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Abstract Let G be a simple simply connected algebraic group over an algebraically closed field k 9

of characteristic p > 0 with g = Lie(G). We discuss various properties of nilpotent orbits in g, which 10

have previously only been considered over C. Using computational methods, we extend to positive 11

characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In 12

particular, we classify those orbits which are reachable as well as those which satisfy a certain related 13

condition due to Panyushev, and determine the codimension of the derived subalgebra [ge, ge] in the 14

centraliser ge of any nilpotent element e ∈ g. Some of these calculations are used to show that the 15

list of rigid nilpotent orbits in g, the classification of sheets of g and the distribution of the nilpotent 16

orbits amongst them are independent of good characteristic, remaining the same as in the characteristic 17

zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over 18

algebraically closed fields of good characteristic. 19

20

Keywords: reductive group; decomposition class; induced nilpotent orbit 21

2010 Mathematics subject classification: 17B45; 20G15 22

1. Introduction 23

Let G be a reductive algebraic group over an algebraically closed field k of characteristic 24

p > 0 with g = Lie(G). We consider various properties of a nilpotent element e ∈ g and 25

its centraliser ge. The element e is called reachable if e ∈ [ge, ge]. It is called strongly 26

reachable if [ge, ge] = ge, i.e., the subalgebra ge is perfect. If p is a good prime for G, 27

it is said to satisfy Panyushev property if in the associated grading ge =
⊕

i>0 ge(i), 28

the Lie subalgebra
⊕

i>1 ge(i) is generated by ge(1). For the case p = 0, in [7] the 29

author applies various routines in the SLA package of GAP in order to confirm and 30

finish the classification of nilpotent elements which are reachable, strongly reachable or 31

satisfy the Panyushev property. In particular, he confirms that in characteristic 0, all 32

reachable elements are Panyushev. For G classical and p = 0 each of three properties 33

above characterises the class of rigid (i.e., non-induced) nilpotent orbits in g. This was 34

established by Yakimova in [34]. 35
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2 A. Premet and D. I. Stewart

One of the goals of this article is to record extensions to de Graaf’s results to deal with36

the case where p > 0. For G exceptional and simply connected (and for any prime p)37

we compute the number c(e) := dim ge/[ge, ge] for any nilpotent element e ∈ g. This data38

is recorded in Tables 2 and 3. It turns out that c(e) is independent of p provided that39

p is good for G. Our computations agree with those in [7] made in the characteristic40

zero case.1 We also consider another property, which is relevant in the theory of finite41

W -algebras. Let us call a nilpotent element almost reachable if it is not reachable, but42

ge = ke⊕[ge, ge].43

If G is SOn or Spn and p 6= 2 then [26, Theorem 3(i)] provides a general formula for44

c(e) in terms of the partition of n attached to e. We mention for completeness that45

for G = SLn or GLn the value of c(e) is also known for all e ∈ g (and all p) thanks to46

the explicit description of ge given in [34]; see [26, Remark 1] for more detail. So in47

our paper we mostly deal with the groups of exceptional types. The main results of the48

computational part of our paper are as follows:49

Theorem 1.1. Let G be a simple, simply connected algebraic group of exceptional type50

over an algebraically closed field of characteristic p > 0 and let e be a nilpotent element51

in g = Lie(G). Then e is reachable or almost reachable in characteristic p if and only if52

the orbit of e is listed in the first column of Table 1. If, moreover, the equality ge = [ge, ge]53

holds for e in characteristic p then this is indicated in the third column of Table 1.54

Table 1 show that many new nilpotent orbits become reachable in bad characteristic55

and on the three occasions this happens when p is good for G. In this case, the new56

orbits are as follows:57

(A) p = 5, G is of type E7 and e is of type A3+A2+A1;58

(B) p = 7, G is of type E7 and e is of type A2+ 3A1;59

(C) p = 7, G is of type E8 and e is of type A4+A2+A1.60

It is interesting that these three orbits are responsible for the existence of new maximal61

Lie subalgebras in g = Lie(G) which have no analogues in characteristic 0. This will be62

explained in detail in a forthcoming paper by the authors.63

We have also checked the validity of Panyushev property in good characteristic; see § 4.564

for more detail on our computations. This property will play an important role in proving65

Humphreys’ conjecture on the existence of Uχ (g)-modules of dimension p(dim G·χ)/2 (here66

Uχ (g) stands for the reduced enveloping algebra of g associated with a linear function67

χ ∈ g∗). We denote by GC the complex simple algebraic group of the same type as G68

and let gC = Lie(GC). Recall that if p is good for G then the nilpotent orbits in g have69

the same labels as those in gC; see [6, pp. 401–407], for example.70

Theorem 1.2. Let G be as in Theorem 1.1 and suppose p is a good prime for G. Then71

an element e in a nilpotent orbit O satisfies the Panyushev condition if and only if the72

nilpotent orbit in gC which has the same label as O consists of reachable elements. In

1According to the usual notation one should replace Ã1 by A1 in [7, Table 5].
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g e p Strong Almost

G2 Ã(3)1 3

Ã1 2, 3 3 p > 5
A1 Any p > 5

F4 F4 3

C3 2

C3(a1) 2

A1+ Ã2 2, 3 p > 5
B2 p > 3
A2+ Ã1 p > 3 p > 5
Ã2 2 2 p > 3
A2 p > 3
A1+ Ã1 Any p > 3
Ã(2)1 2

Ã1 Any Any

A1 Any p > 3

E6 E6 3

A5 2

A4+ A1 2, 3

A3+ A1 2

2A2+ A1 Any p > 5
A2+ 2A1 Any

2A2 2

A2+ A1 Any

A2 Any

3A1 Any p > 3
2A1 Any

A1 Any Any

E7 E7 3
E6 3
A6 2
A5+ A1 3 p > 5
(A5)

′ 2 p > 3
A4+ A2 2, 3 p > 5
A4+ A1 Any

D4+ A1 p > 3
A3+ A2+ A1 3, 5 p > 7
A3+ A2 2
A3+ 2A1 3 p > 5
(A3+ A1)

′ 2 p > 3
2A2+ A1 Any p > 5

Table 1: continued
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g e p Strong Almost

A2+ 3A1 7 p 6= 2, 7
2A2 2 p > 3
A3 p > 3
A2+ 2A1 Any p > 3
A2+ A1 Any

4A1 p > 3 p > 3
A2 Any

(3A1)
′ Any p > 3

(3A1)
′′ 3 p > 5

2A1 Any p > 3
A1 Any Any

E8 E8 3, 5
E8(a1) 3
E7 3
D7 2
E6+ A1 3
D7(a1) 2
E8(b6) 3
(A7)

(3) 3
A7 2, 3 p > 5
D7(a2) 2
E6 3
A6+ A1 3, 5 p > 7
A6 2
D6(a2) 2
D5(a1)+ A2 2 p > 5
A5+ A1 2, 3 p > 5
A4+ A3 Any p > 7
D4+ A2 2
A4+ A2+ A1 7 p 6= 2, 5, 7
D5(a1)+ A1 p > 3
A5 2 p > 3
A4+ A2 2, 3 p > 5
A4+ 2A1 Any

2A3 Any p > 3
A4+ A1 Any

D4(a1)+ A2 2 p > 5
D4+ A1 p > 3

Table 1: continued
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g e p Strong Almost

A3+ A2+ A1 p > 3 p > 3
A3+ A2 2
D4(a1)+ A1 p > 3 p > 3
A3+ 2A1 Any p > 3
2A2+ 2A1 Any p > 5
A3+ A1 2 p > 3
2A2+ A1 Any p > 5
2A2 2 p > 3
A2+ 3A1 Any p > 3
A3 Any

A2+ 2A1 Any p > 3
A2+ A1 Any Any

4A1 Any p > 3
A2 Any

3A1 Any p > 3
2A1 Any Any

A1 Any Any

Table 1. Strongly reachable and almost reachable orbits for Strongly reachable and almost reachable
orbits for G2, F4, E6, E7 and E8.

other words, e satisfies the Panyushev condition if and only if it is reachable and not 73

listed in cases (A), (B) or (C) above. 74

It follows from Theorems 1.1 and 1.2 that the Panyushev and strong reachability 75

conditions are independent of good characteristic. 76

A nilpotent element e ∈ g is called rigid if it cannot be obtained by Lusztig–Spaltenstein 77

induction from a proper Levi subalgebra of g. Arguing as in [25, 3.2] one can reduce 78

proving Humphreys’ conjecture to the case where χ ∈ g∗ corresponds to a rigid nilpotent 79

element of g under a G-equivariant isomorphism g ∼= g∗. In the characteristic zero case, 80

all rigid nilpotent orbits in exceptional Lie algebras are classified by Elashvili [10] and his 81

computations are recently double-checked in [8] by using GAP. Since the way this is done 82

in [8] relies heavily on the characteristic 0 hypothesis, we present in § 2 a classification of 83

rigid nilpotent orbits in exceptional Lie algebras valid over any algebraically closed field 84

of good characteristic (at some point we have to rely on GAP as well). 85

Theorem 1.3. Let G be as in Theorem 1.1 and suppose p is a good prime for G. Then a 86

nilpotent orbit O is rigid in g if and only if so is the nilpotent orbit in gC which has the 87

same label as O. 88

Given m ∈ N we let g(m) denote the set of all elements of g whose adjoint G-orbit 89

has codimension m in g. A subset S ⊂ g is called a sheet of g if it coincides with an 90

irreducible component of one of the quasi-affine varieties g(m). According to a classical
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Orbit in E8 dim(ge/[ge, ge]) Orbit in E8 dim(ge/[ge, ge])

p = 2, 3, 5,> 7 p = 2, 3, 5,> 7
E8 12, 6, 3, 8 D5(a1)+ A2 5, 3, 1, 1
E8(a1) 12, 6, 9, 7 A5+ A1 5, 2, 1, 1
E8(a2) 12, 10, 8, 6 A4+ A3 5, 2, 2, 0
E8(a3) 12, 5, 7, 7 D5 4, 3, 3, 3
E8(a4) 14, 8, 6, 6 E6(a3) 4, 3, 3, 3
E7 11, 3, 4, 4 (D4+ A2)

(2) 3,−,−,−
E8(b4) 11, 6, 5, 5 D4+ A2 9, 2, 2, 2
E8(a5) 11, 6, 5, 5 A4+ A2+ A1 3, 1, 3, 1
E7(a1) 11, 5, 5, 5 D5(a1)+ A1 4, 1, 1, 1
E8(b5) 11, 7, 7, 7 A5 3, 1, 1, 1
(D7)

(2) 11,−,−,− A4+ A2 4, 1, 1, 1
D7 10, 2, 2, 2 A4+ 2A1 1, 1, 1, 1
E8(a6) 11, 6, 6, 6 D5(a1) 2, 2, 2, 2
E7(a2) 6, 6, 4, 4 2A3 9, 0, 0, 0
E6+ A1 6, 5, 2, 2 A4+ A1 1, 1, 1, 1
(D7(a1))

(2) 6,−,−,− D4(a1)+ A2 9, 2, 1, 1
D7(a1) 10, 4, 4, 4 D4+ A1 9, 1, 1, 1
E8(b6) 7, 5, 5, 5 (A3+ A2)

(2) 9,−,−,−
E7(a3) 8, 4, 4, 4 A3+ A2+ A1 9, 0, 0, 0
E6(a1)+ A1 3, 7, 3, 3 A4 2, 2, 2, 2
(A7)

(3)
−, 6,−,− A3+ A2 4, 2, 2, 2

A7 10, 3, 1, 1 D4(a1)+ A1 9, 0, 0, 0
D7(a2) 11, 3, 3, 3 A3+ 2A1 4, 0, 0, 0
E6 5, 3, 4, 4 2A2+ 2A1 4, 4, 0, 0
D6 10, 2, 2, 2 D4 3, 2, 2, 2
(D5+ A2)

(2) 10,−,−,− D4(a1) 3, 3, 3, 3
D5+ A2 10, 3, 3, 3 A3+ A1 2, 1, 1, 1
E6(a1) 6, 5, 4, 4 2A2+ A1 2, 2, 0, 0
E7(a4) 10, 4, 3, 3 2A2 1, 1, 1, 1
A6+ A1 10, 3, 1, 1 A2+ 3A1 2, 0, 0, 0
D6(a1) 10, 3, 3, 3 A3 1, 1, 1, 1
(A6)

(2) 10,−,−,− A2+ 2A1 1, 0, 0, 0
A6 5, 2, 2, 2 A2+ A1 0, 0, 0, 0
E8(a7) 10, 10, 10, 10 4A1 8, 0, 0, 0
D5+ A1 5, 2, 2, 2 A2 1, 1, 1, 1
E7(a5) 5, 6, 6, 6 3A1 2, 0, 0, 0
E6(a3)+ A1 5, 3, 3, 3 2A1 0, 0, 0, 0
D6(a2) 5, 3, 3, 3 A1 0, 0, 0, 0

Table 2: continued



Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic 7

Orbit in E7 dim(ge/[ge, ge]) Orbit in E7 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5

E7 10, 4, 7 (A5)
′′ 4, 3, 3

E7(a1) 10, 8, 6 A3+ A2+ A1 8, 1, 1
E7(a2) 11, 7, 5 A4 5, 3, 3
E7(a3) 13, 6, 6 (A3+ A2)

(2) 8,−,−
E6 11, 3, 4 A3+ A2 9, 2, 2
E6(a1) 13, 6, 5 D4(a1)+ A1 9, 2, 2
D6 9, 3, 3 D4 9, 2, 2
E7(a4) 9, 5, 4 A3+ 2A1 4, 1, 1
D6(a1) 9, 4, 4 D4(a1) 9, 3, 3
D5+ A1 10, 3, 3 (A3+ A1)

′ 4, 1, 1
(A6)

(2) 9,−,− 2A2+ A1 4, 2, 0
A6 10, 2, 2 (A3+ A1)

′′ 3, 2, 2
E7(a5) 10, 6, 6 A2+ 3A1 2, 1, 1
D5 10, 3, 3 2A2 3, 1, 1
E6(a3) 10, 3, 3 A3 3, 1, 1
D6(a2) 5, 3, 3 A2+ 2A1 3, 0, 0
D5(a1)+ A1 6, 2, 2 A2+ A1 1, 1, 1
A5+ A1 5, 3, 1 4A1 7, 0, 0
(A5)

′ 5, 1, 1 A2 1, 1, 1
A4+ A2 6, 4, 1 (3A1)

′ 8, 0, 0
D5(a1) 7, 3, 3 (3A1)

′′ 2, 1, 1
A4+ A1 2, 2, 2 2A1 2, 0, 0
D4+ A1 8, 1, 1 A1 0, 0, 0

Table 2. Codimension of [ge, ge] in ge for E7 and E8.

result of Borho [3] the sheets of gC are parametrised by the GC-conjugacy classes of pairs 91

(lC,O0) where lC is a Levi subalgebra of gC and O0 is a rigid nilpotent orbit in l. In § 2, we 92

give a comprehensive account of the theory of sheets in reductive Lie algebras g = Lie(G) 93

which satisfy the standard hypotheses (when G is simple and not of type Ar p−1 this is 94

equivalent to saying that p is a good prime for G). In particular, we show that every 95

sheet of g contains a unique nilpotent orbit and Borho’s classification of sheets remains 96

valid under our assumptions on G. 97

For any sheet S of a complex exceptional Lie algebra gC = Lie(GC), de Graaf and 98

Elashvili determine the weighted Dynkin diagram of the unique nilpotent orbit N (gC)∩S 99

and give a very nice representative e0 =
∑
γ∈0 eγ in N (gC)∩S compatible with the 100

combinatorial data that defines S. Here 0 = 0(S) is a subset in the root system 8 of gC 101

and eγ is a root vector of gC corresponding to γ ∈ 8. Each set 0 is linearly independent 102

in the vector space Q8 and the GC-orbit of e0 is independent of the choices of root 103

vectors eγ ∈ (gC)γ . There is a natural way to attach to 0 a graph D(0), and it turned
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Orbit in E6 dim(ge/[ge, ge]) Orbit in E6 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5
E6 5, 4, 6 D4(a1) 5, 5, 5
E6(a1) 7, 8, 5 A3+ A1 3, 4, 2
D5 4, 8, 4 2A2+ A1 3, 3, 0
E6(a3) 6, 6, 5 A3 2, 2, 2
D5(a1) 3, 5, 3 A2+ 2A1 1, 5, 1
A5 4, 3, 2 2A2 2, 3, 2
A4+ A1 5, 4, 2 A2+ A1 1, 3, 1
D4 3, 2, 2 A2 1, 1, 1
A4 3, 3, 3 3A1 2, 0, 0

2A1 1, 1, 1
A1 0, 0, 0

Orbit in F4 dim(ge/[ge, ge]) Orbit in F4 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5
F4 5, 3, 4 Ã2+ A1 4, 2, 1
F4(a1) 5, 5, 4 (B2)

(2) 7,−,−
F4(a2) 7, 4, 3 B2 6, 1, 1
(C3)

(2) 8,−,− A2+ Ã1 7, 2, 0
C3 4, 2, 2 Ã2 0, 1, 1
B3 5, 2, 2 (A2)

(2) 7,−,−
F4(a3) 7, 6, 6 A2 7, 1, 1
C3(a1)

(2) 8,−,− A1+ Ã1 4, 0, 0
C3(a1) 4, 3, 3 ( Ã1)

(2) 6,−,−
( Ã2+ A1)

(2) 8,−,− Ã1 0, 0, 0
A1 6, 0, 0

Orbit in G2 dim(ge/[ge, ge])

p = 2, 3,> 5
G2 3, 3, 2
G2(a1) 3, 3, 3
( Ã1)

(3)
−, 3,−

Ã1 2, 0, 1
A1 2, 2, 0

Table 3. Codimension of [ge, ge] in ge for G2, F4 and E6.

out (not surprisingly) that in many cases the graphs thus obtained are admissible in the104

sense of Carter; cf. [5] and the last column of the tables in [8].105

Since we have a natural analogue of e0 in g = Lie(G), where G is a simple algebraic106

k-group of the same type as GC, and the discussion above indicates that there is a natural107

bijection between the sheets of g and gC, one wonders whether a k-analogue of e0 still108

belongs to the sheet of g given by the same data as S. We verify that for exceptional109

groups this is indeed the case and from the validity of the representatives of [8] in good110

characteristic we then deduce the following:111
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Theorem 1.4. If G is an exceptional algebraic k-group and p = char(k) is a good prime 112

for G, then the distribution of nilpotent orbits amongst the sheets of g agrees with that 113

of gC and can be read off from the tables in [8]. 114

For many elements e0 our proof of Theorem 1.4 is computer-free. For example, this 115

is the case when D(0) is a disjoint union of Dynkin graphs. However, at the end of the 116

day we do rely on GAP (as did de Graaf and Elashvili) and we have decided to run 117

our programme on all elements e0 in order to obtain an independent confirmation of the 118

computations in [8]. At some point in the proof we have to show that the adjoint orbits of 119

e0 ∈ g and of its counterpart e0,C ∈ gC have the same Dynkin labels. We deduce this by 120

asking GAP to determine the Jordan block structure of each element ad e0 and a chosen 121

representative of each nilpotent orbit in ad g. Since it turned out, for G exceptional, that 122

the Jordan block decomposition of ad e identifies the orbit of e almost uniquely (except 123

when p = 7 where the Jordan block decompositions of nilpotent elements of type B3 and 124

C3 in Lie algebras of type F4 are the same), this enabled us to determine the Dynkin 125

label of e0 and finish the proof of Theorem 1.4. 126

2. Sheets and induced nilpotent orbits in good characteristic 127

2.1. The standard hypotheses 128

Let G be a connected reductive group over an algebraically closed field k of characteristic 129

p > 0 and g = Lie(G). Being the Lie algebra of an algebraic k-group, g carries a canonical 130

pth power map x 7→ x [p] equivariant under the adjoint action of G. Given x ∈ g we denote 131

by gx (respectively, Gx ), the centraliser of x in g (respectively, G). In order to apply [23, 132

Theorem A] to all Levi subalgebras of g we shall assume, unless otherwise specified, that 133

p is a good prime for G, the derived subgroup of G is simply connected and g admits an 134

(Ad G)-invariant non-degenerate symmetric bilinear form. We fix such a form and call it κ. 135

The above conditions on G are often referred as the standard hypotheses. If they hold 136

then for any x ∈ G we have the equality gx = Lie(Gx ) (the latter is sometimes expressed 137

by saying that the scheme-theoretic centraliser of e in G is smooth). One also knows that 138

if G satisfies the standard hypotheses then the centraliser of any semi-simple element 139

of the restricted Lie algebra g is a Levi subalgebra of g. It is worth remarking that any 140

simple, simply connected algebraic k-group of type other than Ar p−1, where p = char(k), 141

satisfies the standard hypotheses if and only if p is a good prime for G. 142

If G satisfies the standard hypotheses then so does any Levi subgroup L of G. It is 143

well known that up to conjugacy any such subgroup is associated with a subset of a 144

chosen basis of simple roots of G. Let 8 be root system of G with respect to a maximal 145

torus T of G and let 5 be a basis of simple roots in 8. Let t = Lie(T ). If L is the 146

standard Levi subgroup of G associated with a subset 50 of 5 and l = Lie(L) then t0 := 147

[l, l] ∩ t has dimension equal to dim t− |50| (this follows from the fact that the derived 148

subgroup of L is simply connected). On the other hand, the orthogonal complement 149

t⊥0 := {t ∈ t | κ(t, t0) = 0} contains z(l) which forces dim z(l) 6 dim t⊥0 = dim t− |50|. Since 150

Lie(Z(L)) ⊆ z(l) has dimension equal to dim t− |50| this shows that z(l) = Lie(Z(L)) for 151

any Levi subgroup L of G. Furthermore, if 50 has no components of type Ar p−1 then 152

the structure theory of reductive Lie algebras yields z([l, l]) = 0 implying l = [l, l]⊕ z(l). 153
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Let G1, . . . ,Gs be the simple components of G and gi = Lie(Gi ). Let Ti = T ∩Gi and154

ti = Lie(Ti ). If Gi is not of type Ar p−1 then it is well known that gi is a simple Lie algebra155

and the restriction of κ to gi is non-degenerate. If Gl has type Am(l) with p|(m(l)+ 1)156

then gl ∼= slm(l)+1 as restricted Lie algebras and the restriction of κ to gl coincides with157

a non-zero scalar multiple of the trace form, κ ′, of the standard (vector) representation158

of Gl . Let α1, . . . , αm(l) be a basis of simple roots of the root system of type Am(l) in159

Bourbaki’s numbering. Then tl has basis h1, . . . , hm(l) such that αi (hi ) = 2 = κ ′(hi , hi )160

for all i and we also have that κ ′(hi , hi+1) = −1 for 1 6 i 6 m(l)− 1, κ ′(hi , h j ) = 0 for j 6∈161

{i − 1, j, i + 1}, and hi = [eαi , e−αi ] for some root vectors e±αi ∈ gl with κ ′(eαi , e−αi ) = 1.162

Suppose κ|gl = b · κ ′ where b = b(l) ∈ k×. Since the restriction of κ to t is non-degenerate,163

there exists an element h0 ∈ t orthogonal to all gi with i 6= m(l) and such that κ(h0, h1) =164

b and κ(h0, hi ) = 0 for 2 6 i 6 m(l). In general, h0 is not unique and we only know that165

κ(h0, h0) = a for some a = a(l) ∈ k.166

Let Cn denote the Cartan matrix of the root system of type An with entries reduced167

modulo p, so that det(Cn) = n+ 1(mod p). Then the restriction of κ to the k-span of168

h0, h1, . . . , hm(l) is represented by the matrix169

A =



a b 0 · · · 0 0
b 2b −b · · · 0 0
0 −b 2b · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 2b −b
0 0 0 · · · −b 2b


170

of order m(l)+ 1 which is non-singular because det(A) = abm(l) det(Cm(l))− bm(l)+1
171

det(Cm(l)−1) = bm(l)+1
6= 0 by the first row Laplace expansion. In particular, this shows172

that h0, h1, . . . , hm(l) are linearly independent. The g-invariance of κ yields173

b = κ(h0, h1) = κ([h0, eα1 ], e−α1) = (dα1)e(h0)κ(eα1 , e−α1) = b · (dα1)e(h0),174

0 = κ(h0, hi ) = κ([h0, eαi ], e−αi ) = (dαi )e(h0)κ(eα1 , e−α1), 2 6 i 6 m(l).175
176

It follows that [h0, e±α1 ] = ±eα1 and [h0, e±αi ] = 0 for 2 6 i 6 m(l).177

We now set g̃l := kh0⊕ gl if Gl is of type Ar p−1 and g̃l := gl otherwise. It is immediate178

from above discussion that if Gl is of type Ar p−1 then g̃l is an (Ad G)-stable ideal179

of g isomorphic to glr p as an abstract Lie algebra and the restriction of κ to g̃l is180

non-degenerate. Moreover, the adjoint action of Gl on g̃l is induced by that of GLr p. Since181

κ|g̃l is non-degenerate for all l we can attach h0’s to different components of type Ar p−1 in182

such a way that they form an orthogonal set. Note also that the condition κ(h0, gi ) = 0183

forces [h0, gi ] = 0 due to the g-invariance of κ. We thus deduce that g = g̃1⊕ · · ·⊕ g̃s ⊕ z184

where z is a central subalgebra of g contained in t and all direct summands in this185

decomposition are (Ad G)-stable (in [13, 2.9] this result is mentioned without a proof).186

Of course, the above has bearing on the description of the sheets of g which turns out187

to be the same as in the characteristic 0 case. Since we shall require some rather detailed188

results on sheets of g and they are hard to find in the literature under our assumption189

on G, some short proofs will be given below.190
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2.2. Sheets and decomposition classes 191

Given m ∈ Z>0 we denote by g(m) the set of all x ∈ g for which dim Gx = m. Each subset 192

g(m) is locally closed in the Zariski topology of g and the irreducible components of the 193

g(m)’s are called the sheets of g. 194

Remark 2.1. In prime characteristic there are two meaningful ways to define sheets of g 195

and g∗. Given m ∈ Z>0 we let g[m] (respectively, g∗
[m]) denote the subset of g (respectively, 196

g∗) consisting of all elements whose stabiliser in g has dimension m. We call the irreducible 197

components of the quasi-affine varieties g[m] (respectively, g∗
[m]) the infinitesimal sheets 198

of g (respectively, g∗). All infinitesimal sheets are G-stable, quasi-affine varieties. If G 199

satisfies the standard hypotheses all these notions coincide, but in general there will be 200

some subtle differences well worth investigating. We call a G-orbit g (respectively, g∗) 201

infinitesimally isolated if it forms a single infinitesimal sheet in g (respectively, g∗). The 202

problem of classifying all infinitesimally isolated nilpotent orbits in reductive Lie algebras 203

is interesting and wide open at the moment. As an example, if k has characteristic p and 204

g = pglp then the regular nilpotent orbit Oreg in g coincides with g[p] and therefore forms a 205

single infinitesimal sheet of g. This can be deduced from the following elementary result of 206

linear algebra: if X, Y ∈ glp and [X, Y ] = Ip then both X and Y have a single Jordan block 207

of size p and hence are mapped by the canonical homomorphism glp → g to a commuting 208

pair of elements in Oreg. So, in contrast with the classical case the regular nilpotent orbit 209

in pglp is infinitesimally isolated. On the other hand, if g = slp then g[p] consists of all 210

traceless p× p matrices X for which k p is an indecomposable k[X ]-module. From this it 211

follows that g[p] is a single infinitesimal sheet of g, but Oreg ⊂ g[p] is not infinitesimally 212

isolated in g. In fact, there are no infinitesimally isolated orbits in g = slp at all, because 213

Ip ∈ g and all sheets of g are invariant under the affine translations x 7→ x +α Ip where 214

α ∈ k. Finally, we mention that the study of infinitesimal sheets in g∗ finds interesting 215

applications in the modular representation theory of reductive Lie algebras; see [24, 216

Remark 5.6]. 217

Remark 2.1 indicates that one cannot expect a uniform behaviour of sheets for all 218

reductive Lie algebras over algebraically closed fields (even in good characteristic) and 219

partially justifies the assumptions we imposed on g. 220

If l is a Levi subalgebra of g then its centre z(l) is a toral subalgebra of g and l = cg(z(l)). 221

We denote by z(l)reg the set of all t ∈ z(l) such that l = cg(t). This is a non-empty Zariski 222

open subset of z(l). Given a nilpotent element e0 ∈ l we set 223

D(l, e0) := (Ad G) · (e0+ z(l)reg) 224

and we call D(l, e) the decomposition class of g associated with the pair (l, e0). If 225

x = xs + xn is the Jordan decomposition of x ∈ D(l, e0) then xs (respectively, xn) is 226

G-conjugate to an element of z(l)reg (respectively, e0). It follows that dim gx = dim le0 227

for every such x . Since there are finitely many nilpotent L-orbits in l = Lie(L) and the 228

number of G-conjugacy classes of Levi subalgebras of g is finite, g contains finitely many 229

decomposition classes. Each of them is an irreducible, locally closed subset of g contained 230

in one of the g(r)’s and hence lies in a sheet of g. As the sheets are irreducible and their 231

union is the whole of g, there can be only finitely many, and so every sheet contains a 232

unique open decomposition class of g. 233
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Remark 2.2. Since the number of nilpotent orbits is finite in all characteristics, the above234

discussion is essentially valid for all reductive Lie algebras over algebraically closed fields.235

However, in bad characteristic the notion of a decomposition class in g will involve the236

centraliser in G of a semi-simple element of g which is not always a Levi subgroup of G.237

In general, the connected component of that group is G-conjugate to a subgroup of G238

obtained by base change from some standard pseudo-Levi subgroup of GC.239

2.3. The Zariski closure of a decomposition class240

Borho’s classification of sheets of g is based on an important result of Borho–Kraft which241

provides a description of the Zariski closure of a decomposition class in g; see [1, Theorem242

5.4]. Since a modular version of this result valid under our assumptions on G seems to243

be missing in the literature, a short proof will be given below.244

Let D(l, e0) be a decomposition class of g and let λ ∈ X∗(L) be an optimal cocharacter245

for e0 ∈ l as defined in [23, 2.2]. We adopt the notation of [23] and write l(λ, i) for246

the i-weight space of the 1-dimensional torus λ(k×) acting on l. By construction, e0 ∈247

l(λ, 2). Given k ∈ Z we set l(λ,> k) :=
⊕

i>k l(λ, i). Then pl(λ) := l(λ,> 0) is the optimal248

parabolic subalgebra of e0 ∈ l. We write PL(λ) for the corresponding parabolic subgroup249

of L. Note that PL(λ) = ZL(λ)Ru(PL) where Lie(ZL(λ)) = l(λ, 0) and Lie(Ru(PL(λ))) =250

l(λ,> 1). As explained in [23, p. 346], there exists a non-zero regular function ϕ on l(λ, 2)251

semi-invariant under the adjoint action of ZL(λ) and such that the orbit (Ad ZL(λ)) · e0252

coincides with the principal open subset l(λ, 2)ϕ = {x ∈ l(λ, 2) | ϕ(x) 6= 0} of l(λ, 2).253

Let g = n−⊕ l⊕ n+ be a parabolic decomposition of g associated with the Levi254

subalgebra l. Then there exists a parabolic subgroup P = L N+ such that N+ = Ru(P)255

and n+ = Lie(N+). We set P(l, e0) := PL(λ)N+, a parabolic subgroup of G contained in256

P. It is easy to see that Lie(P(l, e0)) = pl(λ)⊕ n+ and257

r(l, e0) := z(l)⊕ l(λ,> 2)⊕ n+258

is a solvable ideal of Lie(P(l, e0)) invariant under the adjoint action of P(λ, e0). Identifying259

direct sums with direct products we put260

r(l, e0)reg := z(l)reg⊕ l(λ, 2)ϕ ⊕ l(λ,> 3)⊕ n+.261

By construction, r(l, e0)reg is a Zariski open subset of r(l, e0) invariant under the adjoint262

action of P(l, e0). We mention for further references that z(l) = Lie(ZG(L)) and there263

exists a connected algebraic subgroup R(l, e0) of G with a maximal torus ZG(L)◦ such264

that r(l, e0) = Lie(R(l, e0)).265

Theorem 2.3. In the above notation, D(l, e0) = (Ad G) · r(l, e0)reg and the Zariski closure266

of D(l, e0) in g coincides with (Ad G) · r(l, e0).267

Proof. Let z ∈ z(l)reg. Then (Ad PL(λ)) · (z+ e0) = z+ (Ad PL(λ)) · e0. Since [pl(λ), e0] =268

l(λ,> 2) by [23, Theorem 2.3(iv)] and the orbit (Ad Ru(PL(λ))) · e0 ⊆ e0+ l(λ,> 3) is269

Zariski closed by Rosenlicht’s theorem [27, Theorem 2], the equality (Ad Ru(PL(λ))) · e0 =270

e0+ l(λ,> 3) must hold. It implies that271

(Ad PL(λ)) · (z+ e0) = z+ (Ad ZL(λ)) · (e0+ l(λ,> 3)) = z+ l(λ, 2)ϕ + l(λ,> 3).272
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As z ∈ z(l)reg and e0 is a nilpotent element of l, it must be the endomorphism 273

ad(z+ e0) acts invertibly on n+. As (Ad N+) · (z+ e0) ⊆ z+ e0+ n+, another application 274

of Rosenlicht’s theorem yields (Ad N+) · (z+ e0) = z+ e0+ n+. It follows that 275

(Ad P(l, e0)) · (z+ e0) = (Ad PL(λ)) · ((Ad N+) · (z+ e0)) 276

= (Ad PL(λ)) · (z+ e0+ n+) = n++ (Ad PL(λ)) · (z+ e0) 277

= z+ l(λ, 2)ϕ + l(λ,> 3)+ n+. (1) 278

As this holds for all z ∈ z(l)reg we now deduce that (Ad P(l, e0)) · (z(l)reg+ e0) = r(l, e0)reg 279

and D(l, e0) = (Ad G) · r(l, e0)reg. As r(l, e0)reg is Zariski open in r(l, e0), the Zariski closure 280

of D(l, e0) contains (Ad G) · r(l, e0). Since the latter set is the image of the action morphism 281

G×P(l,e0) r(l, e0) −→ g, (g, r) 7→ (Ad g) · r, 282

and P(l, e0) is a parabolic subgroup of G, the set (Ad G) · r(l, e0) is Zariski closed in g; see 283

[13, Lemma 8.7(c)], for example. Since (Ad G) · r(l, e0)reg is Zariski dense in (Ad G) · r(l, e0) 284

we conclude that D(l, e0) = (Ad G) · r(l, e0), thereby completing the proof. 285

Remark 2.4. Since λ ∈ X∗(T ) is an optimal cocharacter for e0 ∈ N (l) in the sense of 286

the Kempf–Rousseau theory, it follows from the proof of Theorem 2.3 that for any x ∈ 287

r(l, e0)reg the inclusion Gx ⊂ P(l, e0) holds. In the case where char(k) = 0, this was first 288

observed in [1, Zuzatz 5.5(e)]. 289

2.4. Restricting the adjoint quotient map to a decomposition class 290

Let t = Lie(T ) be a maximal toral subalgebra of g containing z(l) and let W = NG(T )/T 291

be the Weyl group of G. Let n = dim G and ` = rk G. Under our assumptions on G the 292

invariant ring k[g]G is freely generated by ` homogeneous regular functions f1, . . . , f` 293

and the restriction map k[g]� k[t] induces a natural isomorphism of invariant rings 294

j : k[g]G → k[t]W . Furthermore, the categorical quotient morphism F : g→ g//G ∼= t/W 295

sending any x ∈ g to
(

f1(x), . . . , fl(x)
)
∈ A` is flat, surjective, and all its fibres are 296

irreducible complete intersections of dimension n− ` in g consisting of finitely many 297

G-orbits. If x ∈ g then f (x) = f (xs) for every f ∈ k[g]G , and for every ξ ∈ A` there 298

is a unique orbit W · t ⊂ t such that the fibre F−1(ξ) consists of all x ∈ g such that 299

(Ad g) · xs = t for some g ∈ G. The special fibre F−1(0) coincides with the nilpotent cone 300

N (g) of g. All these results are well known and can be found in [13, § 7], for example. 301

In this subsection we are concerned with the restriction of the adjoint quotient 302

morphism F to the Zariski closure of a decomposition class. 303

Proposition 2.5. Let F̄ denote the restriction of the adjoint quotient morphism F : g→ 304

t/W to D(l, e0). Then all irreducible components of the fibres of F̄ have dimension n− 305

dim le0 , the special fibre F̄−1(0) = D(l, e0)∩N (g) is irreducible, and dimD(l, e0) = n− 306

dim le0 + dim z(l). 307

Proof. To ease notation we put n(l, e0) = dimD(l, e0). Let X be a fibre of F̄ and 308

x ∈ X . By Theorem 2.3, we may assume without loss that x ∈ r(l, e0). Since r(l, e0) = 309

Lie(R(l, e0)) and ZG(L)◦ is a maximal torus of R(l, e0), the standard fact in the theory 310
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of algebraic groups that maximal tori are conjugate yields that the semi-simple part of311

x is R(l, e0)-conjugate to an element of z(l) = Lie(ZG(L)◦); see [2, 11.8]. In view of the312

discussion above this implies that313

X =
⋃

t∈(W ·xs )∩z(l)

(Ad G) · (t + l(λ,> 2)+ n+ ∩ gt ). (2)314

(As t ∈ z(l) we have l(λ,> 2) ⊂ gt .) As z(l) ⊂ D(l, e0) this implies that F̄ maps D(l, e0)315

onto z(l)/W , the image of z(l) in t/W . Since W is a finite group the quotient morphism316

t→ t/W is finite, hence closed and has finite fibres. So z(l)/W is a closed subset of t/W317

of dimension d := dim z(l). It follows that the minimal dimension of the fibres of F̄ equals318

n(l, e0)− d.319

On the other hand, it follows from [9, Theorem 14.8(a)] that the union of those320

irreducible components of the fibres of F̄ that have dimension > n(l, e0)− d is Zariski321

closed in D(l, e0). That union cannot coincide with D(l, e0) by the preceding remark.322

Since all irreducible components of the fibres of F̄ contain open G-orbits and D(l, e0)323

is dense in D(l, e0), there exists z ∈ z(l)reg such that n− dim gz+e0 = n(l, e0)− d. Since z324

is the semi-simple part of z+ e0 we have the equality gz+e0 = le0 . So dim gz+e0 = dim le0325

implying n(l, e0) = n− dim le0 + d. This proves the last statement of the proposition.326

If one of the fibres of F̄ has an irreducible component of dimension > n(l, e0)−327

d = n− dim le0 , then by the same token it contains an open G-orbit of the same328

dimension and hence an element v ∈ D(l, e0) such that dim gv < dim le0 . Since the set329

{x ∈ D(l, e0) | dim gx > dim le0} is Zariski closed by Chevalley’s semi-continuity theorem330

and dim gx = dim le0 for all x ∈ D(l, e0) it follows that dim gx > dim le0 for all x ∈ D(l, e0).331

This contradiction shows that all irreducible components of the fibres of F̄ have the same332

dimension.333

If X is the special fibre of F̄ , then xs = 0 and (2) gives334

D(l, e0)∩N (g) = (Ad G) · (l(λ,> 2)+ n+). (3)335

Therefore, the variety D(l, e0)∩N (g) is irreducible which completes the proof.336

Remark 2.6. If S is a sheet of g whose open decomposition class equals D(l, e0) then by337

maximality S must coincide with the set of all G-orbits of maximal dimension contained338

in D(l, e0). Therefore, Proposition 2.5 implies that every sheet of g contains a unique339

nilpotent orbit. Since W is a finite group, the quotient morphism t→ t/W is open and340

closed. As z(l)reg is open in z(l) ⊆ t, the set z(l)reg/W is open in z(l)/W , a closed subset of341

t/W . So the proof of Proposition 2.5 also shows that any decomposition class D(l, e0) =342

F̄−1(z(l)reg/W
)

of g is Zariski open in its closure. It is worth mentioning that all G-stable343

pieces in the union (2) are Zariski closed in g. This follows from [13, Lemma 8.7(c)]344

(see the end of the proof of Theorem 2.3 for a similar argument). If D(l, e0) is the open345

decomposition class of a sheet S and O is the nilpotent orbit contained in S then it follows346

from Proposition 2.5 that dim z(l) = dimS − dimO. This number is called the rank of S347

and denoted rk(S). It is immediate from Proposition 2.5 that under our assumptions on348

G a sheet S of g is a single nilpotent G-orbit if and only if rk(S) = 0.349
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2.5. Induced nilpotent orbits and sheets 350

Given x ∈ g we denote by O(x) the adjoint G-orbit of x . If x lies in a Levi subalgebra 351

l = Lie(L) of g we set OL(x) := (Ad L) · x . 352

Combining Theorem 2.3 with Proposition 2.5, we observe that the unique open 353

G-orbit O(e) in D(l, e0)∩N (g) intersects densely with l(λ, 2)ϕ ⊕ l(λ,> 3)⊕ n+ and 354

has the property that dim ge = dim le0 . As l(λ, 2)ϕ ⊕ l(λ,> 3) = (Ad PL(λ)) · e0 by our 355

choice of λ we see that O(e) intersects densely with OL(e0)+ n+. In other words, the 356

orbit O(e) coincides with Indgl OL(e0), the nilpotent G-orbit obtained from OL(e0) by 357

Lusztig–Spaltenstein induction. 358

As in the characteristic zero case, induction of nilpotent orbits is transitive in the 359

following sense: if L , L ′ are Levi subgroups of G with L ⊂ L ′ and e0 is a nilpotent elements 360

of l = Lie(L) then 361

Indgl OL(e0) = Indgl′(Indl
′

l OL(e0)) (4) 362

where l′ = Lie(L ′). In order to see this it suffices to note that both orbits in (4) have the 363

same dimension, the Zariski closure of the decomposition class (Ad L ′) ·
(
e0+ z(l)reg

)
in l′ 364

contains z(l′)reg+ e for some e ∈ Indl
′

l OL(e0), and z(l′) ⊂ z(l). The statement then follows 365

from Proposition 2.5. 366

Remark 2.7. Since the decomposition class D(l, e0) is evidently independent of the choice 367

of a triangular decomposition of g containing l, the above discussion implies that induction 368

of orbits is independent of the choice of a parabolic subalgebra of g containing l. This 369

was first observed by Lusztig–Spaltenstein for unipotent classes in reductive groups over 370

algebraically closed fields of arbitrary characteristic; see [17, Theorem 2.2]. The argument 371

in [17] relied on the theory of complex representations of finite groups of Lie type and 372

some results of Mizuno. More recently, Lusztig returned to this subject and found another 373

proof of the fact that induction is independent of the choice of a parabolic. His argument 374

is similar to ours but still works in the setting of a reductive group, possibly disconnected; 375

see [18, Lemma 10.3(a)]. In principle, one could use a Bardsley–Richardson projection 376

π : G → g from [4] to obtain a Lie algebra analogue of [17, Theorem 2.2]. Indeed, in our 377

situation π provides a nice G-equivariant isomorphism between the unipotent variety 378

of G and N (g). However, to the best of our knowledge this line of reasoning was never 379

carried out in the literature under our assumption on G and we felt that arguing in the 380

spirit of [1] was more relevant for our purposes (see e.g., Remark 2.4). 381

A nilpotent element e0 in a Levi subalgebra l = Lie(L) of g is called rigid if the 382

orbit OL(e0) cannot be obtained by Lusztig–Spaltenstein induction from a proper Levi 383

subalgebra of l. 384

Theorem 2.8. If S is a sheet of g and D(l, e0) is the open decomposition class of S, 385

then e0 is rigid in l and the unique nilpotent orbit in S has the form O = Indgl OL(e0). 386

Moreover, dim gx = dim le0 for any x ∈ O. Conversely, for any pair (l, e0), where l is a 387

Levi subalgebra of g and e0 is a rigid nilpotent element of l, there is a unique sheet of g 388

whose open decomposition class equals D(l, e0). 389
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Proof. Let D(l′, e′0) be the open decomposition class of S and suppose for a contradiction390

that OL ′(e′0) = Indl
′

l OL(e0) for some proper Levi subalgebra l of l′ (here L , L ′ are391

Levi subgroups of G with L ⊂ L ′ such that l′ = Lie(L ′) and l = Lie(L)). Note that392

z(l′) ⊂ z(l) and (Ad L ′) · (e0+ z(l)reg) lies in D(l, e0). Let l′ = n′−⊕ l⊕ n′+ be a triangular393

decomposition of l′. Replacing G and g, respectively, by L ′ and l′ in the proof of394

Theorem 2.3 and applying (1) to any z ∈ z(l)reg, it is straightforward to see that D(l, e0)395

contains z(l)reg+OL(e0)+ n′+ and hence z(l)reg+ e′0. But then D(l, e0) contains z(l)+ e′0.396

As z(l′)reg ⊂ z(l) it follows that S = D(l′, e′0) lies in D(l, e0). Combining Proposition 2.5397

with (4) and our discussion at the beginning of this subsection we see that D(l′, e′0) and398

D(l, e0) share the same nilpotent orbit O = Indgl OL(e0). On the other hand, Proposition399

2.5 gives400

dimS = dimD(l′, e′0) = n− dim l′e′0
+ dim z(l′) = n− dim le0 + dim z(l′)401

< n− dim le0 + dim z(l) = dimD(l, e0)402

contrary to the fact that S is an irreducible component of g(m) where m = n− dim le0 .403

This contradiction shows that l′ = l and e′0 = e0 is rigid in l.404

If O is the nilpotent orbit of S then dimO = n− le0 by Proposition 2.5. Then dim gx =405

dim le0 for all x ∈ O because gx = Lie(Gx ).406

Finally, suppose e′0 is a rigid nilpotent element in a Levi subalgebra l′ of g and put407

s = dim l′e′0
. Let S ′ be the union of all adjoint G-orbits of dimension n− s contained in408

D(l′, e′0). It follows from Chevalley’s semi-continuity theorem that S ′ is a Zariski open409

subset of D(l′, e′0) (see the end of the proof of Proposition 2.5 for a similar argument).410

Since D(l′, e′0) is irreducible, so is the quasi-affine variety S ′. We claim that S ′ is a sheet411

of g. Indeed, suppose the contrary. Then S ′ ( S̃ for some sheet S̃ of g contained in412

g(n−s). Let D(l, e0) be the open decomposition class of S̃. We may assume without loss413

of generality that both l′ and l are standard Levi subalgebras of g, so that the maximal414

toral subalgebra t = Lie(T ) ⊆ l∩ l′ of g contains both z(l) and z(l′).415

Let z ∈ z(l′)reg. Since S̃ contains D(l′, e′0) and the Zariski closure of S̃ coincides with416

D(l, e0) which, in turn, lies in g(n−s), the G-orbit O(z+ e′0) is open in one of the fibres417

of the morphism F̄ : D(l, e0)→ t/W . In view of (2) it coincides with (Ad G) ·
(
t + V )418

for some t ∈ (W · z)∩ z(l) and some large subset V of l(λ,> 2)+ n+ ∩ gt which we are419

now going to describe. Since both l and n+ ∩ gt are centralised by t , combining (2) with420

the inclusion D(l, e0) ⊆ g(n−s) one observes that V consists of all elements in l(λ,> 2)+421

n+ ∩ gt whose centraliser in gt has dimension s. Furthermore, V is Zariski open in l(λ,>422

2)+ n+ ∩ gt .423

Write z+ e′0 = (Ad g) · (t + v) where g ∈ G and v ∈ V and choose nw ∈ NG(T ) such that424

(Ad nw) · z = t . Since [t, v] = 0 = [z, e′0] we have that (Ad g) · t = z and (Ad g) · v = e′0.425

Then gnw ∈ Gz . Since z ∈ z(l′)reg, and G satisfies the standard hypotheses, applying [31,426

3.19, 4.2] yields Gz = L ′. Set v′ := (Ad n−1
w ) · v. Since e′0 = (Ad gnw) · v′, we now deduce427

that v′ ∈ OL ′(e′0). On the other hand, the concluding remark of the preceding paragraph428

in conjunction with (2) shows that v lies in the G t -orbit which intersects densely with
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l(λ,> 2)+ n+ ∩ gt ⊂ gt . Since L ′ = n−1
w G t nw, it follows that OL ′(e′0) intersects densely 429

with (Ad n−1
w ) ·

(
l(λ,> 2)+ n+ ∩ gt )

)
⊂ gz = l′. 430

Since the orbit OL ′(e′0) is rigid in l′ this yields n+ ∩ gt = 0 (otherwise OL ′(e′0) would 431

be induced from (Ad n−1
w )(l), a proper Levi subalgebra of l′). Since t ∈ z(l) and gt = 432

(n− ∩ gt )⊕ l⊕ (n+ ∩ gt ) we now obtain that t ∈ z(l)reg. Since t ∈ W · z and Gz = L ′ it 433

follows that dim z(l) = dim z(l′) and 434

dimS ′ = dimD(l′, e′0) = n− s+ dim z(l′) = n− s+ dim z(l) = dimD(l, e0) = dim S̃ 435

by Proposition 2.5. This contradiction shows that S ′ = S̃ is a sheet of g thereby 436

completing the proof. 437

Remark 2.9. Theorem 2.8 implies that the sheets of g are in 1–1 correspondence with the 438

G-conjugacy classes of pairs (L ,OL) where L is a Levi subgroup of G and OL is a rigid 439

nilpotent L-orbit in Lie(L). In the characteristic zero case, this is a well-known result of 440

Borho; see [3]. 441

3. Classifying the rigid orbits in exceptional Lie algebras 442

3.1. Some historical remarks 443

In order to complete the picture outlined in § 2 one needs to classify all rigid orbits in the 444

reductive Lie algebras g = Lie(G). Of course, the general case reduces quickly to the case 445

where the group G is simple, and here the problem has a long history. All rigid nilpotent 446

orbits in Lie algebras of classical groups are described by Kraft [15] in type A and by 447

Kempken [14] and Spaltenstein [28] in types B,C,D. If g = sln then {0} is the only rigid 448

orbit in g, whilst for g = son or spn the classification is given in terms of partitions of 449

n. More precisely, it is proved in [15] that a nilpotent element in gln corresponding to a 450

partition λ of n is Richardson in a parabolic subalgebra of gln associated with the dual 451

partition λt . The arguments in [14] rely on Kraft’s result in a crucial way. 452

Although the main theorems in [14] are stated under the assumption that the base field 453

has characteristic 0, the proofs are based on linear algebra and the same combinatorial 454

description is valid in any good characteristic, i.e., for p 6= 2. In characteristic 2, nilpotent 455

orbits and sheets in son and spn were studied by Hesselink [12] and by Spaltenstein 456

[29] who conjectured that every sheet in a reductive Lie algebra over an algebraically 457

closed field of arbitrary characteristic should contain a unique nilpotent orbit. Of course, 458

confirming this would imply that the number of nilpotent orbits in g is finite. The 459

main results of [29] show that the conjecture holds for G classical, but the general case 460

remains open in bad characteristic. We mention that Spaltenstein’s conjecture makes 461

sense in the context of infinitesimal sheets and their coadjoint analogues (see Remark 2.1) 462

and confirming it would enable one to prove a natural analogue of the Kac–Weisfeiler 463

conjecture in arbitrary characteristic; see [24, 5.6] for detail. 464

For G exceptional, the rigid orbits in N (g) were first classified by Elashvili [10] under 465

the assumption that char(k) = 0. Furthermore, for any orbit O ⊂ N (g), Elashvili lists all 466

sheets of g containing O. This important result is presented in [10] in the form of tables 467

which were recently double-checked in [8] by using computational methods. 468
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3.2. Odd nilpotent elements469

It was first observed by Lusztig–Spaltenstein that if char(k) is 0 or large for G then many470

nilpotent orbits in g can be induced in a very natural way; see [17, Proposition 1.9]. The471

goal of this subsection it to show that this result is still valid under the assumption that472

G satisfies the standard hypotheses.473

Let 8 be the root system of G with respect to a maximal torus T of G and let 5 be474

a basis of simple roots in 8. Each orbit O ⊂ N (g) is uniquely labelled by its weighted475

Dynkin diagram D which assigns to each α ∈ 5 an integer D(α) ∈ {0, 1, 2}. According476

to [23, 2.3, 2.4], each such D gives rise to a cocharacter λ = λD ∈ X∗(T ∩DG) which477

is optimal in the sense of the Kempf–Rousseau theory for every element of a principal478

Zariski open subset of g(λ, 2). The subset, denoted earlier by g(λ, 2)ϕ , coincides with the479

intersection of O with g(λ, 2). A nilpotent orbit O = O(D) is said to be odd if D(α) ∈ {0, 1}480

for all α ∈ 5.481

Given a weighted Dynkin diagram D we let 5′ = 5′(D) be the set of all α ∈ 5 such482

that D(α) ∈ {0, 1} and denote by L = L(D) the standard Levi subgroup of G generated by483

T and all unipotent root subgroups Uα with α ∈ 5′. Given a non-empty subset 50 ⊆ 5484

and a weighted Dynkin diagram D0 of the standard Levi subalgebra of g associated with485

50, we define D̃0 : 5→ {0, 1, 2} by setting D̃0(α) = D0(α) for all α ∈ 50 and D̃0(α) = 2486

for all α ∈ 5 \50.487

Proposition 3.1. The following are true:488

(i) If the orbit O = O(D) is not odd then l = Lie(L(D)) is a proper Levi subalgebra of489

g and O(D) = Indgl OL(e0) for some nilpotent element e0 ∈ l.490

(ii) Let L ′ be the standard Levi subgroup of G associated with a non-empty subset 50491

of 5 and let D0 : 50 → {0, 1, 2} be the weighted Dynkin diagram of a nilpotent orbit in492

l′ = Lie(L ′). If D̃0 is the weighted Dynkin diagram of a nilpotent orbit in g then O(D̃0) =493

Indgl′ OL ′(D0).494

Proof. It is clear that if D(α) = 2 for some α ∈ 5 then l is a proper Levi subalgebra495

of g. Set 5( j) := {α ∈ 5 | D(α) = j} where j ∈ {0, 1, 2}. If 5 = {α1, . . . , α`} and β =496 ∑`
i=1 miαi , where mi ∈ Z, then we put νi (β) := mi for all 1 6 i 6 `. From the definition497

of λ = λD it follows that g(λ, i) = l(λ, i) for i = 0, 1 and g(λ,±2) = l(λ,±2)⊕m(λ,±2)498

where m(λ,±2) is the k-span of all root vectors eβ ∈ Lie(Uβ) with νi (β) = 1 for i ∈ 5(2)499

and ν(β) = 0 for i ∈ 5(1).500

Let e ∈ g(2, λ)ϕ and write e = e0+ e1 with e0 ∈ l(λ, 2) and e1 ∈ m(λ, 2). Since ge ⊂501

g(λ,> 0) and [e, g(λ,> 0)] = g(λ,> 2) by [23, Theorem 2.3], we have that502

dim ge = dim g(λ, 0)+ dim g(λ, 1) = dim l(λ, 0)+ dim l(λ, 1).503

Therefore, in order to prove the first part of the proposition it suffices to show504

that dim le0 = dim l(λ, 0)+ dim l(λ, 1). Indeed, in that case the orbit Indgl OL(e0) would505

intersect densely with g(λ,> 2) and hence coincide with O(D).506

Since 8 = 8+(5)t8−(5) it is straightforward to see that
[
l(λ,−i),m(λ, 2)

]
= 0 for507

all i ∈ Z>0. It follows that the restrictions of ad e and ad e0 to l(λ,−i) coincide for all508

such i . Since ge ⊂ g(λ,> 0) by [23, Theorem A] this entails le0 ⊆ l(λ,> 0).509
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It is well known (and easily seen) that the restriction of κ to l is non-degenerate and the 510

subspaces l(λ,±i) are dual to each other with respect to κ. Since le0 coincides with the 511

orthogonal complement of [e0, l] with respect to the restriction of κ to l and le0 ⊆ l(λ,> 0) 512

by the above, the map ad e0 : l(λ, i)→ l(λ, i + 2) must be surjective for all i ∈ Z>0. From 513

this it is immediate that dim le0 = dim l(λ, 0)+ dim l(λ, 1) proving (i). 514

To prove (ii), we let λ′ and λ be the cocharacters in X∗(T ) attached to D0 and 515

D̃0 at the beginning of this subsection. It is immediate from the definition of D̃0 516

that l′(λ′, 2) ⊆ g(λ, 2) and g(λ, i)∩ l′ = l′(λ′, i) for i = 1, 2. Let V be the T -stable 517

subspace of g(λ, 2) complementary to l′(λ′, 2). Being an open map the first projection 518

pr1 : g(λ, 2) = l′(λ′, 2)⊕ V � l′(λ′, 2) takes the Zariski open subset g(λ, 2)ϕ of g(λ, 2) onto 519

a dense subset of l′(λ′, 2). In view of [23, Theorem 2.3], this implies that there exists 520

e′ ∈ OL ′(D0)∩ l
′(λ′, 2) such that e′+ v ∈ g(λ, 2)ϕ for some v ∈ V . As D̃0 is a weighted 521

Dynkin diagram for g, [23] also shows that the cocharacter λ is optimal for e := e′+ v and 522

dim ge = dim g(λ, 0)+ dim g(λ, 1) = dim l′(λ′, 0)+ dim l′(λ′, 1) = dim l′e′ . 523

Since it is straightforward to see that there exists a standard parabolic subgroup P = 524

L ′Ru(P) of G such that V ⊆ Lie(Ru(P)), we now conclude that e = e′+ v ∈ Indgl′ OL ′(D0). 525

This finishes the proof. 526

Remark 3.2. For G exceptional, the second part of Proposition 3.1 is an immediate 527

consequence of [20, Theorem 3(i)] which was proved by computational methods. 528

3.3. A sufficient condition for rigidity 529

Given a nilpotent element e ∈ g we denote by ce the factor space ge/[ge, ge] and set 530

c(ge) := dim ce. Our next result is a generalisation of [34, Proposition 11]. 531

Proposition 3.3. Assume, as before, that G satisfies the standard hypotheses and let l = 532

Lie(L) be a Levi subalgebra of g. If e ∈ Indgl OL(e0) for some e0 ∈ N (l) then c(ge) > 533

c(le0) and dim z(ge) > dim z(le0). Furthermore, if L has no simple components isomorphic 534

to SLr p, where p = char(k), then c(ge) > c
(
[l, l]e0

)
+ dim z(l) and dim z(ge) > dim z(l)+ 535

dim z([l, l]e0). 536

Proof. Put g[t] := g⊗k k[t] and g(t) := g⊗k k(t), where t is an indeterminate, and let 537

π : g[t] → g denote the canonical projection induced by the augmentation map k[t] → k. 538

Let P = L · Ru(P) be a parabolic subgroup of G containing L and n+ := Lie(Ru(P)). By 539

our assumption, dim ge = dim le0 and we may assume without loss of generality that 540

e = e0+ e1 for some e1 ∈ n+. 541

Let h ∈ z(l)reg and consider th+ e, an element of g[t]. Let G(t) be the group of 542

k(t)-rational points of G. The argument used in the proof of Theorem 2.3 then shows 543

that th+ e is G(t)-conjugate to th+ e0 (in fact, a conjugating element can be found 544

already in the group of k(t)-rational points of Ru(P)). From this it is immediate that 545

g(t)th+e ∼= le0 ⊗k k(t) as Lie algebras over k(t). It follows that 546

dimk(t)[g(t)th+e, g(t)th+e] = dim[le0 , le0 ], 547

dimk(t) z(g(t)th+e) = dim z(le0). 548
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Furthermore, if l has no components of type Ar p−1, our discussion in § 2.1 implies that549

dim[le0 , le0 ] = dim[l, l]e0 and dim z(le0) = dim z(l)+ dim z([l, l]e0).550

Put M1 := g(t)th+e ∩ g[t], M2 := [g(t)th+e, g(t)th+e] ∩ g[t] and M3 := z(g(t)th+e)∩ g[t].551

Each of these is a k[t]-submodule of the free k[t]-module g[t], and it is not hard to check552

that all factor modules g[t]/Mi are torsion-free. Since k[t] is a principal ideal domain553

and the k[t]-module g[t] is finitely generated, it follows that all g[t]/Mi are free over k[t].554

As a consequence, there exist free k[t]-submodules Ni of g[t] such that g[t] = Ni ⊕Mi555

as k[t]-modules, where i = 1, 2, 3. This, in turn, shows that each Mi is free over k[t] and556

rkk[t] Mi = dimk(t) Mi ⊗k[t] k(t).557

It is straightforward to see that π : g[t] → g maps M1 into ge. Since e ∈ Indgl OL(e0)558

we have that559

dim ge = dim le0 = dimk(t) g(t)th+e = dimk(t) M1⊗k[t] k(t) = rkk[t] M1.560

From this it follows that M1 has a free basis v1(t), . . . , vr (t) such that561

π(v1(t)), . . . , π(vr (t)) form a k-basis of ge. For 1 6 i 6 r put vi := π(vi (t)) and observe562

that563

rkk[t] M2 = dim M2⊗k[t] k(t) = dimk(t)[g(t)th+e, g(t)th+e] = dim[le0 , le0 ].564

Since [vi (t), v j (t)] ∈ M2 and π([vi (t), v j (t)]) = [vi , v j ] for 1 6 i, j 6 r ,565

this gives dim[ge, ge] 6 dim[le0 , le0 ]. Therefore, c(ge) = dim ge− dim[ge, ge] > dim le0 −566

dim[le0 , le0 ] = c(le0).567

Finally, we observe that π(M3) ⊆ z(ge) and568

rkk[t] M3 = dimk(t) M3⊗k[t] k(t) = dimk(t) z(g(t)th+e) = dim z(le0).569

Consequently, dim z(ge) > dim z(le0). The second part of the proposition now follows from570

our remarks earlier in the proof.571

Proposition 3.3 gives us a useful sufficient condition for rigidity of nilpotent elements572

in exceptional Lie algebras.573

Corollary 3.4. Suppose G is simple and p is good for G. If e ∈ N (g) is such that ge =574

[ge, ge] then e is rigid in g.575

Proof. We may assume without loss that G is simply connected. For G classical576

the statement follows by comparing [26, Theorem 3] with the Kempken–Spaltenstein577

description of rigid nilpotent nilpotent orbits in g. (Of course, in the characteristic zero578

case one can apply [34, Proposition 11] directly.)579

So suppose from now that G is exceptional and p is a good prime for G. Since the Killing580

form of g is non-degenerate, G satisfies the standard hypotheses. By rank considerations,581

there are no Levi subgroups in G with components of type Ar p−1 for r > 2.582

Suppose e ∈ Indgl OL(e0) where L is a proper Levi subgroup of G and e0 ∈ N (l). Since583

c(ge) = 0 in the present case, Proposition 3.3 yields that L has a component of type584

Ap−1. Then all components of L have type A. Let T be a maximal torus of L and585

t = Lie(T ). We may assume that L is associated with a subset 50 of a basis of simple586

roots 5 of the root system 8(G, T ). Since all components of L have type A we may587
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also assume without loss that e0 =
∑
α∈51

eα for some subset 51 of 50 (possibly empty). 588

Let t0 := t∩ [l, l] and t1 :=
⋂
α∈51

ker (dα)e. Then t0 ∩ t1 consists of all x ∈ t0 such that 589

(dα)e(x) = 0 for all α ∈ 51. Since all simple components of L are simply connected, 590

looking at the p-ranks of the Cartan matrices associated with 5 and 50 one observes 591

that dim t0 = |50|, dim t1 = dim t− |51| and dim(t0 ∩ t1) = |50| − |51| unless one of the 592

components of 51 has type Ap−1 in which case dim(t0 ∩ t1) = |50| − |51| + 1. 593

If 51 does not contain components of type Ap−1 the above shows that dim t1 = |5| − 594

|51| > |50| − |51| = dim t0 ∩ t1. Hence, there exists h ∈ t such that h 6∈ [l, l] and [h, e0] = 595

0. But then le0 ) [le0 , le0 ], so that c(le0) > 1. Since this contradicts Proposition 3.3, we 596

see that 51 must have a component of type Ap−1. Since 50 has such a component too, 597

they must contain the same component of type Ap−1. Let L1 be the simple component 598

of L generated by the root subgroups U±α with α ∈ 51. Then L1 ∼= SLp as algebraic 599

groups. The Lie algebra l acts on its ideal l1 := Lie(L1) by derivations, giving a natural 600

Lie algebra homomorphism ψ : l→ Der(l1). Since l1 ∼= slp we may identify Der(l1) with 601

pglp. Our earlier remarks now imply that ψ(e0) is a regular nilpotent element in pglp and 602

hence has an abelian centraliser in pglp. As ψ maps le0 onto a non-zero subalgebra of the 603

centraliser of ψ(e0) in pglp, the Lie algebra le0 has a non-trivial abelian quotient. But 604

then le0 is not perfect, i.e., c(le0) > 1. Since this contradicts Proposition 3.3, the element 605

e is rigid in g. 606

3.4. Optimal cocharacters of nilpotent elements contained in regular 607

subalgebras 608

In this subsection, we assume that G is an arbitrary connected reductive group defined 609

over an algebraically closed field of good characteristic. A connected reductive subgroup 610

K of G is called regular if it contains a maximal torus of G. We denote by k the Lie 611

algebra of K . If T is a maximal torus of G contained in K then the root system 80 of 612

K with respect to T identifies with a root subsystem of the root system 8 = 8(G, T ) 613

and k = t⊕
∑
α∈80

gα where t = Lie(T ). Since k is a restricted Lie subalgebra of g any 614

nilpotent element of k is contained in N (g), the nilpotent cone of g. 615

If char(k) = 0 then a standard argument involving sl2-triples shows that any non-zero 616

nilpotent element e ∈ k admits a rational cocharacter λ : k×→ G which is optimal for e 617

in the sense of the Kempf–Rousseau theory and has the property that λ(k×) ⊂ K . Our 618

next goal is to show that this result still holds under our assumption on k. Given a Zariski 619

closed subgroup H of G we write X∗(H) for the set of all rational cocharacters λ : k×→ H 620

and we denote by PH (λ) the parabolic subgroup of H associated with λ ∈ X∗(H). If e is a 621

non-zero nilpotent element of k then we denote by 3̂K (e) (respectively, 3̂G(e)) the set of 622

all λ ∈ X∗(K ) (respectively, λ ∈ X∗(G)) which are optimal for e regarded as a K -unstable 623

element of k (respectively, a G-unstable element of g). 624

Proposition 3.5. If K is a regular reductive subgroup of G and p = char(k) is a good prime 625

for G then for any non-zero nilpotent element of e ∈ k we have the inclusion 3̂K (e) ⊆ 626

3̂G(e). 627
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Proof. In proving this proposition we may assume without loss of generality that K is628

a maximal connected reductive subgroup of G. Thanks to [22, Lemma 14] we may also629

assume that G is a semi-simple group of adjoint type. Let 8 be the root system of G630

with respect to a maximal torus T contained in K and let 80 be the set of roots of K631

with respect to T . The maximality of K then shows that 80 is a maximal root subsystem632

of 8. Choose a basis of simple roots 5 in 8 and let α̃1, . . . , α̃s be all highest roots of 8633

with respect to 5 (here s is the number of the simple components of G). For 1 6 i 6 s634

write α̃i =
∑
α∈5 n(α, i)α. In view of the Borel–de Siebenthal theorem, no generality will635

be lost by assuming that either K is a maximal standard Levi subgroup of G or there636

exist α0 ∈ 5 and a prime number q dividing n(α0, i0), where i0 is the unique index j 6 s637

for which n(α0, j) 6= 0, such that 80 = {γ =
∑
α∈5 rγ (α)α ∈ 8 | q divides rγ (α0)}.638

It is well known that there is a canonical duality 〈· , ·〉 between X∗(T ) and the lattice639

of rational characters X∗(T ). Let {$∨α | α ∈ 5} ⊂ X∗(T ) be the system of fundamental640

coweights corresponding to 5 ⊂ X∗(T ). It has the property that 〈$∨α , β〉 = δα,β for all641

α, β ∈ 5. Since G is a group of adjoint type, for every α ∈ 5 there is a 1-parameter642

subgroup $∨α (k
×) in T such that643

(Ad$∨α (t))(eγ ) = trγ (α)eγ (∀γ ∈ 8, ∀eγ ∈ gγ , ∀ t ∈ k×). (5)644

Since p is a good prime for G we have that q 6= char(k). Hence, k× contains a qth primitive645

root of 1. Thanks to (5) and the preceding discussion this implies that T contains an646

element σ such that k coincides with gσ , the Lie algebra of the fixed point group Gσ .647

Let λ0 ∈ 3̂K (e) and λ ∈ 3̂G(e). As k = gσ and Ge ⊂ PG(λ) by the optimality of PG(λ)648

it must be that σ ∈ PG(λ). As T ⊂ K , the element σ lies in the centre of K . As K649

is connected, the latter is contained in any parabolic subgroup of K . So σ ∈ PK (λ0) ⊂650

PG(λ0). But then σ belongs to the connected group PG(λ)∩ PG(λ0) and therefore lies651

in a maximal torus of PG(λ)∩ PG(λ0); we call it T ′. Note that T ′ ⊂ K because T ′ is a652

connected group commuting with σ .653

Since T ′ is a maximal torus of PG(λ), the set X∗(T ′)∩ 3̂G(e) is non-empty; see [23,654

Theorem 2.1(iii)], for example. We claim that X∗(T ′)∩ 3̂G(e) ⊂ 3̂K (e). To prove this we655

adopt the notation and conventions of [23, 2.2] and recall that there exists λ′ ∈ X∗(T ′)∩656

3̂G(e) for which m(λ′, e) = 2; see [23, Theorems 2.3(i) and 2.7]. Since λ′ ∈ 3̂G(e) we have657

that658

m(λ′, e)
‖λ′‖

>
m(µ, e)
‖µ‖

(∀µ ∈ 3̂K (e)).659

But it also follows from [23] that there is a µ′ ∈ 3̂K (e) for which m(µ′, e) = 2 (here we660

regard e as an element of k). From this it is immediate that λ′ ∈ 3̂K (e). Since the quantity661

m(µ, e)/‖µ‖ is independent of the choice of µ ∈ 3̂K (e) the claim follows and completes662

the proof.663

Working over C, de Graaf and Elashvili determine the weighted Dynkin diagram of the664

unique nilpotent orbit contained in a sheet S of an exceptional Lie algebra gC and give665

a nice representative e0,C =
∑
γ∈0 eγ,C in that orbit. Here 0 = 0(S) is a subset of roots666

of the root system 8 of gC and eγ,C is a root vector of gC corresponding to γ ∈ 8. Since667

each set 0 consists of linearly independent roots, the GC-orbit of e0,C is independent of668

the choices of root vectors eγ,C (in the sense that each of them can be rescaled). In [8],669
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the roots in each set 0 are labelled by their positions in the ordering of positive roots 670

used in GAP4.2 671

To each set 0 de Graaf and Elashvili assign a diagram D(0). Specifically, the number 672

of nodes of D(0) equals the cardinality of 0 and the nodes depicting distinct γ, γ ′ ∈ 0 673

are linked by 〈γ, γ ′〉 · 〈γ ′, γ 〉 edges. The edges are solid (respectively dotted) if 〈γ, γ ′〉 is 674

negative (respectively positive). If 8 has roots of two different lengths then the nodes of 675

D(0) corresponding to long roots of 8 are coloured in black. 676

Since g = Lie(G) contains a natural analogue e0 of e0,C we wonder whether the 677

nilpotent orbits of e0 and e0,C have the same weighted Dynkin diagram. In the next 678

section, we give a positive answer to this question by computational methods, but our 679

next result indicates that in many cases such computations can be avoided. 680

Corollary 3.6. Suppose that p is a good prime for G, all roots in 8 have the same length, 681

and 0 is such that γ − γ ′ 6∈ 8 for all distinct γ, γ ′ ∈ 0. If D(0) is a disjoint union of 682

Dynkin graphs then the nilpotent orbits in g and gC containing e0 and e0,C, respectively, 683

have the same labels and dimensions. 684

Proof. We may assume that 8 is the root system of G with respect to a maximal torus 685

T of G and 0 is contained in the positive system 8+(5) associated with a basis of simple 686

roots 5 of 8. Let W0 be the subgroup of the Weyl group W (8) generated by all reflections 687

sγ with γ ∈ 0 and put 8(0) := {w(γ ) | w ∈ W0, γ ∈ 0}. Using our assumptions on 0 it 688

is straightforward to see that 8(0) = 8+(0)t−8+(0) where 8+(0) consists of roots in 689

8 which can be presented as linear combinations of elements in 0 with coefficients in 690

Z>0. If follows that 8(0) is a root system in the Q-span of 0 and 0 is a basis of simple 691

roots in 8(0). 692

Let K be the connected subgroup of G generated by T and all root 693

subgroups U±γ with γ ∈ 8(0). The preceding discussion shows that the quadruple 694(
X∗(T ),8(0),8(0)∨, X∗(T )

)
is a root datum for K . In particular, this implies that 8(0) 695

is the root system of K with respect to T . Since 0 is a basis of simple roots of8(0), we now 696

see that e0 is a regular nilpotent element of the Lie algebra k = Lie(K ). Proposition 3.5 697

shows that the set 3̂K (e0) consists of optimal cocharacters of e0 ∈ g. On the other hand, 698

it is well known that 3̂K (e0) contains a unique element λ =
∑
γ∈0 aγ γ ∨ ∈ X∗(T ) with 699

aγ ∈ Z which satisfies the conditions 〈λ, γ 〉 = 2 for all γ ∈ 0. Moreover, the coefficients 700

aγ are independent of p and λ lies in 3̂GC(e0,C) when regarded as an element of X∗(GC). 701

In view of [23, 2.4] this yields that the nilpotent orbits O(e0) ⊂ g and O(e0,C) ⊂ gC have 702

the same labels and dimensions. 703

3.5. Comparing rigid orbits in g and gC 704

From now on we assume that G is a simply connected algebraic group of type G2, F4, E6, 705

E7 or E8 and denote by GC the complex counterpart of G. We identify the root system 706

8 of G with that of GC and let 5 be a basis of simple roots. Since p is good for G, 707

the nilpotent orbits in g and gC = Lie(GC) are parametrised by their weighted Dynkin 708

2We are grateful to Simon Goodwin for bringing this to our attention.
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diagrams D : 5→ {0, 1, 2}. We let OC(D) be the nilpotent orbit in gC corresponding to709

D. It follows from [23, Theorem 2.3], for example, that dimk O(D) = dimCOC(D). We710

shall denote this number by N (D).711

Combining [7] and [8] with the results of the previous subsection we obtain the712

following:713

Lemma 3.7. Let D : 5→ {0, 1, 2} be a weighted Dynkin diagram. If the orbit OC(D) is714

rigid in gC then the orbit O(D) is rigid in g.715

Proof. Suppose OC(D) is rigid in gC and pick e′ ∈ OC(D) and e ∈ O(D). It follows from716

[7] that either the centraliser of e′ in gC is perfect or OC(D) has one of the following717

types:718

(a) Ã1 in type G2;719

(b) Ã2+A1 in type F4;720

(c) (A3+A1)
′ in type E7;721

(d) A3+A1, A5+A1 or D5(a1)+A2 in type E8.722

If the centraliser of e′ in gC is perfect then it follows from Table 1 that the same holds723

for the centraliser of e in g. In that case the orbit O(D) is rigid in g by Corollary 3.4.724

If O(D) is listed in parts (a), (c), (d) then analysing the tables in [6, pp. 401–407] one725

finds that either O(D) is the only orbit of dimension N (D) in g or G is of type E8 and726

O(D) is one of A5+A1 or D5(a1)+A2. If O(D) is the only orbit of dimension N (D) in727

g then it cannot be induced from a proper Levi subalgebra, because otherwise the same728

would be true for OC(D) by Theorem 2.8. In type E8, there are two nilpotent orbits of729

dimension 202 and they have types A5+A1 and D5(a1)+A2. Moreover, both are rigid730

in characteristic 0 by [8]. Therefore, their counterparts in N (g) cannot be induced from731

proper Levi subalgebras by Theorem 2.8.732

Finally, let O(D) be as in part (b). Then N (D) = 36 and c(ge) = 1 by Table 3. Suppose733

for a contradiction that the orbit O(D) is induced from a nilpotent orbit O0 in a proper734

Levi subalgebra l = Lie(L) of g. Since in the present case G has type F4 and p is good for735

G, the Levi subgroup L cannot have components of type Ar p−1. Applying Proposition736

3.3 we then get c([l, l]e0)+ dim z(l) 6 1 which implies that dim z(l) = 1 and c([le0 , le0 ]) = 0737

for any e0 ∈ O0. Since L has no components of exceptional types, the orbit O0 must738

be rigid in l by [26, Theorem 3(i)]. Combining Theorem 2.8 and Proposition 2.5 we739

conclude that O(D) lies in a sheet of g of dimension N (D)+ dim z(l) = 37. But Theorem740

2.8 also shows that there is a bijection S → SC between the sheets of g and gC such that741

dimk S = dimC SC for all sheets S of g. By [8, Table 10], there exists only one sheet of742

dimension 37 in gC and the nilpotent orbit contained in it has type B2. Using Proposition743

3.1(ii) it is not hard to observe that the orbit of that type in g is induced from the minimal744

nilpotent orbit in a Levi subalgebra of type C3. In view of Remark 2.6 this implies that745

O(D) cannot lie in the unique sheet of dimension 37 in g. By contradiction the result746

follows.747

We are now in a position to prove one of the main results of this paper:748
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Theorem 3.8. The orbit O(D) is rigid in g if and only if the orbit OC(D) is rigid in 749

gC. 750

Proof. Let D : 5→ {0, 1, 2} be a weighted Dynkin diagram such that the orbit O(D) is 751

rigid in g. In view of Lemma 3.7 we need to show that the orbit OC(D) is rigid in gC. So 752

suppose OC(D) is induced from a proper Levi subalgebra of gC. Then O(D) 6= {0} and 753

thanks to Proposition 3.1(i) we may assume that D(5) = {0, 1}. If OC(D) is the only 754

orbit of dimension N (D) in gC then Theorem 2.8 implies that the orbit O(D) must be 755

induced in g. 756

Thus, we may assume from now that the orbit OC(D) is odd, induced, and there are 757

at least two nilpotent orbits of dimension N (D) in gC. Looking at the tables in [6, pp. 758

401, 402] one finds out that this never happens in types G2, F4 and E6. In type E7, there 759

exist only two orbits fulfilling these conditions, namely, A3+ 2A1 and D4(a1)+A1. In 760

type E8 we have to examine more closely the following orbits: A4+A1, A4+A2+A1, 761

D6(a2), E6(a3)+A1, A6+A1, A7 and D7(a2). 762

If G is of type E8 and O(D) has type A4+A1 then there are two nilpotent orbits in 763

g (and gC) of dimension N (D) = 188. One of these orbits is rigid in gC and hence in g 764

by Lemma 3.7 (it has type 2A3). On the other hand, combining Theorem 2.8 with [8, 765

Table 8] one observes that g must have an induced orbit of dimension 188. This rules 766

out the case where O(D) has that type. Looking at the diagrams D(0) attached in [8] 767

to the orbits labelled A3+ 2A1 in type E7 and A4+A2+A1, E6(a3)+A1, A6+A1 and 768

A7 it type E8 one finds out that they satisfy the conditions of Corollary 3.6. In view of 769

Proposition 3.5 [8] this means that these orbits cannot be rigid in g. 770

Since there was no obvious way to deal with remaining three cases in types E7 and 771

E8 these have been checked through GAP. As our calculations in GAP in fact prove the 772

stronger result of Theorem 1.4 without the need to use the present result, we leave the 773

details of this calculation until § 4.2. 774

4. Further computations with nilpotent orbits 775

In this section, we describe routines performed in GAP which extend those of [7] and [8] 776

to positive characteristic, in particular, justifying the tables at the end of the document. 777

The basic problem in obtaining results in arbitrary characteristic is to reduce to a finite 778

list the prime characteristics which must be considered separately. For this, the idea is 779

always to produce an integral matrix such that it encodes this list via the prime divisors 780

of its elementary divisors. 781

4.1. Nilpotent orbit representatives 782

For our calculations we require (i) a list of nilpotent orbit representatives for bad primes; 783

(ii) a list of orbit representatives for good primes with associated cocharacters. 784

Those in (i) are provided by [19] or [30] (for F4). Regarding notation, particularly that 785

which appears in the tables at the end of the paper, the labels for the nilpotent elements
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used are now quite standard and consistent with [19]. A nilpotent orbit has type Xr if786

it is regular in a Levi subalgebra whose root system has type Xr , using + to indicate a787

union of irreducible root systems. Where there are short roots in the root system of g, we788

use ˜ to indicate a Levi subalgebra with such roots. If a nilpotent orbit is distinguished789

in a Levi subalgebra of the same type it is labelled Xr (ai ) or Xr (bi ) for some value i .790

Occasionally in E7, there are two conjugacy classes of Levi subalgebras giving rise to two791

regular nilpotent orbits and these are denoted, for example, as (A5)
′ and (A5)

′′. Finally,792

there are extra orbits which appear over fields of characteristics 2 and 3 and have no793

analogue over C. These are closely related to certain orbits of type Xr , for some X and794

r , and are denoted X (p)r for p being 2 or 3.795

(ii) For this we use [20] which provides all the data we require.796

Since there are a number of errors in the literature related to nilpotent orbits, we have797

made reasonable attempts to check the validity of the orbit representatives we use. For798

example, we checked that they had the same Jordan blocks as found in [32, 33] (with799

certain exceptions3) and [16] (in the group case). For the exceptional groups considered800

by [32], the paper only deals with the elements of the restricted nullcone Np(g) = {x ∈801

g | x [p] = 0}, but in [33] the authors refer to an unpublished result of Lawther which treats802

the case of an arbitrary nilpotent element of g. Therefore, our computations provide an803

independent verification of the Jordan block structure of those nilpotent elements x ∈ g804

for which x [p] 6= 0 (of course, such elements exist only when p is less than or equal805

to the Coxeter number of G). It turned out that as in the group case (investigated806

in [16]) there are no coincidences in Jordan block decompositions of representatives of807

different nilpotent orbits in g except when p = 7 where the Jordan block decompositions808

of nilpotent elements of type B3 and C3 in Lie algebras of type F4 are the same. As this809

result is likely to be useful in future work, we state it formally.810

Theorem 4.1 (McNinch, Lawther). Let G be a connected reductive k-group satisfying811

the standard hypotheses and g = Lie(G). Then the Jordan block structure of a nilpotent812

element of g on the adjoint module coincides with that of a unipotent element of G with813

the same Dynkin label.814

Proof. Since G satisfies the standard hypotheses, p is a good prime for G. Our discussion815

in § 2.1 shows that no generality will be lost by assuming that either G is a simple816

exceptional algebraic group or G is a classical group of type other than Ar p−1 or G =817

GLr p. In the first case the theorem follows from Lawther’s and our computer-aided818

calculations whilst in the other two cases it was deduced by McNinch [21] from earlier819

results of Fossum on formal group laws; see [11].820

It would be interesting to find a non-computational and case-free proof of Theorem 4.1.821

Finally, all our results recover those of De Graaf for generic prime characteristic.822

3There are a number of errors in the representatives and associated Jordan blocks listed in [33]. Some of
these relate to the transcription of representatives from MAGMA into LaTeX; in addition, representatives
of type Dr (ai ) and E8(b6) are used which break down in certain low characteristics. This means that
there are a number of mistakes in the calculation of adjoint Jordan blocks of op. cit. for types E6, E7
and E8 for p = 2 and p = 3. Corrected Jordan blocks for these low characteristics are expected to appear
in a forthcoming publication by the second author.
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4.2. Induced nilpotent representatives 823

Here we show that the nilpotent orbit representatives given in the tables of [8] are still 824

valid in good characteristic and use the results of the previous section to prove this. Let 825

e ∈ gZ be a nilpotent orbit representative as given in the tables of [8]. We proceed by 826

having GAP compute the adjoint matrix of each representative over Q according to a 827

Chevalley basis of gZ. Then a routine computes the integral divisors of successive powers 828

of the matrix. For any prime dividing the integral divisors we know that the Jordan block 829

structure of ad e for e ∈ g = gZ⊗Z k differs from that in characteristic zero. Let this finite 830

list of primes be S. If p 6∈ S then since the Jordan block structure of ad e determines it 831

in good characteristic by [16], we are done in this case. For each good prime of S we 832

have GAP compute the Jordan block structure separately. We find in all cases that the 833

Jordan block structure is the same as that of a nilpotent element in gC = gZ⊗ZC with 834

the same label, as listed in [16].4 835

Proof of Theorem 1.4. Each nilpotent element of [8] is of the form e0 = e0+ e1 where 836

e0 ∈ l is a rigid nilpotent element of l and e1 ∈ n for n the nilradical of a parabolic 837

subalgebra p = l+ n of g. The orbit dimension dimOL(e0) = dim[l, e0] is given by taking 838

the rank of the matrix formed from the coefficients of the images under ad e0 of a 839

basis of l contained in gZ. Hence, after reduction modulo p, the orbit dimension can 840

only go down. Since by 2.8 the dimension of the orbit Indgl OL(e0) is given by the 841

formula dim g− dim ge = dim g− dim le0 we know that if dim ge is independent of good 842

characteristic then e is indeed in the nilpotent orbit which intersects densely with 843

OL(e0)+ n in good characteristic. But our calculation of the Jordan blocks of ad e0 844

(described in § 4.1) shows that this is the case for all 0’s listed in [8] and, moreover, the 845

orbit O(e0) always has the same label as its counterpart O(e0,C) ⊂ gC. The exceptional 846

case where p = 7 and g is of type F4 does not cause us serious problems because g contains 847

only two sheets of dimension 44 both of which have rank 2 (this is immediate from [8, 848

Table 10] and Remark 2.9). Proposition 3.1(ii) implies that one of them contains the 849

orbit of type B3. On the other hand, a closer look at [8, Table 10] reveals that the sheets 850

of dimension 6= 44 cannot contain nilpotent orbits of dimension 42. This yields that the 851

other sheet of dimension 44 contains the orbit of type C3 (as in the characteristic 0 case). 852

Next we observe that e0 = e00 and e1 = e01 for some full subgraphs 00 and 01 of 0. 853

Looking through the tables in [8] one finds out that if G is a group of type E then in all 854

cases except two 00 is a disjoint union of Dynkin graphs (possibly empty). Specifically, 855

the two exceptional cases occur when G has type E8 and e has type E7(a5) or D5(a1)+A1. 856

In both cases l contains a unique nilpotent orbit whose dimension equals that of OL(e0). 857

A close look at the tables in [8] shows the same holds for groups of type G2 and F4 in 858

all cases of interest. Thanks to Corollary 3.6 this implies that the L-orbit of e0 = e00 has 859

the same label as the LC-orbit of e00,C. 860

4Our calculation threw up a misprint in [8]. Specifically, the first nilpotent representative for the induced
nilpotent orbit E7(a4) in E8 has 27 over two different nodes of the Dynkin diagram. de Graaf kindly redid
the calculation and found that the right-most 27 should be a 44, and the 44 (just below the wrong 27)
should be a 14.
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Given a nilpotent orbit O ⊂ N (g) we define861

d(O) := Card {S | S is a sheet of g containing O}862

and denote by d(OC) the number of sheets of gC containing the nilpotent orbit having863

the same Dynkin diagram as O. The preceding discussion in conjunction with [8] implies864

that d(O) > d(OC) for any orbit O ⊂ N (g). Since every sheet of g contains a unique865

nilpotent orbit (Remark 2.6) the total number of sheets of g equals
∑

O⊂N (g) d(O).866

Since Theorem 2.8 established a bijection between the sheets of g and gC, we now deduce867

that d(O) = d(OC) for any orbit O ⊂ N (g). This completes the proof of Theorem 1.4.868

4.3. (Strong) reachability869

We will reduce the problem of classifying the (strongly) reachable elements to a finite870

calculation which can be performed in GAP. For this we will (i) exhibit a bound on the871

number of characteristics where the result may differ from the situation in characteristic872

zero established by de Graaf, then (ii) give a method to deal with any specific prime.873

For (ii) we reduce to a calculation over the prime field Fp. Observe that the Lie algebras874

we deal with are defined over Z. That is, there is a Lie algebra gZ over the integers with875

a basis B, and associated structure constants, such that gp := gZ⊗Z Fp and g = gp ⊗Fp k876

with g and gp obtaining a basis and associated structure constants by taking B together877

with its structure constants reduced modulo p.878

For this, B can be taken as a Chevalley basis {xα | α ∈ 8} ∪ {hα | α ∈ 5} of gZ. Then we879

have give a complete set of nilpotent representatives over k in terms of linear combinations880

of elements B. Since the coefficients are all over Z, these nilpotent elements are also881

elements of gp by reduction mod p. Now since ge is defined over Fp, we may write882

ge = (gp)e⊗Fp k. Then in order to establish reachability of a nilpotent element e, it883

suffices to check whether we have e contained in the derived subalgebra of (gp)e.884

This calculation can then be performed by GAP.885

For (i), we assume that p is a good prime for g, any bad primes being dealt with in886

case (ii). We work over the integers, i.e., with the admissible Z-form gZ (here we use our887

assumption that the group G is simply connected). Fix a nilpotent element e. First, we888

ask GAP to calculate a basis Be of (gC)e contained in gZ in terms of linear combinations889

of elements of B. By the theory of nilpotent elements it is possible to take this basis such890

that reduction of the coefficients modulo p also gives a basis of (gp)e.891

Next we take the product of each pair of elements of Be and form a matrix M of the892

B-coefficients of the resulting vectors. Then the dimension of [(gp)e, (gp)e] is the rank893

of the reduction modulo p of the matrix M . Thus, if we take p bigger than any of the894

elementary divisors of M the result will agree with that over Z. Similar remarks apply895

to the subalgebra Fpe+ [(gp)e, (gp)e] of (gp)e whose dimension can be determined by896

calculating the rank of the matrix M ′ which is formed by adjoining the row of coefficients897

of e itself to M . Thus, for p bigger than any of the elementary divisors of M and M ′, we898

have that e is reachable over k if and only if it is reachable over a field of characteristic899

0. More precisely, we establish that the only exceptional primes are less than or900

equal to 7.901
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4.4. Almost perfect centralisers and c(ge) = dim(ge/[ge, ge]) 902

For a given prime, identifying the orbits which have almost perfect centralisers (i.e., 903

ge = [ge, ge] + ke) is a straightforward calculation in gp = gZ⊗Z Fp with GAP: we simply 904

ask GAP to list those nilpotent elements e for which 905

dim(gp)e = dim[(gp)e, (gp)e] + 1 906

and 907

dim(Fpe+ [ge, ge]) = dim(gp)e. 908

This process deals in particular with the bad primes. The other possible exceptional 909

primes were already calculated: if dim[(gp)e, (gp)e] or dim(Fpe+ [(gp)e, (gp)e]) differs 910

from the analogous dimension over characteristic zero, then we established in § 4.3 that 911

p 6 7. 912

Much the same applies to calculating c(ge). Again one need only look in characteristics 913

at most 7, where the calculation becomes finite, hence easily performed in GAP. 914

4.5. Panyushev property 915

Let gQ = gZ⊗ZQ, a Q-from of gC. A nilpotent elements e ∈ O(D) is said to satisfy 916

Panyushev’s property if the nilradical ge(λD,> 1) of ge is generated by ge(λD, 1) as a Lie 917

algebra. Since this definition relies on the so-called associated cocharacters which do not 918

exist for all nilpotent elements in bad characteristic, Panyushev’s property is particularly 919

interesting under our assumptions on G. 920

We assume that G is an exceptional group and p is a good prime for G. From [20] we 921

take a nilpotent element e ∈ g and associated cocharacter τ ∈ X∗(G). For e ∈ O(D) this 922

cocharacter coincides with λD and it is optimal for e in the sense of the Kempf–Rousseau 923

theory by one of the main results of [23]. Let 8 be the root system of G associated with 924

a maximal torus containing τ(k×). We start by working over rationals and ask GAP 925

to compute the root vectors in gQ(1) := gQ(τ, 1). Let B be a basis of gQ containing a 926

set of root vectors {eα |α ∈ 8}. Now we form a (dim gQ(τ, 1)× dim gQ)-matrix M of the 927

B-coefficients of [b, e] with b ∈ B∩ gQ(1). Then (gQ)e(1) coincides with the kernel of 928

ad e : gQ(1)→ gQ which for GAP is {v ∈ QdimgQ(τ,1) | v ·M = 0}. Since p is good for G, 929

we have that (gp)e = (gZ)e⊗Z Fp and (gp)e(1) = (gZ)e(1)⊗Z Fp. In particular, (gp)e(1) 930

is characteristic independent. 931

Next we generate a Lie subring m of gZ from a Q-basis of (gQ)e(1) contained in gZ 932

and take a basis Bm of the Q-span of m that lies in gZ. We then form the matrix of 933

B-coefficients of the elements of Bm and take elementary divisors again. If p is bigger 934

than any of these elementary divisors then the rank of this matrix will give the dimension 935

of the Lie subalgebra of gp generated by (gp)e(1). Since it turned out that all elementary 936

divisors appearing in these calculations involve bad primes only, we conclude that the 937

Panyushev property is independent of good characteristic. 938

Remark 4.2. There are six rigid nilpotent orbits in exceptional Lie algebras which do 939

not satisfy Panyushev’s property in good characteristic. These orbits are Ã1 in type G2, 940

Ã2+ A1 in type F4, (A3+A1)
′ in type E7, and A3+A1, A5+A1, D5(a1)+A2 in type E8. 941

The above routine was applied to these orbits too in order to determine the smallest 942
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number r for which
∑r

i=1 ge(τ, i) generates the Lie algebra ge(τ,> 1). It turned out that943

r = 2 in type G2, r = 4 in type E8 when e has type A5+A1 and r = 3 in the other944

four cases. All elementary divisors that we encountered in the process turned out to be945

divisible by 2 and 3 only.946
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