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An algorithm is described for recovering the six degrees of free- 

dom of motion of a vehicle from a sequence of range images of a 
static environment taken by a range camera rigidly attached to the 

vehicle. The technique utilizes a least-squares minimization of the 

difference between the measured rate of change of elevation at a 

point and the rate predicted by the so-called elevation rate con- 
stmint equation. It is assumed that most of the surface is smooth 
enough so that local tangent planes can be constructed, and that 

the motion between frames is smaller than the size of most fea- 

tures in the range image. This method does not depend on the 
determination of correspondences between isolated high-level fea- 

tures in the range images. The algorithm has been successfully 
applied to data obtained from the range imager on the Autono- 

mous Land Vehicle (ALV). Other sensors on the ALV provide an 
initial approximation to the motion between frames. It was found 

that the outputs of the vehicle sensors themselves are not suitable 

for accurate motion recovery because of errors in dead reckoning 
resulting from such problems as wheel slippage. The sensor mea- 

surements are used only to approximately register range data. The 

algorithm described here then recovers the difference between the 
true motion and that estimated from the sensor outputs. s 1991 

Academic Press. Inc. 

1. INTRODUCTION 
* 

Recovery of the six degrees of freedom of motion of a 
vehicle is an important problem in autonomous naviga- 
tion. The algorithm described here will improve obstacle 
detection and avoidance, since the position of an obstacle 
can now be related to the position of the vehicle even 
after the obstacle leaves the field of view of the range 
camera. In addition, object recognition will be improved 
since multiple views of objects can be registered and 
fused. Another useful feature of this method is that it 
allows global maps of the terrain to be assembled from 
registered information extracted from many range im- 
ages. 

Recently the Hughes A1 Center demonstrated the first 

cross-country map and sensor-based autonomous opera- 
tion of a robotic vehicle [I]. Using data from a laser range 
scanner, the vehicle avoided difficult obstacles such as 
bushes, gullies, rock outcrops, and steep slopes. In this 
situation, all six degrees of freedom of motion are of 
importance, and one does not have the luxury of restrict- 
ing oneself to planar motion, as is common in many in- 
door mobile robot applications. During the autonomous 
cross-country runs, the ALV pitched and rolled as much 
as 12" from the reference position while traversing rolling 
hills and shallow gullies. Sensors on board robot vehicles 
can measure such motions, but the results are subject to 
errors and usually not very accurate. Wheel slippage on 
loose surfaces, for example, contributes significantly to 
the dead reckoning error in cross-country experiments 
with the ALV. Furthermore, most vehicles do not have 
sensors to measure the full six degrees of freedom of 
motion. The ALV, for example, does not have a sensor 
to directly measure the vertical elevation change compo- 
nent . 

The range sensor was developed by the Environmental 
Research Institute of Michigan [2]. Distance is measured 
by determining the phase shift between the modulation 
on an outgoing active laser signal and the modulation on a 
signal reflected by the terrain. By repeating such mea- 
surements at specified angular intervals, a range image of 
64 x 256 bytes of 8 bits is built up once every half second. 
The field of view is 30" vertical by 80" horizontal. The 
maximum distance at which the sensor operates without 
ambiguity is 64 ft and the range resolution is 3 in. Be- 
cause distance is measured using the phase shift of modu- 
lation at a single frequency, all distances are given mo- 
dulo 64 ft. That is, objects at x + 64 ft yield the same 
range number as do objects at x ft. Figure 1 shows a 
sequence of three range scans; the vehicle moved ap- 
proximately 8 ft between scans. The range images are 
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presented in two forms: In Fig. I(a) brightness encodes 
range, while in the shaded views of Fig. I(b) brightness 
encodes surface orientation.' 

Methods for aligning range images tend to fall into two 
categories. If the motion between scans is large, and 
there is no prior information about the movement, then 
symbolic feature-matching algorithms appear to be the 
appropriate choice [3-51. If, on the other hand, the mo- 
tion is small, then direct area-based techniques are more 
suitable. In the current application, the motion between 
range scans is large, but on-board sensors give us an 
estimate of the motion. This information can be used to 
approximately register the range maps. The motion-re- 
covery algorithm need only deal with the differences be- 
tween the vehicle's true motion and this initial estimate 
of the motion. 

2. ALGORITHM 

For a number of reasons, range imagery is not pro- 
cessed in its original spherical coordinate system. A Car- 

tesian Elevation Map (CEM) is a more useful representa- 
tion of range information. Data in the spherical, 
sensor-centered coordinate system of the range scanner 
are transformed into a Cartesian coordinate system. The 
Cartesian system is approximately aligned with true hori- 
zontal and vertical using readings from the vehicle's on- 
board pitch and roll sensors. In a CEM, the height, Z ,  is 
treated as a function of displacements X and Y in a hori- 
zontal plane. The result is a down-looking, map-view rep- 
resentation of terrain that is useful in autonomous naviga- 
tion [6]. Depth information from other sensors, such as 
binocular stereo or imaging sonar, may be represented in 
the same form. The motion-recovery algorithm is greatly 
simplified when applied to CEMs rather than raw range 
images. 

Some of these issues are explored further in the Ap- 
pendix. The general derivation of the main result in the 
Appendix employs vector notation, which allows formu- 
las to be written concisely. In the body of this paper, on 
the other hand, components of the vectors are used, 
which is intended to make the results easier to interpret 
on first reading.= 

I For more information on shaded display of terrain, see, e.g. ,  [17]. 
? The two derivations also differ in other subtle ways that are dis- 

cussed briefly in the Appendix, but that are not important here. 

The first step in converting the range image from the 
spherical coordinate system form into a CEM is to calcu- 
late the X, Y, and Z Cartesian coordinate components of 
each measurement from the range p(0, 4 )  for each point 
in the image using the following transformations: 

X = p(0, 4 )  sin 0 

Y = p(0, 4 )  cos 0 cos 4 

Z = p(0, 4 )  cos 19 sin 4 .  

Here X, Y, and Z represent the cross-range, down-range, 
and elevation coordinates, respectively. Figure 2 shows 
the geometry of the ERIM range scanner ray deflection. q 

In the range images, 4 corresponds to the depression 
angle of a particular ray, and 19 indicates the azimuth or 
lateral deflection of the ray. If vehicle pitch and roll can 
be estimated using on-board sensors, then the coordi- 
nates in the sensor-centered coordinate system can be 
further transformed into a Cartesian coordinate system 
aligned approximately with true horizontal and true verti- 
cal. 

The way the laser light is generated and deflected by 
the scanning mirrors assures that rays corresponding to 
individual measurements in a range image all pass (ap- 
proximately) through a single p ~ i n t . ~  In practice, the ter- 
rain is illuminated by a small but finite diameter beam, 
rather than an ideal ray of light. Individual beams fall on 
objects at different angles with respect to the local sur- 
face normal and illuminate the surface over an elliptical 
area that is referred to as the laser's "footprint." The 
measured distance to the surface is (approximately) a 
reflectance-weighted average over the illuminated area. 
Each of the 3-D points in the CEM, derived using the 

formulas above, denotes the approximate location of the 
center of a footprint. 

It should be clear that these points are in general not 
regularly placed on the terrain surface. Figure 3 shows 
the actual (X, Y) positions of each of the scanned points 
for the first range image in Fig. I ,  within an 80 ft x 80 ft 
region in front of the scanner. Elevation data (Z values) 
are known only at the discrete points indicated. As one 
would expect, the sparsity of scanned points increases 

' Thus the geometry of range image formation here is similar to the . 
geometry of perspective projection in ordinary optical image formation. 

FIG. 1. (a) Sequence of three laser range images taken from the moving ALV. Each scan consists of 64 x 256 bytes of 8 bits that encode 

distance. Brightness here corresponds to distance, so brigher points are farther from the range camera than darker ones. The terrain is gently 

rolling, with a large outcrop in the upper left-hand side of the field of view. (There is a range ambiguity, since distances are measured modulo 64 ft. 

This explains the apparent discontinuity in range in the top right hand comer of the third image.) (b) Shaded views of sequence of three laser range 

images. Brightness here corresponds to the slope of the surface relative to the camera. Sulfaces facing toward the right side appear brighter than 

surfaces turned towards the left. (So the large outcrop in the top left comer appears bright because it  faces predominantly towards the right.) This 

mode of presentation makes apparent more of the detailed surface undulations, such as the tire tracks in the grass and the rock in the foreground of 

the first range image. 
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pled frequently enough (that is. within the Nyquist rate), 
then the original terrain could be accurately recon- 
structed by interpolating a smooth surface between the 
scanned points. This is not an easy task, however, since 
the known depth values do not fall on a regular grid in the 
XY-plane. 

There will usually be some regions in which sampling is 
not dense enough to properly reconstruct a smooth sur- 
face. For example, any region outside the field of view of 

L the scanner, or in the shadow of some tall feature in the 

FIG. 2. ERIM range scanner coordinate system. Here & corre- 
sponds lo the depression angle of a particular ray, and 0 indicates the 

azimuth or lateral deflection of the ray. (For rays aimed downward, 

such as the one shown in this figure, the angle & is considered to be 

negative.) 

with distance from the scanner, as  well as with the incli- 

nation of the average local surface normal with respect to 
the incident rays. The complex laser scanning procedure 
with its forshortening effects and averaging over foot- 
prints can be approximated by a smoothing operation fol- 
lowed by a sampling process. Theoretically, if the 

smoothed terrain were actually bandlimited and and sam- 

terrain, will be unknown. Areas where a local weighted , 
average density of samples is below some threshold are 
located and excluded from the interpolation process. An 
iterative interpolation algorithm is used to fill in a contin- s 

uous surface in all regions where the sampling is dense 
enough. In other respects the interpolation algorithm is 
similar to those used for recovering digital terrain models 
(DEMs) from contour maps [7] and those used to interpo- 
late smooth surfaces from sparse binocular stereo data 
[8,9]. It was found to be advantageous to use the elastic 
membrane model for interpolation rather than the more 
elaborate thin-plate model. This makes the iterative solu- 
tion much simpler and faster. Figure 4 shows the final 
interpolated CEM. 

A time-varying CEM can be viewed as a function of the 
form Z(X, Y, 1 ) .  Taking a full time derivative of Z via the 

FIG. 3. Constraint-point arrays generated from the first laser range 
scan shown in Fig. I .  Each array covers an 80 fl x 80 ft patch of terrain 

in front of the vehicle. A pixel here represents a 6 in. x 6 in. square area FIG. 4. Final interpolated CEM of the first range scan image shown 
of terrain. Bright pixels indica~e points on the ground where some scan in Fig. I .  Brightness here corresponds to elevation ([hat is, higher 
ray hits and where, as  a result. elevation data is known. Elevations at points are brighter). Note again the large outcrop near the top left 
poinls corresponding to dark pixels have to be interpolated from the (limiting the extent of the range image) and the small rock (light splotch) 
known elevation data. near the vehicle. 
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chain rule, the following equation is obtained rigid assemblage and that we have to recover the motion 
of the sensor relative to the environment. If a moving 

d z  - a z d x  + a z d Y  az ---- -- sensor in a rigid environment is assumed, there are only 
+ -. 

dt ax dt a v  dt dt six degrees of freedom of motion to recover, so that the 
corresponding system of equations is now vastly over- 

This can be written in the less intimidating form constrained. This is the approach taken here. 

Let R = ( X ,  Y, Z)T be a vector to a point on the surface 
z = ~ x +  + Y  + Z,, (measured in a sensor-centered Cartesian coordinate sys- 

tem). If the sensor moves with instantaneous transla- 
where the three partial derivatives of Z are denoted by tional velocity , and instantaneous rotational velocity 

with respect to the environment, then the point R ap- 
az az az 

P = - Y  9 = -  and Z, = -, pears to move with a velocity 
ax J Y '  a t 

and the components of velocity of a point in the range 
image are given by 

with respect to the sensor [12]. The components of the 
dX . dY x = -  - dZ 

Y = - ,  and Z = - .  velocity vectors are given by 
dt ' dt dt 

Note that p and q are just the slopes of the surface in the x 

and y direction respectively, while Z, is the rate of change 
of elevation at a particular point in the CEM. 

The above equation will be called the elevation rrrte 
constraint equation. The values of the partial derivatives 
p, q,  and Z, can be estimated at each pixel in the CEM. 
while X ,  Y ,  and 2 are unknown. There is one such equa- 
tion for every point in the CEM, so that if i t  contains n 

points, there are n equations in a total of 3n  unknowns. 
The system of equations is extremely underconstrained 
and additional assumptions are necessary to provide a 
unique solution. In the above discussion no constraint on 
the motion of neighboring points was assumed, each 
point being able to move completely independently. In 
most real motions, even elastic deformations and fluid 
flows, neighboring points do, however, tend to have simi- 
lar velocities. There are two basic ways of exploiting this 
observation in order to increase the amount of constraint. 

Rewriting the equation for the rate of change of R in 
component form yields 

where the dots denote differentiation with respect to 
time. Substituting these expanded equations into the ele- 
vation rate constraint equation itself yields 

pU + qV - W + rA + sB + tC = Z , ,  

where 
In analogy with a method for estimating optical flow 

[lo], an energy function could be constructed that is a = - y - qz, = x + p ~ ,  and t = q~ - 
weighted sum of errors in the elevation rate constraint 
equation and a measure of the depature from smoothness 
of the velocity field. Furthermore, a penalty function for If there are n pixels in the image, the resulting n equa- 

discontinuities can be added that makes it ~ossible to tions can be written in matrix form as 

allow for discontinuities along edges. This would force 
the recovered motion field to be smooth almost every- 
where and provide a segmentation of the image into mul- 
tiple moving objectsS4 

In analogy with a so-called direct method for recov- 

ering motion from an ordinary image sequence [I I], we 
could assume instead that the environment is a single . . . .  . . . . . .  

P n  9,1 - r~~ In 
We have also worked on this alternate approach and will report on - - - 

its elsewhere when our work is completed. A X b 
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or Ax = b.  The pixels are numbered from I to 11 as de- 
noted by the subscripts. The above matrix equation cor- 

responds to n linear equations in only six unknowns 
(namely U. V. W, A ,  B, and C) .  

Rather than arbitrarily choosing six of the equations 
and solving the resulting set of equations, a least-squares 
error minimization technique is employed. The least- 
squares solution that minimizes the norm J I A X  - blJ2 sat- 
isfies the equation 

as texts on linear algebra [I31 demonstrate. 
Multiplying both sides of the above matrix equation by 

AT yields the 6 x 6 system of equations 

or more concisely, 

I! 

= C (Z,);c;. 
i - l  

where 

Note that c, is a vector whose components are deter- 
mined locally at each point of the CEM. 

3. IMPLEMENTATION 

This motion-recovery algorithm has been implemented 
and tested on synthetic CEMs of sn~oothly undulating 
su~faces. With exact synthetic data i t  produces exact mo- 
tion estimates. Significant amounts of random noise can 
be added to the synthetic data before the motion esti- 
mates are degraded noticeably, because the least squares 
problem is heavily overdetermined. The relationship be- 
tween noise in the measurements and errors in the mo- 
tion estimates is complex, as  it  depends on the surface I 

shape, the type of motion. and the properties of the simu- 
lated range sensor. While detailed sensitivity analysis in 
the general case is hard, we did notice that performance 
seems to be degraded when the field of view is reduced. 
This is in general agreement with what is known from 
photogrammetry as applied to binocular stereo and mo- 
tion vision [ I  1 ,  141. 

Experiments with synthetic range images are useful. 
because the result of the computation can be compared to 
the accurately known motion used in generating the data. 
Good performance on synthetic data is not unexpected, 
however, since there is no approximation involved in the 
derivation of the algorithm. It is thus more interesting to 
test the algorithm on CEMs derived from real range im- 
ages. In this case, however. i t  is difficult to obtain mea- 
surements of the actual motion with sufficient accuracy 
for meaningful comparison with the results of the algo- 
rithm.'This makes it  hard to directly assess the accuracy 
of the recovered motion. There is an indirect way of see- 

ing how well the system performs, however: Range maps 
cannot be mosaicked effectively using motion informa- 
tion provided by the on-board sensors, but they can be 
put together into a global range map, with very small 
errors in the overlap regions. when the algorithm pre- 

sented here is used to determine the actual motion be- 
tween successive range camera positions. 

We now describe the actual algorithm in more detail. 
Simple finite difference approximations are used to esti- 
mate the three different partial derivatives of %. The 
terms c,c;'and (Z,);ci are computed at each point in the 
CEM and added into a total. The resulting 6 x 6 linear 
system of linear equations is easily solved. The cycle 
time between scans for the autonomous cross-country 

"he algorithm can. for example. recover rotational motion compo- 

nents that move the range image only a fraction of ;I picture cell at the 

center of the image. This corresponds to a very small visual angle. The 

angular rate sensors would have to be sensitive to very low rotation;~l 

speeds in order to provide a usable comparison signal. In Ihct. a system 

using something like the algorithm here may one day provide a better 

way of measuring attitude and angular rates than presently used syz- 

tems, provided the new scheme can be implemented economically. 
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FIG. 5. (a) F u x d  CEM from the three range scans shown in Fig. I .  The motion recovery algorithm was used to  find the exact six-degree of 

freedom motion between the scans. Note that this figure covers :r largerarea than does Fig. 4. (b) Wireframe view of the fused CEM shown in (a). 

system is approximately 8 s; in this time the ALV typi- 
cally moved about 10 ft.h Estimates from sensors on 
board the vehicle are used to approximately register two 
successive CEMs, and the motion-recovery algorithm 
described above is used to perform the final registration 
of the CEMs. Vehicle sensors provide approximate val- 
ues for four of the six motion components. Unforunately, 
no sensors were available that could measure vertical 
elevation change or vehicle roll; zero values were sup- 
plied for these components during the approximate regis- 
tration process. The motion-recovery algorithm typically 
finds an additional translation of at most a few feet and a 
rotation of a few degrees. 

Once the six degrees of freedom of motion are known 
between two CEMs, it  is a simple matter to transform 

one CEM to the coordinate system of the other. This 
fusion process combines information from both CEMs. 
Wherever points in space are adequately described by 
both CEMs, the most recent data are retained. In this 

way, large terrain maps can be built up from sequences of 
range images. The final fused CEM obtained from the 

three range scans of Fig. I is shown in Fig. 5. These 

multi-scan terrain maps have immediate applications in 
simplifying and improving obstacle detection perfor- 
mance. For example, the ground immediately in front of 
the vehicle cannot be seen, since the ERIM range scan- 
ner is mounted on the front of the vehicle at a height of 8 

ft. The fusion algorithm described above fills in this 
"blind spot" in front of the vehicle, performing much 
better than other ad hoc solutions that have been used in 

the past. 
The results of this new area-based CEM fusion algo- 

rithm are promising. The algorithm is robust in the pres- 
ence of certain kind of erros. At times, for example, a 
person will walk through the field of view of the range 
camera while the ALV is navigating. Because of the per- 
son's relatively fast motion, the person typically appears 
only in one scan. Since the technique uses information 
from a large area of terrain, the estimated motion is not 
affected beriously by a small fraction of "erroneous" ele- 

Since range imagers now take a significant amount of time to s c m  

an image, vehicle motion during that time interval has to be taken into 
Figure shows an of two range 

account. 11 is easy to compensate for known steady translational mo- images where the small error introduced in this way does 
tion, since one can compute the time at which each range estimate is not significantly affect the fusing of successive CEMs. A 
obtained. More dificult to deal with is uncontrolled rotational motion. symbolic feature-matching algorithm might have more 
a s  may occur when ;I vehicle is moving over uneven terrain. It is helpful 

in this regard to have a camera mounting that strongly attenuates rota- 
trouble with range images such as these, because some of 

tional motion components above some frequency. a s  is used, for exam- the most obvious "features" in one image do not appear 
ple. in the motion picture industry when filming from unsteady vibrating in the other image. Note also that typical natural cross- 
platforms such a s  helicopters. country CEMs often do not have major distinctive fea- 
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FIG. 6. Two successive range images that might give feature-based algorithms some problems because of  din'erences in the two scenes being 

viewed. (Note the person walking through the upper left area of the first range image.) The new area-based algorithm had no trouble recovering the 

motion of  the vehicle between these two CEMs. 

tures that such an algorithm might use, but do contain 
enough gently rolling terrain for the new area-based re- 
covery algorithm to operate effectively. 

4. CONCLUSION 

In the future, researchers at Hughes plan to port this 
algorithm to an on-board WARP systolic array proces- 
sor. The core of the range processing routines have al- 
ready been ported to the Connection Machine, allowing a 
reduction of cycle time to below the half-second cycle 
time of the ERIM range scanner [15]. With this fast cycle 
time, the vehicle motion between scans will be so small 
that i t  is expected that estimates from on-board sensors 
will not be required for reliable fusion of CEMs, and the 
new algorithm can be applied directly. 

In the meantime, work is beginning on a hierarchical 
strategy in which a coarser level will be used to provide a 
motion estimate for the next finer level. Confusing detail 
with high spatial frequency content is suppressed in 
smoothed and subsampled CEMs which allows the mo- 
tion-recovery algorithm to be more tolerant of poor initial 
motion estimates. At the same time, the motion will not 
be estimated very accurately at the coarser levels. Finer 
levels of resolution are needed to accurately recover mo- 
tion. It is hoped that the coarsest level will not require 
any initial motion estimate. 

5. APPENDIX: GENERAL FORMULATION 

In the body of this paper a Cartesian coordinate system 
is used that is aligned with local vertical and hence is not 
sensor-centered. This is appropriate because presently 
successive range images have to be brought into approxi- 
mate alignment using information from on-board sensors. 
This alignment is necessitated by the fact that the vehicle 
moves a considerable distance during the relatively long 
computational cycle time. When the cycle time is re- 
duced, however, vehicle motion between scans will be so 
small that the algorithm can deal with it directly, without 
initial approximate alignment using vehicle sensor infor- 
mation. This makes it possible (and desirable) to work 
directly in a sensor-centered coordinate system. Accord- 
ingly, the method for recovering vehicle motion from 
time-varying range images is developed in this appendix 
using a sensor-centered coordinate system. Also, for 
conciseness, vector notation is used instead of expres- 
sions in terms of the components of vectors. To distin- 
guish the sensor-centered Cartesian coordinate system 
from the external Cartesian coordinate system used ear- 
lier, three-dimensional coordinates here carry an over- 
bar. 

A. I .  Basic Approach 

Consider a time-varying range image R(a, p. t )  that 
gives distance to points on a surface in the environment 
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as a function of two image coordinates and time t .  A 
number of coordinate schemes will be discussed in Sec- 
tion A.6; a and 4 may, for example, be Cartesian coordi- 
nates in a planar image or latitude and longitude in a 
spherical image. The task is to recover the motion of the 
range sensor with respect to the static environment.' 

The instantaneous motion of the sensor can be de- 
scribed fully by the translational velocity, 1, of the center 
of projection and the rotational velocity, o, of the sensor 
about an axis through the center of projection. These . velocities are measured with respect to the moving sen- 
sor coordinate system, and thus are likely to be time- 
varying. The task is to recover the instantaneous veloci- 

e ties. 

The procedure discussed here uses the first partial de- 
rivatives of range with respect to image coordinates, as 
well as time. There derivatives can be estimated from 
range data using first-difference methods. If the data are 
noisy, they may need to be smoothed first, or, equiva- 
lently, the derivatives may be estimated by fitting low- 
order polynomials to the measured data in a small neigh- 
borhood. 

A.2. Runge Rate Construint Eqrrution 

The surface is assumed to be smooth enough so that 
local tangent planes can be constructed. Let n be the 
(outward pointing) unit normal. (Methods for estimating 
the normal from the derivatives of range will be discussed 
in Section A.7.) 

Let R be a vector to a point on the surface (measured 
in a sensor-centered coordinate system). This point ap- 
pears to move with velocity 

with respect to the sensor. The normal component of the 
velocity (what is left after removing the component in the 

tangent plane) has magnitude 

V,, = R . n  = - t .  n - [oRn], 

where [a b c] denotes the triple product of the vectors a. 
b, and c. Note that the velocity component in the tangent 
plane cannot be determined locally, since i t  merely 

a 

moves points around in the tangent plane.8 
What can be estimated directly from the measured data 

is R , ,  the range rate at a particular picture cell. This range 
rate does not, of course, uniquely determine the velocity 
of a point on the surface, but it does constrain the veloc- 

Equivalently, the sensor can be considered fixed, with a single rigid 

object in motion relative to the sensor. 

This is the three-dimensional analog of the so-called crperlure proh- 

/em found in the estimation of optical How [lo]. 

ity to have the form 

where i is a unit vector in the direction R, while s is an 
arbitrary vector in the tangent plane. The normal compo- 
nent of this velocity vector is just 

V,, = R .  n = R , ( i .  n), 

independent of the tangential component,%ince s . n = 0. 

Equating this with the other equation for the normal 

component yields: 

This is called the range rute cwnstrrrint eqrrrrtion. The 
range rate constraint equation is analogous to the bright- 

ness chunge construint equation, which is used in some 
methods for estimating the optical How [10], as well as by 
direct methods for recovering motion from time-varying 
imagery [I I]. The equation can be solved for R, and used 
to predict the range rate at every picture cell, if the trans- 
lational and rotational motion, as well as the surface ori- 

entation, are known. 

A.3. Recovering In.strrtitmneorrs Velocity Components 

If the motion is not known, values for t and o may be 
sought that make the predicted and observed range rates 
at every picture cell equal. In practice, of course, there 
will be measurement errors and so it makes more sense 
instead to minimize an error integral like:"' 

The integral is over the whole range image, or over a 
specified image region if the image has been segmented 
into regions corresponding to objects moving differently. 

Fortunately, the integrand is the square of a term that 
is linear in both the instantaneous translational and rota- 
tional velocities. This means that a closed-form solution 
can be obtained by differentiating the integral with re- 
spect to t and o and setting the result equal to zero. The 
following two equations are obtained in this way: 

"ole that (i . n) will be negative for visible surfaces. 

lo The integrand could be normalized by dividing by (i . n) in order to 

obtain the error in the range rate. but this would create problems for 

points near the limbs of objects, where the measurement is along a ray 

that is almost tangent to the surface. 



10 HORN A N D  HARRIS 

Here use has been made of the identity [a b c] = a . (b x 
c). For convenience. let d = (R x n); then 

where use has been made of the identities (a . b) = (b a) 
and (a . b) = arb .  Each of the terms in parentheses is a 3 
x 3 matrix obtained by integrating the indicated dyadic 
product, while each of the two terms appearing on the 
right-hand side is a vector with three components. This 
pair of vector equations can be viewed as a system of six 
linear scalar equations in the components of t and w.  

Note that. in contrast to the situation in direct motion 
vision [I I], the magnitude of the translational velocity 
vector can be recovered here, since absolute depth mea- 
surements are provided. 

If range is obtained using either binocular stereo or 
motion vision methods, the accuracy will decrease with 
distance and so the error contributions should be 
weighted inversely with range squared. In this case the 
equations can be modified to read 

It is also possible to use the normal vector n = (p, q ,  - I)T 
instead of the unit normal n, and (R x n) instead of (R x 
n) for d. The only difference is that error contributions 
from different areas are weighted somewhat differently in 
the error integral. Note that the vector c used in the body 

of this paper is the composition of n and (R x n). This 
should help clarify the relationship between the result 
presented here and the version in terms of components of 
vectors given in the body of the paper. 

A.4. Degenerucies and Ambiguity 

The method fails when the coefficient matrix is singu- 

lar. This happens, for example, when there is a single 

planar surface, in which case n is the same everywhere. 
In this case the matrix obtained by integrating I n T  only 
has rank one. The result is that one cannot determine the 
component of translational motion tangent to the plane, 
as well as the rotation about a normal to the plane. The 
method also fails when the sensor is at the center of a 
spherical surface, where R 1 1  A ,  because then d is zero 
everywhere. In this case the matrix obtained by integrat- 
ing ddT is zero and so the rotational component is com- 
pletely undetermined. 

Actually, these are just special cases of more general 
ones. There is a problem, for example, when the surface 
is cylindrical, since the normals then all lie in a common 
plane. In this case the matrix obtained by integrating nnT 
only has rank two. The result is that the component of 
translation in a direction perpendicular to the common 
plane of the normals, that is, along the direction of the 
rulings of the surface, cannot be determined. 

Similarly, there is a problem in determining one of the 
components of rotation when the surface is a solid of 
revolution and the sensor happens to be on the axis. In 
this case all of the vectors d = (R x i )  will lie in a 
common plane. Consequently, the matrix obtained by in- 
tegrating ddT has only rank two, and the component of 
rotation perpendicular to the common plane, that is, 
about the axis of the solid of revolution, cannot be found. 

It should be obvious that in all of these situations, no 
method can recover the motion unambiguously, since 
certain components of the motion do not affect the data. 
This problem is analogous to, but simpler than, the prob- 
lem of criticul surfaces that arises in photogrammetry 
and motion vision [14, 161. 

A.5. Implementation Notes 

In practice, the double integrals will, of course, be re- 
placed by double sums. At each picture cell the rates of 
change of range with image coordinates are estimated in 
order to determine the local unit normal n (as discussed 
in Section A.7). The range rate R, is also estimated and d 
= (R x n) as well as (P . n) computed. The symmetric 6 x 
6 coefficient matrix and the right-hand-side 6-component 
vector are then built up by accumulating products of 
these intermediate results. 

When applying this method to real images, a few things 
need to be paid special attention to: 

An attempt should be made to detect range disconti- 

nuities and to avoid using range data near them. At a 
range discontinuity, finite difference estimates of deriva- 
tives are likely to be based on range measurements in 
picture cells corresponding to patches on unrelated sur- 
faces. Such estimates are likely not to be very accurate 
and will contribute to the error in the result. Also, near 
limbs of objects, the rates of change of range with image 
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coordinates are very high, and finite difference estimates 
of surface orientations may consequently not be very ac- 
cuate. In the formulation presented here, this latter effect 
is not much of a problem, however, since the range rate is 

in effect scaled by multiplication by (f . n), a quantity that 
will be small when the rays are almost tangent to the 
surface being scanned. 

One also needs to be careful to avoid aliasing prob- 

lems due to undersampling, since the estimates of the 
derivatives will otherwise be corrupted. Care should be 

a taken to low-pass filter, or at least smooth, the range data 
before sampling, since aliasing effects cannot be removed 
after sampling. If the data are unavoidably corrupted by 

t aliasing, and most of the signal content is at lower fre- 

quencies, while the noise spectrum is more or  less flat, 
then some improvement in performance may be attained 
by smoothing the sampled data, or, equivalently, by bas- 
ing estimates of derivatives on computational stencils 
with fairly large support. 

One has to make sure that differences between 
quantized range measurements are large enough so that 
estimates of the derivatives are not corrupted too se- 
verely by quantization noise. Depending on the velocity 
of the sensor and distance to the scene, range values at 
neighboring image points or in successive frames may 
differ by only a few quantization steps. In this case i t  may 
be necessary to subsample, that is, use only every nth 
range value (either in space or in time), or, equivalently, 
to base the estimates on computational stencils with large 
support in both space and time. If subsampling is em- 
ployed, it is important to remember to low-pass filter, or 
at least smooth, the range data before sub-sampling. 

All of these cautionary notes apply equally well, of 
course, to the estimation of optical flow [lo], and the 
direct computation of rigid body motion [ I  I] from time- 
varying imagery. 

A.6. Range Image Sampling Schemes 

Two different range sampling arrangements will be 
considered. 

Planar sampling: the directions of sampling rays are 

determined by a regular rectangular grid of points on a 
planar surface. This is analogous to the method used 
most often to scan optical images. The flat surface corre- 
sponds to the image plane, the perpendicular from the 
center of projection onto this plane corresponds to the 
optical axis, and the length of the perpendicular corre- 
sponds to the "focal length." In this case, depth-dis- 
lance along the "optical axisv-may be given rather than 
range. 

Spherical sampling: the directions of sampling rays 

are determined by a regular grid of longitudes and lati- 

tudes on a spherical surface. The center of projection is 
at the center of the sphere. This corresponds to the 
method now used in some range scanners. The terms 
azimuth and elevation are commonly used for the hori- 
zontal and vertical components of deflection, respec- 
tively. Unfortunately, the relationship between these 
terms and the terms latitude and longitude used here de- 
pends on the sequence of beam deflections and the ar- 
rangements of the axes with respect to local ~e r t i ca l . ' ~  

With regular planar sampling, the range image can be 
written in the form p(x, y), where x and y are coordinates 

in the image plane.I2 The image plane is considered to be 
at unit distance from the center of projection.I3 With the 

x- and y-axes defined as  atove,  the z-axis lies along the 
optical axis, and so the vector connecting the center of 

projection to an image point is just r = (x, y. I)'. The 
vector to the corresponding point in the scene will be - - -  
written R = (X, Y, Z ) T .  A planar range image p(.r, y )  can 
be easily converted into a planar depth image Z(x, y), by 
noting that p(x, y) = r.%, y), where r = llrll is the length 

of the vector r. Such a depth image is often more directly 
useful than the range image itself. Note that R = .%, or 

= xZ, Y = y2. and 2 = Z. 

Image coordinates corresponding to particular points in 
the scene may be computed using x = X/Z and y = YIZ. 

With regular spherical sampling, the range image can 
be written instead in the form p(e, r)) ,  where f is the 
longitude, and .r) is the latitude on the sphere, while p is 
the range. Let the x-axis correspond to + ~ / 2  in latitude, 
while the y-axis is at zero latitude and +7r/2 in longitude. 
Then a vector to a point on the unit sphere is given by 

i = (sin r ) ,  cos r )  sin t ,  cos .r) cos ( I T  

The vector to the corresponding point in the scene can - - -  
once again be written R = (X, Y, Z)'. If i = (1lr)r is a 
unit vector in the direction r, then clearly R = pi ,  or 

- 
X = p sin r ) ,  Y = p cos r )  sin f ,  

and Z = p cos r)  cos 5. 

l 1  In the case of  the camera on the Viking Mars lander, for example, 

azimuth corresponds to longitude, while in the ERlM scanner azimuth 

corresponds to latitude. 

IZ Measured from the principal point. which is where the perpendicu- 

lar from the center of projection pierces the iniage plane. 

" Equivalently, one may normalize measurements in the image plane 

by dividing by the focal length. 
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The latitude and longitude can be recovered from the 
coordinates of a point in the scene usingI4 

- 
Y 

tan 5 = = and tan ?) = 
x 

z d m '  

A.7. E.vtirnuting the S~rrJi-tce Normul 

The method for recovering motion from time-varying 
range images requires estimates of the surface normal. 
Different methods for estimating the surface normal ap- 
ply to different range image sampling schemes. 

With regular planar sampling of a depth image, for ex- 
ample, two tangent directions on the surface can be 
found by taking partial derivatives of the equation R = Zr 
with respect to x and y. They are 

where use has been made of the fact that r, and r, are unit 
vectors in the x and y directions, respectively, since r = 

(.r, y, 1) 7. The normal is orthogonal to all tangents, so it  is 
parallel to the cross-product of the two tangents above, 
that is, it  is parallel to 

where use has been made of the fact that S x 9 = f, a unit 
vector in the z direction. The expression in parentheses 
can be used to compute the normal direction given esti- 

mates of the partial derivatives of depth Zwith respect to 
image coordinates x and y. In component form the above 
leads to 

The unit normal n can be easily computed from this 
result. 

If the field of view is very narrow, .t. and y will be small, 

and an orthographic approximation of the perspective 
projection can be employed. In this case, the normal may 
be considered to be parallel to (-zv, -Z,, 2)'. 

As, an example of the general formula, consider the 
planar surface defined by Z = Z, + pX + qY. It is easy to 
show that 

In the choice of coordinate axes. care has to be taken to ensure that 

the resulting Cartesian coordinate system is right-handed [12]. This may 

entail, for example, having points "in front" of the camera with nega- 

tive values for 2, or having the "vertical" image axis be positive down- 

ward. 

and Z, = 
420 

( 1 - p.r - qy)? ' 

so that the normal is parallel to 

While the magnitude of this vector varies, the direction is 
clearly independent of image position and lies orthogonal 

the planar surface, as expected. 
If we are given a regular planar-sampled range image 

(as opposed to a depth image). differentiation of the equa- 
tion R = pi. with respect to .r and y again yields two 

tangents, 

rS - xP rf - yi 
R ,  = p.3 + p - 

1- 
and R,, = p,i + - 

r 2  ' 

whose cross-product, 

will be parallel to the normal. In component form the 
above leads to 

The unit normal A can be easily computed from this 
result. 

With regular spherical sampling of a range image, two 
tangent directions can be found by taking partial deriva- 
tives of the equation R = pi with respect to 6 and 7): 

Note that the two derivatives iZ and i, have to be perpen- 
dicular to 3, since i is a unit vector. It so happens that it 
and 3, are orthogonal to one another as well. The normal 
is parallel to the cross product of the two tangents, that 
is, parallel to 
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Now 

( i x i , ) = s e c q i t ,  ( i Z X i ) = c o s q ? , ,  

and (it x i,) = -cos q?, 

RZ x R, = p(pZ sec qiZ + p, cos qi, - p cos q?). 

In component form the above leads to 

sin q 

The unit normal ii can be easily computed from this 
result. 
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