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Textures

Figure: Examples of stochastic 2-D textures
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Texture Examples from Biomedical Imaging

(a) 2D slice from 3D pCT x-ray (b) Slice from Intravascular
data Ultra Sound data

Figure: Examples of medical 3D data sets.
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Definition

An IMRA is a sequence {V;};cz of closed subspaces of L2(RY) satisfying
the following conditions:

o VjE€Z, Vi C Vi,

o (DY Vo=V,

® UjezV, is dense in L%(RY),
° NjezV; = {0},
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Definition

An IMRA is a sequence {V;};cz of closed subspaces of L2(RY) satisfying
the following conditions:

e VjeZ,V;C Vi,

(Dap) Vo =V,

UjezV; is dense in L2(RY),

NjezV; = {0},

Vp is invariant under translations by integers,

Vo is invariant under all rotations, i.e.,
O(R)Vo =W for all R € SO(d),

where O(R) is the unitary operator given by O(R)f(x) := f(R"x).
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2D IMRA refinable function and wavelet

(a) Fourier transform of the refinable (b) Fourier transform of the wavelet

function ¢ 1(2.)
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Texture Model

Let Xcont be a stationary Gaussian process on R3 and X be its samples
on Z3.
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Texture Model

Let Xcont be a stationary Gaussian process on R3 and X be its samples
on Z3.

I;et its autocovariance function pcon: be bandlimited to B,, the ball where
¢ is equal to 1.
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Texture Model

Let Xcont be a stationary Gaussian process on R3 and X be its samples
on Z3.

I;et its autocovariance function pcon: be bandlimited to B,, the ball where
¢ is equal to 1.

Note that

peont (k) = E[Xcont (k) Xcont (0)] = E[X(k)X(0)] = p(k)
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Texture Model

Let Xcont be a stationary Gaussian process on R3 and X be its samples
on Z3.

I;et its autocovariance function pcon: be bandlimited to B,, the ball where
¢ is equal to 1.

Note that

peont (k) = E[Xcont (k) Xcont (0)] = E[X(k)X(0)] = p(k)

Hence, pcont = Y _yezs P(K) Tk
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Rotation of Textures

Let R be the operator induced on L2(R3) by the rotation o € SO(3).
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Rotation of Textures

Let R be the operator induced on L2(R3) by the rotation o € SO(3).
The autocovariance function of Ry Xcont is given by R peont:

IE['R'OéXcom:(S),R/OLXcont(O)] = IE[xr:ont(()‘TS)Xcont((o‘TO)]
Pcont(aTS) = Rapcont(s)-
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Rotation of Textures

Let R be the operator induced on L2(R3) by the rotation o € SO(3).
The autocovariance function of Ry Xcont is given by R peont:

IE[,R'OéXcom:(S),R/OLXcont(O)] = IE[xr:ont(OCTS)Xcont((o‘TO)]
= Pcont(aTS) = Rapcont(s)-

Now, the sequence of samples, (Rapcont; Tk®) }kezs is denoted by Rap.
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Rotation of Textures

Let R be the operator induced on L2(R3) by the rotation o € SO(3).
The autocovariance function of Ry Xcont is given by R peont:

IE[,R'OéXcom:(S),R/OLXcont(O)] = IE[xr:ont(OCTS)Xcont((o‘TO)]
= Pcont(aTS) = Rapcont(s)-

Now, the sequence of samples, (Rapcont; Tk®) }kezs is denoted by Rap.

<Ra,0cont> Tk¢> = <pcont>R*a Tk¢> = <Pconta Tak¢>
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Gaussian Markov Random Field

A stochastic process X on Z3 is a stationary GMRF if a realization
satisfies the following difference equation:

Xe=p+ > Oe(Xer — 1) + e

ren
where the correlated Gaussian noise, e = (eq, ..., eNT), has the following
structure:
a2, k=1,
E[ekq] = —Qk_|0'2, k—-1¢ n,
0, else.
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Auto-covariance function

For a stationary random process X on Z3, the auto-covariance function is
given by

p(1) = E[X()X(0)]
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Auto-covariance function

For a stationary random process X on Z3, the auto-covariance function is
given by

p(1) = E[X()X(0)]

Given a realization x on A C Z3, p can be approximated by

1
po(l) = e %I:\x,xﬂr., forall 1eA

for a sufficiently large N; Nt := |A|.
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Auto-covariance function

For a stationary random process X on Z3, the auto-covariance function is
given by
p(1) = E[X()X(0)]

Given a realization x on A C Z3, p can be approximated by

po(l) = Zx,er forall 1eA
rel\

for a sufficiently large N; Nt := |A|.
The parameters of the GMRF model fitted to the ‘rotated texture’,
denoted by Rax, can be calculated using R p-
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Rotationally Invariant Distance

We define the texture signature Iy, via

M(@) = [0(Rap), *(Rav)]
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Rotationally Invariant Distance

We define the texture signature [y, via
r(@) = [0(Rap), (Rap)]

Now, we define a distance between two textures by the following
expression:

i KLdist My, (), T« dev.
o | 1 KL (T (00 ()
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Experimental Results

T

71,0 | 0.0007 | 0.0005 | 0.0072 | 0.0137
7,.= | 0.0010 | 0.0007 | 0.0101 | 0.0182
Tro | 0.0123 | 0.0128 | 0.0006 | 0.0004

T, = | 0.0093 | 0.0101 | 0.0012 | 0.0009

Table: Distances between two rotations of two distinct textures using the

. . . . . 3
rotationally invariant distance and autocovariance resampled on ZT. lﬂl
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Experimental Results

T

71,0 | 0.0006 | 0.0006 | 0.0073 | 0.0136
71,z | 0.0013 | 0.0007 | 0.0100 | 0.0164
Tro | 0.0125 | 0.0203 | 0.0010 | 0.0004

7, = | 0.0119 | 0.0082 | 0.0007 | 0.0008

Table: Distances between two rotations of two distinct textures using the

. . . . . 3
rotationally invariant distance and autocovariance resampled on %. lﬂl
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Experimental Results

T1,0

10

0.0026

0.1118

0.0454

0.0607

0.0812

0.0010

0.0694

0.0473

0.0330 | 0.1750

0.0852 | 0.0562

0.0016 | 0.0108

0.0246 | 0.0018

Table: Distances between two rotations of two distinct textures using the

grid Z3.

S. Jain

rotationally invariant distance and autocovariance sampled on the original lﬂl
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Experimental Results

Ty g T3 14 75

7; | 0.0006 | 0.0073 | 0.4232 | 2.3180 | 1.7724
7> | 0.0125 | 0.0010 | 0.4894 | 2.5227 | 1.8381
T3 | 0.4466 | 0.5134 | 0.0004 | 0.5208 | 0.4563
T4 | 2.4314 | 2.6315 | 0.5605 | 0.0021 | 0.3533

75 | 1.8200 | 1.9227 | 0.4318 | 0.2540 | 0.0043

Table: Distances between five distinct textures using the rotationally invariant
. . . 3
distance and autocovariance resampled on the grid ZT.
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Experiments with 2-D Textures
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Experiments with 2-D Textures

grass

sand

0.0200 | 0.0806 || grass

0.0032 | 0.0443 || sand

0.0107

0.7174

0.3418

0.0223

Table: Distances between the sand and grass textures for the original data (left)
for the low pass component (right).
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