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1 Introduction

As discussed in [4], to obtain a supersymmetric theory on a Riemannian manifold M, one
can first couple the desired multiplet to supergravity, then take the rigid limit, sending the
Planck mass to infinite.

In the process of taking the limit, one keeps auxiliary fields instead of imposing their
equations of motion. If a background of auxiliary fields and metric is invariant under the
supergravity transformation, they actually give rise to rigid supersymmetry.

This line of reasoning has been utilized to study 4d N = 1 supersymmetry
with/without U(1)g symmetry [1, 2, 5], and 3d N/ = 2 supersymmetry with U(1)g [3].
In these papers, the existence of a number of supercharges is proven to be related to the
geometric structure of M. For instance, on any 4d Hermitian manifold there exists at least
one supercharge [1, 5], and 3d manifolds with an almost contact structure admit at least
one supercharge. Similar discussions for manifolds with Lorentz signatures in dimension 3
and 4 can be found in [6, 7].

In 5-dimension, there are rapidly growing literatures on constructing 5d supersym-
metric theories, as well as their relations with 6d (2,0) theories and lower dimensional
Chern-Simons theories.

For example, in [8], a supersymmetric gauge theory on S° is obtained from 5d super-
gravity, with the well-known Killing spinor equation

Viér = tr'Tméy. (1.1)

Using the supersymmetry algebra, the author proposed adding a term 5tr(((5)\)T)\) to the
Lagrangian, and derived the localization condition. The localization condition is further
used in [9, 10] to analyze physical and twisted supersymmetric gauge theories coupled
with matter defined on a principal U(1) bundle M5 over a 4-dimensional manifold. In
particular, the perturbative partition function on S® is computed. Their localization result
leads to the derivation of N3-behavior of the free energy of 5d SYM, in the large 't Hooft
coupling limit [11]. Complete localization of the partition function on S° is carried out
in [12, 13]. The authors first computed the perturbative contribution and conjectured the
non-perturbative contribution by requiring the full partition function to be identical to a
6d index [12]. In their subsequent work [13] the full partition function is computed which
proves the conjecture.

There are also supersymmetric theories constructed by hand or by dimensional re-
duction from 6d. In [14] supersymmetric gauge theory on S' x S* is obtained, and the
localization is carried out. [15] derived a class of 5d SYM theories from 6d (2,0) supergrav-
ity. Further in [16-18], supersymmetric theories on S® x M3 obtained from M5-brane are
shown to be equivalent to 3d complexified Chern-Simons theory. Supersymmetric theories
on CP? x R were also obtained from 6d and studied in details in [19, 20].

A complete picture of the relation between supersymmetry and geometry of M, how-
ever, is not clear. It is reasonable to believe that methods similar to those in [3] can be
straight-forwardly applied to 5-dimensional manifolds.



In this paper, we take a step towards such understanding, and as expected, the results
turn out to be closely related to contact and almost contact structures on 5-manifolds.

We use the minimal off-shell 5d Supergravity discussed in [21] and focus on the Killing
spinor equation (2.11)

1 1
Vinér = tr' &y + VP Cpgbr + 5 Fon D61 + (Am) /€1, (12)

coming from requiring supergravity variation di! of gravitino ¢ to vanish. We study
many interesting necessary conditions for M to admit different number of solutions to the
Killing spinor equation, by partially solving the auxiliary fields in terms of the bilinears,
and discussing special cases which are related to well-known geometries and results in lower
dimension supersymmetry. However, the results we obtain are not a complete classification
of manifolds admitting solutions.

In the end, we propose a 5-dimensional supersymmetric theory for the N’ = 1 vector
multiplet, which can be defined on a contact manifold with an associated metric admitting
solution to equation (5.1). However, it should be pointed out that this theory is not
obtained directly from supergravity, since we started from 5-dimensional Weyl multiplet
without coupling to matter. Therefore the rigid limit of the supergravity action on a
fixed background gives a number rather than a supersymmetric theory. To obtain the
final supersymmetric background, one also needs to require the background auxiliary fields
to satisfy a more complicated differential equation from the vanishing of the supergravity
variation of another spinor field in the Weyl multiplet. In this sense, the present work covers
an important sector of the problem, but a complete analysis requires further exploration.

This paper is organized as follows:

e In section 2, we briefly review Zucker’s 5d N' = 1,! minimal supergravity and the
Killing spinor equation from the vanishing gravitino variation.

e In section 3, we study the bilinears constructed from one or two symplectic Majorana
spinors. We see that when a global nowhere-vanishing section of ad(Pgy o)) over M
exists, M has an almost contact structure corresponding to each spinor.

e In section 4, we start with a general discussion of the Killing spinor equation (2.11)

1 1
V&t = '€+ VP Tonpgr + 5 Funl "€ + (Am) "6, (13)

including its shifting symmetry and Weyl symmetry. We then analyze the necessary
conditions on the geometry of M such that it admits certain number of solutions.
For each (pair of) solutions, we see that the auxiliary fields can be partially solved
in terms of the bilinears, and the Killing spinor equation is then simplified using a
compatible connection \Y%

Vinér — (Am)IJéJ =0. (1.4)

"t is called “N” = 27 in his paper, but it really means a theory with 8 supercharges, which supersymmetry

parameter an SU(2)-symplectic Majorana spinor £7.



Some special cases related to product form M = S' x My are discussed: depending
on the field configuration, one obtains geometrical restriction of My being Kéahler,
Quaternion Kéahler or HyperKéhler, or a reduction of our 5d Killing spinor equation
to 4d cases discussed in literatures [1, 2]. For 2 (pairs of ) supercharges to exist, we
will see that the geometry of M is heavily constrained by the isometry algebra to be
T3 or S3-fibration over Riemann surface X.

For 4 pairs of supercharges to exist, we will see that there are only 3 possible cases,
which basically fixes the geometry of M.

e In section 5, we propose a new supersymmetric theory for the A" = 1 vector multiplet,
which can be defined on K-contact manifolds (M, g, k) admitting solutions to equation

1 1
Di&r = tr"€5 + FP Tonpgés + 5 Fnl"é1 (L.5)
with F any “anti-self-dual” (defined later) closed 2-form.

e In section 7, we provide a few examples of solving Killing spinor equations on selected

manifolds to illustrate some results obtained in previous sections.

e In the appendix, we review conventions on gamma matrices and differential geometry
as well as necessary mathematical backgrounds on contact geometry. Useful formula
are also listed.

2 N =1 minimal off-shell supergravity

In this section we will review the construction of minimal A" = 1 off-shell supergravity?
proposed by Zuker [21].

The general idea of [21] is as follows. First one writes down the current multiplet J
from an on-shell abelian super-Yang-Mills theory. This current multiplet J is then coupled
to linearized supergravity multiplet G, and using the already-known supersymmetry trans-
formation (which is made local at this stage), one can postulate the linearized supergravity
transformation of G.

The abelian super-Yang-Mills multiplet consists of the field content (¢, a, \’), where ¢
is a real scalar, a is a photon with field strength fy., = Opman —Opam, and X is the gaugino.?

The Lagrangian reads
1 mn 1 m i_l m /
The Lagrangian is invariant under the on-shell supersymmetry transformation

1
dp =ieN, bay, = iel N, 0N = ifmnfm"e — Ompl™e, (2.2)

It is called A = 2 in [21], however, it actually has 8 supercharges following from the symplectic Majorana
reality condition, and therefore is more sensible to call it N' = 1.
3We use here the similar Greek letter to denote fields as we will use in section 5.



which form a closed algebra modulo the equation of motion:
I"0pN = 0. (2.3)
There are several symmetries of the theory:

e Spacetime symmetry, whose conserved current is the energy-momentum tensor

1 1 -
Tn = _fmkfnk+Qnmnfklfkl"i_am(pan@_§nmn(a¢)2+1)\/ (Fman + Fna’m) N (24)

e Supersymmetry, whose the conserved current is
1
J™ =T"T"™N O + 3 Fru MmN (2.5)

e SU(2) R-symmetry, whose the conserved R-current is

Jo = N7\, (2.6)

All of these currents are conserved when equations of motion are imposed. These currents
can form a supermultiplet if proper additional objects are added to close the algebra. The
complete current multiplet consists of

‘7: {Tmn’wmnaJm7C/7C7Xa7J7?7,7ja7}' (27)
Now one can couple this multiplet to the supergravity multiplet

glinear - {hm’ru Vm’ﬂn ¢7TM C7 )‘7 taa A?n7 Am} ) (28)

where h,,, is the linearized metric, V,, is a 2-form, A,, is the U(1)-gauge field with field
strength F,,, = OmAn — OpAp, while {A% o = 1,2,3} is a SU(2)g gauge field. The
linearized Lagrangian of G coupled to the current multiplet reads

L= éhmnTm"Jrimem—zLO’C—zzf)\—;wmnvm"+Xata+2\1/§AmJg?)+iJ;Agﬁ (2.9)
In the following, we will replace the a index by symmetric I.J index, with I,J = 1,2, and
the conversion can be easily made using Pauli matrices (0%),

By requiring the linearly-coupled Lagrangian to be supersymmetric, one obtains super-
gravity transformation (with symplectic-Majorana spinor £;) of G. Further covariantizing
the transformation gives the full supergravity transformation (here we only list schemati-
cally first few lines and omit coefficients in front of each term)

,

del, ~ il
0 Ay, ~ glwm

A , (2.10)
St ~ DEEL + FonnIEr + VPIT 0l + (A) 760 + .

SAr = Vi VT R&r + #(V A V)™ Tl + Vi D™ +



where ... in the third line denotes terms that will vanish when taking rigid limit. In the
last line we schematically show a few terms involving V', and use ... to denote remaining
complicated terms.

The rigid limit procedure sets fermions to zero, keeping only the bosonic fields to some
background which needs to be determined. If such background is invariant under certain
supergravity transformation, in particular, d¢» = 0, one obtains a rigid supersymmetric
background with the resulting metric.

The condition d1 = 0 reads, with some coefficients reinstated without loss of generality,

1 1
5¢m[ — Vmgl - tIJFng - §anr\n£1 - iqurmpqgl - (Am)jng =0. (2'11)

This is the Killing spinor equation we are going to analyze in the following sections.

To complete the whole rigid limit procedure, one also needs to also solve the equation
from dA = 0 in taking the rigid limit. Such equation will place various restrictions on
the auxiliary fields. However, in this paper we focus on the simpler yet important Killing
spinor equation (2.11), and leave equation 0A = 0 for future project.

3 Symplectic Majorana spinor and bilinears

In this section, we review the properties of symplectic Majorana spinor and their bilinears.
Note that we consider bosonic spinors in the following discussions.

On a 5-dimensional Riemannian manifold M, one can define Hermitian Gamma ma-

trices, the charge conjugation matrix and SU(2) symplectic Majorana spinors.*

Hermitian Gamma matrices are denoted as I
{Fmarn} = 2¢mn, (3.1)

and hermiticity implies
To= (T (3.2)

The Charge conjugation matrix is denoted as C,
crre~t =@’ =T, (3.3)
We also define the SU(2)-invariant tensor ¢!/ and e
2= —2 = —¢y =1, (3.4)
and raising and lowering convention
ey X! = Xp, X, = X1, (3.5)
With these quantities we define the symplectic Majorana spinor condition as

& = e, 0, (3.6)

4Note that ordinary Majorana condition cannot be defined in 5d.




and a C-valued inner product of any two spinors denoted by parenthesis ()

(&n) = £*Capn, (3.7)

and further a positive-definite inner product ( , ) between symplectic Majorana spinors &, 7

&n) =€ (Emyg). (3.8)

3.1 Bilinears from 1 symplectic Majorana spinor

Now we’re ready to define bilinears constructed from one symplectic Majorana spinor ;.

(1) Function s € C*°(M):

s=e(68)) =2(48). (3.9)
Note that this function is strictly positive if £ is nowhere-vanishing;:
s=ceCop = €57 > 0. (3.10)
(2) Vector field R € T'(T'M):
Ry =€ T08y, (3.11)

and the corresponding 1-form
Km = gmana (312)

which implies, when acting on QF (M)

trox = (=1)P xo(kN). (3.13)
(3) 2-form®
oL, = (&'Tmg’), (3.16)
with symmetry
ol =e’l. (3.17)

Let t;7 be an arbitrary triplet of functions, namely
try=ty, I =1,2; (3.18)
then its contraction with © gives a real 2-form

(t@) = tIJ (@J[). (319)

50One could of course go on defining higher forms 077 = ¢'T'},,,¢7 and @f,;]npq = ¢IT,npe€”, but duality

of Gamma matrices gives

Olhn = fge”qzmn%;{ : (3.14)
and
Gfr{npq = \/germnpqaiJ- (315)



Using the Fierz identities one can derive useful relations between these quantities,
which we list in appendix E.

Given the nowhere-vanishing 1-form x and the vector field R, one can decompose the
tangent bundle TM = TMy & T My, where at any point p € M, TMp|, is annihilated
by k, while T'My, is a trivial line bundle generated by R. Let’s call T'My, and similarly
all tensors annihilated by & (or R) “horizontal”, while those in the orthogonal complement
“vertical”. In particular, one has decompositions

Q* (M) =03 (M) D Q% (M) =r AQy (M) @ Q3 (M) (3.20)

For an arbitrary nowhere-vanishing triplet of functions ¢;; with the property (readers
may find conventions in appendix B)

try=ty, t1y=€ele7 ¢y (3.21)

one can define a map ¢; : I'(TM) — ' (T'M) as

1 -2
"= te) " 3.22
(‘Pt)m s\ tr (t2)( )m ( )
Obviously, one has
prop=—1+s5s2 Rk, (3.23)
and when restricted on T'Mp, ¢; is some sort of a“complex” structure:
P10 Ptlpay, = —1 (3.24)

Together with the vector field s™'R and 1-form s~ ', ¢y defines an almost contact
structure on M [22] (see also appendix D).

Finally, let us comment on the “(anti)self-dual” horizontal forms. Define operator
*f = s Lup*, which is the hodge dual “within” horizontal hyperplanes. It is easy to verify
that acting on any horizontal p-forms

In particular, we decompose the horizontal 2-forms into 2 subspaces according to their
eigenvalues of g

0% = Q3 @O, spwi = twih, Ywi € OF. (3.26)
We call the horizontal forms in Q?j “self-dual”, while the others “anti-self-dual”. Clearly,
these 2 notions are interchanged as one flips the sign of the vector field R, hence this
notion of “self-duality” is not as intrinsic as the well-established notion of self-duality on
4-dimensional oriented manifolds.

Suppose Q7 is a self-dual 2-form. Then it satisfies, by definition,

gepqlmanQ;q — Qe (3.27)

It follows immediately that
O I =0, (3.28)

using the fact that the inner product (v, v) = €/ (1110 ) is positive definite, and the action
of I, preserve symplectic Majorana property.



3.2 Bilinears from 2 symplectic Majorana spinors

In this section, we consider the case when there are 2 symplectic Majorana spinors, and
analyze their bilinears.

Denote the two spinors &; and &;. Obviously they each generates a set of quantities as
we discussed in the previous sections: (s, R, k,©) and (3, R, &, ©).

In addition to these quantities, they form some new mixed bilinears. Conventions for
1J indices can be found in appendix B.

e Functions

ury = (€1€7), (3.29)
with triplet-singlet decomposition
. 1
ury = w(rgy + U ZUIJ—§€[J’U,, (3.30)
where
w=elupy. (3.31)
Notice that
ary =l up g =l (3.32)

and in particular function u is real-valued

T=u=Y &€, (3.33)
1
which results in positivity
uuuU:ZuUTU: %u%ﬁlm”zo. (3.34)
e Vector fields Qp
QFy = (&17E)), (3.35)
with a decomposition
Qrs = Qs — %GIJQ, (3.36)
where
Q™ = (&mEy). (3.37)

Note that similar to the function case, we have

Qr=Q", (3.38)
and in particular a real vector field
Q=Q. (3.39)
We denote corresponding 1-forms
117 = (Qrg),,dx™ = Tr5 — %EIJT. (3.40)



e Two forms

Xfr;]n = (§[an§~‘]). (3.41)
Also we define
x=e"xu, X = xa) (3.42)

These bilinears satisfy various algebraic relations. Here we list some relevant formulas.

Norms and inner products of vector fields

(1)

-2
‘§R + SR‘ = 8ssurjul’

R-R=4upul’ —s5= e (3.43)
SR = sR| =455 (55 — 2uru)
(2)
1 _
Q1 QKL =2urLuKy — UrjuKr — SEIKELISS (3.44)
In particular
IJ 2 } IJ .
[ Qus " = 5 (uury) 53 (3.45)
Q> = —2ar 4! + 53
(3)
R-Qry=sury, R-Qrj=3uyy. (3.46)
Positivity of the norms implies
s8> QUIJUIJ = 2@[]11]‘] + u?. (3.47)

When s§ = 2uryul/, we have R and R are parallel at such point, which in general
we like to avoid.

(4) Using Fierz identity, one can shows
SR+ sR = 4UIJQIJ =2uQ@ + 4ﬁ[JQIJ, (3.48)

RmRy, — RoRyy = —4U[JX£;L]n = kAR=—durx"’

Imn = —

- 2
‘SR— §R‘

where the last equation tells us that the metric is completely determined by the
bilinears constructed from 2 solution.

,10,



Contraction between the vectors and 2-forms
iR (1) = 5 (1) — (ti)

1q(t0) = (ti) & — s (t7) (3.50)
tyo (t0) = (t1) (uk + sT) |

LR(tIJé[J) — 5 (t”@u) = 4" (utry — Grg7)

where again ¢ is arbitrary triplet of functions.

4 Killing spinor equation

In this section we will discuss what constraints will be imposed on geometry of M when
there exists different number of solutions to the Killing spinor equation (2.11). We focus
on situations where there are 1, 2, and 4 pairs of solutions to the equation.

Recall that the Killing spinor equation required by rigid limit of supergravity is

1 1
Ymr = Vinér — Timtr’€5 — iqurmpqgl - §anf‘n§1 —(An),7er =0, (4.1)

where t7; is a triplet of scalars (or more precisely, a global section of the ad(Psy(2)) where
Psyy(9) is an underlying principal SU(2)z-bundle, with gauge field (A;,) I‘]), F is a closed
2-form, V' is a 2-form.
The symplectic Majorana spinor £; is a section of the SU(2)x twisted spin bundle of M.
In general the SU(2)g-bundle P is non-trivial. We define the gauge-covariant derivative
on tr J
VAt =Vt — (An) S tr? + 5 (Am) 7 (4.2)

and curvature of A as
(Wmn)[J = Vm(An)IJ - Vn(Am)]J - (Am)IK(An)KJ - (An)IK(Am)KJ} . (4.3)

Note that the Killing spinor equation is SU(2) gauge covariant. It is also invariant
under complex conjugation, provided that the auxiliary fields satisfies reality conditions:
F and V are real,

try ="ty (4.4)
and similar for A. The reality condition on t;; and A is just saying that they are linear
combinations of Pauli matrices with imaginary coefficients.

Apart from the above obvious symmetries, the equation further enjoys a shifting sym-

metry and a Weyl symmetry.

e Shifting symmetry: the equation is invariant under the shifting transformation of
auxiliary fields V' and F

Vs V4Ot
{ ws)

F— F+20t

where QT is any self-dual 2-form discussed in (3.26), following from the fact that

Qf T = 0. (4.6)

— 11 —



e Weyl symmetry: after rescaling the metric g — e>g, one can properly transform
the auxiliary fields as well as the Killing spinor solution such that the Killing spinor
equation is invariant. This can be seen by first rearranging the Killing spinor equa-
tion (2.11) into the form

~ 1
vm&[ = Fm§] + ipmnrngfu (47)

where )
& = (tﬂ - 21@,;@5;’) €7y Pon = Foun — 2Vinn. (4.8)
and we ignore the gauge field Ayy for simplicity.

Focusing on (4.7) alone as an equation for pair (£,£) on any d-dimensional manifold,
it is obvious that

~ 1 1
&r= Ermvmgl - ﬁpmnrmnfl- (4.9)
Substituting it back to (4.7), one obtains the equation
1 1
Dm(g)gl = _ﬁppql—\mrqul + §Pm”F f] (4.10)

where the well-known differential operator D, is defined as

1
Din(9) = Vin = ZTml" V. (4.11)

and depends on the metric g. It’s easy to show that®
D (e279)e/? = e7/°D,, (g). (4.14)
Hence, equation (4.7) is invariant under rescaling

g—€e2g, P—e’P, & — e/ (4.15)

Now we return to the equation (2.11), and compute the transformation of auxiliary
fields under Weyl rescaling. Suppose the scaling function o is constant along vector
field R:

RV 0 =0, (4.16)

then one can see that the Killing spinor equation (2.11) is invariant under rescaling

1
g—e*g, try— ety V— eV — 560 (kANdo), F—e’F —e’ (kANdo), (4.17)

SUnder Weyl rescaling g — €?g, the spin connection is shifted according to

o 1
Vit = Vi % = Vi + 5 (Vio) D0, (4.12)
To prove the Weyl transformation rule for D(g), one just need to plug the above formula into
D (e*g) (e"/%p) — e (e"/%/;) - érmrnv;f“g (ef’/%p) . (4.13)

— 12 —



provided we also rescale & — e?/2¢. Note that the Weyl rescaling only affects the
vertical part of F" and V. One can therefore use this rescaling symmetry with appro-
priate o to make F' horizontal, namely

LrF = 0. (4.18)

However, unless explicitly stated, in most of the following discussions, we will keep
the general F' without exploiting the Weyl symmetry.

Let us comment on the reality condition defined earlier.

(1)

In 5 dimension Euclidean signature, the spinors belong to 22 dimensional pseudoreal
representation of Spin(5) ~ Sp(2), spinor (¥*), and (C¢), = Cuptp® transform in
the same way. It is impossible to impose the usual Majorana condition, but one can
impose the symplectic Majorana condition on spinors. In this sense, 4 complex (8
real) supercharges correspond to unbroken supersymmetry, namely N = 1.

The reality conditions introduced above are required by the supergravity that we
started from, where one is interested in a real-valued action. However, it is fine to
relax the reality condition on the Killing spinors and auxiliary fields, as long as one is
only interested in a formally supersymmetric invariant theory. It makes perfect sense
to consider complexified Killing spinor equation. In particular, the reality condition
is not used in many of the following discussion, for instance, section 4.1 actually
can be carried out without assuming the reality condition (except for the shifting
symmetry of QF which requires positivity following from reality condition). One
only needs to work with C-valued differential forms. Also, when we compare our 5d
Killing spinor equation to the 4d equations appearing in [1, 2], we drop the reality
requirement. However, in this paper we mainly restrict ourselves to the real case,
and reality condition does helps simplify certain discussions.

Solutions to equation (2.11) come in pairs. Suppose £ is a solution, corresponding to
one supercharge (), then its complex conjugate &’

G =&=8&, =&, (4.19)

automatically satisfies (2.11) corresponding to the supercharge Q. The pair of solu-
tions &; and &) define the same scalar function s and vector field R, but 2-forms ©
with different sign.

In view of such “pair-production” of solutions, we focus on finding different number of
pairs of solutions to (2.11), and discuss them separately in the following subsections.
When analyzing the case when M admits 1 and 2 pairs of solutions, we will select one
representative solution from each pair, say, £ and é , and study the relation between
the bilinears that can be formed by these representing Killing spinors. Generically,
the vector fields R and R from separate pairs should not be parallel everywhere on M.

One may worry about possible zeroes of Killing spinors. Similar to that in [1], the
Killing spinor equations are a first order homogeneous differential equation system,

,13,



whose set of solutions span a complex vector space CF<* with each solution com-
pletely specified by its value at a point p € M. By the symplectic Majorana condition,
&1(p) = 0 implies &(p) = 0, and hence &;(Vz € M) = 0. Therefore, any non-trivial
solution of the Killing spinor equation must be nowhere-vanishing, which ensures that
the many bilinears defined (especially the almost contact structure) will be global.

In some sense, our Killing spinor equation is a generalization of the well-known Killing
spinor equation

Vi) = A, (4.20)

The constant A can be real, pure-imaginary or zero, and the equation is accordingly
called real, imaginary Killing spinor equation and covariantly constant spinor equa-
tion. If a manifold admits a Killing spinor, its Ricci curvature must take the form

Ric =4 (n —1) Ny, (4.21)

hence Einstein. For A\ pure imaginary, Baum gave a classification in [23, 24]. Prior
to [25], manifolds with real Killing spinor are better known in low dimensions. For
instance, 4-dimensional complete manifolds with real Killing spinor were shown to be
isometric to the 4-sphere [26]. In 5-dimension, simply-connected manifolds with real
Killing spinors were shown to be round S° or Sasaki-Einstein manifolds, with solutions
coming down from covariantly constant spinors on their Calabi-Yau cone. In [25],
these results were generalized to higher dimensions: in dimension n = 4k + 1, only
547+l and Sasaki-Einstein manifolds admits real Killing spinors, while in n = 4n+3 >
11 dimension, only the round sphere, Sasaki-Einstein and 3-Sasakian manifolds admit
real Killing spinors.

Our generalized Killing spinor equation has milder constraints on the geometry of
manifold. We will see that the existence of one Killing spinor requires some soft geometry
structure, one being an almost contact structure, similar to [3]. Of course, as the number
of solutions increase, the geometry will be more constrained.

4.1 Manifolds admitting 1 pair of supercharges
4.1.1 General result and ACMS structure

In this subsection we will analyze the case when there is one pair of solutions to the
Killing spinor equation (2.11). We partially solve the auxiliary fields in terms of bilin-
ears constructed, and rewrite the (2.11) into a simpler form. We will also briefly discuss
3 interesting cases with special auxiliary field configurations, which lead to geometrical
restrictions of M being locally foliated by special manifolds, or dimensional reduction to
known 4d equations.

By differentiating the bilinears and using (2.11), one arrives at the following differential
constraints on the quantities:

e Derivative on real positive function s

ds = —ugF. (4.22)
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e Derivative on real vector field R

VinRn = 2(t0),  — /G 1 ReVig + $Fyn. (4.23)

e Derivative on the 2-form with any triplet 77
+tr (rt) (gnkRm — gmkRn) — 2TJIt[K(*®JK)kmn

2 [(*V)nklrlj(efj)ml - (*V)mkl(T]J@IJ)nl}

—kaTIJ(*@]J)

(4.24)

mnp

Let us comment on the above relations. The first equation implies s = const and can
be normalized to s = 1 when F' is horizontal. Recall that one can always use the Weyl
symmetry of the equation to achieve this, although we keep the general situation. The
second implies that R is a Killing vector field:

ViR + Vi Ry = 0. (4.25)

The 3rd relation can be simplified as one puts in the solutions to F' and V.
Using the 2nd and 3rd equation, one can solve (partially) the auxiliary fields in terms
of the bilinears (field V' is decomposed as V' = Vg + k A n):

F=(2s)"'dr+ 257107 + 257 1Q+

Vig=—s'(t0) —s'Q” +s7'QT (4.26)

i

| mn 3. 1 nm
= 73(@U) VO — 7 (V"7 = 7(An)IJ(@IJ)

4s 4 5
where QF are self-dual (+) and anti-self-dual (—) 2-forms respectively, satisfying extra
condition

L% =0. (4.27)

From previous discussions, we know that QT corresponds to the arbitrary shifting
symmetry of Killing spinor equation, so we may simply consider Q7 = 0.

2~ is in general non-zero. For instance, the well-known Killing spinor equation (1.1)
corresponds to

0" =—2dr, (4.28)

which is non-zero. Also, at the end of the paper we construct a supersymmetric theory for

the N/ = 1 vector multiplet using the Killing spinor equation corresponding to

_ 1

Q" = —dk. (4.29)
4

However, to highlight some interesting underlying geometry related to (2.11), we will con-

sider
Q" =0, (4.30)
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in this section unless explicitly stated. It is straight forward to generalize to non-zero 2,
with sight modification to the following discussions.

Now that the auxiliary fields are partially solved, we can start simplifying the Killing
spinor equation. As mentioned before, t;; is a global section of associate rank-3 vector
bundle of Psy(g), it may have zeroes. Below we will focus on 2 cases corresponding to ¢ # 0
and t = 0 everywhere on M.

First let us consider the case when tr; # 0.

(1) tr; # 0. Notice that the quantities (g,s 'R,s 'k, ;) actually form an almost
contact metric structure (abbreviated as ACMS). Using the ACMS, one can further rewrite
the Killing spinor equation:

Vs — (An)r' €7 = 0, (4.31)
where we rescaled & )
&r= (Vs) 7, (4.32)
1

. 1
(Am)r” = (An)y” + S Rnts” + 4

1
= *RmtIJ +
S

5 (Vit‘”{) txr + n terms
r (t%) (4.33)
(V5 tir + n terms,

tr (2)
and V being the compatible spin connection introduced in the appendix D.
- B 1 J 1 n 1
Vinlr = Vimér + tr(it?)(Tm) 167 = 5 Vb e + 5 (Vi logs) &

. (4.34)
ng(t0)1 t17¢s + 5(*VV)

quf]

e (2) mpq

Notice that the new gauge connection is no longer SU(2) connection, since the term
(Tn) 1 = (Vint ™) trcs, (4.35)

might not be symmetric in 7, J, but rather

1
Tl - Tl = 56” Vitr (£%) (4.36)

which corresponds to an new extra U(1) gauge field. Fortunately this extra U(1) part is in
pure gauge,
AIU{D ~ eV intr (), (4.37)

and can be easily gauged away. Hence, let us choose a gauge
Vir (£2) =0. (4.38)
Before moving to the ¢ = 0 case, let us make a few remarks.

(1) The appearing of ACMS has already been hinted in literatures . In [3], supersym-
metric theory is obtained on any 3d almost contact metric manifold. [27] constructed
twisted version of the super-Chern-Simons theory considered in [28] on any Seifert
manifold M3. Their twisted theory is defined with a choice of contact structure on Mg,

,16,



with fermions replaced by differential forms. Note that the non-degenerate condition
of a contact structure is crucial in defining the theory and the supersymmetry used
for localization. Similar situations appear in [9, 10], where the authors constructed
twisted YM-CS theory on any 5d K-contact manifold M.

(2) There is an interesting configuration (among many similar ones). It corresponds to
the case when
oV = F. (4.39)

To make things even simpler one can use the Weyl rescaling symmetry to make field
I as well as V' horizontal, and &7 has length 1. The Killing spinor equation can be

rewritten as

1

which takes the familiar form
Vi = I'nér, (4.41)

with & = (t;7 + (1/4)FPIT,,67)€;. We will use this Killing spinor equation to
construct a supersymmetric theory for the A = 1 vector multiplet in section 5.

Note that this configuration allows a simultaneous removal of the self-dual part of
both V' and F, and therefore dx € Q;(M). Away from points where dk = 0, &, R
defines a contact structure:

kdk N\ dk = —dk N\ *dk # 0. (4.42)

There are many examples of contact manifolds. For instance, any non-trivial U(1)-
bundle over a 4d Hodge manifold, with unit Reeb vector field R pointing along the
U(1) fiber is a contact manifold. One should note that trivially fibered S!-bundle,
namely M = S' x N with Reeb vector field pointing along S is not contact, because
the non-degenerate condition cannot be satisfied. However, this type of manifold still
serve as important examples admitting supersymmetry. Hence, we will have a brief
discussion related to this type of manifold at the end of this section.

(2) trg = 0. There is no natural ACMS arises in this case (although, if possible, one
could choose by hand a nowhere-vanishing section of ad(Psy(2)) to play the role of 77, and
similar calculations goes through. In this paper we do not consider this approach). The
auxiliary fields ' and V read

Fpn = (28) " (ViuRy — Vi Rin)
, (4.43)
Vinn = Bmfin — Ryuiim
and the Killing spinor equation reads
3 1 1 nl & F
vmgl + _@ (Rlvan - anle) + i(LR * n)mnl r 51 = (Amé)[ (444)
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Similar to the previous discussion, we again have a new connection V defined as

. 1
Py =T + (R R = Ru VB ) = 200+ 1) (4.45)
satisfying
Vi (s7'R™) =0, (4.46)
although there is no obvious geometrical interpretation for this connection.
Again the Killing spinor equation can be rewritten as
@mél - (Am)[J‘fAJy (4'47)

where f = v/s~1¢ has unit norm

To end this section, we discuss, in the following subsections, 3 special cases related
to 5-manifolds of the form M = S' x My, with the Reeb vector field R pointing along
S1. As we will see there are 2 cases corresponding to two different types of auxiliary field
configurations: V horizontal, F' vertical and V', F' both vertical. The first configuration
leads to geometric restrictions on the sub-manifold My, while the second corresponds to
the dimensional-reduction of our 5d equation to 4d already discussed in the literatures.

For such product form (or foliation) to appear, one first needs the horizontal distribu-
tion T'Mp to be integrable: the Frobenius integrability condition for x reads

dri A k=0 ,or equivalently dx = k A X\, \ € QL (M). (4.48)

Recall that F' o< dx (2~ is assumed to be 0), one sees that the Frobenius integrability
condition requires vertical F'
F=rN(..). (4.49)

4.1.2 Special manifold foliation

To proceed to the first class of special cases, let us define a local SU(2) section of “almost
complex structure”:

Jo = é(aa){,@%, (4.50)
satisfying
JOJb = etege — 51 4 §%s IR @ 57 k. (4.51)
It is immediate that when restricted on T'Mp,
JOJb = eobe je — §oby. (4.52)
Moreover, we have
VilI) = (A% (1) (4.53)
where
(Am)ab = (—i)Q(Am)IK(Ua)JI(Ub)KJ- (4.54)

Note that we can solve the new connection in terms of “almost complex structures”:

(4.55)

mn’

(An)y = ()™ T4(7%)

which, depending on whether ¢;; = 0, provides constraints on ¢ or A.
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These equations closely resemble that of Quaternion-Kéahler geometry, where one has
on manifold M a SU(2) bundle of local almost complex structure J? satisfying

JOJ? = e ge — 61, (4.56)
and is parallel with respect to the gauged connection
VJE = A%J°, (4.57)

with the Levi-civita connection V and a SU(2) gauge connection A.
However the situation here is slightly different. We do not have actually a manifold
but rather a horizontal part of tangent bundle 7'My of 5-fold M.
Let us assume V' is horizontal:
n = 0. (4.58)

The induced connection (for t # 0 case; t = 0 case goes through similarly and yields
the same conclusion) on T My is

VxY =VxY —g(s 'R, VxY)s 'R~ (VatrE) tes 017 (V), VX, Y € TMy.

(4.59)
Consider the special case where the sub-bundle T'Mpy is integrable as the tangent

1
tr (2)

bundle T'My of a co-dimension 1 sub-manifold My, then V reduces to a connection on My.
The first 2 terms of the connection combine to be the induced Levi-Civita connection V4
on My (s~ R being the unit normal vector), while the third term add to it a torsion part:

ank = ank + f}/nmka (460)
where 1
_ A, K IJ\"
= 5 (Vintr™ ) txs(©77) ", (4.61)
Rewrite the Quaternion-Kahler-like equation as
@244‘]7?171 = VQ/LI Jg’m - ’Ylkm‘]l%z - fylknjﬂnl = (Ak)ab‘]}’)rm' (462)
Now one can put back expression for both v and J%, and sees that the torsion terms
gives
1
i = i = iy (VR @i (@) ()= (BT e (463)

This implies that the Quaternion-Kéahler-like equation, restricted on a horizontal sub-
manifold My, actually reduces to Quaternion-Kéhler equation (with newer version of gauge
field A 4 B)

VMiga = (A + B)?,Jb = ((Ak)f’ + Rktﬂ) (0 (o)X, (Jb) . (4.64)

mn

Thus, we see that for generic auxiliary fields ¢;; and A,,, provided that the horizontal
distribution can be globally integrated to a sub-manifold My, M, is actually a Quaternion-
Kahler manifold. Of course, there are special combinations of ¢;; and A such that A+ B
vanish. In such case, My is a HyperK&ahler manifold.
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With the integrability condition satisfied, we see that M is now locally foliated by
Quaternion-Kéhler (or HyperKéhler in special case) manifold. In particular, compact
manifold M could be a direct product

M = S* x My, M, is Quaternion Kahler. (4.65)

In view of the fact that there are only 2 compact smooth Quaternion-Kéhler manifolds in
4d, possible examples are M = S x CP?, S' x §4, where the vector field R is chosen to
be the unit vector field along S, with gauge field A turned on on CP? and S*. There are
more examples when My is allowed to be non-compact or orbifolds.

4.1.3 Normal ACMS, cosymplectic manifold and Ké&hler foliation

As mentioned above, there are 2 ways to define ACMS structure on M using the data
coming from Killing spinors: with the nowhere-vanishing auxiliary field ¢;; or some other
nowhere-vanishing section of ad(P). In general the ACMS structure so defined does not
have nice differential property. However, when some (rather strong) conditions are satisfied,
the ACMS will behave nicer.

Let us focus on the case t # 0 and (s~ 'R, s 'k, ;) define ACMS on M.

One obtains

1 1
Lrt® = (Vat!?) (Or7) + sVP <8Rm> (t0),,,dz"™ A da. (4.66)
Setting

Vit =0, Vi (s7'Ry) =0 VR,  Fippy = 0, (4.67)

one has LrtO = 0 and hence L,-1z¢; = 0.
If, in additional to the above, one further imposes V to be horizontal and VAt = 0,
then it is easy to see that the ACMS satisfies

Vg@t = 0, (4.68)

and hence it is cosymplectic. In this case, the Levi-civita connection V on M respects the
ACMS, the restriction of V on the horizontal distribution is automatically a connection
on T'M H-

Note that VR = 0 implies that the horizontal distribution is locally integrable. There-
fore, restricted on the integral sub-manifold, V is the induced Levi-civita connection,
is an almost complex structure which can be shown to have vanishing Nijenhuis tensor
and hence actually a complex structure. It is parallel with respect to induced Levi-civita
connection, hence is Kahler.

In summary, we see that
VAL =0, F=0, V = Vg = —t0, (4.69)

implies a cosymplectic ACMS (namely V¢, = 0), and M is locally foliated by 4d Kéhler
manifold, with the Kéhler structure provided by .
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Recall that we had conclusion that M is locally foliated by Quaternion-Kéahler manifold

in the previous subsection, for configuration Fy = 0, V = Vy. Suppose M = My x S!

with a Reeb vector field R from a Killing spinor pointing along S*, then we see that My

must be Quaternion-Kéhler as well as Kahler. If My is a smooth compact manifold, then
this leaves only one possibility:

M = CP? x S*. (4.70)

Of course, for more general Reeb vector field pointing along other directions, one could
have other possibilities of Mjy.

4.1.4 Reducing to 4d

Finally let us point out the reduction of (2.11) to 4d already discussed in literatures [1, 2.
Consider M = My x S! with spinor £; and auxiliary fields independent on the S* coordinate.
The 4d part of the Killing spinor equation reads

1 1 1 1
v,uf] = tIJ’Y,ugj + iF,u5’YS£I + §VV57;LV5§I + §V)\p7u/\pgl =+ iFHV7V§I + (AM)[J€J7 (4'71)
and the S' part serves as direct constraints on auxiliary fields

1 1
Os&r =117¢ + §F5W”§I + §V””7uu75€1 +(45),7¢, =0. (4.72)

There are now 2 different ways to reduce the equation, each gives rise to the Killing
equation discussed in [1, 2]. The involved vertical condition Vi = Fir = 0 and requirement
t =0 or t;; «x €75 indeed imply the Frobenius Integrability condition

de Nk =0, (4.73)
which is necessary for M to be a product.

I. Reduction to [1]. Settingt= A = F,, =V, =0, namely F and V are both vertical
2-forms, the equation simplifies to

1 1
vugl = B u57551 + 5‘/”5’7;11/551

: (4.74)
0581 = F5"&r =0
or written in terms of Weyl components &; = (¢7,(;),
1 1
Vilt = 5 Fusli + 5V o
~ 1 ~ 1 5. = ) (475)
VuCr = —3 usCr — §VV I
with constraint on F;5
Fs,6"¢; = 0, Fs,o™C; = 0. (4.76)

Suppose we relax the reality condition on £ and also F' and V', and define new complex
auxiliary vector fields A and V/

2iA, = Fus — Vs = 0uas — Vs
—QiV# = V'u5

: (4.77)
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then the above equation takes a familiar form
{ Viulr = =i (Vi = Ap) 1 = iV¥ 0 (1
Vulr =i (Vy— Au) {r + V76,
which is just the Killing equations discussed in [1] for 2 separate pairs of chiral spinors

(Cl,g:l) and (CQ,fg). V.5 has to satisfy conservation condition VMV“5 = 0, and Fj5 is
holomorphic w.r.t. J, iy and J, il, if any of them is non-zero. The conservation condition on

(4.78)

V5 is equivalent to d*-closed condition on vertical 2-form V'
V, V¥ =06 V™V, =0 d«V =0. (4.79)

Now that we choose not to impose reality condition on auxiliary fields, it is also fine for
&1 to be non-sympletic-Majorana, hence £; and & are now unrelated complex spinors, and
one of the two can vanish. This then leads to different numbers of Killing spinor solutions
in 4d, ranging from 1 to 4. In [1], the cases when M4 admits 1, 2 and 4 supercharges are
discussed in detail. Here we list a few points and discuss their 5d interpretation. More
results can be obtained similarly.

(1) 2 supercharges of the form ((,0) and (n,0): then assuming My is compact, My has
to be a Hyperhermitian manifold up to global conformal transformation. Moreover,
the auxiliary fields satisfy

e a) V, — A, is closed 1-form.
e b) d,V, —0,V, is anti-self-dual 2-form.

Condition a) is obviously satisfied by definition: V}, — A, ~ 0 a5 is obviously closed.
The condition b) reads in 5d point of view

LtrdV = — % dV, (4.80)

(2) 2 supercharges of the form (¢,0) and (0,¢): there are 2 commuting Killing vector
on My, and hence M, is locally T2-fibration over Riemann surface ¥. The auxiliary
fields V,;5 and F};5 are given in terms of J,, and jw,.

1 1 ]
I1. Reduction to [2]. Setting A = F,, =V, =0, §Fu5 = §Vu5 = %b“, t=(i/6)MIsx2,

one similarly obtains

T 1 T,
VMCI = gMo',u(I + gb,uCI + gb O-,UJJCI

] T~ i, oz
MUMCI - gbuCI - gbVO'w,C[
which is the Killing spinor equation for 2 pairs of spinor (1, (1) and (C2, C) discussed in [2]

for but with condition M = M.

Again, &7 are no longer symplectic Majorana, and solution of the 5d Killing spinor

~ (4.81)
V/AQI =

equation leads to different number of solutions to 4d Killing spinor equation. Let us list a
few examples from the detail discussion in [2]. Interested reader can refer to their paper
for more results.
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(1) 1 supercharge of the form (¢,{): any manifold (My,g) with a nowhere-vanishing
complex Killing vector field K which squares to zero and commutes with its complex
conjugate

K,K"=0, [K,K] =0, (4.82)

admits solution of the form (¢, ¢ ) to the 4d Killing spinor equation. K and the metric
can be used to build up a Hermitian structure on Mjy.

(2) 2 supercharges of the form ((1,0) and (C2,0): My is anti-self-dual with V5, and
F5,, closed 1-forms, and hence in 5d point of view, they are closed vertical 2-forms.
Moreover, the form of solution requires M = 0, and according to our reduction,
M =M =0. If F =V are exact, then My is locally conformal to a Calabi-Yau
2-fold. Otherwise, My is locally conformal to H? x R.

(3) 2 supercharges of the form ((1,0) and (0,(s): one must have M = M = 0. This is
equivalent to My having solution ((i, 52) with M = M = 0.

4.2 Manifolds admitting 2 pairs of supercharges

In this section we consider the case when 2 pairs of solutions to the (2.11) exist. We see
that when certain assumptions on vectors )7y are made, and if the Killing vector fields
form closed algebra, the geometry of M will be heavily constrained. And in particular, all
the resulting geometries admit contact metric structures.

The spinors £ and f satisfy equations:

1 1
Vi€ = tIJFmé:J + iqurmpqgl + iFmpanl + (Am)lng

R L 1 o9 ~ L (4.83)
vmgl =1ty I‘ng + vaqrmqul + §anrnfl + (Am)] £J
Similar to the previous section, we have
e Derivative on uyy
(1) X
ul dupy = ol dig; + Sudu = =2t (%) ; — tug) F- (4.84)
(2)
du = —1F. (4.85)
e Derivative on Qg
namely, @ is a Killing vector.
The derivative on uy; implies relation
2uryul’ =55+ C, (4.87)
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where the function C' is invariant along R and R. When t;; = 0, C reduces to
constant. Notice that when C' = 0,

sR = 3R, (4.88)

and when C' = —s3§
SR = —sR, (4.89)

which are degenerate cases that we do not consider in the following.

e Commutator between R and R

~

K = [R,R™ =8 (ti) Q™ — 8u(tQ)™ — A(epep* V)" + (SupF — supF)™. (4.90)

Recall that we now have several Killing vector fields, R, R, K and Q. If some of them
form closed Lie algebra, the geometry of M will be heavily constrained. In the rest of this
section, we discuss several simplest possibilities where they form 2 or 3 dimensional Lie

algebras.

1. R and R form 2-dimensional algebra. There exist only two 2-dimensional Lie
algebras up to isomorphisms. One is the abelian algebra, the other is a unique non-abeilian
algebra.

When R and R commute, namely K = 0, one obtains the abelian algebra. If the orbits
of R and R are closed, then M is acted freely by T2, and therefore M is a T2-fibration.

The non-abelian algebra corresponds to K # 0. Assume K is a linear combination of
R and R, then

[R,R] = aR + bR. (4.91)

Contracting with R and R it gives

as® +b(ss +20) = stppF
L (4.92)
a(ss+2C) +b5? = 5LppF
The determinant of the system is
det = 5252 — (55 + 20)% = —4C (C + s3) . (4.93)
Notice that away from the degenerate cases when C' = 0 and C' = —s§, the determinate is
non-zero. Therefore, when tgtzF' # 0, the system allows solution (a, b)
B SLRLRF
2(s5+0) (4.94)
B StptrF
- 2(s5+0)

Notice however that R, R and their commutator are all Killing vectors, therefore the
coefficients a and b must be constant. This implies

= const, (4.95)

wl »
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and further
£R§=£RS:O:>LRLRF=0, (4-96)

hence
a=0b=0. (4.97)

To summarize, if R and R form 2-dimensional algebra, it can only be trivial abelian
algebra.
What remains is the Killing vector Q. Assume @ and the commuting R and R form 3
dimensional algebra:
[R,R] =0

[Q,R] = aR+ bR+ mQ . (4.98)
[Q,R] = cR+dR + nQ

Let us make a Weyl rescaling to set tgF" = 0. Then it automatically implies tpigF =
Lt F = 0 by previous arguments. Therefore,

Lr(us)=Lr(R-Q)=R-[R,Q =0
{ (us) (R-Q) [ { ] ‘ (4.99)
Lp(us)=Lz(R-Q)=R-[R,Q]=0
It is immediate to see that the determinant of the above linear system is
det o |sR — 5R|?|Q)?, (4.100)

and hence non-trivial solution requires @ = 0 or §R = sR, which we do not consider.
Therefore, one has @, R, R forming abelian algebra, and M is a T3-fibration over Riemann
surface . Up to an overall rescaling factor, the metric can be written as

3
ds?® = hogda®dz’ + Z (db; + a;(x))?, (4.101)
i=1

where 6; are the periodic coordinates along R, R and Q) provided their orbits are closed,

and «; are 1-forms that determine the fibration.

2. R, R and R, R] form 3-dimensional algebra. Assume that the algebra takes

the form .
[R,R] =K

[R,K] =aR+ bR +mK . (4.102)
[R,K] =cR+dR+nKk

In general, tgrtzF' does not vanish. However, we can make a Weyl rescaling to make,
for instance, tgF' = 0, and in particular, s is constant and tgtzF' = 0. This implies

R-K=R-K=0. (4.103)
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It is then easy to solve the coefficients in the above linear relation:

1 985+2C 1, o &
a=——= K| — c=——— ‘ —
4C s§+C 4C s§+C (4.104)
p_ L 2 s2 ’ gL |25§+20 ' ’
407 5+ C 40 ss+C
The fact that all coefficients must be constants implies
> b t (4.105)
— = const, ———— = cons .
S " s5+2C ’

and therefore both § and C' are constant as well.

It is then straight forward to renormalize and linearly recombine the vectors to form
a standard su(2) algebra. Therefore topologically M is a SU(2)-fibration over a Riemann
surface ¥; however, there is no non-trivial SU(2) bundle over a Riemann surface from the
fact that the 3-skeleton of the classifying space BSU(2) is a point), hence topologically
M = 5% x . Up to an overall scaling factor which was used to bring s to 1, the metric
takes the form

3
ds?w = ds% + dsgg = hag(x)dmadmﬂ + Z e’e?, (4.106)
a=1

where e = k, &,y are SU(2) invariant 1-forms on SU(2). Note that (g F' = 1z F = 0 implies
F'is a form on X: ]

F = Fop (v) dz® A dz?. (4.107)

Recall that there is one more Killing vector field (). The metric has isometry subgroup

SU(2);, x SU(2)g, which comes from the isometry of S3. If Q ¢ su(2);, x su(2)g, then Q

must generate continuous isometry in ¥, which implies ¥ = 72 or S? if M is compact. In

this case, by requiring @ commutes and being orthogonal to R, R and K, one can derive

new constraints on the auxiliary fields. For instance,
R-Q=05u=0&10F =0 (4.108)
which, combining with the fact that F' is a 2-form on ¥, implies actually F' = 0.

4.3 Manifolds admitting 8 supercharges

In this section, we discuss the optimal case where the Killing spinor equation has full 4
complex dimensional space of solutions. This is done by taking the commutator of the
V., applying Killing spinor equation and matching the Gamma matrix structure on both
sides. We will see that there are 3 cases corresponding to the survival of only one of the 3
auxiliary fields (¢, V, F'), with the other two vanishes identically. Here we list main results
that we will discuss in detail:

e V #0: M is positively curved, with product structure 7% x G where G is a compact
Lie group. The non-trivial example is then T2 x SU(2) with standard bi-invariant
metric.
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e F' =£0: M is locally of the form Mz x H?, where Mj3 is a 3 dimensional flat manifold.

e t # 0: M is locally a space of constant curvature with positive scalar curvature, hence
M is locally isometric to S°.

e t =V = F =0: M has zero curvature, hence is locally isometric to R5.

By explicitly writing down the commutator [V,,, V,,]¢; using Killing spinor equation,
one would obtain 2 immediate results:

e Terms independent of I.

(Wr!) =V An) ) =V A) T+ (An) S (A) 7 = (A) S (A0) 7 = 0. (4.109)

mn

For simply-connected 5-manifolds, flat connections must be gauge equivalent to trivial

connections.
e Terms linear in I'.
0= (Vnt?) T = [(Amt),” = (t4m), " T
%(vanp)rpa,J — FP(+V),p, Tadr” — 2677 (), /Ty (4.110)
— (m <> n)

The solutions to the equation are:
Case 1

{t” =0 (4.111)

Case 2
V=0 (4.112)

Now we study 2 cases separately.

Case 1. Ounly V # 0.

The solution ¢/ = 0 and F' = 0 implies (4.110) vanishes identically, no further condi-
tion on V is required.

Combining with previous section, we know that

ds =0, (4.113)

and we conveniently set s = 1.
By identifying the terms quadratic in I' matrices, one sees that the

e The curvature tensor satisfies a flat condition:
Rynit(V) = 0, (4.114)

where R is the curvature tensor of a metric connection with anti-symmetric torsion

Vi X" = Vo X™ 4 2(xV)"  XF. (4.115)
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with V the Levi-civita connection of g. This result is most easily understood by
looking at the Killing spinor equation, where V can be absorbed into the metric
connection as a totally anti-symmetric torsion.

e The Ricci curvature

Ricy, = 4(xV)P1 (xV) (4.116)

pqn’
e Scalar curvature

R = +4(V)"(xV), >0, (4.117)

which indicates the manifold must have positive curvature. Moreover, compact mani-
folds admitting metric connection with anti-symmetric torsion are known to be prod-
ucts of T% x G where G is a compact group. This leaves us only a few possibilities,
the non-trivial one being

M = SU (2) x T?, (4.118)

which has standard positive curvature.

Case 2. V =0.

Putting back V' = 0 into (4.110), one has

Ay J Ay J
Ink (Vintr”) — gme (Vitr’) =0
{”(m) i (Vatr”) . (4.119)
These 2 condition implies covariant-constantness of ¢;; and F':
VAL =0, ViFpn =0. (4.120)
In particular,
d«F =0, dF =0 AF =0, (4.121)
and 2nd/3rd Betti number is forced to be non-zero, if F' # 0:
¥ =0>1 (4.122)

Compare the the terms quadratic in I', one obtains
1 J 1
ZRmnpquq(le =—2(t*), Ton — 5Emanml’s51" + [2t/7 FpI?, — (m <> m)] . (4.123)

The solutions are

t;y=0 or F=0. (4.124)
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i) t = 0 while F # 0,t = 0.

e Riemann tensor
Rmnkl — leFnk - kaFnl (4125)

Note that the expression satisfies interchange symmetry automatically, while the 1st
Bianchi identity implies

e Ricci tensor

Ricym = FopF*,. (4.127)
e Scalar curvature

R =—F,,F™", (4.128)

which is negative definite if I # 0. Also note that F' is covariantly constant, hence
R nnk is also covariantly constant.

Let’s further constraint the form of curvature using the condition F'A F' = 0. Noting
that F,,, is a 5 x 5 antisymmetric matrix, we choose a coordinate where it takes
block diagonal form:

F = Fiodz' A da? + Fauda® A da. (4.129)

Requiring that F' A F = 0 forces
FiyF3 = 0. (4.130)

Assuming
Fia # 0, (4.131)

with all other component zero, one arrives at a Riemann tensor with only one non-
vanishing component:

Rig1 = —(F12)* < 0. (4.132)

Combining with the fact that F' is parallel, this implies the 5-manifold M should
locally be product manifold
M =T3 x H?, (4.133)

where F' = Fiaodz! A dz? serves as the volume form of H2.

The metric of M can be written as

F
ds? = ds2s + ﬁ (de + dyg) . (4.134)
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ii) The case where t # 0, F = 0.

e Riemann tensor
Rkl = 2tr (tz) (gmlgnk - gmk’gnl) ) (4135)

where interchange symmetry and first Bianchi identity are automatically satisfies.

The second Bianchi identity forces tr(#?) to be constant. The form of curvature
implies that M is a space of constant curvature, and therefore it must be locally
isometric to S°. This corresponds to the well-known fact that maximal number of
solutions to the well-known Killing spinor equation can only be achieved on round

S8,

5 Supersymmetric theory for vector multiplet

In section 4, we analyzed many properties of the proposed Killing spinor equation (2.11
from supergravity, and discussed some necessary geometric conditions on the underlying
manifold for solutions to exist.

In this section, we propose a slightly generalized version of the supersymmetric theory
for N' = 1 vector multiplet. It is not the most general one, as there are other known
examples (constructed by dimensional reduction from 6d, for instance) in recent literatures
that does not completely fit in the following discussion.

Let us consider a simplified Killing spinor equation, where we set F' = 2V = F in (2.11)

1 1
Dp&r = tTnés + prqrmpqgl + §}"mnl‘"§1. (5.1)

D, contains Leve-civita connection, spin connection, gauge field A,,, from the vector mul-
tiplet and background SU(2)-gauge field A;”/, depending on the objects it acts on. The
change of notation to F,,, is to avoid confusion with the field strength of A” = 1 gauge field

Fon = VinAn — VA — i [Am, Ay (5.2)

We propose a supersymmetry transformation of N' = 1 vector multiplet with parameter
¢ being solution to the (5.1) is

S A =il 7 (ETmAy)
Seo =il (Er0))

1 1
0eAr = —iananfl + (Do) T + €?5¢Dycr + 201765 + §U~7'_pq1—‘pq§[

5£D]J = —1 (f[F Dm)\J) -+ [U, ({]/\J)] + ’Lt]K (gK)\J) — prq (§Iqu)\J) + (I < J)
(5.3)
Using previous results we obtain

2 2

with V4, denoting the vertical part of field V.
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As discussed in an earlier remark, we applying Weyl rescaling symmetry, one can
eliminate Vy, and set s = 1. The Reeb vector field is then compatible with x:

trk = 1,1prdk = 0. (5.5)
For simplicity let us consider a special case where
F =dk, (5.6)

namely Q7 = 1/4dk.
Then it is straight forward to prove that the following Lagrangian S(k,¢g) is invariant
under (5.3):

1
sz/ tr [F/\*F—/-;/\F/\F—dAa/\*dAa—2DUDU+Z')\IIQA)\I—)\I [0, \]
M

) 1
—it!? (\Ay) + 2081 Dy + %vmmn (AT M) + 20 F A sdrc + JRo?| | (5.7)

where R is the scalar curvature of the manifold.

The detail proof will be presented in appendix F, but let us first make a few re-
marks here.

As already mentioned, in the explicit form (5.7) we took the choice to assume Q~ =
(1/4)dk, which is in fact a special case of a large family of supersymmetric theories in the
following sense.

Under supersymmetry (5.3) with & satisfying (5.1) without imposing 2~ = (1/4)dk,
the Lagrangian without x A F' A F' has variation

%fmanq (&TmmPaND (5.8)

Such term can be identified in two ways. If we assume F is not only closed, but

also exact 1
F=dA = §df£ + 20~ (5.9)

for some global 1-form A, then the term can be identified as variation of

ANFAF (5.10)

In such case, the theory is specified by x and A.
However, if we do not assume anything of F, then the term can also be identified as
variation of

2
}'/\<A/\dA+3A/\AAA> (5.11)

In such case, the theory is specified by a nowhere-vanishing 1-form x and a closed anti-self-
dual 2-form €7, although the gauge invariance is not nicely manifested.

Following an analysis similar to that in [8], one can add to the Lagrangian (5.7) a
d-exact term 0.V with

V=tr ((@)U) . (5.12)
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Then the localization locus is
Fy =odk, 1pF =0, dgo =0, Dryj+20t;;=0 (5.13)
For general €7, the first equation will take a more general form
Fy =odk+ 0. (5.14)

This localization locus is a generalization of the contact instanton in [9].
It would be interesting to perform a complete localization for the theory (5.7) with the
above localization locus, which we leave for future study.

6 Discussion

So far we have obtained many constraints on geometry of M imposed by the existence of
supercharges. For 1 pair of supercharges, generically M must be almost contact manifold,
and using the compatible connection, the Killing spinor equation can be simplified to a com-
pact form. We also discussed a few interesting cases related to product manifold.d, which
leads to special foliation and reduction to known 4-dimensional Killing spinor equations.
The presence of 2 pairs supercharges with 2 additional assumptions restricts the isometry
algebra of M, forcing M to be S% or T3-fibration over Riemann surfaces. The presence
of 4 pairs of supercharges allows for only 3 major possibilities, where the corresponding
topologies and geometries are basically fixed.

There are several problems that are interesting to explore further.

(1) We obtained necessary conditions for supercharges to exist, but not sufficient condi-
tions. In 3 dimension [3], the general solution to Killing spinor equation is obtained
from the special coordinate, which requires some integrability of the almost contact
structure. However, we do not have such integrability for the almost contact struc-
ture we defined, partly because the definition involves auxiliary field ¢;;, and the
differential property of t;; is not known at priori. Moreover, in the extreme case
where t7; = 0, it is not obvious that M is still a almost contact manifold. Perhaps it
is possible to define almost contact structure of M without referring to tr;.

(2) We partially solved the auxiliary fields, but not all: gauge field A and ¢;; are entan-
gled together. If t7; and A could be solved in terms of pure bilinears separately, the
first problem above can also be solved.

(3) In the discussions, we made a few assumptions and simplifications. For examples,
we did not study all possible bilinears formed by all solutions, but focused on those
formed by the representatives from each pair. One should be able to obtain more
information of M by taking into account all of them. Also, to simplify computation
we assumed 2~ = 0 in some discussions. It is straight-forward and interesting to
reinstate general {27, and understand its role in the almost contact metric structure.
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(4) We start from Zucker’s off-shell supergravity [21]. However, it is not coupled to
matter fields, and hence one do not automatically obtain any supersymmetric theory
for matter multiplets. Our analysis, in this sense, is far from enough to obtain a
complete picture. A next step one could try is to start from known 5-dimensional
off-shell supergravity coupled with matter and take the rigid limit. For instance, one
can start with N' = 1 supergravity coupled to Yang-Mills matters in [29], which is a
natural extension of [21]. The Killing spinor equation will be the same as we have
discussed. Also one can study [30], which was considered in [§]. After turning on
auxiliary fields t7; and Vi,,, the Killing spinor equation involved is then

1
Vmgl = tIJFng + i%qrmpqgl’ (61)

which is a special case of our more general equation.

7 Examples

In this section, we present simple explicit examples that illustrate some of the discus-
sion before, by solving Killing spinor equations on selected manifolds and determining the
auxiliary fields.

71 M =S'x 84

In earlier discussion, we discussed the possibility of having M = S' x N with N a 4d
Quaternion-Kéhler manifold. In this section, we consider the case where N = §%.

Denote the coordinate along S' to be 6, 2# are stereo-projection coordinates on S*.
The metric of S x S4 is simply

Oppdxtdx”

ds® = do* + 7.1
(1+72)? (7.1)
. 2
with function r2 = 3 (2#)
pn=1
As discussed before, we partially fix the auxiliary fields
F=0V=t0 (7.2)

However, non-zero t© will generate globally defined almost complex structure on S4, which
we already know does not exist, hence we can set ¢ = 0 and V = 0. The only auxiliary
fields allowed is thus SU(2) gauge field A.

The Killing spinor equation (4.31) now reads

Opér = (AG)IJ&J
v (73)
Vi = (A1 &

The gauge field A, is determined by the a choice of Quaternion-Kéhler structure on S 4,
Denoting
21 = at +ia?, 2 = 2 + it (7.4)
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one can define locally 3 almost complex structures as the basis,

0 0
le <®d2’2—®d21> +hC

8z1 82’2
1
J? =~ g@d@—%@dzl + h.c (7.5)
1 \ 071 073
3 f— .7 PR— '7 .
J _Zazi®dzl 2(927@)6%?Z

and determine the gauge field using (4.55).
We choose the Gamma matrices to be

MN=¢'@e?, I"=Ix¢, =103, C=T"1 (7.6)

and the obvious vielbein 1

+ 72

é:—wﬂﬂzl Sgdat (7.7)

solution is given as
é-l _ eifA9d9X+ ® s 52 — _efingdQX_ ® - (78)

72 M=S2x53
Consider S? as a U(1) bundle over S2. Let S3 be embedded into C2,

st ={lal* + |zaf* = 1] (z5) € C?} (7.9)
Similarly define
. 4t 2 1 0
2o =pe? 2= = =——— 21 =2z =pe’z 7.10
2=p P |0 ENFE 2=/ (7.10)

and hence the induced round metric on S3 can be written as

2
zdZ — zZdz dzdz

ds® = dz1dzy + dzodzg = |dO +i—F—— | + ———
2(141:2) | (14 2P)
= (d0+a)+g' (7.11)
where dods
gt =222 (7.12)

2
(1+1eF)
is the metric on CP! = $? with radius 1/2. In coordinate,
1 1
ggzgf:————ﬁzﬁa@mu+m%z@@K (7.13)

2(1-+yzﬁ>

and
(7.14)
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The vector field R = 0y is a Killing vector field, and its dual is k = df + A, such that
trk = 1.
Define the frame on S® to be

Red Imd
e =el =k, el = 6722, e = m722 (7.15)
1+ |7 1+ |z
s.t.
g=eled 4ele! +e%e? (7.16)
then it is obvious that
woap = 0,a,b=0,1,2 (7.17)
from the fact ) B
def o t4ZNAE (7.18)

(1+1:P)°

The base manifold S? x S? is complex, with natural complex structure and Kéhler
form. Setting the radius of the stand-alone S? to be [, with local complex coordinate w,
the metric of S3 x S? reads

dzdz A2 dwdw
g=(df+a)®+ s+ 5 (7.19)
<1+ 12\2) <1+ yw|2)
with Kéhler form on base manifold
idz A dz i41%dw N dw
" idz z2+2 w w2 (7.20)
2<1+ \z|2> 2(1+|w[2)
or in components
i ) 1l
Wyz = —Wzz = PR Wy = —Wopw = 1Gww = R (721)
2 (1+|2P) 2 (1+12)?)
The 2 complex structures on both CP! can form linear combination
pr =1 £ (7.22)
which satisfies
i =—1+R®k. (7.23)
1
Let us now construct the auxiliary fields. We choose t7; such that tr (tQ) =3 and
therefore
4(tO) ~ 1+ ... (7.24)

We identify a combination of the 2 complex structures on 2 CP! as t©. Recall that t©
also satisfies tp * (t©) = — (1©), hence we identify

o ~2(t0) (7.25)
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or a 2-form equation

2(10) = idzNdz i4l2dw A dw

2 2
2(1-+\2F) 2(1-+|u42)
Then we obtain F' and V:

F:Edn: idz N\ dz

2
2 2(1+|z\2)

and ) - o -
V- 10 — idz N\ dz - il“dw N dw

4(1 + \z|2>2 (1 + \w|2>2 '

With these auxiliary fields, one can solve the Killing spinor equation

A~

@mél = (Am )I §J~
Denote a = w,w, and p,v = z, z, we have
vaff = (Aa)IJgJ
1 v A
vué[ - 5 (VuRu) ¢ = (Au)] §J

Ao d
Volr = (A0); &
where o .
1 —iz 1 2z

Ry=1, R.= -— = = _i0,K, R:
0 y Az 21+‘z‘2 Lo 1, Iz

and we used
V, Ry =VyRy=0.
Choosing gauge field to be (4,,)7 = (A)(03)7,

z z

Ay = iAr= Ay =—

9 4
4 (1 + 12\2) 4 (1 + yz\Q)
and representation of Gamma matrices

Fyw~0o1201, I',:9~03R00123

one obtains the chiral solution (&2 is obtained from symplectic Majorana condition)

&=e 1 ®xs.

2142

10: K

e~ |

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

The calculation can be easily generalized to M = S3 x ¥ for Riemann surface X.

Acknowledgments

The author of the paper would like to thank his advisor Martin Rocek for guidance and

inspiring discussions. I also thank Maxim Zabzine and Guido Festuccia for carefully reading

the draft and pointing out several points that were not stated clearly, as well as many other

suggestions. The author also had helpful discussions with fellow students Jun Nian and

Xinyu Zhang.

— 36 —



A  Gamma matrices and Fierz identities

We denote the 5d Gamma matrices as I'™ with defining anti-commutation relation
{I™, "} =2¢™M". (A.1)
We require them to be Hermitian
@™ =1, (A.2)
Also we have charge conjugation matrix C = Cy
crmet =@M =17, (A.3)
These matrices have the following symmetry properties:
Cop = —Cga, (Cl“m)aﬁ = —(Cl“m)ﬁa (A.4)
(Crmn)aﬁ = (Crmn)ﬁw (Crlmn)aﬁ = (Crlmn)ﬁa (A.5)

and complex conjugation properties

Z@CBW = _5a'y7 (Fm)aﬁ = (Fm)ﬁa : (A.6)
B

The symmetry properties of CT" results in symmetry properties of bilinears of spinors:

(£1&2) = — (&&1), (61l'm&2) = — (2I'nér)

(A.7)
(flrmn£2) = (€2an€1) 5 (glrlmnf?) = (£2Flmn£1) .
In 5d, we have
T TP =1 & [abede = abede (A.8)
following from the fact that [Fl . F“] = 0 and Schur lemma.
This fact has the following duality consequence:
Proposition.
1
Fabcd _ 6abcdel—\e PN Eeabcdel—\abcd —Te (AQ)
and
%eabcder\abc _ _Fde AN %Eabcderab _ _I-\cde ) (Al())
The Hodge star operator associated with metric g, is defined as
xdr A .. ANdx' = V9 L I AL A dgTrr (A.11)
(n _p)| J1--In—p
ivalently f _ ! dzt dx'r
or equivalently for Wip) = ﬁwil---ip TrtAN...Ndx
g . .
(*w)jl,_jn,p = \pf,‘f“'"%jl...jn_pwil...ip (A.12)
kW = Z)‘(Tz/»gp)'fil'”ipjlmjnpwil_”ipdle A ... Adzinr (A13)
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Let us define p-forms O, as

1 % %
o) = o (€'Ty,.0,87 ) da™ AL A da (A.14)
They satisfy
003 = —O(3) (A.15)
+0(}) = 0(J). (A.16)

In components, they are

1
(ETne”) = *(*@fi)lmn’ (€' Tonpat?) :*<@gg))mnpq = 3 R g+ (A7)

For any 2 spinors £ and &, we define their inner product as a complex number:

(6162) = &7 Caply (A.18)
with symmetry properties
(&162) = — (&4&1), (€1l'm&2) = — (&I'mé1) (A.19)
(&1 l'mn&2) = (&2l'mnb1) (&1 1mné2) = (&2ltmné1) (A.20)
and
(Tmé&1) &2) = (&1T'mé2) - (A.21)

Fierz identity [8]: for any 3 Grassmann even spinors (£1,&2,&3), one has Fierz identity

&1 (&&3) = iéz& (&2&1) + irm&a (&2lné1) — %anfz’, (&l mné1) - (A.22)

It immediately follows from the above Fierz identity that

™1 (&2ln€3) + &1 (§283) = 263 (261) — 262 (£3&1) (A.23)
€1 (283) + &2 (&163) = —%quﬁ?) (&2l'pgéa) - (A.24)

B SU(2) indices and some notations

In the main text we frequently have to deal with the SU(2) indices.

12

The SU(2)-invariant tensor € is defined as €'“ = €g; = 1, with contraction

€IK:€IJ6JK:—EIJGKJ:—6K1251K:>€]J61J:—2 (B.l)
and raising/lowering rules

X' ="X; e X; =y X7, (B.2)

With this “metric”, we define for any 2 triplets of functions X’/ and Y/ a product

in a natural way:
(XYY = e XTHY LT = XT v KT (B.3)
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Note that this product has the following symmetry:

and in particular

)IJ >JI

(X" =—(x? :%tr(XQ)eU

where we define the trace for triplet products:
tr (XY) = X7y, = - X7/

with cyclic symmetry
tr (XY) =tr(YX) .

As an example, when X;7 = %(03)1‘]

1
trX?=—=
2
Note that if non-zero quantity X ; satisfies reality condition

’ /
X[] = 611 EJJ XI’J’

then the trace is negative definite
tr (X?) <0.

For objects of direct sum of triplet and singlet,

. 1 . 1
X1y =Xy = SenX, X = x4 5eUX

with
X=X = —er X7,

C Differential geometry

In the main text, we denote Levi-civita connection on M as V:
Vg=20

with connection coefficients

k
an:

1 kl agml agnl B a.gmn
2 oz O™ ox!
and curvature tensor

(Vin, Vi) X¥ = Ry X1

Ricci tensor is defined as

. k
Ricmn = Rokn
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and covariant derivative on spinor is

1
Vmw = 6m¢ - Zwmabrabw (05)
where the spin connection is defined as
Wina” = € (Vinea) = €2 Vime™ = €2,0mel + TP, . (C.6)

Lie derivative for (1,1), (0,2) tensor are defined as

LxT™, = XPVT™, — (Vi X™) T, + (vnxk) ™, (C.7)
LxTom = X*V T + (vmxk) Ton + (vnxk) T (C.8)

with the obvious relation
LxTmn = (Vo Xy + VX)) T 4 g £x T (C.9)

D Contact, almost contact structure and compatible connection

In this appendix,we will introduce necessary background on contact geometry. It is the
odd dimensional analog of symplectic geometry in even dimension. Compared to its even
dimensional sister, contact geometry is much less studied. However, there are interesting
developments in the past few years, on the existence and classification of contact structures
,as well as Sasaki-Einstein structures.

The Euler number of any odd dimensional manifold M?"*! is zero, therefore one can
have nowhere vanishing vector fields. Contact geometry and almost contact geometry
studies the behavior of these vector fields, or their corresponding hyperplane fields.

Suppose one has a nowhere vanishing 1-form x on d = 2n + 1-dimensional M. k
singles out a rank-2n vector bundle T My as a sub-bundle of T'M, such that at p € M,
T,Mpg = kerk,. The sub-bundle T'Mp is usually called oriented hyperplane field. As
k is nowhere-vanishing, the quotient line bundle TMy = TM/T My is trivial. Let us
call "My horizontal vector bundle, and T'My, as vertical bundle. Note that specifying a
oriented hyperplane field is equivalent to specifying x up to any nowhere vanishing real
function factor.

Recall that T'Mp is integrable if and only if

di Nk=0&de=rkN(...) (D.1)

and M is locally foliated by the integral manifold.

Contact structure, however, sits in the opposite extreme. It is completely non-
integrable in the sense that the hyperplane fields cannot be smoothly patched together
to be submanifolds. k satisfies the non-degenerate condition

A(dr)" #0 (D.2)
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which remains true when k is rescaled by nowhere-vanishing function. This condition
implies dr is of maximal rank 2n, but x and dx do not have common zero eigenvector.
Therefore, at Vp € M there exist a line in 7),M such that on the line ds = 0 but not x.
Then one can choose a vector along this line at each point such that the resulting vector
field R satisfies

k(R) =1, tpds =0. (D.3)

Such vector field R is called Reeb vector field.

In low dimensions, contact structure is ubiquitous. In 3 dimension, every orientable
manifold admits a contact structure, thanks to Thurston’s geometrization. In 5 dimen-
sion, contact structure exists on manifolds with vanishing third integral Stiefel-Whitney
class [31]. However, it is not clear if similar holds true in higher dimension. We will
comment on this after we discuss the almost contact structure.

For any contact structure, one can associate a metric g such that

g(R,-)=r() (D.4)

and consequently x and R have unit norm. Actually, there are infinitely many such asso-
ciate metrics compatible with the contact structure. In this case, (k, R, g) is called contact
metric structure.
Another kind of similar structure exists on contact manifolds is called almost contact
structure. It is defined by a triplet (R, K, @) satisfying
R"k,, =1
Ym"R™ =0
©m"kn =0
PR = =67, + Rt
Given any contact structure, one can construct (many) geometric structures called
almost contact structure by the procedure of polarization, although not all almost contact

structure arise in this way. Given any almost contact structure, one can construct again
many associated metric g in the sense that

K(R) =9 (R, Gmk?"n = —Gnk*m - (D.6)

The structure (k, R, ¢, g) is called almost contact metric structure (ACMS).
If an ACMS arises from some contact metric structure, such that

(dK)pm = Pmn (D.7)

then it is easy to see that
Lp*dk = —dk . (D.8)

The existence of contact structure in 5 dimension was not clear until very recently. It
is proved that every almost contact manifold admits contact structures, moreover, there is

— 41 —



at least one contact structure within each homotopy class of almost contact structure [32].
There are also new results on distinguishing inequivalent contact structure as Boothby-
Wang 5-manifolds [31].
Suppose V is any affine connection on T'M, then one can define new connection \Y,
that preserves ¢:
Vi X" = Vi X" + K" XF (D.9)

where 1 1
K" = 5 (Vmgolk> o — 5 kappa;V, R + R"V 5 . (D.10)

If the affine connection V is chosen to be the Levi-civita connection associated to the
ACMS structure, then one has
Kpmi = —Kimn - (D.11)

As mentioned, we have

Moreover, for any X,Y € I'(T'Mp), one has
g(VxY,R) =0 (D.13)

which means V xY € I'(T'Mp), the restriction of V on TM g gives directly a connection
@‘TMH = VH on TMH.
The connection coefficients are now
0" =T + K™ g (D.14)
and the corresponding change of spin connection
Awma® = Wima® + Kl (D.15)
where we define the spin connection”
b_ b __ b n __ b n b
Wma' =€ (Vimea) = €', Vel = € ,0men + 1 ma . (D.18)
In three dimension, where one has relation

Pmn = 6mnkl:{ky R, = km (Dlg)

K can be simplified as
K", =R'V,,R — RV, ,R". (D.20)

"Note that the position of the flat indices a and b indicates that
1
Vinth = Ot — Zwmbra”w (D.16)
as opposed to the frequently used notation wy,,®, which indicates

Vot = Ot + iwmbr%. (D.17)
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The covariant derivative on spinor with new connection is now
v 1 nl
vm{] - vmgl - ZKlmnF f] . (D21)

Now, let’s consider the ACMS data coming from (s‘lR, s~ k,r (1) 1O, g), where

1 —2
r(t) = S\ o @ (D.22)
such that
r(t)’(t0)* = 1+ (s *R) @ k. (D.23)

Substituting all these into definition of K, one has (with the assumption that Q= = 0)

1 1 1
Knmi = —5 (RaVmRi = RiVimRy) + gm(Tm)I HCEM
(D.24)
— (1) (V) (10);” = (+V3 ), (10),] (10)",,
where
(Tw) 1y = (Vintr™) tics - (D.25)
Note that when s =1, K,y = — Kpnn-
To calculate the spin connection, one needs several convenient formula
(t@)nmrn§I = (Srm - Rm) tIJSJ (D26)
(t0),, T¥"¢1 = T* (s — Ryn) t7 165 — (t0)", & = (80),,,I™"¢r = —4st’ &, (D.27)
Ranm§I = (Srn - Rn) &r- (D28)
Finally, one has
\Y &r =V —i—L(T )Jf —iV R,T"E —i—l(V log s) &
mGI = V'mGI tr(tQ) m) 1SJ g v mitn I 9 m 108 I
) . (D.29)
J 1%
mnq(t@)qmt] €J + 5(*‘/ )mpql—‘pqél .

Some remark. We used almost contact data ¢ defined as ~ t©, but in fact one could
use any SU(2) triplet function A to define p) ~ A©, and in particular, one could choose
A = A\,0% It also has corresponding compatible connection \Y, A, such that

@MD)\ =0 (D.30)

However, the tensor Kj,,, would not have the above simple form.
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E Useful identities

IR|> = R™ Ry, = gk = s (E.1)
1rO7 =0 (E.2)
tr+ 01 = —s0! & RF (/T 8”) = +5 (€'Tné”) (E.3)
KAONAO £0 (E.4)
2
n n n 1 n
(MO)mP (220)," = s(\) K (o) e, (O17), " + %tr (Aido) 6" = Str (Aide) kB (E.5)
(A@)™(AO@), = = —25%tr(\?) (E.6)
*(A@)nkl(A@)ml = %tr (>‘2) [gmkRn - gman] (E7)
(+A0)""* (1), = 2tr (\?) sR . (E.8)
Also there are several useful spinor identities
R™T&r = s&1 (E.9)
R™"Tpmés = (sTp — Ry) &1 (E.10)
(A8), L1 = (R — sTim) Ar7€y (E.11)
(AO),,, TFre; =Tk (R, — sT) M 15 — (NO)F er = (A\O), T™er = 4sA?¢;. (E.12)

F  Proof of supersymmetry invariance

Let us focus on the part of Lagrangian (with trace left implicit) without the “topological
term” kK A F'A I and the scalar curvature term:

1 1
L= S FnnF™ = Do D™ — oDy D" +id T DA’ = Ar [0, ]
, (F.1)
= it" (ArAg) + 20t D1y + 2 Fou (ML) + F™" By

Its supersymmetry variation (partial integration has been used for A kinetic term)

5L = F"™"6Fpy, — 2Dpod (D™o) — D6 D1y 4 2i6 AT Dip A + AT [6 A, A ]

= {2071 [0, ] + A [60, N} = 20t (9ArAs) + 2 {00t" Drs + 0t!6D1s}  (7.9)

+ %an (SAT™AL) 4 {F ™5 Fypnr + F™ Frppdor} .
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I) Let us simplify the first row (contributed by flat SUSY Lagrangian) denoted by I.
I=2F""D,, (i&T,\) —2D™a {D,, (i&,\) + [(&TmN) o]}

—opl/ (—z'glrmz)mAJ + o, (610))] + z‘(fﬁ@)

+2i (—;qurmg[ + (Do) + Diles + 20&) I D AT+ A T™ [(£,TmAT) A ]

- {2 (—if‘,),,l’f"fa [+ (Dpo) T + D76y + 2051) [0, XT] +iAr [(65A7)  A]] }
(F.3)

(1) Immediate cancelation between the red terms.

(2) The blue terms add up to

1
2F"" Dy, (16T \") + (24) (2> Fpq (&P Dy A
= 2 F™(E T M) + iFpq (£ TP Dy A (F.4)
- _ian(élrmn)\I)
(3) The green terms add up to
—2D™6 Dy, (i€1A") 4 2i (Do) (LT Dy A1) — Fpg& TP [0, M |
. - (1.
= 2D (i€ T\ — 8io (T D \) — 6¢ (47&;—’)

where the last term cancels the scalar curvature term in the Lagrangian.®

(4) Now, we can gather all the terms and obtain the leftovers
I=—2iD!7 (g0 )) — 4io (T D N ) =i (6,0 N — 2 (D™0) (6,1, A0 (F.6)

IT) Now we try to simplify the 2nd and 3rd row, and denote it by II.

— {261 [0, M] + A [60, M|} =20t (SA A ) + 2 {60!/ Dyy + ot' 6Dy}

. (F.7)
+%]—“mn (SAT™ M) 4 {F™6 Fyuno + F™ Fopdo}

8Note that there are two ways of doing partial integration for the second term: one gives
[Dm,Dn]J(EIF"m)\I) while the other 0(§1F"’" [Dr, D) )\I). The former way directly produces
tr (tUt”az) which appears in [8], but the cancellation of other terms are relatively tricky. Hence we
take the second way of doing partial integration, which gives instead tr(Ro?).
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Explicitly writing down all terms,

1 -
II = —2it!’ <2 qujrpq)\] + (DpO') é[l—‘pAJ + D[KfK)\J + 20§[AJ>
+2 (ixg M) 1 Dy
—diot! (E;T™ D\ y) + dict™ (€10 ))

+%fmn @qu (&TPIrmm M) 4+ (Dyo) € TPT™ N | DS g TN |+ 206, TN >

+F ™ Fopy (i€77)
+2iF "0 Dy (£107 A1)

(F.8)
Combining with leftover of I, one sees

(1) Some immediately cancels in red
2it! Dy (€M) = 2it" DX (€M) +2iD" (EIA J) - %fmnD]J (&1 )\,) (F.9)
where one needs identity
7 (X)) +t g (EINF) + 2617 (80K ) =t (E8N) + 7 (5N)  (F.10)
The leftover F DA terms cancels the term
i

5 Fmn D" (5T N) + 5 Fun D' (65T A1) = 0 (F.11)

(2) The tFA terms and FFA terms in blue add up to
1 - ) ;
=20t S Fyg (€TI0 )~ i ™ (€T AT )+ i]’manq (&P N ) 4 F B (i€ AT

- i.]-'manq (&I TPINT) + %]—'manq (&P N 4+ F M Eyy, (i€ 07)

= ifmanq (& {T™™, TP XY o+ F Frpy, (i€10Y)

L B (TN (F.12)
where one needs identity

{Tmn, TP} =2 (g™ g™ — g g" ) + 20 (F.13)

The term remaining can actually be written as

.

5T mn g (&rmmeaNy fgdPa = & (femnpq%Tqume/gdf’x) =0(kANFAF).

(F.14)
This term cancels the “topological” terms in the proposed action.

— 46 —



(3) The remaining black terms reads

— 2t (Dyo) (€,TPA)) — dict! (€,T™ Dy Ay) + %}“mn (Dpo) (€1PT™mA)

+ %]—"WRQU(&FT”")\I )+2iF ™" g Dy (€10, M) =20 (D™ ) (§,T N ) —dio (E 1™ Dy ).
(F.15)
Explicit computation shows these terms cancel each other.
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