RIGID BRAID ORBITS RELATED TO $\mathrm{PSL}_{2}\left(P^{2}\right)$ AND SOME SIMPLE GROUPS

Takehito Shiina

(Received May 23, 2001)

Abstract

We apply the braid orbit theorem to projective semilinear groups over the finite fields with p^{2} elements and some almost simple groups of Lie type. The projective special linear groups $\operatorname{PSL}_{2}\left(p^{2}\right)$ with $p \equiv \pm 3(\bmod 8)$, the Tits simple group, and some small simple groups occur regularly as Galois groups over the rationals.

Introduction. Let G be a finite group with trivial center and $\mathbf{C}=\left(C_{1}, \ldots, C_{s}\right)$ a rational class vector of G. We denote by $\Sigma(\mathbf{C})$ the set of generating s-systems in \mathbf{C} :

$$
\Sigma(\mathbf{C}):=\left\{\sigma=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \mid \sigma_{i} \in C_{i}, \sigma_{1} \cdots \sigma_{s}=1,\left\langle\sigma_{1}, \ldots, \sigma_{s}\right\rangle=G\right\}
$$

The inner automorphism group $\operatorname{Inn}(G) \cong G$ naturally acts on $\Sigma(\mathbf{C})$ and the pure Hurwitz braid group H_{s} acts on the orbit space $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$. An H_{s}-orbit in $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ is called a braid orbit. In his rigid braid orbit theorem [7] Matzat determined certain conditions on a braid orbit for the existence of a regular extension N over the rational function field $\boldsymbol{Q}(T)$ with Galois group G and with ramification structure \mathbf{C}.

Przywara [9] applied this theorem to the almost simple group $\mathrm{P} \Sigma \mathrm{L}_{2}(25)$ with class vector $\mathbf{C}=(2 A, 2 C, 2 D, 12 A)$ and proved that the projective linear group $\mathrm{PSL}_{2}(25)$ occurs regularly as Galois group over \boldsymbol{Q}.

In this paper we take another class vector $\mathbf{C}=(2 C, 2 D, p A, p B)$ of $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ for any prime number $p \equiv \pm 3(\bmod 8)$ and obtain the following theorem.

THEOREM 0.1. The projective linear group $\operatorname{PSL}_{2}\left(p^{2}\right)$ occurs regularly as Galois group over \boldsymbol{Q} for any prime number $p \equiv \pm 3(\bmod 8)$.

Concerning Galois realizations of such simple groups, Feit [4] and Mestre [8] showed in different ways that $\operatorname{PSL}_{2}\left(p^{2}\right)$ occurs regularly as Galois group over \boldsymbol{Q} for $p \equiv \pm 2(\bmod$ 5). Furthermore, there are several works in the theory of modular forms. First, Ribet [11] proved that $\operatorname{PSL}_{2}\left(p^{2}\right)$ occurs as Galois group over \boldsymbol{Q} for any prime p if 144169 is a nonsquare modulo p. Reverter and Vila [10] extended this result for primes p such that one of the integers $18209,51349,144169,2356201,18295489,63737521$ is a nonsquare modulo p. Moreover, Dieulefait and Vila [2] obtained similar result in the case which a prime less than 20 is a nonsquare modulo p. Hilbert's irreducibility theorem assures that if a group G occurs regularly as Galois group over \boldsymbol{Q}, then there exist infinitely many linearly disjoint Galois

[^0]extensions over \boldsymbol{Q} with Galois group G. So our theorem is a generalization of the case which 2 is a nonsquare modulo p in their result.

In another direction we explicitly compute some braid orbits of small almost simple groups of Lie type. Using the computer algebra system GAP [13], we find suitable braid orbits for the Tits simple group ${ }^{2} F_{4}(2)$, the smallest Steinberg triality group ${ }^{3} D_{4}(2)$, and some small almost simple groups.

THEOREM 0.2. The following simple groups of Lie type occur regularly as Galois groups over \mathbf{Q} :

$$
S_{4}(4), U_{4}(3), L_{5}(2), U_{5}(2),{ }^{2} F_{4}(2)^{\prime}, L_{3}(9),{ }^{3} D_{4}(2), G_{2}(4), S_{6}(3), U_{6}(2) .
$$

1. Rigid braid orbit theorem. The full Hurwitz braid group \tilde{H}_{s} is generated by elements $\beta_{1}, \ldots, \beta_{s-1}$ with the following relations:

$$
\begin{gathered}
\beta_{i} \beta_{j}=\beta_{j} \beta_{i} \text { for }|i-j|>1 \\
\beta_{i} \beta_{i+1} \beta_{i}=\beta_{i+1} \beta_{i} \beta_{i+1} \quad \text { for } 1 \leq i \leq s-2 \\
\beta_{1} \cdots \beta_{s-2} \beta_{s-1}^{2} \beta_{s-2} \cdots \beta_{1}=1
\end{gathered}
$$

There exists a surjective homomorphism $q_{s}: \tilde{H}_{s} \ni \beta_{i} \longmapsto(i, i+1) \in S_{s}$, where S_{s} is the symmetric group on s letters and $(i, i+1)$ is a transposition. We denote the kernel of q_{s} by H_{s}, which is a normal subgroup of \tilde{H}_{s} and has generators

$$
\begin{equation*}
\beta_{i j}:=\left(\beta_{i}^{2}\right)^{\beta_{i+1}^{-1} \cdots \beta_{j-1}^{-1}}=\left(\beta_{j-1}^{2}\right)^{\beta_{j-2} \cdots \beta_{i}} \quad \text { for } 1 \leq i<j \leq s \tag{1.1}
\end{equation*}
$$

The group H_{s} is called the pure Hurwitz braid group.
Let G be a finite group with trivial center and $\Sigma_{s}(G)$ the set of all generating s-systems of G :

$$
\Sigma_{s}(G):=\left\{\sigma=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \mid \sigma_{1} \cdots \sigma_{s}=1,\left\langle\sigma_{1}, \ldots, \sigma_{s}\right\rangle=G\right\}
$$

The group \tilde{H}_{s} acts on the orbit space $\Sigma_{s}(G) / \operatorname{Inn}(G)$ in the following way.

$$
\begin{equation*}
\left[\sigma_{1}, \ldots, \sigma_{s}\right]^{\beta_{i}}=\left[\sigma_{1}, \ldots, \sigma_{i-1}, \sigma_{i} \sigma_{i+1} \sigma_{i}^{-1}, \sigma_{i}, \sigma_{i+2}, \ldots, \sigma_{s}\right] . \tag{1.2}
\end{equation*}
$$

Then the subgroup H_{s} acts on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$, where $\mathbf{C}=\left(C_{1}, \ldots, C_{s}\right)$ is a given class vector of G. The number $l(\mathbf{C}):=|\Sigma(\mathbf{C}) / \operatorname{Inn}(G)|$ is called the class number of \mathbf{C}. We denote by $B=B(\sigma)$ the H_{s}-orbit of $[\sigma]$ under this action and call B a braid orbit.

Let H_{σ} be the stabilizer of $[\sigma] \in \Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ in H_{s}. A braid orbit $B=B(\sigma)$ is said to be rigid when for each $[\boldsymbol{\tau}] \neq[\boldsymbol{\sigma}]$ there exists no automorphism α of H_{s} with $H_{\tau}=H_{\sigma}^{\alpha}$. Let π_{B} be the permutation representation of H_{s} on a braid orbit B and c_{i} the number of cycles in $\pi_{B}\left(\beta_{i s}\right)$. Then we can define the braid orbit genus $g_{s}(B)$ of B by

$$
g_{s}(B):=1-|B|+\frac{1}{2} \sum_{i=1}^{s-1}\left(|B|-c_{i}\right) .
$$

Additionally, we consider the following oddness condition.
$\left(\mathrm{O}_{s}\right)$ In the permutation representation on B, one of the cycle lengths occurs an odd number of times in some $\beta_{i s}$.

Let $\boldsymbol{Q}_{\mathbf{C}}$ be the number field generated by the values of irreducible characters of G at C_{1}, \ldots, C_{s} over the rationals. The class vector $\mathbf{C}=\left(C_{1}, \ldots, C_{s}\right)$ is said to be rational if $\boldsymbol{Q}_{\mathbf{C}}=\boldsymbol{Q}$, or equivalently if $\left(C_{1}^{m}, \ldots, C_{s}^{m}\right)=\mathbf{C}$ for any integer m prime to $|G|$. Then we can describe the rigid braid orbit theorem as follows.

Theorem 1.1 (Matzat [7]). Let G be a finite group with trivial center and $\mathbf{C}=$ $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ a class vector of G. Further assume that $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has a rigid H_{4} orbit B which has genus $g_{4}(B)=0$ and satisfies the oddness condition $\left(\mathrm{O}_{4}\right)$. Then there exists a regular extension over $\boldsymbol{Q}_{\mathbf{C}}(T)$ with Galois group G and with ramification structure C.

Although this theorem was stated for arbitrary s in [7], here we restrict it to $s=4$ for simplicity. See Matzat [7] or Malle and Matzat [6] for the proof of the theorem.

From (1.1) and (1.2) the action of $\beta_{i 4}$ on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ can be described explicitly as follows.

$$
\begin{aligned}
{\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right]^{\beta_{14}} } & =\left[\sigma_{1}^{\sigma_{2} \sigma_{3}}, \sigma_{2}, \sigma_{3}, \sigma_{4}^{\sigma_{2} \sigma_{3}}\right] \\
{\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right]^{\beta_{24}} } & =\left[\sigma_{1}, \sigma_{2}^{\sigma_{3} \sigma_{1}}, \sigma_{3}, \sigma_{4}^{\sigma_{1} \sigma_{3}}\right] \\
{\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right]^{\beta_{34}} } & =\left[\sigma_{1}, \sigma_{2}, \sigma_{3}^{\sigma_{1} \sigma_{2}}, \sigma_{4}^{\sigma_{1} \sigma_{2}}\right]
\end{aligned}
$$

If there exists an automorphism $\alpha \in \operatorname{Aut}\left(H_{s}\right)$ with $H_{\tau}=H_{\sigma}^{\alpha}$, we have

$$
|B(\boldsymbol{\tau})|=\left|H_{s}: H_{\boldsymbol{\tau}}\right|=\left|H_{s}: H_{\sigma}\right|=|B(\boldsymbol{\sigma})| .
$$

Consequently, in the case which $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has a unique H_{s}-orbit B of length l, the orbit B is rigid. In particular, if $l=2$ (resp. $l=1$), the rigid orbit B has genus $g_{4}(B)=0$ and satisfies the oddness condition $\left(\mathrm{O}_{4}\right)$. Hence we obtain the following corollary.

Corollary 1.2. Under the condition of the theorem, if $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has a unique H_{4}-orbit B of length 2 (resp. 1), there exists a regular extension over $\boldsymbol{Q}_{\mathbf{C}}(T)$ with Galois group G and with ramification structure \mathbf{C}.
2. The groups $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$. The p-Frobenius map $\boldsymbol{F}_{p^{2}} \ni s \longmapsto \bar{s}:=s^{p} \in \boldsymbol{F}_{p^{2}}$ induces the following automorphism of the projective linear group $H:=\operatorname{PSL}_{2}\left(p^{2}\right)$.

$$
\varphi: H \ni \rho=\left(\begin{array}{ll}
s & t \\
u & v
\end{array}\right) \longmapsto\left(\begin{array}{cc}
\bar{s} & \bar{t} \\
\bar{u} & \bar{v}
\end{array}\right)=: \bar{\rho} \in H
$$

We define the projective semilinear group $G:=\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ by the semi-direct product of H with this automorphism φ. Hereafter p denotes a fixed prime number with $p \equiv \pm 3(\bmod 8)$. In this case, 2 is a nonsquare of \boldsymbol{F}_{p}, so we have $\boldsymbol{F}_{p^{2}}=\boldsymbol{F}_{p}(\sqrt{2})$, where $\sqrt{2}$ is a root of $x^{2}-2 \in \boldsymbol{F}_{p}[x]$. We can easily check that $\sqrt{2}=-\sqrt{2}$ and $r:=-2+\sqrt{2}$ is a nonsquare of $\boldsymbol{F}_{p^{2}}$. The conjugacy classes $2 C, 2 D, p A, p B$ in G are defined as the classes of the following
elements, respectively.

$$
\varphi, \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \varphi, \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right) .
$$

We take the rational class vector $\mathbf{C}=(2 C, 2 D, p A, p B)$.
REMARK 2.1. Here we follow from the notation of $\operatorname{PSL}_{2}(25)$ in ATLAS [1]. In the character table of $\mathrm{PSL}_{2}(9) \cong A_{6}$, however, the notation in ATLAS is somewhat different. Indeed, our classes $2 C$ and $2 D$ correspond to $2 B$ and $2 C$ in the table of $\mathrm{PSL}_{2}(9)$.

Lemma 2.1.
(i) $2 C=\left\{\left.\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & \bar{c}_{1}\end{array}\right) \varphi \right\rvert\, c_{2}, c_{3} \in \boldsymbol{F}_{p} \sqrt{2}, c_{1} \bar{c}_{1}-c_{2} c_{3}=1\right\}$,
where $\boldsymbol{F}_{p} \sqrt{2}:=\left\{n \sqrt{2} \mid n \in \boldsymbol{F}_{p}\right\}=\left\{s \in \boldsymbol{F}_{p^{2}} \mid s+\bar{s}=0\right\}$.
(ii) $2 D=\left\{\left.\left(\begin{array}{cc}d_{1} & d_{2} \\ d_{3} & -\bar{d}_{1}\end{array}\right) \varphi \right\rvert\, d_{2}, d_{3} \in \boldsymbol{F}_{p}, d_{1} \bar{d}_{1}+d_{2} d_{3}=-1\right\}$.
(iii) $p A=\left\{\left.\left(\begin{array}{cc}1+a_{1} a_{2} & a_{1}^{2} \\ -a_{2}^{2} & 1-a_{1} a_{2}\end{array}\right) \right\rvert\,\left(a_{1}, a_{2}\right) \neq(0,0)\right\}$.
(iv) $p B=\left\{\left.\left(\begin{array}{cc}1+b_{1} b_{2} r & b_{1}^{2} r \\ -b_{2}^{2} r & 1-b_{1} b_{2} r\end{array}\right) \right\rvert\,\left(b_{1}, b_{2}\right) \neq(0,0)\right\}$.

Proof. (i) Conjugating φ by $\rho=\left(\begin{array}{ll}s & t \\ u & v\end{array}\right) \in H$ and $\rho \varphi$, we get

$$
\begin{gathered}
\rho^{-1} \varphi \rho=\rho^{-1} \bar{\rho} \varphi=\left(\begin{array}{ll}
\bar{s} v-t \bar{u} & \bar{t} v-t \bar{v} \\
\bar{s} u-s \bar{u} & s \bar{v}-\bar{t} u
\end{array}\right) \varphi, \\
(\rho \varphi)^{-1} \varphi(\rho \varphi)=\varphi^{-1} \rho^{-1} \varphi \rho \varphi=\bar{\rho}^{-1} \rho \varphi .
\end{gathered}
$$

Hence $2 C \subseteq\left\{\left.\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & \bar{c}_{1}\end{array}\right) \varphi \right\rvert\, c_{2}, c_{3} \in \boldsymbol{F}_{p} \sqrt{2}, c_{1} \bar{c}_{1}-c_{2} c_{3}=1\right\}$. Since the centralizer of φ is

$$
C_{G}(\varphi)=\left\{\left.\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right) \right\rvert\, s, t, u, v \in \boldsymbol{F}_{p} \text { or } s, t, u, v \in \boldsymbol{F}_{p} \sqrt{2}\right\} \cdot\langle\varphi\rangle \cong \mathrm{PGL}_{2}(p) \cdot\langle\varphi\rangle
$$

the cardinal of $2 C$ is

$$
|2 C|=\frac{\left|\mathrm{P}^{2} \mathrm{~L}_{2}\left(p^{2}\right)\right|}{2\left|\mathrm{PGL}_{2}(p)\right|}=\frac{p^{2}\left(p^{2}-1\right)\left(p^{2}+1\right)}{2 p(p-1)(p+1)}=\frac{p\left(p^{2}+1\right)}{2}
$$

Using $\left|\left\{c_{1} \in \boldsymbol{F}_{p^{2}} \mid c_{1} \bar{c}_{1}=1\right\}\right|=p+1$, we can count the elements of the right-hand side of (i), namely,

$$
\left|\left\{\left.\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & \bar{c}_{1}
\end{array}\right) \varphi \right\rvert\, c_{2}, c_{3} \in \boldsymbol{F}_{p} \sqrt{2}, c_{1} \bar{c}_{1}-c_{2} c_{3}=1\right\}\right|=\frac{p\left(p^{2}+1\right)}{2}=|2 C|
$$

Hence the equality (i) holds. Other cases (ii), (iii), (iv) are similar.

Let U be the union of $\{0\}$ and a representative system of $\boldsymbol{F}_{p}^{\times} /\{ \pm 1\}$ with $1 \in U$ and V the following subset of U.

$$
V:=\left\{u \in U \mid-2+u \sqrt{2} \notin \boldsymbol{F}_{p^{2}}^{\times 2}\right\}=\left\{u \in U \mid 2-u^{2} \in \boldsymbol{F}_{p}^{\times 2}\right\} .
$$

LEMMA 2.2. Each $[\boldsymbol{\sigma}] \in \Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ is represented by $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ with

$$
\begin{array}{rlrl}
\sigma_{1} & =\left(\begin{array}{cc}
s+u \sqrt{2} & -u \sqrt{2} \\
(2 u-s v) \sqrt{2} & s-u \sqrt{2}
\end{array}\right) \varphi, & \sigma_{2}=\left(\begin{array}{cc}
t+u \sqrt{2} & -t \\
t-s & -t+u \sqrt{2}
\end{array}\right) \varphi \tag{2.1}\\
\sigma_{3} & =\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), & \sigma_{4} & =\left(\begin{array}{cc}
1 & 0 \\
-2+v \sqrt{2} & 1
\end{array}\right)
\end{array}
$$

Here s, $t \in \boldsymbol{F}_{p}, u \in U, v \in V$ are unique for each $[\sigma]$ and satisfy following relations.

$$
s+t=2 u v, \quad s t=2 u^{2}-1
$$

Proof. By conjugation we put

$$
\begin{gathered}
\sigma_{1}=\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & \bar{c}_{1}
\end{array}\right) \varphi, \quad \sigma_{2}=\left(\begin{array}{cc}
d_{1} & d_{2} \\
d_{3} & -\bar{d}_{1}
\end{array}\right) \varphi, \quad \sigma_{3}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \\
\sigma_{4}=\left(\begin{array}{cc}
1+b_{1} b_{2} r & b_{1}^{2} r \\
-b_{2}^{2} r & 1-b_{1} b_{2} r
\end{array}\right)
\end{gathered}
$$

as in Lemma 2.1. Here we may assume that $b_{2} \neq 0$. Indeed, if $b_{2}=0$, we have

$$
\left(\begin{array}{cc}
d_{1} & d_{2} \\
d_{3} & -\bar{d}_{1}
\end{array}\right) \varphi=\left(\begin{array}{cc}
c_{1}+c_{3}\left(1+b_{1}^{2} r\right) & c_{2}+\bar{c}_{1}\left(1+b_{1}^{2} r\right) \\
c_{3} & \bar{c}_{1}
\end{array}\right) \varphi
$$

from the equation $\sigma_{2}=\sigma_{3} \sigma_{4} \sigma_{1}$. This means that $c_{3} \in \boldsymbol{F}_{p} \cap \boldsymbol{F}_{p} \sqrt{2}=\{0\}$, so the equation cannot hold. Hence we can take $\tau=\left(\begin{array}{cc}1 & -b_{1} b_{2}^{-1} \\ 0 & 1\end{array}\right)$. Then

$$
\sigma_{3}^{\tau}=\sigma_{3}, \quad \sigma_{4}^{\tau}=\left(\begin{array}{cc}
1 & 0 \\
b_{1} b_{2} r & 1
\end{array}\right) .
$$

Now we can rewrite

$$
\sigma_{1}=\left(\begin{array}{cc}
c_{1} & c_{2} \\
c_{3} & \bar{c}_{1}
\end{array}\right) \varphi, \quad \sigma_{2}=\left(\begin{array}{cc}
d_{1} & d_{2} \\
d_{3} & -\bar{d}_{1}
\end{array}\right) \varphi, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), \quad \sigma_{4}=\left(\begin{array}{cc}
1 & 0 \\
b & 1
\end{array}\right)
$$

Since $\sigma_{2}=\sigma_{3} \sigma_{4} \sigma_{1}$, we get

$$
\left(\begin{array}{cc}
d_{1} & d_{2} \\
d_{3} & -\bar{d}_{1}
\end{array}\right) \varphi=\left(\begin{array}{cc}
(1+b) c_{1}+c_{3} & (1+b) c_{2}+\bar{c}_{1} \\
b c_{1}+c_{3} & b c_{2}+\bar{c}_{1}
\end{array}\right) \varphi
$$

Here we put $d_{1}=t+u \sqrt{2}, d_{3}=t-s$ for $s, t, u \in \boldsymbol{F}_{p}$ and solve this equation:

$$
\begin{array}{ll}
c_{1}=s+u \sqrt{2}, & c_{2}=-u \sqrt{2} \\
d_{1}=t+u \sqrt{2}, & d_{2}=-t, \quad d_{3}=t-s
\end{array}
$$

Then $b=-2+v \sqrt{2}$ with $v \in V$ and $c_{3}=(2 u-s v) \sqrt{2}$, where s, t, u, v satisfy the above relations. To exclude multiplicity of ± 1 we may assume that $u \in U$. Then s, t, u, v are unique for each $[\boldsymbol{\sigma}]$. Indeed, when

$$
\begin{aligned}
\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)^{\tau} & =\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \sigma_{4}^{\prime}\right) \text { for } \\
\sigma_{3}=\sigma_{3}^{\prime} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \sigma_{4}=\left(\begin{array}{cc}
1 & 0 \\
-2+v \sqrt{2} & 1
\end{array}\right), \quad \sigma_{4}^{\prime}=\left(\begin{array}{cc}
1 & 0 \\
-2+v^{\prime} \sqrt{2} & 1
\end{array}\right)
\end{aligned}
$$

we can see that $\tau=1$ by the definition of V, and hence $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)=\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}, \sigma_{4}^{\prime}\right)$.

Conversely, the elements in (2.1) actually generate the projective semilinear group G for such $s, t \in \boldsymbol{F}_{p}, u \in U, v \in V$. This fact follows from Dickson's classical theorem:

THEOREM 2.1 (Dickson [3]). For any prime number p, if $(p, n) \neq(3,2)$, then

$$
\operatorname{PSL}_{2}\left(p^{n}\right)=\left\langle\left(\begin{array}{ll}
1 & 1 \tag{2.2}\\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right)\right\rangle
$$

Here r is any generator of $\boldsymbol{F}_{p^{n}} / \boldsymbol{F}_{p}$.
Dickson's theorem makes an exception of $(p, n)=(3,2)$, but even in such a case, if r is a nonsquare of $\boldsymbol{F}_{p^{n}}$, then (2.2) holds. A proof of the theorem is found, for example, in [5, Th. 8.4]. By elementary number theory there exist $(p-\varepsilon) / 4$ choices for $v \in V$ and $(p-\varepsilon) / 2$ choices for $s, t \in \boldsymbol{F}_{p}, u \in U$, where $\varepsilon=(-1)^{(p-1) / 2}$. So the class number of \mathbf{C} is

$$
l(\mathbf{C})=\frac{(p-\varepsilon)^{2}}{8}
$$

3. The orbits of length 2. Let Q^{+}(resp. Q^{-}) denote the subgroup of G which is generated by φ and all upper (resp. lower) triangle matrices. Further, let $P^{ \pm}$be the subgroup of $Q^{ \pm}$which is generated by φ and all triangles whose diagonal elements are 1 . Notice that P^{+}is the centralizer of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ in G.

Lemma 3.1. In the action of H_{4}, β_{24} and β_{34} have no fixed point on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$.
Proof. A G-orbit $[\boldsymbol{\sigma}] \in \Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ is represented by $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ in the form as in Lemma 2.2. Suppose $[\boldsymbol{\sigma}]^{\beta_{24}}=[\boldsymbol{\sigma}]$. Then there exists $\tau_{2} \in G$ such that $\left(\sigma_{1}, \sigma_{2}^{\sigma_{3} \sigma_{1}}, \sigma_{3}, \sigma_{4}^{\sigma_{1} \sigma_{3}}\right)=\boldsymbol{\sigma}^{\tau_{2}}$. Since τ_{2} and σ_{3} are commutative, τ_{2} belongs to the centralizer P^{+}. If $\tau_{2} \in H$, then the equality $\sigma_{1}^{\tau_{2}}=\sigma_{1}$ means $\tau_{2} \in Q^{+}$. Further, if $\tau_{2} \notin H$, the equality $\sigma_{4}^{\sigma_{1} \sigma_{3} \tau_{2}^{-1}}=\sigma_{4}$ leads $\sigma_{1} \sigma_{3} \tau_{2}^{-1} \in P^{-}$and so

$$
\left\{\begin{array} { l }
{ \sigma _ { 1 } \in P ^ { + } } \\
{ \sigma _ { 1 } \sigma _ { 3 } \tau _ { 2 } ^ { - 1 } = 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\sigma_{1} \in P^{-} \\
\tau_{2}=\sigma_{3} \varphi
\end{array}\right.\right.
$$

by a brief calculation. In the latter case we have $\sigma_{1}=\varphi$. Therefore σ_{1} belongs to the upper triangles Q^{+}in either case. Thus

$$
2 u=s v, \quad s^{2}-2 u^{2}=1
$$

which means $s^{2}\left(2-v^{2}\right)=2$. This contradicts that $2-v^{2}$ is a square of \boldsymbol{F}_{p}.
Next we suppose that $[\sigma]^{\beta_{34}}=[\sigma]$. Then there exists $\tau_{3} \in G$ such that $\left(\sigma_{1}^{\sigma_{3} \sigma_{4}}, \sigma_{2}^{\sigma_{3} \sigma_{4}}\right.$, $\left.\sigma_{3}, \sigma_{4}\right)=\boldsymbol{\sigma}^{\tau_{3}}$. Since τ_{3} commutes with σ_{3} and σ_{4}, Dickson's theorem shows that τ_{3} commutes with any element of H, namely, $\tau_{3}=1$. Hence $\sigma_{1}^{\sigma_{3} \sigma_{4}}=\sigma_{1}$, and so σ_{1} commutes with σ_{2}. Thus $\sigma_{3} \sigma_{4}=\sigma_{2}^{-1} \sigma_{1}^{-1}$ has order 2, but we can calculate that

$$
\left(\sigma_{3} \sigma_{4}\right)^{2}=\left(\begin{array}{lc}
-1+v \sqrt{2} & 1 \\
-2+v \sqrt{2} & 1
\end{array}\right)^{2}=\left(\begin{array}{cc}
* & v \sqrt{2} \\
* & -1+v \sqrt{2}
\end{array}\right)
$$

which is a contradiction.
Proposition 3.1. Let p be a prime number with $p \equiv \pm 3(\bmod 8)$ and $G=$ $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ the projective semilinear group over $\boldsymbol{F}_{p^{2}}$. Then there exists a unique H_{4}-orbit of length 2 in $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ for the class vector $\mathbf{C}=(2 C, 2 D, p A, p B)$ of G.

Proof. From Lemma 3.1 and the identity $\beta_{14} \beta_{24} \beta_{34}=1$, if $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has an H_{4} orbit B of length 2, then β_{14} fixes each element of B. So we suppose that $[\sigma]^{\beta_{14}}=[\sigma]$, where σ is of the form as in Lemma 2.2. Then there exists $\tau_{1} \in G$ such that $\left(\sigma_{1}^{\sigma_{2} \sigma_{3}}, \sigma_{2}, \sigma_{3}, \sigma_{4}^{\sigma_{2} \sigma_{3}}\right)=$ $\boldsymbol{\sigma}^{\tau_{1}}$. Since τ_{1} and σ_{3} are commutative, τ_{1} belongs to the centralizer P^{+}.

If $\tau_{1} \in H$ and so $\sigma_{2}^{\tau_{1}}=\sigma_{2}$, then we have $\sigma_{2} \in Q^{+}$and so $s=t=u v$. Thus

$$
2 u-s v=u^{-1}\left(2 u^{2}-s u v\right)=u^{-1}\left(2 u^{2}-s t\right)=u^{-1}
$$

We put
$\boldsymbol{\tau}_{v}:=\left(u\left(\begin{array}{cc}v+\sqrt{2} & -\sqrt{2} \\ u^{-2} \sqrt{2} & v-\sqrt{2}\end{array}\right) \varphi, \quad u\left(\begin{array}{cc}v+\sqrt{2} & -v \\ 0 & -v+\sqrt{2}\end{array}\right) \varphi, \quad\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{cc}1 & 0 \\ -2+v \sqrt{2} & 1\end{array}\right)\right)$, which is a fixed point of β_{14}.

On the other hand, if $\tau_{1} \notin H$ and so $\sigma_{4}^{\sigma_{2} \sigma_{3} \tau_{1}^{-1}}=\sigma_{4}$, then we get $\sigma_{2} \sigma_{3} \tau_{1}^{-1} \in P^{-}$. Since $\sigma_{3} \tau_{1}^{-1} \in P^{+}$, we can see that σ_{2} is of the form $\left(\begin{array}{ll}1 & * \\ * & *\end{array}\right) \varphi$, and hence $t=1, u=0$. We put

$$
\sigma_{v}:=\left(\left(\begin{array}{cc}
1 & 0 \\
-v \sqrt{2} & 1
\end{array}\right) \varphi, \quad\left(\begin{array}{cc}
1 & -1 \\
2 & -1
\end{array}\right) \varphi, \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
-2+v \sqrt{2} & 1
\end{array}\right)\right)
$$

which is another fixed point of β_{14}.
Next we determine all pairs of these fixed points which are permuted by β_{34}. Since β_{34} maps $\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right]$ to $\left[\sigma_{1}^{\sigma_{3} \sigma_{4}}, \sigma_{2}^{\sigma_{3} \sigma_{4}}, \sigma_{3}, \sigma_{4}\right]$, the uniqueness of representation (2.1) shows that

$$
\begin{aligned}
& {\left[\boldsymbol{\sigma}_{v}\right]^{\beta_{34}} \neq\left[\boldsymbol{\sigma}_{v^{\prime}}\right], \quad\left[\boldsymbol{\tau}_{v}\right]^{\beta_{34}} \neq\left[\boldsymbol{\tau}_{v^{\prime}}\right]} \\
& {\left[\boldsymbol{\sigma}_{v}\right]^{\beta_{34}}=\left[\boldsymbol{\tau}_{v^{\prime}}\right] \Longrightarrow v=v^{\prime}}
\end{aligned}
$$

for any $v, v^{\prime} \in V$. For $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right):=\sigma_{v}$ we calculate that

$$
\sigma_{2}^{\sigma_{3} \sigma_{4}}=\left(\begin{array}{cc}
1+v \sqrt{2} & -1 \\
2-2 v^{2} & -1+v \sqrt{2}
\end{array}\right)
$$

so if $\left[\sigma_{v}\right]^{\beta_{34}}=\left[\boldsymbol{\tau}_{v}\right]$, then $v=1$. Hence we obtain a unique H_{4}-orbit B of length 2 , namely,

$$
\begin{aligned}
B: & \left\{\left[\sigma_{1}\right],\left[\boldsymbol{\tau}_{1}\right]\right\} \\
= & \left\{\left[\left(\begin{array}{cc}
1 & 0 \\
-\sqrt{2} & 1
\end{array}\right) \varphi, \quad\left(\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right) \varphi, \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
-2+\sqrt{2} & 1
\end{array}\right)\right]\right. \\
& {\left.\left[\left(\begin{array}{cc}
1+\sqrt{2} & -\sqrt{2} \\
\sqrt{2} & 1-\sqrt{2}
\end{array}\right) \varphi,\left(\begin{array}{cc}
1+\sqrt{2} & -1 \\
0 & -1+\sqrt{2}
\end{array}\right) \varphi,\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
-2+\sqrt{2} & 1
\end{array}\right)\right]\right\} . }
\end{aligned}
$$

Proof of Theorem 0.1. By the rigid braid orbit theorem and its corollary, there exists a regular extension $N / \boldsymbol{Q}(T)$ with Galois group $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ and with ramification structure $\mathbf{C}=(2 C, 2 D, p A, p B)$. The intermediate field L corresponding to the normal subgroup $\operatorname{PSL}_{2}\left(p^{2}\right)$ of $\mathrm{P} \Sigma \mathrm{L}_{2}\left(p^{2}\right)$ is a quadratic extension over $\boldsymbol{Q}(T)$. Here two ramification points corresponding to $p A$ and $p B$ are unramified at $L / \boldsymbol{Q}(T)$, since these classes are included in $\operatorname{PSL}_{2}\left(p^{2}\right)$. Therefore the quadratic extension L is a rational function field over \boldsymbol{Q}, say $L=\boldsymbol{Q}\left(T^{\prime}\right)$. Thus we obtain a regular extension $N / \boldsymbol{Q}\left(T^{\prime}\right)$ with Galois group $\operatorname{PSL}_{2}\left(p^{2}\right)$.
4. Some almost simple groups. Matzat improves the rigid braid orbit theorem for the class vectors which have some symmetries. This improvement is called the twisted braid orbit theorem. Using this theorem, we treat some finite simple groups listed in ATLAS.

Let $\mathbf{C}=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ be a class vector of G with $C_{1}=C_{2}$. Then one of the generators $\beta_{1} \in \tilde{H}_{4}$ acts on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$. Now we put $\beta_{1}^{\prime}:=\beta_{14}, \beta_{2}^{\prime}:=\beta_{1}, \beta_{3}^{\prime}:=\beta_{14} \beta_{1}$ and $H_{4}^{\prime}:=\left\langle H_{4}, \beta_{1}\right\rangle$. Let $B=B(\boldsymbol{\sigma})$ be an H_{4}^{\prime}-orbit in $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ and c_{i}^{\prime} be the number of cycles in the permutation representation of β_{i}^{\prime} on B. Instead of the braid orbit genus $g_{4}(B)$, we use the twisted braid orbit genus:

$$
g_{4}^{\prime}(B):=1-|B|+\frac{1}{2} \sum_{i=1}^{3}\left(|B|-c_{i}^{\prime}\right) .
$$

Additionally, the oddness condition $\left(\mathrm{O}_{s}\right)$ is replaced by the next condition.
$\left(\mathrm{O}^{\prime}\right)$ In the permutation representation on B, one of the cycle lengths, summed over all β_{i}^{\prime} of the same permutation type, occurs an odd number of times in some β_{i}^{\prime}.

Then we can state the twisted braid orbit theorem.
Theorem 4.1 (Matzat [7]). Let G be a finite group with trivial center and $\mathbf{C}=$ $\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ a class vector of G with $C_{1}=C_{2}$. Further assume that $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has a rigid H_{4}^{\prime}-orbit B which has genus $g_{4}^{\prime}(B)=0$ and satisfies the oddness condition $\left(\mathrm{O}^{\prime}\right)$. Then there exists a regular extension over $\mathbf{Q}_{\mathbf{C}}(T)$ with Galois group G and with ramification structure \mathbf{C}.

We define the number $n(\mathbf{C}):=|\bar{\Sigma}(\mathbf{C})| /|\operatorname{Inn}(G)|$, where

$$
\bar{\Sigma}(\mathbf{C}):=\left\{\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{s}\right) \mid \sigma_{i} \in C_{i}, \sigma_{1} \cdots \sigma_{s}=1\right\}
$$

This number $n(\mathbf{C})$ can be calculated only by the character table of G (cf. [12, Ch. 7.3]). Further we define the number $n_{H}(\mathbf{C}):=\left|\bar{\Sigma}(\mathbf{C}) \cap H^{s}\right| /|\operatorname{Inn}(G)|$ for any subgroup H of G. To determine the class number of \mathbf{C}, we use such numbers $n_{H}(\mathbf{C})$ of the maximal subgroups H.

Example 4.1. The Tits simple group ${ }^{2} F_{4}(2)^{\prime}$.
We take the rational class vector $\mathbf{C}=(2 A, 2 A, 2 B, 8 C)$ of the Tits group $G:={ }^{2} F_{4}(2)^{\prime}$ in ATLAS notation. The centralizers of these classes $2 A, 2 B, 8 C$ have order 10240, 1536, 16, respectively. The character table of ${ }^{2} F_{4}(2)^{\prime}$ shows that

$$
n(\mathbf{C})=\frac{17971200^{2}}{10240^{2} \cdot 1536 \cdot 16}\left(1-\frac{150}{27^{2}}-\frac{275}{325^{2}}+\frac{14397}{351^{2}}-\frac{3675}{675^{2}}\right)=\frac{227}{2} .
$$

Table 4.1. Irreducible characters of ${ }^{2} F_{4}(2)^{\prime}$.

	17971200 $1 A$	10240 $2 A$	1536 $2 B$	16 $8 C$
χ_{1}	1	1	1	1
χ_{4}	27	-5	3	-1
χ_{5}	27	-5	3	-1
χ_{8}	325	5	-11	-1
χ_{9}	351	31	15	1

	$1 A$	$2 A$	$2 B$	$8 C$
χ_{10}	351	-1	-9	1
χ_{11}	351	-1	-9	1
χ_{15}	675	35	3	-1
χ_{18}	1300	20	-12	2
χ_{19}	1300	20	-12	-2

The maximal subgroup of ${ }^{2} F_{4}(2)^{\prime}$ which intersects with these classes $2 A, 2 B, 8 C$ is conjugate to one of the groups $G_{1}, G_{2}, G_{3}, G_{3}^{\prime}$ of order $10240,6144,1440,1440$. The computer algebra system GAP provides the character tables of the Tits group and its maximal subgroups. Actually, we compute the number $n_{G_{i}}(\mathbf{C})$ as follows.

$$
n_{G_{1}}(\mathbf{C})=\frac{35}{2}, n_{G_{2}}(\mathbf{C})=\frac{11}{2}, n_{G_{3}}(\mathbf{C})=n_{G_{3}^{\prime}}(\mathbf{C})=0 .
$$

Here any 4-system in $\mathbf{C} \cap\left(G_{2}\right)^{4}$ generates a subgroup of order 32, 64, or 128, which is also conjugate to a subgroup of G_{1}. Hence the class number is

$$
l(\mathbf{C})=\frac{227}{2}-\frac{35}{2}=96 .
$$

Further we compute the permutation representation of H_{4}^{\prime} on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$. Then we can verify that $B=\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ is an H_{4}^{\prime}-orbit of length 96 and β_{i}^{\prime} has the following permutation type.

	permutation type
β_{1}^{\prime}	$1^{2} \cdot 2^{2} \cdot 4^{10} \cdot 5^{10}$
β_{2}^{\prime}	$1^{4} \cdot 2 \cdot 4^{15} \cdot 5^{6}$
β_{3}^{\prime}	2^{48}

Thus the orbit B is rigid and has genus

$$
g_{4}^{\prime}(B)=1-96+\frac{1}{2}(72+70+48)=0 .
$$

By the twisted braid orbit theorem the Tits group ${ }^{2} F_{4}(2)^{\prime}$ occurs regularly as Galois group over \boldsymbol{Q}.

EXAMPLE 4.2. The projective semilinear group $\mathrm{P}_{\mathrm{L}} \mathrm{L}_{3}(9)$.
We take the rational class vector $\mathbf{C}=(2 A, 2 C, 3 A, 4 E)$ of the group $G:=P \Sigma \mathrm{~L}_{3}(9)$ in ATLAS notation. The sizes of their centralizers are 11520, 11232, 11664, 96 and two of the classes $2 A$ and $3 A$ are included in $\mathrm{PSL}_{3}(9)$. Here we extract the character table of $\mathrm{PSL}_{3}(9)$ in ATLAS.

TABLE 4.2. Irreducible characters of PSL_{3} (9).

	84913920 $1 A$	11520 $2 A$	11664 $3 A$	11232 $2 C$	96 $4 E$	
χ_{1}	1	1	1	$:$	1	1
χ_{2}	90	10	9	$:$	12	4
χ_{3}	91	11	10	$:$	13	-3
χ_{77}	819	19	9	$:$	39	-1
χ_{84}	910	30	19	$:$	26	2
χ_{89}	910	-10	19	$:$	26	-2
χ_{90}	910	-10	19	$:$	26	-2

This table, however, contains the information of irreducible characters of $\mathrm{P} \Sigma \mathrm{L}_{3}(9)$. Each character in this table splits into two characters of $\mathrm{P} \Sigma \mathrm{L}_{3}(9)$. For example, the character χ_{1} splits into $\tilde{\chi}_{1}$ and $\tilde{\chi}_{1}^{\prime}$, where $\tilde{\chi}_{1}$ is the trivial character of $P \Sigma L_{3}(9)$ and $\tilde{\chi}_{1}^{\prime}$ is defined by $\tilde{\chi}_{1}^{\prime}(g)=1$ for $g \in \operatorname{PSL}_{3}(9)$ and $\tilde{\chi}_{1}^{\prime}(g)=-1$ otherwise. Hence

$$
n(\mathbf{C})=\frac{84913920^{2}}{11520 \cdot 11232 \cdot 11664 \cdot 96} \cdot 2 \cdot\left(1+\frac{4320}{90^{2}}-\frac{4290}{91^{2}}-\frac{6669}{819^{2}}+\frac{49400}{910^{2}}\right)=106 .
$$

If a maximal subgroup H of $\mathrm{P}^{\Sigma} \mathrm{L}_{3}(9)$ intersects with all classes of \mathbf{C}, then H is conjugate to one of the groups $G_{1}, G_{1}^{\prime}, G_{2}, G_{3}$ of order 933120, 933120, 12096, 11232. We again use GAP to compute the number $n_{H}(\mathbf{C})$ for these maximal subgroups H :

$$
n_{G_{1}}(\mathbf{C})=n_{G_{1}^{\prime}}(\mathbf{C})=32, \quad n_{G_{2}}(\mathbf{C})=3, \quad n_{G_{3}}(\mathbf{C})=19
$$

Here each 4-system in $\mathbf{C} \cap\left(G_{3}\right)^{4}$ generates a subgroup of order 864, 96, or 72, which is also conjugate to a subgroup of G_{1} or G_{1}^{\prime}. There exists a 4 -system σ of $\mathbf{C} \cap\left(G_{1}\right)^{4}$ such that $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ generate a subgroup which is conjugate to some subgroup of G_{1}^{\prime}. The number of such 4 -systems is exactly $3|\operatorname{Inn}(G)|$, where these 4 -systems generate subgroups of order 96. Thus

$$
l(\mathbf{C})=106-(32+32-3)-3=42
$$

The group H_{4} acts on $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ intransitively. Indeed, $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$ has two H_{4}-orbits of length 18 and length 24 . We take the shorter orbit B of length 18 . In the transitive action of H_{4} on B, the permutation types of $\beta_{1}, \beta_{2}, \beta_{3}$ are given in the next table.

	permutation type
β_{1}	$1^{6} \cdot 2^{2} \cdot 4^{2}$
β_{2}	$4^{2} \cdot 5^{2}$
β_{3}	$2 \cdot 3^{4} \cdot 4$

The orbit B is rigid, since it is a unique H_{4}-orbit of length 18 in $\Sigma(\mathbf{C}) / \operatorname{Inn}(G)$, and has genus

$$
g_{4}(B)=1-18+\frac{1}{2}(8+14+12)=0
$$

Here we choose the class vector \mathbf{C} such that just two classes $2 A$ and $3 A$ are included in $\mathrm{PSL}_{3}(9)$, so we have a regular extension over $\boldsymbol{Q}(T)$ with Galois group $\mathrm{PSL}_{3}(9)$, similarly as the proof of Theorem 0.1.

We continue similar computation for several simple groups G of Lie type and their extensions $G .2$ by outer automorphisms of order 2. Any group in the tables below has a rigid braid orbit B with braid orbit genus $g_{4}(B)=0$ (Table 4.3) or twisted braid orbit genus $g_{4}^{\prime}(B)=0$ (Table 4.4). In the case which $\Sigma(\mathbf{C}) / \operatorname{Inn}(G .2)$ decomposes into two or three orbits, we underline the length of the orbit which we choose (ex. $24+\underline{18}$). For the extension groups $G .2$ we take the rational class vectors \mathbf{C} such that just two classes of \mathbf{C} are included in G. Hence the subgroups G of $G .2$ also occur regularly as Galois groups over \boldsymbol{Q}. In conclusion we obtain the Theorem 0.2 stated in the first place.

TABLE 4.3. Rigid braid orbits of some (almost) simple groups I.

	class vector \mathbf{C}	$l(\mathbf{C})$	types of $\beta_{14}, \beta_{24}, \beta_{34}$		
$S_{4}(4)$	$(2 A, 2 B, 3 A, 5 E)$	12	$1^{2} \cdot 3^{2} \cdot 4$,	$2 \cdot 5^{2}$,	2^{6}
$L_{3}(9) .2$	$(2 A, 2 C, 3 A, 4 E)$	$24+\underline{8}$	$1^{6} \cdot 2^{2} \cdot 4^{2}$,	$4^{2} \cdot 5^{2}$,	$2 \cdot 3^{4} \cdot 4$
$S_{6}(3)$	$(2 A, 2 A, 4 A, 12 C)$	2	2,	2,	1^{2}
$U_{6}(2)$	$(2 A, 2 A, 4 C, 12 F)$	6	$1^{2} \cdot 4$,	$1^{2} \cdot 4$,	3^{2}

TABLE 4.4. Rigid braid orbits of some (almost) simple groups II.

	class vector \mathbf{C}	$l(\mathbf{C})$	permutation types of $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}$		
$U_{4}(3) \cdot 2$	$(2 B, 2 B, 3 B, 5 A)$	$\underline{10}+5+5$	$2^{2} \cdot 3^{2}$,	$3^{2} \cdot 4$,	2^{5}
$L_{5}(2) \cdot 2$	$(2 A, 2 A, 4 D, 6 C)$	56	$1 \cdot 2^{2} \cdot 3^{2} \cdot 4^{2} \cdot 5^{3} \cdot 6 \cdot 8^{2}$,	$2^{3} \cdot 3^{6} \cdot 4^{8}$,	2^{28}
$U_{5}(2) \cdot 2$	$(2 A, 2 A, 4 D, 10 A)$	40	$3 \cdot 4 \cdot 5^{3} \cdot 6^{3}$,	$2^{2} \cdot 3^{12}$,	2^{20}
${ }^{2} F_{4}(2)^{\prime}$	$(2 A, 2 A, 2 B, 8 C)$	96	$1^{2} \cdot 2^{2} \cdot 4^{10} \cdot 5^{10}$,	$1^{4} \cdot 2 \cdot 4^{15} \cdot 5^{6}$,	2^{48}
${ }^{3} D_{4}(2)$	$(2 A, 2 A, 3 B, 12 A)$	60	$3^{2} \cdot 6^{9}$,	$1^{3} \cdot 3^{15} \cdot 4^{3}$,	2^{30}
$G_{2}(4)$	$(2 A, 2 A, 3 A, 7 A)$	14	$1^{2} \cdot 3^{4}$,	$4 \cdot 5^{2}$,	2^{7}

References

[1] J. H. Conway et al., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[2] L. Dieulefait and N. Vila, Projective linear groups as Galois groups over \boldsymbol{Q} via Modular Representations, J. Symbolic Computation 30 (2000), 799-810.
[3] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leibzig, 1901.
[4] W. Feit, Rigidity of $\operatorname{Aut}\left(\operatorname{PSL}_{2}\left(p^{2}\right)\right), p \equiv \pm 2(\bmod 5), p \neq 2$, In: Proceedings of the Rutgers group theory year, 1983-1984 (New Brunswick, N. J., 1983-1984), 351-356, Cambridge Univ. Press, Cambridge, 1984.
[5] D. Gorenstein, Finite Groups, Harper and Row, New York-Evanston-London, 1968.
[6] G. Malle and B. H. Matzat, Inverse Galois Theory, Springer-Verlag, Berlin, 1999.
[7] B. H. MatZat, Zöpfe und Galoissche Gruppen, J. Reine Angew. Math. 420 (1991), 99-159.
[8] J.-F. Mestre, Courbes hyperelliptiques à multiplications réelles, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 721-724.
[9] B. PrZywara, Die Operation der Hurwitzschen Zopfgruppe auf den Erzeugendensystemklassen endlicher Gruppen, Diplomarbeit, Karlsruhe, 1988.
[10] A. Reverter and N. Vila, Some projective linear groups over finite fields as Galois groups over \boldsymbol{Q}, Contemp. Math. 186 (1995), 51-63.
[11] K. A. Ribet, On l-adic representations attatched to modular forms, Invent. Math. 28 (1975), 245-275.
[12] J.-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1992.
[13] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 1999.
Mathematical Institute
TOHOKU University
Sendai Miyagi, 980-8578
Japan

[^0]: 2000 Mathematics Subject Classification. Primary 12F12; Secondary 20D06, 20 F36.
 Key words and phrases. Inverse Galois problem, finite simple groups, braid actions.

