP

ðkÞ
1 ðtÞ � P

ðkÞ
3 ðtÞÞjÞ2

¼ ½A
ðkÞ
13 � #A

ðkÞ
13 	

2
;

e
ðkÞ
3 ¼ ðjP

ðkÞ
2 ðtÞ � P

ðkÞ
3 ðtÞj � jMðP

ðkÞ
2 ðtÞ � P

ðkÞ
3 ðtÞÞjÞ2

¼ ½A
ðkÞ
23 � #A

ðkÞ
23 	

2
: ð13Þ

If CðtÞ is the centroid of the rigid object, three

more error measures may be determined:

e
ðkÞ
4 ¼ jP

ðkÞ
1 ðtÞ � CðtÞj � jMðP

ðkÞ
1 ðtÞ � CðtÞÞj

¼ ½A
ðkÞ
1c � #A

ðkÞ
1c 	;

e
ðkÞ
5 ¼ jP

ðkÞ
2 ðtÞ � CðtÞj � jMðP

ðkÞ
2 ðtÞ � CðtÞÞj

¼ ½A
ðkÞ
2c � #A

ðkÞ
2c 	;

e
ðkÞ
6 ¼ jP

ðkÞ
3 ðtÞ � CðtÞj � jMðP

ðkÞ
3 ðtÞ � CðtÞÞj

¼ ½A
ðkÞ
3c � #A

ðkÞ
3c 	: ð14Þ

Thus, the following 18� 1 error vector is formed

for a stereoscopic camera setup:

Ek ¼ ½e
ðkÞ
1 ;y; e

ðkÞ
6 ; e

ðlÞ
xð1kÞ; e

ðlÞ
yð1kÞ; e

ðrÞ
xð1kÞ; e

ðrÞ
yð1kÞ;

y; e
ðlÞ
xð3kÞ; e

ðlÞ
yð3kÞ; e

ðrÞ
xð3kÞ; e

ðrÞ
yð3kÞ	

T
; ð15Þ

and for a trinocular camera setup the 24� 1 error

vector is formed as follows:

Ek ¼ ½e
ðkÞ
1 ;y; e

ðkÞ
6 ; e

ðlÞ
xð1kÞ; e

ðlÞ
yð1kÞ; e

ðtÞ
xð1kÞ; e

ðtÞ
yð1kÞ;

e
ðrÞ
xð1kÞ; e

ðrÞ
yð1kÞ;y; e

ðlÞ
xð3kÞ; e

ðlÞ
yð3kÞ; e

ðtÞ
xð3kÞ; e

ðtÞ
yð3kÞ;

e
ðrÞ
xð3kÞ; e

ðrÞ
yð3kÞ	

T
: ð16Þ

The motion parameter vector W defined by

W ¼ ½w11;w12;w13;w14;w21;

w22;w23;w24;w31;w32;w33;w34	
T ð17Þ

is determined at iteration nþ 1 using the

Newton–Raphson procedure

Wðnþ1Þ ¼ WðnÞ þDWðnÞ
; ð18Þ

where

DWðnÞ ¼
X

M

k¼1

�m½JTkJk	
�1JTkEk

 �

ð19Þ

and Jk is the Jacobian matrix corresponding to the

error vector EðkÞ and m is the learning rate. This

procedure may be represented by the neural

network shown in Fig. 2 with weights adapted as

prescribed by Eq. (18).

The proposed neural network is composed of

three layers and minimizes the above error terms

using supervised modification of the weights

between processing elements between the first

and the second layer. The components of the

point vectors of the three vertices of the working

triangle are input to the first layer of the network.

The weights of the connections between the

neurons of the first and the second layer are the

components of the motion parameter vector W

given by Eq. (17). The outputs of the second layer

are the components of the estimated point vectors

of the vertices of the working triangle at time

instant tþ 1: Obviously, these correspond to the

motion parameter vector W of each iteration of

the training procedure. The weights between the

second and the third layer are constant and are

used to implement the functions of the point
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vectors at time instant tþ 1 that produce the

outputs of the neural network. Learning is based

on the minimization of the error measures which

are defined by the deviation of the output of the

third layer from the desirable one. This minimiza-

tion is carried out by modifying the weights

between the first and the second layer according

to Eq. (18). The desirable output of the third layer

is composed of the initially estimated 2D motion

vectors and the distances between the vertices of

the working triangle along with the distances

between each vertex and the centroid of the object.

4. Robust rigid 3D motion estimation via outlier

removal

The input 2D motion vector field is obtained by

block matching techniques and therefore is not

always composed of reliable measurements. In

Second
Layer

First
Layer

Third
Layer

W

W

W

A
12

^ (k)

A
13

^ (k)

A
1c

^ (k)

A
2c

^ (k)

A
23

^ (k)

A
23

^ (k)

p
1 

(t)

z
1

1

1

1

dx(1k)
^ (l)

dx(1k)
^ (t)

dx(1k)
^ (r)

dy(1k)
^ (l)

dy(1k)
^(t)

dy(1k)
^(r)

d x(2k)
^ (l)

d x(2k)
^ (t)

d x(2k)
^ (r)

d y(2k)
^ (l)

d y(2k)
^ (t)

d y(2k)
^ (r)

dx(3k)
^(l)

dx(3k)
^(t)

dx(3k)
^(r)

dy(3k)
^ (l)

dy(3k)
^(t)

dy(3k)
^(r)

(k)

(k)

y
1

(k)

p
2 

(t)

z
2

(k)

(k)

y
2

(k)

p
3 

(t)

x
3

(k)

z
3

(k)

(k)

y
3

(k)

x
2

(k)

x
1

(k)

Fig. 2. Neural network estimating the rigid 3D motion parameters for a trinocular camera setup.
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particular, errors may occur within homogeneous

areas in the interior or exterior of the objects.

Thus an initial outlier removal procedure is

necessary for the successful implementation of

the algorithm.

The model parameters are then estimated using

an iterative estimation method based on the

moving least median of squares approximation

algorithm (MLMS) [23] which minimizes the error

of the motion model. The MLMS algorithm is

based on median filtering and is optimal in

suppressing noise consisting of a large number of

outliers. In such situations, conventional least

squares techniques are likely to fail [23].

At each iteration of the procedure, a number of

Np triangles are randomly selected from the pre-

determined set of M triangles composing the

object. The neural network is then trained based

on this subset of triangles and a corresponding

parameter vector W is computed at iteration L:

The parameter vector is calculated by minimizing

the LMS (least median of squares) objective

function, over all selected Np triangles.

At each iteration, the algorithm discards the

triangles that do not fit the motion model (‘‘out-

lier’’ triangles). More specifically, a triangle is

characterized as outlier and rejected, if it is very

frequently a member of the random sets that lead

to high model fit errors. The new set of more

reliable triangles is inserted to the neural network

and the whole procedure is iterated until conver-

gence to the optimal parameter vector W: This

procedure appears to be very computationally

intensive since CM
Np

(combinations M of Np)

subsets of random triangles have to be chosen.

However, in actual practice only a limited number

of iterations of the algorithm are needed before

convergence.

5. Non-rigid 3D motion estimation from stereo and

trinocular image sequences

Let us assume again the availability of a 3D

model of the scene at time instant t: The following

motion model is used for each node:

pjðtþ 1Þ ¼ pjðtÞ þDj ; ð20Þ

where pjðtÞ and pjðtþ 1Þ are vectors in 3D space

which represent the positions of the jth node at

time instants t and tþ 1; respectively, and Dj is the

translation in 3D space of the specific node

between those two time instants. Note that

1pjpN; where N is the total number of the

nodes of the 3D model of the scene.

Let us also assume again that 2D motion vector

measures are available at the projections of the

nodes of the 3D model on the images from the left,

top and right camera, in the case of trinocular

vision, found by means of an initial 2D motion

estimation procedure on the three image planes.

This information will be used for the estimation of

the displacements in 3D space of the nodes of the

available 3D model, which will be assumed to

estimate the non-rigid 3D motion parameters of

the objects in the scene. For a trinocular camera

setup the initial motion information for each node

consists of three 2D vectors ½ #d
ðcÞ
xðjÞ;

#d
ðcÞ
yðjÞ	 ðc ¼ l; t; rÞ;

at the projections of the node on the image planes

of the left, top and right camera, respectively. The

information of the available 2D motion vectors on

the three images is used for the estimation of Dj

by minimizing the following error measures for

the projection of the working node on the image

plane of camera c: For a stereo camera setup

only the measurements corresponding to cameras c

(c ¼ l, r). For either setup,

e
ðcÞ
xðjÞ ¼ ðd

ðcÞ
xðjÞ �

#d
ðcÞ
xðjÞÞ

2

and

e
ðcÞ
yðjÞ ¼ ðd

ðcÞ
yðjÞ �

#d
ðcÞ
yðjÞÞ

2
; ð21Þ

where

#d
ðcÞ
xðjÞ ¼

ðpjðtÞ þDj � CcÞ �Hc

ðpjðtÞ þDj � CcÞ � Ac

�
ðpjðtÞ � CcÞ �Hc

ðpjðtÞ � CcÞ � Ac

;

ð22Þ

#d
ðcÞ
yðjÞ ¼

ðpjðtÞ þDj � CcÞ � Vc

ðpjðtÞ þDj � CcÞ � Ac

�
ðpjðtÞ � CcÞ � Vc

ðpjðtÞ � CcÞ � Ac

;

ð23Þ

and d
ðcÞ
xðjÞ and d

ðcÞ
yðjÞ are the x- and y-components

of the initially estimated 2D motion vectors on

the image plane of camera c: Thus, the following

4� 1 error vector is formed for a stereoscopic

N. Ploskas et al. / Signal Processing: Image Communication 18 (2003) 185–202 191



camera setup:

Ej ¼ ½e
ðlÞ
xðjÞ; e

ðlÞ
yðjÞ; e

ðrÞ
xðjÞ; e

ðrÞ
yðjÞ	

T
; ð24Þ

while for a trinocular camera setup the 6� 1 error

vector is formed,

Ej ¼ ½e
ðlÞ
xðjÞ; e

ðlÞ
yðjÞ; e

ðtÞ
xðjÞ; e

ðtÞ
yðjÞ; e

ðrÞ
xðjÞ; e

ðrÞ
yðjÞ	

T
; ð25Þ

The motion parameter vector Dj ; defined by

Dj ¼ ½dðjÞ
x ; d ðjÞ

y ; d ðjÞ
z 	T; ð26Þ

is determined using the Newton–Raphson proce-

dure

D
ðnþ1Þ
j ¼ D

ðnÞ
j � ½JTj Jj	

�1JTj Ej ; ð27Þ

where J is the Jacobian matrix.

6. Experimental results

The proposed 3D motion estimation algorithms

were evaluated on both synthetically created and

real image sequences obtained with the camera

setups described in Section 2.

6.1. Experimental results in synthetic image

sequences

In order to test the performance of the proposed

algorithm in 3D motion estimation, a synthetic 3D

model of about 300 triangles was created. A

hemispherical structure was chosen, since this

shape approximates several natural volumes in-

cluding the human face. The wireframe of the 3D

model is shown in Fig. 3(a).

The 3D data of the available model were

subjected to a 3D transformation consisting of a

rigid and a non-rigid part. Each node of the

wireframe pjðt ¼ 1Þ at time instant t ¼ 1 was

moved to point pjðt ¼ 2Þ given by

pjðt ¼ 2Þ ¼ R � pjðt ¼ 1Þ þ TþDj ; ð28Þ

where the rotation matrix R and the translation

vector T define a global rigid 3D motion and Dj

denotes the non-rigid translation vector of each

node. The rigid 3D motion parameters corre-

sponding to R and T; denoted as ideal, are given in

Table 1. The three components of Dj are chosen to

be independent Gaussian random variables with

zero mean and standard deviation sD ¼ 2 mm:

The resulting synthetic 3D data model for time

instant t ¼ 2 is shown in Fig. 3(b). The 2D motion

vectors were then computed by projecting the 3D

points at time instants t ¼ 1 and 2 on the three

image planes of a trinocular camera arrangement

and computing their difference. In order to
Fig. 3. (a), (b) Synthetic data model for time instants 1 and 2,

respectively.

Table 1

Test results on synthetic images

Motion parameters k y T E½derr	

Ideal results ½0:577; 0:577; 0:577	T 15:01 ½�5:0; 15:0; 5:0	T 0

Monoscopic ½0:570; 0577; 0:585	T 14:11 ½�4:7; 11:9; 12:1	T 8.4%

Stereo ½0:564; 0:583; 0:585	T 14:61 ½�4:8; 14:4; 6:8	T 2.7%

Trinocular ½0:573; 0:577; 0:581	T 14:81 ½�4:7; 14:6; 5:9	T 1.3%

Method in [6,7] ½0:512; 0:476; 0:458	T 12:71 ½�4:5; 15:9; 5:7	T 11.2%
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simulate the effect of the non-accuracy of 2D

motion estimation, the available vectors were

assumed to be corrupted by additive white

Gaussian noise. A signal-to-noise ratio of 20 dB

was chosen. The displacement vectors served then

as input to the neural network for the estimation

of the global rigid 3D motion, as discussed in

Section 3.

The learning rate of the network m relates to the

speed of convergence (i.e. required number of

iterations) and stability issues concerning the

motion estimation procedures. In general, the

selection of a large learning rate value incurs fast

convergence. However, setting this value too high

can also lead to instability and result in computa-

tional oscillations. It was also observed that as the

number of the 3D triangles increased, a smaller

learning rate was required for the rigid-3D-motion

estimator. The learning rate of the network m in

Eq. (18) was selected equal to 0.01. The non-rigid

motion of each node was estimated next using the

method described in Section 5. It was observed

that the proposed technique outperformed the 3D

motion estimators described in [6,7] offering an

improvement of approximately 50% in terms of

speed of convergence.

The method was compared with the approach

described in [6,7]. The effect of increasing the

number of camera views from one to three was

also investigated. Note that for a monoscopic

camera setup only the global rigid 3D motion was

estimated, since the proposed technique for non-

rigid motion estimation cannot be applied using

measurements from only one camera. The algo-

rithms were tested in terms of the accuracy of the

estimated rigid 3D motion parameters (rigid

translation vector T; axis of rotation k and angle

of rotation y) and the mean 3D displacement

prediction error E½derr	 after the rigid and non-

rigid motion compensation,

E½derr	 ¼ E½jpjðt ¼ 2Þ � #pjðt ¼ 2Þj	; ð29Þ

where #pjðt ¼ 2Þ denotes the estimated position in

3D space at time instant t ¼ 2; of the point pjðt ¼

1Þ: Results are shown in Table 1 where E½derr	

is expressed as a percentage of E½jpjðt ¼ 2Þ�

pjðt ¼ 1Þj	:

By observing Table 1, it can easily be seen that

the performance in terms of suppression of

measurement noise, is improving with the number

of camera views used. For a monoscopic camera

setup, the prediction accuracy is rather poor when

compared with the stereo and trinocular camera

arrangements. The presence of non-rigid local

deformations also proves to deteriorate consider-

ably the 3D correspondence established by the

Hopfield neural network in [6] since the constraints

imposed are based on the rigidity of the object.

6.2. Experimental results for real image sequences

The proposed object-based coding was also

evaluated for the 3D motion estimation from real

image sequences. The interlaced multiview video-

conference sequences ‘‘Ludo’’ and ‘‘Chantal’’ were

used for the tests. All experiments were performed

at the top field of the interlaced sequence, of

dimension 360� 288:

A 3D model of 2000 triangles was used to

approximate the shape of the foreground object at

each time instance for the sequence Ludo. Fig. 4

shows the 3D model adapted to the first and the

second frame of the image sequence Ludo. The 3D

model used in the experiments was produced using

the shape initialization module of the EC PA-

NORAMA project [18–20]. This method is based

on back-projection of initially estimated depth

information followed by triangulation using Dis-

crete Smooth Interpolation [32]. The foreground

object was subsequently subdivided into two sub-

objects (i.e. head and body in case of Ludo) using

the algorithm described in [27]. The proposed

algorithm described in Section 3 was then used to

estimate the rigid 3D motion parameters of each

sub-object.

After the estimation of the rigid 3D motion and

its compensation on the three image planes, the

algorithm described in Section 5 was used for

the estimation of the non-rigid 3D motion of the

objects. It should be noted that no further object

segmentation was applied in order to improve the

results of rigid motion extraction through non-

rigid motion estimation and compensation.

The initial 2D motion field was first obtained by

a block-matching motion estimation between the
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original first and second frames of Ludo. The 2D

motion correspondence was established on the

image planes of the three cameras of the multiview

geometry. Inputs to the proposed neural network

are the nodes of the wireframe at time instant t ¼ 1

and the 2D motion vectors at the projections of the

above nodes. Note that the methods in [6,7]

require accurate knowledge of the 3D description

of the objects for two consecutive time instances.

The NN described in Section 3 was used for the

estimation of the rigid 3D motion of the head of

Ludo. Figs. 5 and 6 show the first and second

multiview frame of Ludo while Figs. 8 and 12

show the rigid motion compensated estimates of

frame 2 based on the 3D motion parameters of the

head estimated by the NN using a stereo and a

Fig. 4. (a), (b) Real data model for the image sequence Ludo for time instants 1 and 2, respectively.

Fig. 6. (a), (b), (c) Original camera images of frame 2 (left, top, right views, respectively).

Fig. 5. (a), (b), (c) Original camera images of frame 1 (left, top, right views, respectively).
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trinocular camera setup, respectively. The learning

rate of the network m was selected to be equal to

0.01 and the number of iterations required for

convergence was approximately 50.

The rigid motion estimate of frame 2 was then

used for the estimation of the non-rigid motion of

the objects in the scene. A 2D motion correspon-

dence was established between the above frame

prediction of time instant t ¼ 2 and the original

frame 2. The NN described in Section 5 was used

for the estimation of the non-rigid 3D motion of

the head of Ludo. The number of iterations

required for convergence was less than 10 for

the non-rigid 3D motion estimation of each node.

Figs. 10 and 14, show the rigid and non-

rigid motion compensated estimates of frame 2

based on the 3D motion parameters of the head

estimated by the proposed NNs, in case of stereo

and trinocular setup, respectively. The computa-

tional time required for the rigid and non-rigid

motion estimation of the 3D scene objects was a

few seconds in a R4400 INDIGO II SGI machine.

Figs. 5 and 6 show a rotation of the head of

Ludo from left to right along with some non-rigid

motion of the eyes and the mouth which move

independently. The frame difference between

frames 1 and 2 is shown in Fig. 7, zoomed in the

head area (where the 3D motion occurs), while the

corresponding zoomed rigid motion compensated

displaced frame difference, is shown in Fig. 9 and

13, where a stereoscopic and a trinocular camera

setup has been used, respectively. The improved

rigid and non-rigid motion compensated displaced

frame differences are shown in Figs. 11 and 15.

The corresponding PSNR measurements for both

camera arrangements are presented in Tables 2

and 3 (Figs. 17–19).

The proposed methods were also evaluated for

the estimation of the rigid and non-rigid 3D

motion between frames 1 and 2 of the image

sequence ‘‘Chantal’’. This image sequence exhibits

a significantly higher amount of non-rigid local

deformations when compared to Ludo. More

accurate 3D models of about 8000 triangles were

Fig. 7. (a), (b), (c) Zoom in the difference between original frames 2 and 1 (left, top, right views, respectively).

Fig. 8. (a), (b) Rigid motion compensated estimate of frame 2 for a stereo camera setup (left, right views, respectively).
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Fig. 9. (a), (b) Zoom in the displaced frame difference between original frame 2 and its rigid motion compensated estimate for a stereo

camera setup (left, right views, respectively).

Fig. 10. (a), (b) Rigid and nonrigid motion compensated estimate of frame 2 for a stereo camera setup (left, right views, respectively).

Fig. 11. (a), (b) Zoom in the displaced frame difference between original frame 2 and its rigid and nonrigid motion compensated

estimate for a stereo camera setup (left, right views, respectively).

Fig. 12. (a), (b), (c) Rigid motion compensated estimate of frame 2 for a trinocular camera setup (left, top, right views, respectively).
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Fig. 13. (a), (b), (c) Zoom in the displaced frame difference between original frame 2 and its rigid motion compensated estimate for a

trinocular camera setup (left, top, right views, respectively).

Fig. 14. (a), (b), (c) Rigid and nonrigid motion compensated estimate of frame 2 for a trinocular camera setup (left, top, right views,

respectively).

Fig. 15. (a), (b), (c) Zoom in the displaced frame difference between original frame 2 and its rigid and nonrigid motion compensated

estimate for a trinocular camera setup (left, top, right views, respectively).

Table 2

Test results on real trinocular images in terms of PSNR for the head area of image sequence ‘‘Ludo’’

Camera Difference between Difference between Difference between Difference between

view original frames frame 2 and frame 2 and frame 2 and

2 and 1 its rigid motion its aggregate its estimate with

estimate motion estimate method in [6,7]

Left 22.99 dB 27.36 dB 28.22 dB 23.97 dB

Top 23.95 dB 29.31 dB 30.08 dB 24.89 dB

Right 22.24 dB 27.21 dB 28.44 dB 24.22 dB
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Table 3

Test results on real stereo images in terms of PSNR for the head area of image sequence ‘‘Ludo’’

Camera Difference between Difference between Difference between Difference between

view original frames frame 2 and frame 2 and frame 2 and

2 and 1 its rigid motion its aggregate its estimate with

estimate motion estimate method in [6,7]

Left 22.99 dB 27.54 dB 27.74 dB 23.97 dB

Right 22.24 dB 26.32 dB 28.43 dB 24.22 dB

Fig. 16. (a), (b) Real data model for the image sequence ‘‘Chantal’’ for time instants 1 and 2, respectively.

Fig. 17. (a), (b), (c) Original camera images of frame 1 (left, top, right views, respectively).

Fig. 18. (a), (b), (c) Original camera images of frame 2 (left, top, right views, respectively).
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used to approximate the foreground object at the

two consecutive time instants, as shown in Fig. 16.

The 3D structure was subdivided into three sub-

objects (i.e. head, left arm and body in case of

Chantal) and an equivalent 3D motion estimation

procedure was followed. Results are shown in

Figs. 20–23. The performance of the proposed

techniques in terms of PSNR is evaluated by

observing Tables 4 and 5.

The performance of the method was compared

with the approach described in [6,7]. The perfor-

mance of these techniques depends on the quality

of the output of the Hopfield network that

establishes the initial 3D correspondence. In case

of realistic image sequence coding experiments,

such as coding of the Ludo and Chantal sequences,

the Hopfield network converges very slowly

to an inaccurate 3D correspondence, affecting

Fig. 21. (a), (b), (c) Displaced frame difference between original frame 2 and its rigid motion compensated estimate for a trinocular

camera setup (left, top, right views, respectively).

Fig. 19. (a), (b), (c) Difference between original frames 2 and 1 (left, top, right views, respectively).

Fig. 20. (a), (b), (c) Rigid motion compensated estimate of frame 2 for a trinocular camera setup (left, top, right views, respectively).
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Fig. 23. (a), (b), (c) Displaced frame difference between original frame 2 and its rigid and nonrigid motion compensated estimate for a

trinocular camera setup (left, top, right views, respectively).

Fig. 22. (a), (b), (c) Rigid and nonrigid motion compensated estimate of frame 2 for a trinocular camera setup (left, top, right views,

respectively).

Table 5

Test results on real stereo images in terms of PSNR for image sequence ‘‘Chantal’’

Camera Difference between Difference between Difference between Difference between

view original frames frame 2 and frame 2 and frame 2 and

2 and 1 its rigid motion its aggregate its estimate with

estimate motion estimate method in [6,7]

Left 33.48 dB 33.98 dB 36.02 dB 33.82 dB

Right 34.76 dB 35.15 dB 36.89 dB 35.01 dB

Table 4

Test results on real trinocular images in terms of PSNR for image sequence ‘‘Chantal’’

Camera Difference between Difference between Difference between Difference between

view original frames frame 2 and frame 2 and frame 2 and

2 and 1 its rigid motion its aggregate its estimate with

estimate motion estimate method in [6,7]

Left 33.48 dB 34.02 dB 36.74 dB 33.82 dB

Top 33.10 dB 33.76 dB 36.17 dB 33.68 dB

Right 34.76 dB 35.27 dB 37.53 dB 35.01 dB
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considerably the accuracy of the rigid 3D motion

estimation. As shown by the experimental results

presented in Tables 2–5 the present scheme,

produces considerably more accurate 3D motion

estimation.

7. Conclusions

The present paper extended the efficient techni-

que for object-based rigid 3D motion estimation

from monoscopic image sequences, described in

[29], so as to make it applicable to rigid and non-

rigid 3D motion estimation problems in multiview

image sequence coding applications. More speci-

fically, a neural network was formed for the

estimation of the rigid 3D motion of each object,

using initially estimated 2D motion vectors corre-

sponding to each camera view. A technique was

further proposed for the estimation of the local

non-rigid deformations. Experimental results

using stereoscopic and trinocular camera setups

have shown that the performance in terms of

suppression of measurement noise is improving

with the number of camera views used. The

proposed technique was compared to the techni-

ques in [6,7] and its performance was found to be

significantly better in application on both synthetic

and real image sequences.
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