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ABSTRACT 

Rigid origami is a restrictive form of origami that permits continuous motion between folded and unfolded 

states along the pre-determined creases without stretching or bending of the facets. It has great potential 

in engineering applications, such as foldable structures that consist of rigid materials. The rigid foldability 

is an important characteristic of an origami pattern, which is determined by both the geometrical 

parameters and the mountain-valley crease (M-V) assignments. In this paper, we present a systematic 

method to analyze the rigid foldability and motion of the generalized triangle twist origami pattern using 

the kinematic equivalence between the rigid origami and spherical linkages. All schemes of M-V 

assignment are derived based on the flat-foldable conditions, among which rigidly foldable ones are 

identified. Moreover, a new type of overconstrained 6R linkage and a variation of doubly collapsible 

octahedral Bricard are developed by applying kirigami technique to the rigidly foldable pattern without 

changing its degree of freedom. The proposed method opens up a new way to generate spatial 

overconstrained linkages from the network of spherical linkages. It can be readily extended to other types 

of origami patterns. 

 

 Keywords： Rigid foldability; triangle twist; mountain-valley crease assignment; kirigami; doubly 

collapsible octahedral Bricard. 

 

1. INTRODUCTION 

Origami, an art of intricately folding a 2D flat sheet of paper into elaborate 3D 

sculptures and objects, has drawn increasing attention from engineers recently. Many of 

its techniques can be used in the design of foldable structures due to its superior 

efficiency of packaging large surface structures into smaller volumes for storage or 

transportation. Since most materials used in the structures, e.g., solar arrays [1, 2] and 

satellite antenna reflectors [3] in aerospace engineering, mobile facets [4, 5] and 
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reconfigurable and multi-locomotive devices [6, 7] in civil engineering, and stent grafts 

[8] and miniature origami robots [9, 10, 11] in biomedical engineering, are relatively 

rigid in comparison with paper, particular attention has been drawn to rigid origami. It is 

a restrictive form of origami, where continuous folding motions are generated by its 

facets rotating around pre-determined creases without being stretched or bent.  

To achieve rigid foldability, motions around each vertex must be compatible with 

those around its neighbors, attained only under specific pattern geometries. Recent 

work shows that both the geometrical conditions and mountain-valley crease (M-V) 

assignments affect the rigid foldability of origami patterns [12]. Numerical algorithms 

[13], quaternions and dual quaternions [14], matrix methods [15] have been proposed 

to judge the rigid foldability of origami patterns. From the mechanism perspective, the 

creases of rigid origami can be treated as rotation joints and the paper facets treated as 

links [16]. The creases intersect at one vertex is kinematically a spherical linkage [17]. 

Then the crease pattern can be modeled as a network of spherical linkages, and its rigid 

foldability can be analyzed by the kinematic approach.  

Inspired by rigid origami, several novel mechanisms have been developed. For 

instance, two integrated planar-spherical overconstrained mechanisms were proposed 

from origami cartons with crash-lock bases [18]. A parallel mechanism with three-

spherical kinematic chains has been designed based on a waterbomb origami pattern 

[19], of which the reaction force was analyzed based on the repelling-screw [20]. 

Furthermore, this origami parallel mechanism has been used to design an extensible 

continuum robot [21] and an origami grasper for minimally invasive surgery [22]. 
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Recently, several novel mobile assemblies of Bennett linkages have been derived from 

the flat-foldable four-crease origami patterns by taking the thick-panel form of an 

origami pattern as an intermediate bridge [23]. In addition, a novel 8R linkage which can 

evolve into overconstrained 6R linkages has been proposed from a kirigami pattern with 

eight creases [24]. 

On the other hand, origami twists like the square twist, the triangle twist, and 

the hexagon twist, are often used for tessellation of origami patterns in art [25]. Among 

them, the triangle twist origami pattern is formed by a central triangle plus four-crease 

vertices extended from each side of the triangle. It has been proved that no triangle 

twist origami pattern with parallel pleats is rigidly foldable [12]. However, it did not 

tackle the rigid foldability of triangle twist origami patterns with non-parallel pleats. 

Here we are going to make a thorough analysis on rigid foldability and motion of the 

generalized triangle twist origami pattern concerning all position relation of pleats and 

all schemes of M-V assignment. Meanwhile, the kirigami technique will be applied for 

the generation of new 6R linkages from the rigidly foldable triangle twist patterns.  

The layout of this paper is as follows. The kinematics and rigid foldability of a 

typical generalized triangle twist origami pattern are presented in section 2. Section 3 

gives all schemes of M-V assignment for the generalized triangle twist origami pattern 

and discusses their effect on rigid foldability. The type of the derived 6R linkage from 

the triangle twist kirigami pattern is identified and a new kind of overconstrained 6R 

linkage is proposed in section 4. The final part is the conclusion in section 5 which ends 

the paper. 
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2. RIGID FOLDABILITY OF THE GENERALIZED TRIANGLE TWIST ORIGAMI PATTERN 

In the origami art, a triangle twist is a crease pattern consisting of an equilateral 

triangle with parallel pleats radiating from its three sides [26], see Fig. 1(a). If we change 

the central equilateral triangle to a general one and remove the parallel constraint on 

the pleats, a generalized triangle twist as shown in Fig. 1(b) would be formed. The 

kinematics of the four-crease rigid origami vertex is studied firstly in order to analyze 

rigid foldability of the generalized triangle twist origami pattern.  

 

Fig. 1 (a) An art triangle twist, (b) a generalized triangle twist, where 0
 , 0

 , 0
 , 0

  

and 0
  is arbitrary within the domain (0, )  and 0 0

+ (0, )   . 

 

The Denavit-Hartenberg (D-H) notation of adjacent links connected by revolute 

joints [27] is presented in Fig. 2, where the axis iz  is along the revolute joint i , the axis 

ix  is the common normal from 1iz   to iz , ( +1)i i
a  is the normal distance between iz  and 

1iz  , ( +1)i i
  is the angle of rotation from iz  to 1iz  , positive along the axis 1ix  , iR  is the 

normal distance between ix  and 1ix  , positive along the axis iz , and i  is the angle of 
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rotation from ix  to 1ix  , positive along the axis iz . Using the matrix method for 

kinematics analysis, the closure equation for a single loop linkage consisting of n  links is 

21 32 ( 1) 1 4n n n   T T T T I ,    (1) 

where the transformation matrix ( 1)i iT  is 

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1)

( 1) ( 1)

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i i i i

i i i i i i i i i i

i i

i i i i i

a

a

R

     
     

 

  

  


 

 
  
 
 
 

T ,  (2) 

which transforms the expression in the ( 1)i  th coordinate system to the i th 

coordinate system, and when 1i n  , it is replaced by 1. 

 

Fig. 2 The D-H notation of adjacent links connected by revolute joints 

 

As for a spherical 4R linkage, the axes intersect at one point as shown in Fig. 3, 

which means the lengths and offsets of all links are zero and thus Eq. (1) reduces to 

21 32 43 14 3
   Q Q Q Q I ,     (3) 

where the transformation matrix ( 1)i iQ  is 
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( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos cos sin sin sin

sin cos cos sin cos

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

    
    

 

 

  

 

 
   
  

Q ,    1, 2, 3, 4i  , (4) 

which transforms the expression in the ( 1)i  th coordinate system to the i th 

coordinate system, and when 1 5i  , it is replaced by 1. 

 

Fig. 3 A spherical 4R linkage 

 

If a four-crease origami vertex is flat-foldable, its opposite sector angles should 

be supplementary [28]. Therefore, in its equivalent spherical 4R linkage (Fig. 3), 

following geometrical parameters can be defined in accordance with the D-H notation 

as shown in Fig. 2, 

12 23 34 41
0a a a a    , 12 34

=   , 23 41
=   , 1 2 3 4

0R R R R    . (5) 

Substituting Eq. (5) to Eq. (3), the relationship between kinematic variables i  and 

+1i  ( 1, 2, 3 4i  , ) can be obtained, 

( 1)( 2) ( 1) ( 1) ( 1) ( 1) ( 1)( 2) 1

( 1) ( 1)( 2) ( 1) 1 ( 1) ( 1)( 2) ( 1)

( 1)( 2) ( 1)

cos sin sin cos cos sin sin cos

cos sin sin cos cos cos cos cos

sin sin

i i i i i i i i i i i i i i

i i i i i i i i i i i i i i

i i i

       
       
 

        

        

  

      
       
 

1 ( 2)( 3)
sin sin cos 0.i i i i i       

    (6) 
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Solving Eq. (6) by replacing sin i , cos i , +1
sin i  and +1

cos i  with the double angle 

formula, we can obtain two solutions, 

23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

tan sin tan sin
2 2 2 2, ,

tan sin tan sin
2 2 2 2

tan sin tan sin
2 2 2 2, ,

tan tansin sin
2 22 2

    

     

    

     

 

  
 

 

  
 

   (7a) 

and 

23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

tan cos tan cos
2 2 2 2, ,

tan cos tan cos
2 2 2 2

tan cos tan cos
2 2 2 2, .

tan tancos cos
2 22 2

    

     

    

     

 

   
 

 

 
 

   (7b) 

It can be derived from Eq. (7a) that 31tan tan
2 2


   while 2 4tan tan

2 2

 
 , which means 

1
  and 

3
  are of opposite signs whereas 

2
  and 

4
  are of the same. Eq. (7b) is on the 

contrary with 31tan tan
2 2


  while 2 4tan tan

2 2

 
  . For a flat-foldable origami pattern, 

the two creases around the minimum sector angle should be of opposite assignment as 

a mountain or a valley crease, while the two creases around the maximum sector angle 

are of the same assignment [28]. Assuming that 
12

  is the minimum angle, the two 

solutions in Eq. (7a) and Eq. (7b) correspond to the two schemes of M-V assignment of 

the four-crease origami vertex as shown in Fig. 4(a) and Fig. 4(b) respectively, where the 
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mountain creases are illustrated by solid lines, the valley creases by dashed lines, and 
i  

is the dihedral angle of the facets with a common crease 
iZ . 

  

Fig. 4 Four-crease origami vertices with two schemes of M-V assignment, (a) Vertex-I, 

and (b) Vertex-II. 

 

The relationship between the kinematic variable 
i  and the dihedral angle 

i  is 

presented in Fig. 5, where we can find out that for a mountain crease, i i    , and 

for a valley crease, +i i   . So the relationship is 
1 1

    , 
2 2

    , 
3 3

    , 

4 4
     for Vertex-I, and 

1 1
    , 

2 2
+   , 

3 3
    , 

4 4
     for Vertex-II.  

  

Fig. 5 The relationship between the kinematic variable and the dihedral angle for (a) 

mountain crease, and (b) valley crease. 
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Thus in Vertex-I, we have,  

23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

+
tan sin tan sin

2 2 2 2, ,

tan sin tan sin
2 2 2 2

tan sin tan sin
2 2 2 2, ,

tan tansin sin
2 22 2

    

     

    

     



 
 

 

 
 

   (8a) 

and in Vertex-II, 

23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

tan cos tan cos
2 2 2 2, ,

tan cos tan cos
2 2 2 2

tan cos tan cos
2 2 2 2, .

tan tancos cos
2 22 2

    

     

    

     

 

 
 

 

 
 

   (8b) 

Figure 6(a) shows a generalized triangle twist origami pattern with a specific M-V 

assignment. Since a four-crease vertex in rigid origami is kinematically equivalent to a 

spherical 4R linkage, the triangle twist origami pattern can be modeled as a network of 

three spherical 4R linkages. Assuming 12
( , , )

j
j a b c   be the minimum angle of the 

four-crease vertex, following geometrical parameters of the triangle twist origami 

pattern are set up, 

41 23
=

a a     , 12 34
=

a a     , 0 min{ , }      ,  (9a) 

41 23
=

b b     , 12 34
=

b b     , 0 min{ , }      ,  (9b) 

41 23
=

c c         , 12 34
=

c c     , 0 min{ , }          , (9c) 
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so the simplified representation of the triangle twist origami pattern is shown in Fig. 

6(b). 

 

Fig. 6 A generalized triangle twist origami pattern with a specific M-V assignment: (a) 

the general representation, and (b) the simplified one. 

 

In this case, vertices A and B are both Vertex-I, and vertex C is Vertex-II in Fig. 4. 

The relationship of the dihedral angles 1

j  and 4

j  can be defined as 

4 1tan / tan
2 2

j j
j     ( , ,j a b c ). Combining it with Eqs. (8) and (9), we have 

cos cos cos
2 2 2, , ,

cos cos cos
2 2 2

a b c

      

        

   

  
      (10) 

where cos 1
a   , cos 1

b   , 1 1/ cos( )
c     , for 

2

   , and 

max{0, cos } 1
a   , max{0, cos } 1

b   , 1
c  , for 

2

   . 

Since each crease along the edge of the central triangle is shared by two adjacent 

vertices as shown in Fig. 6(a), we have 
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4 1 4 1 4 1
, , .

a b b c c a            (11) 

Further, the following relationship can be established, 

4 4 4

1 1 1

tan tan tan
2 2 2 1

tan tan tan
2 2 2

a b c

a b c

  

  
   .    (12) 

Therefore, the compatible condition of the triangle twist origami pattern [12] is 

1.
a b c          (13) 

With defined values of   and  , assigning arbitrary values within the domain of 

definition in Eq. (9) to   and  , we can always find a   to satisfy the compatible 

condition in Eq. (13) as  

1 1
2arctan , .

( 1) tan
2

a b

    


 

  
   (14) 

Once the value of   obtained by Eq. (14) locates in the domain (0, ) , the triangle twist 

origami pattern is rigidly foldable. 

Depending on the position relation of the three crease-pairs 3 2
&

a b
Z Z , 3 2

&
b c

Z Z  

and 3 2
&

c a
Z Z , the triangle twist origami pattern can be divided into three types, where 

each crease-pair is intersected, or only one crease-pair is parallel, or each crease-pair is 

parallel as shown in Fig. 7(a)-(c) respectively. 
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  Fig. 7 Three types of the triangle twist origami patterns where (a) each crease-pair is 

intersected, or (b) only one crease-pair is parallel, or (c) each crease-pair is parallel. 

 

When each crease-pair is intersected, we can always find a   as Eq. (14) for any 

value of   and   in the domain of definition. This type of pattern is rigidly foldable 

once (0, )  . 

When only one crease-pair is parallel, supposing that 3

a
Z // 2

b
Z , then   , and    

can also be derived from Eq. (14). If 3

b
Z // 2

c
Z , then   , and 

1 1
2arctan ,

( 1) tan
2

b c

   


 

 
.   (15) 

If 3

c
Z // 2

a
Z , then   , and 
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1 1
2arctan ,

( 1) tan
2

a c

   


 

 
.   (16) 

Thus the pattern is also rigidly foldable with one parallel crease-pair when the calculated 

angle locates in the domain (0, ) . 

When each crease-pair is parallel, then     , Eq. (13) can be rewritten as 

cos cos cos
2 2 2 1

cos cos cos
2 2 2

      

      

   

  
   

,   (17) 

which can be further simplified as 

sin sin 0
2 2

 
  .    (18) 

Since   and   are interior angles of a triangle, no solution of Eq. (18) exists. Therefore, 

the parallel triangle twist origami pattern is not rigidly foldable. 

 

3. MOUNTAIN-VALLEY CREASE ASSIGNMENT OF THE TRIANGLE TWIST ORIGAMI 

PATTERN AND ITS EFFECT ON RIGID FOLDABILITY 

We have analyzed the rigid foldability and motion of the triangle twist origami 

pattern with one specific scheme of M-V assignment in section 2. Since the rigid 

foldability of an origami pattern may vary with the change of M-V assignment, here we 

are going to find out all possible schemes of M-V assignment for the generalized triangle 

twist origami pattern and discuss their effect on rigid foldability. 

According to the flat-foldable conditions of a four-crease vertex, the number 

difference between mountain creases and valley ones should be equal to two [28]. It 
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forms the criteria for determining schemes of M-V assignment, together with the 

condition on the opposite M-V assignment of the two creases around the minimum 

sector angle. Therefore, the M-V assignment of the generalized triangle twist origami 

pattern is related to the position of the minimum angle in the pattern. Considering the 

connection between adjacent vertices in a triangle twist origami pattern, 
41

  is always 

set as the interior angle of the central triangle. Since 
12

 , 
23

 , 
34

  and 
41

  could be 

chosen alternatively as the minimum angle, eight cases exist for one vertex in the 

triangle twist origami pattern. Combining repeated cases, the M-V assignment for one 

vertex in the triangle twist origami pattern can be classified into four types defined as 

Type P, Type Q, Type R and Type S in Fig. 8.  

   

Fig. 8 Four types of M-V assignment of one vertex in the generalized triangle twist 

origami pattern where the minimum angle is (a) 
12

  or 
23

  for Type P, (b) 
23

  or 
34

  for 

Type Q, (c) 
34

  or 
41

  for Type R, and (d) 
41

  or 
12

  for Type S. 

 

By defining 4 1tan / tan
2 2

k

   , where the subscript , , ,k p q r s  that represents 

the type of the vertex, kinematic relationship of the two dihedral angles 
1

  and 
4

  
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along the creases in the central triangle can be obtained. For Type P, it is a Vertex-II as 

shown in Fig. 4(b), and according to Eq. (8b), we have 

23 12 41 12

23 12 41 12

cos sin
2 2=

sincos
22

p

   

    

 


 

.   (19a) 

For Type Q, it is a rotated Vertex-II as shown in Fig. 4(b), and according to Eq. (8b), we 

have 

34 23 41 12

34 23 41 12

cos cos
2 2=

coscos
22

q

   

    

 



 

.   (19b) 

For Type R, it is a rotated Vertex-I as shown in Fig. 4(a), and according to Eq. (8a), we 

have 

41 12

12 41

sin
2

sin
2

r

 

  






.    (19c) 

And for Type S, it is Vertex-I as shown in Fig. 4(a), and according to Eq. (8a), we have 

23 12 41 12

23 12 41 12

sin cos
2 2=

cossin
22

s

   

    

 


 

.   (19d) 

There are three vertices of a triangle twist origami pattern and each vertex has four 

types of M-V assignment, so 
3

64 (=4 )  combinations of vertices arrangements exist for 

the generalized triangle twist origami pattern. Considering that the crease common to 

adjacent vertices has the same assignment, only 32 schemes of M-V assignment are left 

as presented in Appendix A. Two special scenarios exist where the M-V assignment 
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would be duplicated. First, if we flip the paper, the mountain creases then become the 

valley creases. That is to say, these kinds of M-V assignment would be the inverted 

configurations. For example, the M-V assignment in Fig. 9(a) (PRR) is a duplicate of the 

one in Fig. A1 No.5 with the inverted configuration, where only the minimum angle of 

each vertex is presented and the character in the frame indicates the type of the vertex. 

Second, the M-V assignment would be duplicated if we change the vertex arrangement 

by rotating it along the center of the triangle in the triangle twist origami pattern. For 

example, the M-V assignment in Fig. 9(b) is a duplicate of the one in Fig. 9(a) obtained 

by rotation about the center of the triangle ABC. Considering the generality of the 

central triangle, the M-V assignment in Fig. 9(b) is equal to the one in Fig. 9(c) (RPR) that 

copied from Fig. A1 No.17. That is, the PRR twist in Fig. A1 No.5 and the RPR twist in Fig. 

A1 No.17 can be regarded as the same. As a result, twelve unique schemes of M-V 

assignment are obtained, which are denoted as PPP, PPQ, PQQ, PRR, PRS, PSS, QQQ, 

QRR, QRS, QSS, PSR and QSR as shown in Fig. 10, where the pattern as shown in Fig. 6 is 

a duplicate obtained by rotating the type of PSS twist as shown in Fig. 10(f). 

 

Fig. 9 Duplicated M-V assignments: (a) the M-V assignment obtained by flipping the 

paper in Fig. A1 No.5, (b) the one obtained by rotating (a) along the center of the 

triangle ABC, and (c) the one copied from Fig. A1 No.17. 
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Fig. 10 Twelve unique schemes of M-V assignment of the generalized triangle twist 

origami pattern with vertex-types being (a) PPP, (b) PPQ, (c) PQQ, (d) PRR, (e) PRS, (f) 

PSS, (g)QQQ, (h) QRR, (i) QRS, (j) QSS, (k) PSR and (l) QSR. 

 

From Fig. 10, we can see that there are two schemes of M-V assignment, PRS and 

QRS (Fig. 10(e), (i)), each of which has seven mountain creases and two valley ones. 

Another four schemes, PPP, PPQ, PQQ and QQQ (Fig. 10(a), (b), (c), (g)), have six 
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mountain creases and three valley ones respectively. Each one of the four schemes, PRR, 

PSS, QRR and QSS (Fig. 10(d), (f), (h), (j)), has five mountain creases and four valley ones. 

Two schemes, PSR and QSR (Fig. 10(k), (l)), exist with three mountain creases and six 

valley ones respectively. The difference between the schemes with identical numbers of 

mountain and valley creases is the position of the minimum angle, which affects the 

kinematics of each vertex and their compatibility. The detailed classification and rigidity 

of these schemes are represented as shown in Table A1 in Appendix A. 

Similar to the analysis procedure in section 2, the relationships 

( 1, 2, ...,12, , , )
j

i
i j a b c    between 1

j  and 4

j  are substituted to the compatible 

condition as Eq. (13) to find out the rigid foldability of all these types of triangle twist 

origami patterns with various M-V assignments. For the PPP twist (Fig. 10(a)), the 
j

i
  of 

this type are 

1 1 1

sin sin cos
2 2 2, ,

sin sin cos
2 2 2

a b c

      

        

   

  
   

,  (20) 

with 1
1

a  , 1
1

b  , 1
1

c  , so it is impossible to find solutions for Eq. (13). Therefore, 

the type of PPP twist is not rigidly foldable. 

For the PPQ twist (Fig. 10(b)), the 
j

i
  of this type are 

2 2 2

sin sin sin
2 2 2, ,

sin sin sin
2 2 2

a b c

      

        

   


  
   

,  (21) 
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with 2
1

a  , 2
1

b  , 2
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 

2

2

2 2 2

( 1) tan
122arctan , .

1
a b

 
 

  


 

 
 

  (22) 

Therefore, the type of PPQ twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

All rigid foldability of the triangle twist origami patterns with other schemes of M-V 

assignment are analyzed in a similar way, which are presented in the Appendix B. In 

summary, only the PPQ, PQQ, PRS, PSS, QRR, QRS, PSR and QSR twists as shown in Fig. 

10(b), (c), (e), (f), (h), (i), (k) and (l) are rigidly foldable, whereas the PPP, PRR, QQQ and 

QSS twists not. It should be noted that for a given M-V assignment of the triangle twist 

origami pattern within these eight types, the rigid foldability depends on the choice of 

design parameters as well. For example, the triangle twist origami pattern with 
o

30  , 

o
80  , 

o
90  , 

o
45   and a calculated 

o
7.04   is rigidly foldable. However, when 

we change it to 
o

60    while 
o

90   and 
o

45   unchanged, it is impossible to 

find a compatible   for the pattern. That is, the triangle twist origami pattern becomes 

a non-rigid case. Therefore, we can design rigid or non-rigid triangle twist origami 

patterns by choosing proper M-V assignments and geometrical parameters according to 

our demands. 
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4. DERIVED 6R LINKAGES FROM THE GENERALIZED TRIANGLE TWIST PATTERN 

Although the M-V assignment has an impact on rigid foldability of the generalized 

triangle twist origami pattern, it does not affect geometric conditions of its kinematically 

equivalent spherical linkages. Here we use the generalized triangle twist presented in 

section 2 to demonstrate the derivation of spatial 6R linkage from this pattern. 

Considering geometric conditions in Eq. (9), there are five design parameters  ,  ,  , 

  and   for this pattern, whereas only four are independent. A physical origami model 

of the triangle twist origami pattern and its corresponding folding process are designed 

as shown in Fig. 11(a). Since the vertices A, B and C always keep in a single plane, so the 

central triangle ABC can be removed without affecting the motion of the pattern. Then a 

triangle twist kirigami pattern, which has only six creases as shown in Fig. 11(b), is 

obtained. 

Recalling the relationship between mechanisms and origami patterns, a network of 

three spherical 4R linkages that corresponds to the triangle twist origami pattern in Fig. 

11(a), can be built as shown in Fig. 12(a). Creases of vertices A, B and C are equivalent to 

joints 
ia , ib  and ic  respectively, where joints 

4 1
&a b , 

4 1
&b c  and 

4 1
&c a  are coaxial. 

The adjacent links 
3 4

a a  in the spherical 4R linkage A and 
1 2

b b  in the spherical 4R linkage 

B are connected into one rigid body, and the same connection method is applied to 

other adjacent links in Fig. 12(a), such as links 
4 1 4 1

&a a b b , 
3 4 1 2

&b b c c , 
4 1 4 1

&b b c c , 

3 4 1 2
&c c a a  and 

4 1 4 1
&c c a a . When the origami pattern is rigid with one degree of 

freedom (DOF), its corresponding linkage network is also one DOF. 
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Fig. 11 Physical triangle twist models with 55  , 50  , 50  , 45   and 

35.44   for (a) origami pattern, and (b) kirigami pattern. 

 

 

Fig. 12 Equivalent mechanisms of the generalized triangle twist: (a) the network of three 

spherical 4R linkages for the origami pattern, and (b) the derived overconstrained 6R 

linkage for the kirigami pattern. 
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Once the central triangle is removed, a mobile linkage from the kirigami pattern in 

Fig. 11(b), can also be built as a 6R linkage, see Fig. 12(b), after joints in the central 

triangle being removed, and joints 
3 2

&a b being connected by one link, so do joints 

3 2
&b c  and 

3 2
&c a . So the derived 6R linkage in Fig. 12(b) should also have one DOF as 

the network of spherical 4R linkages in Fig. 12(a). The six joints in the new derived 6R 

linkage have identical motion as joints 
3

a , 
2

b , 
3

b , 
2

c , 
3

c  and 
2

a  in the network of three 

spherical 4R linkages. Therefore, the kinematic analysis in section 2 can be applicable to 

the new 6R linkage as well. 

It has been proved that the generalized triangle twist origami pattern in section 2 is 

rigidly foldable except for the parallel twist. The derived 6R linkages from kirigami 

patterns of the two rigidly foldable triangle twists will be discussed next. First 

considering the case where each crease-pair is intersected, the links have zero lengths 

with    correspondingly. The D-H notations of this new 6R linkage are depicted in Fig. 

13(a). The axes of adjacent rotation joints intersect, and the intersection points of 

6 1
Z & Z , 

2 3
Z & Z , 

4 5
Z & Z , 

1 2
Z & Z , 

3 4
Z & Z  and 

5 6
Z & Z  are denoted as A, B, C, D, E 

and F respectively. Suppose the length of edge AB in the central triangle be L . The 

geometrical parameters of the 6R linkage can be calculated as follows. 

12 23 34 45 56 61
0a a a a a a      ,    (23a) 

12 23 34

45 56 61

2 , , 2 ,

, , ,

          
        

       
     

  (23b) 
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1

2

3

4

5

6

sin
AD ,

sin( )

sin
BD ,

sin( )

sin sin
BE ,

sin( ) sin( )

sin sin
CE ,

sin( ) sin( )

sin sin
CF ,

sin( ) sin( )

sin sin
AF ,

sin( ) sin( )

R L

R L

L
R

L
R

L
R

L
R


 


 

 
   

 
   

 
   

 
   

  


    


  
 

    
 

    
 

  
 

   (23c) 

where  ,   and   should satisfy Eqs. (9) and (14). According to Eq. (23c), the 

relationship 
1 3 5 2 4 6

+ =0R R R R R R     holds and all lengths of the links are zero in Eq. 

(23a), which reveals that the derived 6R linkage is actually a variation of doubly 

collapsible octahedral Bricard [29]. The kinematic relationship of the derived 6R linkage 

is 

32 1 1

4 1 5 2 6 3

cos cos cos
2 2 2tan = tan , tan = tan ,

2 2 2 2
cos cos cos

2 2 2

, , .

     
  

     

     

  

 
  

   

  (24) 

It can be seen that the kinematics of the derived doubly collapsible octahedral Bricard is 

not related to the value of L . It is determined by the relative position of their axes. 

Kinematic paths of an instance with 55  , 50  , 50  , 45   and 35.44   

are plotted as solid lines in Fig. 14. 
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Fig. 13 Schematic diagrams of the derived overconstrained 6R linkages when (a)   , 

and (b)   . 

 

 

Fig. 14 Kinematic paths of the derived overconstrained 6R linkages when each crease-

pair is intersected with 55  , 50  , 50  , 45  , 35.44   as solid lines and 

when only one crease-pair is parallel with 55  , 50  , 45   , 33.52   as 

dashed lines. 
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Then consider the second case in which only one crease-pair is parallel, that is, the 

length of one link is non-zero by setting   , see Fig. 13(b). In this case, the axis 
1

Z  is 

parallel to 
2

Z , and GB is their common perpendicular. 
6 1

Z & Z , 
2 3

Z & Z , 
4 5

Z & Z , 

3 4
Z & Z  and 

5 6
Z & Z  intersect at the points A, B, C, E and F respectively. The length of 

link 12 is the distance between the parallel crease-pair, whereas those of all the other 

links and the twist angle of link 12 are zero. The geometrical parameters of the 6R 

linkage are 

12

23 34 45 56 61

GB sin ,

0 ,

a L

a a a a a

  
    

    (25a) 

12 23 34

45 56 61

0 , , 2 ,

, , ,

       
        

     
     

   (25b) 

1 2

3

4

5

6

cos ,

sin sin
BE ,

sin( ) sin( )

sin sin
CE ,

sin( ) sin( )

sin sin
CF ,

sin( ) sin( )

sin sin
AF .

sin( ) sin( )

R R L

L
R

L
R

L
R

L
R


 

   
 

   
 

   
 

   

   

  
 

    
 

    
 

  
 

   (25c) 

It is found that 
3

1 3 5 2 4 6 2 2

sin sin sin cos sin
+ =

sin ( ) sin ( )

L
R R R R R R

    
   

    
   

  
 from Eq. 

(25c) for the 6R linkage derived from the triangle twist kirigami pattern with only one 

parallel crease-pair. It neither satisfies the geometric conditions of doubly collapsible 

octahedral Bricard nor other existed overconstrained 6R linkages, such as Bricard 

linkages [30] and Bennett-based overconstrained linkages [31] etc., which indicates a 
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new type of overconstrained 6R linkage is obtained. Similarly, the kinematic relationship 

of this linkage is obtained by making    in Eq. (24). Changing geometrical parameters 

of the exemplified derived 6R linkage to 45  , 33.52   while keeping other 

parameters identical to the previous case, the kinematic paths are plotted as dashed 

lines in Fig. 14. It can be found that both the geometrical parameters and kinematic 

paths differ little, which indicates that the new derived overconstrained 6R linkage could 

be treated as an extension of the doubly collapsible octahedral Bricard.  

 

5. CONCLUSIONS 

This paper has presented the rigid foldability and motion of the generalized triangle 

twist origami pattern with varying geometrical parameters and M-V assignments. They 

have been analyzed based on the kinematic equivalence between the rigid origami 

pattern and the network of spherical linkages. Twelve unique schemes of M-V 

assignment of the generalized triangle twist origami pattern have been found. However, 

only eight types are possible to be rigidly foldable. The compatible conditions have been 

derived for these types of triangle twist origami patterns. Furthermore, the rigid 

foldability has been discussed according to the position relation of three crease-pairs 

around edges of the central triangle in the triangle twist origami pattern. It has been 

found that the triangle twist origami pattern is rigidly foldable when at least one crease-

pair is not parallel. 

In addition, a triangle twist kirigami pattern has been developed by removing the 

central triangle in the rigid origami pattern. A variation of doubly collapsible octahedral 
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Bricard has been derived from the triangle twist kirigami pattern where each crease-pair 

is intersected. And a new type of overconstrained 6R linkage has been obtained when 

only one crease-pair is parallel.  

To conclude, the thorough study on rigid foldability and motion of the generalized 

triangle twist pattern lays the theoretical foundation for its application as a modular unit 

of tessellation or a feasible design for origami robots. The proposed approach of 

generating new linkages from the triangle twist kirigami pattern opens up a new way to 

construct single-loop overconstrained linkages from the network of spherical linkages. It 

can be readily extended to other types of origami patterns.  

 

APPENDIX 

A.  SCHEMES OF M-V ASSIGNMENT OF THE GENERALIZED TRIANGLE TWIST 

ORIGAMI PATTERN 

Considering that the crease common to adjacent vertices has the same assignment, 

there are 32 schemes of M-V assignment for the generalized triangle twist origami 

pattern as given in Fig. A1, where only the minimum angle of each vertex is presented 

and the character in the frame indicates the type of the vertex.  

Eliminating the duplicated cases, twelve unique schemes of M-V assignment are 

obtained, which are denoted as PPP, PPQ, PQQ, PRR, PRS, PSS, QQQ, QRR, QRS, QSS, 

PSR and QSR. The classification and rigidity of these schemes are listed in Table A1. 
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Fig. A1 All possible schemes of M-V assignment of the generalized triangle twist origami 

pattern: No.1 PPP, No.2 PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 

PSS, No.9 QPP, No.10 QPQ, No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, 

No.16 QSS, No.17 RPR, No.18 RPS, No.19 RQR, No.20 RQS, No.21 RRP, No.22 RRQ, No.23 

RSP, No.24 RSQ, No.25 SPR, No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 SRQ, 

No.31 SSP, and No.32 SSQ. 
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Fig. A1 All possible schemes of M-V assignment of the generalized triangle twist origami 

pattern: No.1 PPP, No.2 PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 

PSS, No.9 QPP, No.10 QPQ, No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, 

No.16 QSS, No.17 RPR, No.18 RPS, No.19 RQR, No.20 RQS, No.21 RRP, No.22 RRQ, No.23 

RSP, No.24 RSQ, No.25 SPR, No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 SRQ, 

No.31 SSP, and No.32 SSQ. (Continued) 
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Table A1 Classification of M-V assignments for the generalized triangle twist origami 

pattern 

Number of 

mountain 

creases 

Number 

of valley 

creases 

Schemes of M-V 

assignment 

Duplicated schemes 

of M-V assignment 
Rigidity 

7 2 PRS 

(Fig. A1 No.6) 

RSP (Fig. A1 No.23), 

SPR (Fig. A1 No.25) 

Rigid 

QRS 

(Fig. A1 No.14) 

RSQ (Fig. A1 No.24), 

SQR (Fig. A1 No.27) 

Rigid 

6 3 PPP 

(Fig. A1 No.1) 

non-existent Non-rigid 

PPQ 

(Fig. A1 No.2) 

PQP (Fig. A1 No.3), 

QPP(Fig. A1 No.9) 

Rigid 

PQQ 

(Fig. A1 No.4) 

QPQ (Fig. A1 No.10), 

QQP (Fig. A1 No.11) 

Rigid 

QQQ 

(Fig. A1 No.12) 

non-existent Non-rigid 

5 4 PRR 

(Fig. A1 No.5) 

RPR (Fig. A1 No.17), 

RRP (Fig. A1 No.21) 

Non-rigid 

PSS 

(Fig. A1 No.8) 

SPS (Fig. A1 No.26), 

SSP (Fig. A1 No.31) 

Rigid 

QRR 

(Fig. A1 No.13) 

RQR (Fig. A1 No.19), 

RRQ (Fig. A1 No.22) 

Rigid 

QSS 

(Fig. A1 No.16) 

SQS (Fig. A1 No.28), 

SSQ (Fig. A1 No.32) 

Non-rigid 

3 6 PSR 

(Fig. A1 No.7) 

RPS (Fig. A1 No.18), 

SRP (Fig. A1 No.29) 

Rigid 

QSR 

(Fig. A1 No.15) 

RQS (Fig. A1 No.20), 

SRQ (Fig. A1 No.30) 

Rigid 

 

B. RIGID FOLDABILITY OF TRIANGLE TWIST ORIGAMI PATTERNS WITH VARIOUS 

M-V ASSIGNMENTS 

For the PQQ twist (Fig. 10(c)), the 
j

i
  of this type are 
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3 3 3

sin cos sin
2 2 2, ,

sin cos sin
2 2 2

a b c

      

        

   
 

  
   

,  (B1) 

with 3
1

a  , 3
1

b  , 3
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as  

3

3

3 3 3

( 1) tan
122arctan , .

1
a b

 
 

  


 

 
 

  (B2) 

Therefore, the type of PQQ twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the PRR twist (Fig. 10(d)), the 
j

i
  of this type are 

4 4 4

sin sin cos
2 2 2, ,

sin sin cos
2 2 2

a b c

      

        

   


  
   

,  (B3) 

with 4
1

a  , 4
1

b  , 4
1

c  , so it is impossible to find solutions for Eq. (13). Therefore, 

the type of PRR twist is not rigidly foldable. 

For the PRS twist (Fig. 10(e)), the 
j

i
  of this type are 

5 5 5

sin sin sin
2 2 2, ,

sin sin sin
2 2 2

a b c

      

        

   

  
   

,  (B4) 

with 5
1

a  , 5
1

b  , 5
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 
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5

5

5 5 5

(1 ) tan
122arctan , .

1
a b

 
 

  


 

 
 

  (B5) 

Therefore, the type of PRS twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the PSS twist (Fig. 10(f)), the 
j

i
  of this type are 

6 6 6

sin cos sin
2 2 2, ,

sin cos sin
2 2 2

a b c

      

        

   

  
   

,  (B6) 

with 6
1

a  , 6
1

b  , 6
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 

6

6

6 6 6

(1 ) tan
122arctan , .

1
a b

 
 

  


 

 
 

  (B7) 

Therefore, the type of PSS twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the QQQ twist (Fig. 10(g)), the 
j

i
  of this type are 

7 7 7

cos cos sin
2 2 2, ,

cos cos sin
2 2 2

a b c

      

        

   
  

  
   

,  (B8) 

with 7
1

a  , 7
1

b  , 7
1

c  , so it is impossible to find solutions for Eq. (13). Therefore, 

the type of QQQ twist is not rigidly foldable. 

For the QRR twist (Fig. 10(h)), the 
j

i
  of this type are 
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8 8 8

cos sin cos
2 2 2, ,

cos sin cos
2 2 2

a b c

      

        

   
 

  
   

,  (B9) 

with 8
1

a  , 8
1

b  , 8
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 

8

8

8 8
8

1 1
2arctan , .

( 1) tan
2

a b

    


 

  
  (B10) 

Therefore, the type of QRR twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the QRS twist (Fig. 10(i)), the 
j

i
  of this type are 

9 9 9

cos sin sin
2 2 2, ,

cos sin sin
2 2 2

a b c

      

        

   


  
   

,  (B11) 

with 9
1

a  , 9
1

b  , 9
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 

9

9

9 9 9

(1 ) tan
122arctan , .

1
a b

 
 

  


 

 
 

  (B12) 

Therefore, the type of QRS twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the QSS twist (Fig. 10(j)), the 
j

i
  of this type are 
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10 10 10

cos cos sin
2 2 2, ,

cos cos sin
2 2 2

a b c

      

        

   


  
   

,  (B13) 

with 10
1

a  , 10
1

b  , 10
1

c  , so it is impossible to find solutions for Eq. (13). Therefore, 

the type of QSS twist is not rigidly foldable. 

For the PSR twist (Fig. 10(k)), the 
j

i
  of this type are 

11

sin
2

sin
2

a

 

  




 , 11

cos
2

cos
2

b

 

  




 , 11

cos
2

cos
2

c

  

   

 



  ,  (B14) 

with 11
1

a  , 11
1

b  , 11
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 

11

11

1
2arctan

( 1) tan
2

  





  , 11

11 11

1
a b


 


 .  (B15) 

Therefore, the type of PSR twist is rigidly foldable once the obtained   is within the 

range (0, ) . 

For the QSR twist (Fig. 10(l)), the 
j

i
  of this type are 

12

cos
2

cos
2

a

 

  





 , 12

cos
2

cos
2

b

 

  




 , 12

cos
2

cos
2

c

  

   

 



  ,  (B16) 

with 12
1

a  , 12
1

b  , 12
1

c  . When arbitrary values are assigned to  ,  ,   and  , we 

can find a   according to the compatible condition in Eq. (13) as 
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12

12

1
2arctan

( 1) tan
2

  





  , 12

12 12

1
a b


 


 .  (B17) 

Therefore, the type of QSR twist is rigidly foldable once the obtained   is within the 

range (0, ) . 
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Table A1 Classification of M-V assignments for the generalized triangle twist 

origami pattern 



Journal of Mechanisms and Robotics 

 

Yan Chen, JMR-17-1433 41 

 

Figure Captions List 

 

Fig. 1 (a) An art triangle twist, (b) a generalized triangle twist, where 0
 , 0

 , 

0
 , 0

  and 0
  is arbitrary within the domain (0, )  and 0 0

+ (0, )   . 

Fig. 2 The D-H notation of adjacent links connected by revolute joints 

Fig. 3 A spherical 4R linkage 

Fig. 4 Four-crease origami vertices with two schemes of M-V assignment, (a) 

Vertex-I, and (b) Vertex-II. 

Fig. 5 The relationship between the kinematic variable and the dihedral angle 

for (a) the mountain crease, and (b) the valley crease. 

Fig. 6 A generalized triangle twist origami pattern with a specific M-V 

assignment: (a) the general representation, and (b) the simplified one. 

Fig. 7 Three types of the triangle twist origami patterns where (a) each crease-

pair is intersected, or (b) only one crease-pair is parallel, or (c) each 

crease-pair is parallel. 

Fig. 8 Four types of M-V assignment of one vertex in the generalized triangle 

twist origami pattern where the minimum angle is (a) 
12

  or 
23

  for 

Type P, (b) 
23

  or 
34

  for Type Q, (c) 
34

  or 
41

  for Type R, and (d) 
41

  

or 
12

  for Type S. 

Fig. 9 Duplicated M-V assignments: (a) the M-V assignment obtained by 

flipping the paper in Fig. A1 No.5, (b) the one obtained by rotating (a) 
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along the center of the triangle ABC, and (c) the one copied from Fig. A1 

No.17. 

Fig. 10 Twelve unique schemes of M-V assignment of the generalized triangle 

twist origami pattern with vertex-types being (a) PPP, (b) PPQ, (c) PQQ, 

(d) PRR, (e) PRS, (f) PSS, (g)QQQ, (h) QRR, (i) QRS, (j) QSS, (k) PSR and (l) 

QSR. 

Fig. 11 Physical triangle twist models with 55  , 50  , 50  , 45   

and 35.44   for (a) origami pattern, and (b) kirigami pattern. 

Fig. 12 Equivalent mechanisms of the generalized triangle twist: (a) the network 

of three spherical 4R linkages for the origami pattern, and (b) the derived 

overconstrained 6R linkage for the kirigami pattern. 

Fig. 13 Schematic diagrams of the derived overconstrained 6R linkages when (a) 

  , and (b)   . 

Fig. 14 Kinematic paths of the derived overconstrained 6R linkages when each 

crease-pair is intersected with 55  , 50  , 50  , 45  , 

35.44   as solid lines and when only one crease-pair is parallel with 

55  , 50  , 45   , 33.52   as dashed lines. 

Fig. A1 All possible schemes of M-V assignment of the generalized triangle twist 

origami pattern: No.1 PPP, No.2 PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, 

No.6 PRS, No.7 PSR, No.8 PSS, No.9 QPP, No.10 QPQ, No.11 QQP, No.12 

QQQ, No.13 QRR, No.14 QRS, No.15 QSR, No.16 QSS, No.17 RPR, No.18 

RPS, No.19 RQR, No.20 RQS, No.21 RRP, No.22 RRQ, No.23 RSP, No.24 
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RSQ, No.25 SPR, No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 

SRQ, No.31 SSP, and No.32 SSQ. 

 


