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Rigidity and Positivity of Mass for
Asymptotically Hyperbolic Manifolds

Lars Andersson, Mingliang Cai, and Gregory J. Galloway

Abstract. The Witten spinorial argument has been adapted in several works
over the years to prove positivity of mass in the asymptotically AdS and
asymptotically hyperbolic settings in arbitrary dimensions. In this paper we
prove a scalar curvature rigidity result and a positive mass theorem for asymp-
totically hyperbolic manifolds that do not require a spin assumption. The
positive mass theorem is reduced to the rigidity case by a deformation con-
struction near the conformal boundary. The proof of the rigidity result is
based on a study of minimizers of the BPS brane action.

1. Introduction

Developments in string theory during the past decade, in particular the emergence
of the AdS/CFT correspondence, have increased interest in the mathematical and
physical properties of asymptotically hyperbolic Riemannian manifolds. Such man-
ifolds arise naturally as spacelike hypersurfaces in asymptotically anti-de Sitter
spacetimes.

Asymptotically hyperbolic manifolds have a rich geometry at infinity, as ex-
hibited by, e.g., renormalized volume and Q-curvature. The mass of an asymptot-
ically hyperbolic manifold may, under suitable asymptotic conditions, be defined
as the integral of a function defined at infinity, the so-called mass aspect function.
This feature is related to the fact that, in contrast to the asymptotically Euclidean
case, bounded harmonic functions on an AH manifold are not in general constant,
but have nontrivial boundary values at infinity.

In this paper we shall prove a scalar curvature rigidity result and a positive
mass theorem for asymptotically hyperbolic manifolds. The results do not require
a spin assumption. The positive mass theorem is reduced to the rigidity case by
a novel deformation construction near the conformal boundary. The proof of the
rigidity result is based on a study of minimizers of the BPS brane action.
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Let (Mn+1, g) denote an (n + 1)-dimensional Riemannian manifold, and let
H
n+1 denote (n + 1)-dimensional hyperbolic space of curvature K = −1. As a

prelude to proving positivity of mass in the asymptotically hyperbolic setting (see
the discussion below), we first establish the following rigidity result.

Theorem 1.1. Suppose (Mn+1, g), 2 ≤ n ≤ 6, has scalar curvature S[g] satisfying,
S[g] ≥ −n(n+1), and is isometric to H

n+1 outside a compact set. Then (Mn+1, g)
is globally isometric to H

n+1.

In the case that (Mn+1, g) is a spin manifold, this theorem follows from a
result of Min-oo [19] (see also [2,13]), as well as from the rigidity part of the more
recently proved positive mass theorem for asymptotically hyperbolic manifolds [10,
26]. The main point of Theorem 1.1 is that it does not require a spin assumption.
We note, for comparison, that there have been some other recently obtained rigidity
results for hyperbolic space [4,7,21,24] that do not require a spin assumption, but
these impose conditions on the Ricci curvature.

The proof of Theorem 1.1 is based on the general minimal surface method-
ology of Schoen and Yau [22], adapted to a negative lower bound on the scalar
curvature. This means, in our approach, that minimal surfaces are replaced by
non-zero constant mean curvature surfaces, and the area functional is replaced by
the so-called BPS brane action, as utilized by Witten and Yau [27] in their work on
the AdS/CFT correspondence. From the regularity results of geometric measure
theory, we require M to have dimension ≤ 7 in order to avoid the occurrence of
singularities in co-dimension one minimizers of the brane action1. In Section 2 we
prove a local warped product splitting result, where the splitting takes place about
a certain minimizer of the brane action. This splitting result, which extends to the
case of negative lower bound on the scalar curvature previous results of Cai and
Galloway [5, 6], is then used to prove Theorem 1.1.

Our original motivation for proving Theorem 1.1 was to obtain a proof of
positivity of mass for asymptotically hyperbolic manifolds that does not require a
spin assumption. In [15], Gibbons et al. adapted Witten’s spinorial argument to
prove positivity of mass in the 3 + 1 asymptotically AdS setting. More recently,
Wang [26], and, under weaker asymptotic conditions, Chruściel and Herzlich [10]
have provided precise definitions of the mass in the asymptotically hyperbolic
setting and have given spinor based proofs of positivity of mass in dimensions ≥ 3.
These latter positive mass results may be paraphrased as follows:

Theorem 1.2. Suppose (Mn+1, g), n ≥ 2, is an asymptotically hyperbolic spin
manifold with scalar curvature S ≥ −n(n+1). Then M has mass m ≥ 0, and = 0
iff M is isometric to standard hyperbolic space H

n+1.

1However, the work of Christ and Lohkamp [8, 17] offers the possibility of eliminating this di-
mension restriction.
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Physically, M corresponds to a maximal (mean curvature zero) spacelike hy-
persurface in spacetime satisfying the Einstein equations with cosmological con-
stant Λ = −n(n+ 1)/2. For then the Gauss equation and weak energy condition
imply S ≥ −n(n+ 1).

Here we present the following version of Theorem 1.2, which does not re-
quire M to be spin.

Theorem 1.3. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic manifold
with scalar curvature S[g] ≥ −n(n+1). Assume that the mass aspect function does
not change sign, i.e., that it is either negative, zero, or positive. Then, either the
mass of (M, g) is positive, or (M, g) is isometric to hyperbolic space.

As noted above, the mass aspect function is a scalar function whose integral
over conformal infinity determines the mass; see Section 3 for precise definitions.

Our approach to proving Theorem 1.3 is inspired by Lohkamp’s variation [18]
of the Schoen–Yau [23] proof of the classical positive mass theorem for asymptot-
ically flat manifolds. Our proof makes use of Theorem 1.1, together with a defor-
mation result, which shows roughly that if an asymptotically hyperbolic manifold
with scalar curvature satisfying, S ≥ −n(n+1), has negative mass aspect then the
metric can be deformed near infinity to the hyperbolic metric, while maintaining
the scalar curvature inequality. This deformation result (Theorem 3.2), along with
an analysis of the case in which the mass aspect vanishes identically (Theorem 3.9),
and their application to the proof of Theorem 1.3 are presented in Section 3.

2. The rigidity result

The aim of this section is to give a proof of Theorem 1.1.

2.1. The brane action

Let (Mn+1, g) be an (n+ 1)-dimensional oriented Riemannian manifold with vol-
ume form Ω. Assume there is a globally defined form Λ such that Ω = dΛ.

Let Σn be a compact orientable hypersurface in M . Then Σ is 2-sided in M ;
designate one side as the “outside” and the other as the “inside”. Let ν be the
outward pointing unit normal along Σ, and let Σ have the orientation induced by ν
(i.e., determined by the induced volume form ω = iνΩ). Then, for any such Σ, we
define the brane action B by,

B(Σ) = A(Σ) − nV(Σ) , (2.1)

where A(Σ) = the area of Σ, and V(Σ) =
∫
Σ Λ. If Σ bounds to the inside then,

by Stokes theorem, V(Σ) = the volume of the region enclosed by Σ. Although Λ
is not uniquely determined, Stokes theorem shows that, within a given homology
class, B is uniquely determined up to an additive constant.

We wish to consider the formulas for the first and second variation of the
brane action. First, to fix notations, let A denote the second fundamental form
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of Σ; by our conventions, for each pair of tangent vectors X,Y ∈ TpΣ,

A(X,Y ) = 〈∇Xν, Y 〉 , (2.2)

where ∇ is the Levi–Civita connection of (M, g) and h = 〈 , 〉 is the induced metric
on Σ. Then H = trA is the mean curvature of Σ.

Let t → Σt, −ε < t < ε, be a normal variation of Σ = Σ0, with variation
vector field V = ∂

∂t

∣
∣
t=0

= φν, φ ∈ C∞(Σ). Abusing notation slightly, set B(t) =
B(Σt). Then for first variation we have,

B′(0) =
∫

Σ

(H − n)φdA . (2.3)

Thus Σ is a stationary point for the brane action if and only if it has constant
mean curvature H = n.

Assuming Σ has mean curvatureH = n, the second variation formula is given
by

B′′(0) =
∫

Σ

φL(φ) dA , (2.4)

where,

L(φ) = −	φ+
1
2
(SΣ − S − |A|2 −H2)φ , (2.5)

and where SΣ is the scalar curvature of Σ and S is the scalar curvature of M .
Here L is the stability operator associated with the brane action, and is closely
related to the stability operator of minimal surface theory. Using the fact that
H = n, L can be re-expressed as,

L(φ) = −	φ+
1
2
(SΣ − Sn − |A0|2)φ , (2.6)

where Sn = S + n(n+ 1) and A0 is the trace free part of A, A0 = A− h. We note
that, in our applications, Sn will be nonnegative.

A stationary point Σ for the brane action is said to be B-stable provided for
all normal variations t→ Σt of Σ, B′′(0) ≥ 0. For operators of the form (2.6), the
following proposition is well-known.

Proposition 2.1. The following conditions are equivalent.

1. Σ is B-stable.
2. λ1 ≥ 0, where λ1 is the principal eigenvalue of L.
3. There exists φ ∈ C∞(Σ), φ > 0, such that L(φ) ≥ 0.

In particular, if λ1 ≥ 0, φ in part 3 can be chosen to be an eigenfunction.

2.2. Warped product splitting

In this section we prove the local warped product splitting result alluded to in the
introduction. As a precursor, we prove the following infinitesimal rigidity result.
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Proposition 2.2. Let (Mn+1, g) be an oriented Riemannian manifold with scalar
curvature S satisfying,

S ≥ −n(n+ 1) . (2.7)
Let Σn be a compact orientable B-stable hypersurface in M which does not admit
a metric of positive scalar curvature. Then the following must hold.

(i) Σ is umbilic, in fact A = h, where h is the induced metric on Σ.
(ii) Σ is Ricci flat and S = −n(n+ 1) along Σ.

Proof. By Proposition 2.1, there exists φ ∈ Σ, φ > 0, such that L(φ) ≥ 0. The
scalar curvature S̃ of Σ in the conformally rescaled metric h̃ = φ

2
n−2h is then given

by,

S̃ = φ−
n

n−2

(

−2	φ+ SΣφ+
n− 1
n− 2

|∇φ|2
φ

)

= φ−
2

n−2

(

2φ−1L(φ) + Sn + |A0|2 +
n− 1
n− 2

|∇φ|2
φ2

)

(2.8)

where, for the second equation, we have used (2.6) with f = φ. Since all terms
in parentheses above are nonnegative, (2.8) implies that S̃ ≥ 0. If S̃ > 0 at
some point, then by well known results [16] one can conformally change h̃ to
a metric of strictly positive scalar curvature, contrary to assumption. Thus S̃
vanishes identically, which implies L(φ) = 0, Sn = 0, A0 = 0 and φ is constant.
Equation (2.6), with f = φ then implies that S ≡ 0. By a result of Bourguignon
(see [16]), it follows that Σ carries a metric of positive scalar curvature unless it is
Ricci flat. Thus conditions (i) and (ii) are satisfied. �

Proposition 1.1 will be used in the proof of the following local warped product
splitting result.

Theorem 2.3. Let (Mn+1, g) be an oriented Riemannian manifold with scalar cur-
vature S ≥ −n(n + 1). Let Σ be a compact orientable hypersurface in M which
does not admit a metric of positive scalar curvature. If Σ locally minimizes the
brane action B then there is a neighborhood U of Σ such that (U, g|U ) is isometric
to the warped product ((−ε, ε)× Σ, dt2 + e2th), where h, the induced metric on Σ,
is Ricci flat.

By “locally minimizes” we mean, for example, that Σ has brane action less
than or equal to that of all graphs over Σ with respect to Gaussian normal coor-
dinates. A related result has been obtained by Yau [28] in dimension three.

Proof. Let H(u) denote the mean curvature of the hypersurface Σu :x→expxu(x)ν,
u ∈ C∞(Σ), u sufficiently small. H has linearization H′(0) = L, where L is the
B-stability operator (2.6). But by Proposition 2.2, L reduces to −	, and hence
H′(0) = −	. We introduce the operator,

H∗ : C∞(Σ) × R → C∞(Σ) × R , H∗(u, k) =
(

H(u) − k,

∫

Σ

u

)

, (2.9)
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which one easily checks has invertible linearization about (0, 0), since the kernel
of H′(0) contains only the constants. By the inverse function theorem, for each τ
sufficiently small there exists u = uτ and k = kτ such that H(uτ ) = kτ and∫
Σ
uτdA = τ . Since u′(0) ∈ kerH′(0), the latter equation implies that u′(0) =

const > 0. Thus for τ sufficiently small, the hypersurfaces Σuτ form a foliation of
a neighborhood U of Σ by constant mean curvature hypersurfaces.

Using coordinates on Σ and the normal field to the Σuτ ’s to transport these
coordinates to each Σuτ , we have, up to isometry,

U = (−ε, ε) × Σ g|U = φ2dt2 + ht , (2.10)

where ht = hij(t, x)dxidxj , φ = φ(t, x) and Σt = {t} × Σ has constant mean
curvature. Since Σ locally minimizes the brane action, we have, B(0) ≤ B(t) for
all t ∈ (−ε, ε), for ε sufficiently small.

Let H(t) denote the mean curvature of Σt. H = H(t) obeys the evolution
equation,

dH

dt
= L(φ) , (2.11)

where for each t, L is the operator on Σt given in Equation (2.5). Since Σ locally
minimizes the brane action, we have H(0) = n. We show H ≤ n for t ∈ [0, ε).
If this is not the case, there exists t0 ∈ (0, ε) such that H(t0) > n. Moreover, t0
can be chosen so that H ′(t0) > 0. Let S̃ be the scalar curvature of Σt0 in the
conformally related metric h̃ = φ

2
n−2ht0 . Arguing similarly as in the derivation

of (2.8), Equations (2.5) and (2.11) imply,

S̃ = φ−
2

n−2

(

2φ−1H ′(t0) + S + |A|2 +H2 +
n− 1
n− 2

|∇φ|2
φ2

)

, (2.12)

where all terms are evaluated on Σt0 . The Schwartz inequality gives, |A|2 ≥
H2/n > n. This, together with the assumed scalar curvature inequality (2.7),
implies that S+ |A|2 +H2 > 0. We conclude from (2.12) that Σt0 carries a metric
of positive scalar curvature, contrary to assumption.

Thus, H ≤ n on [0, ε), as claimed. Now, by the formula for the first variation
of the brane action, it follows that

B′(t) =
∫

Σt

(H − n)φdA ≤ 0 , for all t ∈ [0, ε) . (2.13)

But since B achieves a minimum at t = 0, it must be that B′(t) = 0 for t ∈ [0, ε).
Hence, the integral in (2.13) vanishes, which implies that H = n on [0, ε). A
similar argument shows that H = n on (−ε, 0], as well. Equation (2.11) then
implies that L(φ) = 0 on each Σt. Hence, by Proposition 2.1, each Σt is B-stable.
From Proposition 2.2, we have that At = ht, where At is the second fundamental
form of Σt, and that φ only depends on t. By a simple change of t-coordinate
in (2.10), we may assume without loss of generality that φ = 1. Then the condition
At = ht becomes, in the coordinates (2.10), ∂hij

∂t = 2hij . Upon integration this
gives, hij(t, x) = e2thij(0, x), which completes the proof of the theorem. �
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2.3. Proof of the rigidity result

In order to prove Theorem 1.1 it is convenient to work with an explicit represen-
tation of hyperbolic space H

n+1. We start with the half-space model (Hn+1, gH),
where, Hn+1 = {(y, x1, . . . , xn) : y > 0}, and

gH =
1
y2

(
dy2 + (dx1)2 + · · · + (dxn)2

)
, (2.14)

and make the change of variable y = e−t, to obtain H
n+1 = (Rn+1, g0), where,

g0 = dt2 + e2t
(
(dx1)2 + · · · + (dxn)2

)
. (2.15)

As in the statement of Theorem 1.1, let (Mn+1, g) be a Riemannian manifold
with scalar curvature S[g] satisfying S[g] ≥ −n(n+ 1). We assume that there are
compact sets K ⊂M , K0 ⊂ R

n+1 such that M −K is diffeomorphic to R
n+1−

K0, and, with respect to Cartesian coordinates (t, x1, . . . , xn) on the complement
of K, g = g0. We want to show that (Mn+1, g) is globally isometric to H

n+1.
Since M is simply connected near infinity, it is in fact sufficient to show that M
has everywhere constant curvature KM = −1. Our approach to proving this is
to partially compactify (M, g) and then minimize the brane action in a suitable
homology class.

To partially compactify, we use the fact that the translations xi → xi + xi0
are isometries on (Rn+1, g0). Choosing a > 0 sufficiently large, we can enclose the
compact set K in an infinitely long rectangular box, with sides determined by the
“planes”, xi = ±a, i = 1, . . . , n,−∞ < t < ∞. We can then identify points on
opposite sides, xi = −a, xi = a, i = 1, . . . , n, of the box in the obvious manner to
obtain an identification space which we denote by (M̂, ĝ). Note that outside the
compact set K,

M̂ = R × T n , ĝ = dt2 + e2th , (2.16)

where h is a flat metric on the torus T n. Thus, (M̂, ĝ) is just a standard hyperbolic
cusp outside the compact set K, with scalar curvature satisfying S[ĝ] ≥ −n(n+1)
globally.

Choose b > 0 large so that K is contained in the region of M̂ bounded
between the toroidal slices t = ±b, and fix a t-slice Σ0 = {t0} × T n, t0 > b. Σ0

separates M̂ into an “inside” and an “outside”, the inside being the component
of M̂ − Σ0 containing the cusp end t = −∞. We consider the brane action of
hypersurfaces Σ homologous to Σ0,

B(Σ) = A(Σ) − nV (Σ) . (2.17)

We note, as is needed to define B(Σ) unambiguously, that since Σ is homologous
to Σ0 it, too, has a distinguished “inside” and “outside”, determined by the fact
that both Σ0 and Σ are homologous to a t-slice far out on the cusp end.

We now want to minimize the brane action B in the homology class [Σ0].
The basic approach is to consider a minimizing sequence Σ1,Σ2, . . . and use the
compactness results of geometric measure theory to extract a regular limit sur-
face. The potential difficulty with this approach is that, in principle, the surfaces
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Σ
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t

Figure 1. Replacing Σ by Σ̂.

Σ1,Σ2, . . ., or portions of them, may drift out to infinity along either end of M̂ .
But, in fact, that can be avoided in the present situation, owing to the existence
of natural barrier surfaces, namely the t-slices themselves.

Fix t-slices Σ′ = {t1}×Σ, t1 > t0, and Σ′′ = {t2}×Σ, t2 < −b. We show that
any minimizing sequence can be replaced by a minimizing sequence contained in
the region between Σ′ and Σ′′. To this end, consider a hypersurface Σ homologous
to Σ0 that extends beyond Σ′′ into the region t < t2. Without loss of generality
we may assume Σ meets Σ′′ transversely. Let D be the part of Σ meeting {t ≤ t2},
and let U be the domain bounded by Σ′′ and D. Then ∂U consists of D and a
part D′′ of Σ′′. Let Σ̂ be the hypersurface homologous to Σ0 obtained from Σ by
replacing D with D′′ (see Figure 2).

Since U is contained in a region where the metric (2.16) applies, and since in
this region div(∂t) = n, we apply the divergence theorem to obtain,

nV(Σ̂) − nV(Σ) = n vol(U) =
∫

U

div(∂t)dV

=
∫

D

〈∂t, n〉dA+
∫

D′′
〈∂t, ∂t〉dA

≥ −A(D) +A(D′′) = −A(Σ) +A(Σ̂) .

Rearranging this inequality gives the desired, B(Σ̂) ≤ B(Σ). By a similar argument
the same conclusion holds if Σ extends beyond Σ′ into the region {t > t1}.

Thus, we can choose a minimizing sequence Σi, for the brane action within
the homology class [Σ0] that is confined to the compact region between Σ′ and Σ′′.
Since V(Σi) ≤ V(Σ′), we are ensured that limi→∞ B(Σi) > −∞. Then the com-
pactness and regularity results of geometric measure theory (see, e.g., [14,22] and
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references therein) guarantee the existence of a regular embedded hypersurface S
homologous to Σ0 that achieves a minimum of the brane action on [Σ0]. In gen-
eral S will be a sum of connected embedded surfaces, S = S1 + · · · + Sn.

The next thing we wish to observe is that there is a nonzero degree map
from S to the n-torus Σ0. This map comes from the ‘almost product’ structure
of M̂ given in (2.10). A simple deformation of the t-lines in the vicinity of K
can be used to produce a continuous projection type map P : M̂ → Σ0 such
that K gets sent to a single point on Σ0 under P , and such that P ◦ j = id,
where j : Σ0 → M̂ is inclusion. Then f = P ◦ i : S → Σ0, where i : S → M̂
is inclusion, is the desired nonzero degree map. Indeed, f induces the map on
homology f∗ : Hn(S) → Hn(Σ0), and using that S is homologous to Σ0, we
compute, f∗[S] = P∗(i∗[S]) = P∗(j∗[Σ0]) = id∗[Σ0] = Σ0 �= 0.

Thus, by linearity of f∗, at least one of the components of S, S1, say, admits
a nonzero degree map to the n-torus. By a result of Schoen and Yau [22], which
does not require a spin assumption, S1 does not admit a metric of positive scalar
curvature. (In fact it admits a metric of nonnegative scalar curvature only if it is
flat). Moreover, we know that S1 minimizes the brane action in its homology class
(otherwise there would exist a hypersurface homologous to Σ0 with brane action
strictly less than that of S). Thus, we can apply Theorem 2.3 to conclude that a
neighborhood U of S1 splits as a warped product,

U = (−u0, u0) × S1 ĝ|U = du2 + e2uh , (2.18)

where the induced metric h on S1 is flat. But since S1 in fact globally maximizes
the brane action in its homology class, by standard arguments this local warped
product structure can be extended to arbitrarily large u-intervals. Hence K will
eventually be contained in this constructed warp product region. It now follows
that M̂ has constant curvature KM̂ = −1. This in turn implies that M has con-
stant curvature KM = −1. By previous remarks, we conclude that M is globally
isometric to hyperbolic space. �

3. Positivity of mass

The aim of this section is to give a proof of Theorem 1.3 on the positivity of
mass in the asymptotically hyperbolic setting. We shall adopt here the definition
of asymptotically hyperbolic given in Wang [26]:

Definition 3.1. A Riemannian manifold (Mn+1, g) is asymptotically hyperbolic
provided it is conformally compact, with smooth conformal compactification
(M̃, g̃), and with conformal boundary ∂M̃ = Sn, such that the metric g on a
deleted neighborhood (0, T ) × Sn of ∂M̃ = {t = 0} takes the form

g = sinh−2(t)(dt2 + h) , (3.19)
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where h = h(t, ·) is a family of metrics on Sn, depending smoothly on t ∈ [0, T ),
of the form,

h = h0 + tn+1k +O(tn+2) , (3.20)
where h0 is the standard metric on Sn, and k is a symmetric 2-tensor on Sn.

We refer to k as the mass aspect tensor; it is the leading order measure of
the deviation of the metric g from the hyperbolic metric. Its trace with respect
to h0, trh0 k, is called the mass aspect function. Up to a normalizing constant, the
integral of the mass aspect function over the sphere defines the mass (or energy)
of (M, g), mass =

∫
Sn trh0 k.

For convenience, we repeat here the statement of our positivity of mass result.

Theorem 3.1. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic manifold
with scalar curvature S[g] ≥ −n(n + 1). Assume that the mass aspect function
trh0 k does not change sign, i.e., that it is either negative, zero, or positive. Then,
either the mass of (M, g) is positive, or (M, g) is isometric to hyperbolic space.

The proof, which makes use of the rigidity result Theorem 1.1, is carried
out in the next two subsections. In Subsection 3.1 we obtain the deformation re-
sult mentioned in the introduction, see Theorem 3.2 below. This, together with
Theorem 1.1, implies that the mass aspect function cannot be negative, see Propo-
sition 3.3. In Subsection 3.2, it is proved, using Theorem 1.1 again, that if the mass
aspect function vanishes then (M, g) is isometric to hyperbolic space, see Theo-
rem 3.9. These results together imply Theorem 3.1.

3.1. The deformation result

Suppose (Mn+1, g) is asymptotically hyperbolic in the sense of Definition 3.1.
Then by making the change of coordinate, t = arcsinh(1

r ), in (3.19) it follows that
there is a relatively compact set K such that M \K = Sn × [R,∞), R > 0, and
on M \K, g has the form,

g =
1

1 + r2
dr2 + r2h , (3.21)

where h = h(·, r) is an r-dependent family of metrics on Sn of the form,

h = h0 +
1

rn+1
k + σ , (3.22)

where h0 is the standard metric on Sn, k is the mass aspect tensor and σ = σ(·, r)
is an r-dependent family of metrics on Sn such that for integers 
,m ≥ 0, one has,

|(r∂r)�∂mx σ| ≤ C/rn+2 , (3.23)

for some constant C. For the proof of the deformation theorem and the positive
mass theorem, it is sufficient to assume condition (3.23) for 0 ≤ 
,m ≤ 2.

Let (Mn+1, g) be asymptotically hyperbolic, with scalar curvature satisfying,
S[g] ≥ −n(n+1). What we now prove is that if the mass aspect function of (M, g)
is pointwise negative then g can be deformed on an arbitrarily small neighborhood
of infinity to the hyperbolic metric, while preserving (after a change of scale) the
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scalar curvature inequality S ≥ −n(n + 1). A more precise statement is given
below.

Theorem 3.2. Let the metric g be given as above. Suppose that the scalar curvature
of g, S[g], satisfies S[g] ≥ −n(n+1). If the mass aspect function trh0 k is pointwise
negative, then for any sufficiently large R1 > R there exists a metric ĝ on M such
that,

ĝ =

{
g , R ≤ r ≤ R1

ga = 1

1+ r2
a

dr2 + r2h0 , 9λR1 ≤ r <∞ ,
(3.24)

where a ∈ (0, 1), and such that,

S[ĝ] ≥ −n(n+ 1)
a

. (3.25)

(The constant λ > 1 depends only on the mass aspect function; see Section 3.1.1.)

Theorems 1.1 and 3.2 may be combined to give the following result.

Proposition 3.3. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic man-
ifold with scalar curvature satisfying, S[g] ≥ −n(n + 1). Then the mass aspect
function trh0 k cannot be everywhere pointwise negative.

Proof. Suppose to the contrary that the mass aspect function is strictly negative.
Given any p ∈M , choose R large enough so that p is not in the end Sn × [R,∞).
Theorem 3.2, together with a rescaling of the metric, implies the existence of a
metric g̃ on M such that (M, g̃) satisfies the hypotheses of Theorem 1.1. Hence,
(M, g̃) is isometric to hyperbolic space H

n+1. But, modulo the change of scale, by
our construction, g̃ will differ from g only at points on the end Sn × [R,∞). It
follows that (Mn+1, g) has constant negative curvature curvature in a neighbor-
hood of p. Since p is arbitrary, (Mn+1, g) must have globally constant negative
curvature, which, by the asymptotics of (Mn+1, g), must equal −1. Since M is
simply connected at infinity, we conclude that (Mn+1, g) is isometric to hyper-
bolic space H

n. But this contradicts the assumption that the mass aspect function
is negative. �

Proof of Theorem 3.2. We now turn to the proof of the deformation result. Intro-
duce coordinates x = (x1, x2, . . . , xn) on Sn. We use the convention that for a
function f = f(x, r), f ′(x, r) = ∂rf(x, r), and f ′′(x, r) = ∂2

rf(x, r).
Let ωij and kij be the components of h0 and k, respectively, with respect to

the coordinates (x1, x2, . . . , xn). Then g in (3.21) takes the form

g =
dr2

1 + r2
+ r2

(
ωij +

αij
rn+1

)
dxidxj

where

αij = kij(x) +
βij(x, r)

r
.
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We are assuming (cf., (3.23)) αij satisfies the bounds,

|(r∂r)�∂mx αij | ≤ Λ . (3.26)

for all integers 
,m, 0 ≤ 
,m ≤ 2.
Let μ denote the the mass aspect function, μ = trh0k = ωijkij ; by assump-

tion, |μ| > 0. Let μ̄ = maxx |μ(x)|, μ = minx |μ(x)|. We shall be making estimates
of geometric quantities in terms of the above defined constants. In particular, we
shall use a generic constant

C = C(n,R,Λ, μ̄, μ)

depending only on n,R,Λ, μ̄, μ, which may change from line to line. We shall
further use the notation O(1/rk) for a quantity bounded by C(n,R,Λ, μ̄, μ)/rk.

3.1.1. Preliminary definitions. Fix R1 > R to be specified later. Set

λ =
(
μ̄

μ

) 1
n+1

.

Let a = a(n, μ̄, μ,R1) ∈ (0, 1) be a number such that

n+ 1
n

√
4
3

μ̄

(4λR1)n+1
<

1
a
− 1 <

n+ 1
n

√
3
4

μ

(3λR1)n+1
.

To show such an a exists, it suffices to show that

n+ 1
n

√
4
3

μ̄

(4λR1)n+1
<
n+ 1
n

√
3
4

μ

(3λR1)n+1

or equivalently
3
4

(
4
3
λ

)n+1

>
μ̄

μ
.

By our choice of λ, this is equivalent to
(

4
3

)n
> 1

which is obviously true. It follows from the definition that a↗ 1 as R1 ↗ ∞.
It is straightforward to show the existence of a smooth function ψ : R → R+

such that for any R1 > R.

ψ =
{

1 , r ≤ 7λR1

0 , r ≥ 8λR1
(3.27a)

ψ′(r) ≤ 0 for all r (3.27b)

|ψ′(r)| ≤ b

r
(3.27c)

|ψ′′(r)| ≤ c

r2
(3.27d)

where b, c are positive constants. In the following, we consider a fixed function ψ
satisfying the conditions (3.27).
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In the deformation construction, we shall consider functions f : Sn×[R,∞) →
R, satisfying the following conditions.

f(x,R) = 1 , for x ∈ Sn , (3.28a)

and for (x, r) ∈ Sn × [R,∞) the conditions

1
2
≤ f ≤ 2 (3.28b)

|f ′(x, r)| ≤ 1
r2

(3.28c)

|ΔSnf | ≤ 1
rn

(3.28d)

|∇Sn

f |2 ≤ 1
rn

. (3.28e)

In particular, the constant function f ≡ 1 satisfies conditions (3.28). In order to
carry out the deformation from the metric g to the metric ga, we shall consider
metrics of the form,

gf,ψ =
1

1 + r2f
dr2 + r2

(

ωij +
ψαij
rn+1

)

dxidxj . (3.29)

Given ψ, the main objective is to construct an f satisfying (3.28) so that gf,ψ has
the required properties.

3.1.2. Scalar curvature formulas. We need formulas for the scalar curvature S[gf,ψ]
of the metric gf,ψ.

Lemma 3.4. Let f, ψ satisfy the assumptions (3.28) and (3.27). Then the metric
gf,ψ has scalar curvature,

S[gf,ψ] = −n(n+ 1)f − nrf ′ +
1
rn

(n|μ|ψ′ − r|μ|ψ′′)f + J , (3.30)

where J is a term bounded by C(n,R,Λ, μ̄, μ)/rn+2, and such that J = 0 for
r ≥ 8λR1.

Proof. We describe our approach to carrying out this computation. Setting,

h = 1 + r2f and gij = r2
(

ωij +
ψαij
rn+1

)

, (3.31)

gf,ψ becomes,

gf,ψ =
1
h
dr2 + gijdx

idxj . (3.32)

Applying the Gauss equation to an r-slice Σ = Sn × {r} gives,

S[gf,ψ] = SΣ + |B|2 −H2 + 2Ric(N,N) , (3.33)

where SΣ, B and H are the scalar curvature, second fundamental form and mean
curvature of Σ, respectively, and Ric(N,N) is the ambient Ricci curvature in the
direction of the unit normal N = h1/2 ∂

∂r . In terms of coordinates, B and H are



14 L. Andersson, M. Cai, and G. J. Galloway Ann. Henri Poincaré

given by, bij = B(∂i, ∂j) = 1
2

√
h ∂rgij , and H = gijbij . We then compute each

term in (3.33) in turn.
For the first three terms we obtain, making use of the bounds (3.26) and (3.27)

SΣ =
n(n− 1)

r2
+O

(
1

rn+3

)

(3.34)

H = h
1
2

[
n

r
+
n+ 1

2
|μ|ψ
rn+2

− 1
2
|μ|ψ′

rn+1
+O

(
1

rn+3

)]

(3.35)

|B|2 = Bi
jBj

i = h

[
n

r2
+ (n+ 1)

|μ|ψ
rn+3

− |μ|ψ′

rn+2
+O

(
1

rn+4

)]

. (3.36)

Equations (3.35) and (3.36) combine to give,

|B|2 −H2 = h

[

− n(n− 1)
r2

− (n− 1)(n+ 1)
|μ|ψ
rn+3

+ (n− 1)
|μ|ψ′

rn+2
+O

(
1

rn+4

) ]

. (3.37)

Applying the Raychaudhuri equation to the unit normal N = h1/2 ∂
∂r to the level

sets of r, we have,

Ric(N,N) = −N(H) − |B|2 −
√
hΔΣ

1√
h
. (3.38)

Making use of equations (3.35) and (3.36), we derive from (3.38),

Ric(N,N) = −1
2
h′

[
n

r
+
n+ 1

2
|μ|ψ
rn+2

− 1
2
|μ|ψ′

rn+1
+O

(
1

rn+3

)]

+ h

[
n(n+ 1)

2
|μ|ψ
rn+3

− n
|μ|ψ′

rn+2
+

1
2
|μ|ψ′′

rn+1
+O

(
1

rn+4

)]

−
√
hΔΣ

1√
h
. (3.39)

Equations (3.34), (3.37) and (3.39) then combine to give,

S[gf,ψ] =
n(n− 1)

r2
− n(n− 1)

r2
h− n

r
h′ −

[
n+ 1

2
|μ|ψ
rn+2

− 1
2
|μ|ψ′

rn+1
+O

(
1

rn+3

)]

h′

+
[

(n+ 1)
|μ|ψ
rn+3

− (n+ 1)
|μ|ψ′

rn+2
+

|μ|ψ′′

rn+1
+O

(
1

rn+4

)]

h

− 2
√
h	Σ

1√
h

+O

(
1

rn+3

)

. (3.40)

Setting h = 1 + r2f in the above, and making use of the bounds (3.28)
and (3.27), one derives in a straight forward manner equation (3.30). Moreover, it
is clear from the computations that all ‘big O’ terms vanish once ψ vanishes. �

The following Corollary gives the form of the scalar curvature which will be
used in the deformation construction.
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Corollary 3.5. Let f, ψ satisfy the assumptions (3.28) and (3.27). Then, there is
a nonnegative function A1 : [R,∞) → R+, independent of f , such that

A1 ≤ C(n,R,Λ, μ̄, μ) and A1 = 0 for r ≥ 9λR1 , (3.41)

and such that the scalar curvature S[gf,ψ] of gf,ψ satisfies the inequality

S[gf,ψ] ≥ − n

rn

[(

rn+1 +
n+ 1
n

|μ|ψ − r

n
|μ|ψ′

)

f − A1(r)
r

]′
. (3.42)

Proof. Using the product rule, equation (3.30) may be expressed as,

S[gf,ψ] = − n

rn
(rn+1f)′ +

1
rn

[(
(n+ 1)|μ|ψ − r|μ|ψ′)f

]′

− 1
rn

[
(n+ 1)|μ|ψ − r|μ|ψ′]f ′ +O

(
1

rn+2

)

which, by the bounds (3.28) and (3.27) simplifies to,

S[gf,ψ] = − n

rn

[(

rn+1 − n+ 1
n

|μ|ψ +
r

n
|μ|ψ′

)

f

]′
+O

(
1

rn+2

)

. (3.43)

It follows that there exists a smooth function A : [R,∞) → R+, satisfying, A ≤
C(n,R,Λ, μ̄, μ) and A = 0 for r ≥ 9λR1, such that,

S[gf,ψ] ≥ − n

rn

[(

rn+1 − n+ 1
n

|μ|ψ +
r

n
|μ|ψ′

)

f

]′
− A(r)
rn+2

. (3.44)

Now define A1 : [R,∞) → R+ by,

A1(r) =
r

n

∫ 9λR1

r

A(t)
t2

dt . (3.45)

One easily checks that the properties (3.41) hold. Moreover, since,
(
A1(r)
r

)′
= − 1

n

A(r)
r2

, (3.46)

inequality (3.42) follows from (3.44). Finally, it is clear from the construction
that A and hence also A1 may be chosen to be independent of f . �

3.1.3. Defining η: Rounding the corner. Let η1(x, r), η2(r) be given by

η1(x, r) = rn+1 +
n+ 1
n

|μ|ψ − r

n
|μ|ψ′ − A1(r)

r
, (3.47a)

η2(r) =
rn+1

a
, (3.47b)

where the function A1 appearing in η1 is the function A1 defined in Corollary 3.5.
By (3.42), S[g1,ψ] ≥ − n

rn η
′
1. Further, ga has constant curvature −1/a, and hence

S[ga] = − n
rn η

′
2.

In the rest of the argument we shall be choosing R1 sufficiently large, so that
the required conditions are satisfied. We shall successively increase R1 as required.
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η1

η2

η

R1 3λR1 4λR1 7λR1

Figure 2. Construction of η.

Lemma 3.6. There is an R1 > R, R1 = R1(n,R,Λ, μ̄, μ) such that the following
inequalities hold.

η′1(x, r) < η′2(r) , R1 ≤ r ≤ 7λR1 (3.48a)

η1(x, r) − η2(r) > μ/20 , R1 ≤ r ≤ 3λR1 (3.48b)

η2(r) − η1(x, r) > μ̄/10 , 4λR1 ≤ r ≤ 7λR1 . (3.48c)

Proof. We need to consider only the interval R1 ≤ r ≤ 7λR1. There, ψ ≡ 1, and
ψ′ ≡ 0. We start by proving (3.48a). By construction, we have for r ≥ R1, using
|μ| > 0 and the properties of a, after some manipulations,

η′2 − η′1 >
1
r

[(
1
a
− 1

)

(n+ 1)rn+1 − A(r)
nr

]

>
1
r

[√
4
3

(n+ 1)2

n

μ̄

(4λ)n+1
− A(r)

nr

]

.

Since A(r) ≤ C(n,Λ, R, μ̄, μ), it follows that (3.48a) holds for R1 sufficiently large.
Next we prove (3.48b). Since (η1−η2)′ < 0 for r ≥ R1, it is sufficient to prove

the inequality at r = 3λR1. We have

η1(x, 3λR1) − η2(3λR1) ≥
[(

1 − 1
a

)

+
n+ 1
n

μ

(3λR1)n+1

]

(3λR1)n+1

− A1(3λR1)
3λR1

,

which by using the properties of a and simplifying gives,

>

[

1 −
√

3
4

]
n+ 1
n

μ− A1(3λR1)
3λR1

.
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One checks that 1−√
3/4 > 1/10. Thus, in view of the fact that A1 ≤ C(n,R,Λ,

μ̄, μ), by possibly increasing R1 we see that (3.48b) can be made to hold.
We proceed in a similar fashion to prove (3.48c). We have

η2(4λR1) − η1(x, 4λR1) ≥
[(

1
a
− 1

)

− n+ 1
n

μ̄

(4λR1)n+1

]

(4λR1)n+1

≥
[√

4
3
− 1

]
n+ 1
n

μ̄ .

We note that
√

4/3 − 1 > 1/10. This completes the proof of Lemma 3.6. �

We shall define η = η(x, r) to be a suitably increasing function of the vari-
able r that smoothly transitions from η1 to η2 (see Figure 1). In order to make
meaningful estimates, its construction shall be made fairly explicit. Its construc-
tion depends on two auxiliary functions α and β, which we now introduce.

Let α : [0,∞) → R be a function satisfying,

1. α(r) = 0 for r ≤ R1, 2R1 ≤ r ≤ 5λR1, and r ≥ 6λR1.
2. α > 0 for R1 < r < 2R1, α < 0 for 5λR1 < r < 6λR1, and

∫ 6λR1

R1

α(t)dt =
∫ ∞

−∞
α(t)dt = 0 . (3.49)

Consider,

γ(x, r) =
α(r)

η1(x, r) − η2(r)
.

It follows from Lemma 3.6 and the properties of α that γ is nonnegative and
bounded,

0 ≤ γ ≤ C(n,Λ, μ, μ̄) .

Next, define m(x) by the condition

1 +m(x)
∫ 6λR1

R1

γ(x, t) dt = 0 , (3.50)

and let

β(x, r) = 1 +m(x)
∫ r

R1

γ(x, t) dt .

Then, β satisfies,

β = 1 , for r ≤ R1 (3.51a)

β = 0 , for r ≥ 6λR1 (3.51b)

0 ≤ β ≤ 1 , for all r . (3.51c)

Conditions (3.51a), (3.51b) are clear. For (3.51c), we consider, β′ = mγ. As ob-
served above, γ ≥ 0, and hence from (3.50), m ≤ 0, so that mγ ≤ 0. Hence β is
decreasing, which implies that 0 ≤ β ≤ 1.
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Now we are ready to define η. Let

η(x, r) = η1(x,R1) +
∫ r

R1

[
β(x, t)η′1(x, t) +

(
1 − β(x, t)

)
η′2(t)

]
dt .

Lemma 3.7. η defined as above satisfies the conditions

η(x, r) =
{
η1(x, r) r ≤ R1

η2(r) = rn+1

a , r ≥ 6λR1
(3.52a)

η′(x, r) ≤ η′2(r) =
(n+ 1)rn

a
, R1 ≤ r <∞ . (3.52b)

Proof. For r ≤ R1, we have β = 1, so

η(x, r) = η1(x,R1) +
∫ r

R1

η′1(x, t)dt = η1(x, r) .

In the following calculations, which only involve derivatives and integrals with
respect to r, we suppress reference to x in order to avoid clutter. For r ≥ 6λR1,
we have β = 0, which gives

η(r) = η1(R1) +
∫ 6λR1

R1

[
βη′1 + (1 − β)η′2

]
dt+

∫ r

6λR1

η′2dt (3.53)

= η2(r) − η2(6λR1) + η1(R1) +
∫ 6λR1

R1

(
βη′1 + (1 − β)η′2

)
dt . (3.54)

A partial integration gives
∫ 6λR1

R1

(
βη′1 + (1 − β)η′2

)
dt (3.55)

= η2(6λR1) − η2(R1) + β(η1 − η2)
∣
∣
∣
∣

r=6λR1

r=R1

−
∫ 6λR1

R1

β′(η1 − η2)dt (3.56)

use the properties of β and γ

= η2(6λR1) − η2(R1) −
(
η1(R1) − η2(R1)

) −m

∫ 6λR1

R1

αdt (3.57)

use (3.49)

= η2(6λR1) − η1(R1) . (3.58)

Substituting this into the formula for η(x, r), we obtain,

η(x, r) = η2(r) , for r ≥ 6λR1 .

We have now established (3.52a). Next we prove (3.52b). We have

η′ = βη′1 + (1 − β)η′2 (3.59)
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and hence, by (3.48),

η′ ≤ βη′2 + (1 − β)η′2 (3.60)

= η′2 =
(n+ 1)rn

a
. (3.61)

�

We shall now make use of the function η defined above to define a function f ,
which shall be shown to satisfy the conditions (3.28). This fact allows us to apply
the result of Corollary 3.5 to estimate the scalar curvature of the deformed metric
gf,ψ defined in terms of this f .

3.1.4. Defining f . We define f by,

f =
η + A1

r

η1 + A1
r

, (3.62)

which implies, (

rn+1 +
n+ 1
n

|μ|ψ − r

n
|μ|ψ′

)

f − A1

r
= η . (3.63)

Here, A1 = A1(r) is the function determined in Corollary 3.5. It is crucial to
note here that A1 is independent of the particular f , as long as it satisfies the
conditions (3.28). Our task is now to show that f defined as above does satisfy
these conditions as long asR1 is chosen sufficiently large. This will be demonstrated
in Lemma 3.8 below. It then follows from equation (3.63) above, Corollary 3.5
and (3.52b) that S[gf,ψ] satisfies,

S[gf,ψ] ≥ − n

rn
η′ ≥ −n(n+ 1)

a
.

In addition we have, gf,ψ = g on [R,R1] and gf,ψ = ga on [9λR1,∞). Thus, subject
to the following lemma, Theorem 3.2 has been proven.

Lemma 3.8. Let η be as in Section 3.1.3, and let f be given in terms of η by (3.62).
Then, there is an R1 = R1(n,R,Λ, μ̄, μ) sufficiently large, so that the inequali-
ties (3.28) are valid.

Proof. The condition (3.28a) is clear from the construction. Since (3.28c) im-
plies (3.28b) we only need to verify that |f ′| ≤ 1/r2 and |∂xf | ≤ 1/rn, |∂2

xf | ≤
1/rn. We begin by showing there is an R1 sufficiently large, and not smaller than
the previously made choices of R1, so that |f ′| ≤ 1/r2. We have,

f = 1 +
(η − η1)
η1 +A1/r

. (3.64)

This gives

f ′ =
(η − η1)′

η1 +A1/r
− (η − η1)

(η1 +A1/r)2
[
η′1 + (A1/r)′

]
.
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Since

η(x, r) = η1(x,R1) +
∫ r

R1

(
βη′1 + (1 − β)η′2

)
dt ,

η1(x, r) = η1(x,R1) +
∫ r

R1

η′1dt

we have,

η − η1 =
∫ r

R1

(1 − β)(η2 − η1)′ .

so
(η − η1)′ = (1 − β)(η2 − η1)′ .

Hence,

|(η − η1)′| ≤ (η2 − η1)′ =
(

1
a
− 1

)

rn(n+ 1) +O(1/r) (3.65)

≤ C

r
. (3.66)

Here and below C = C(n,R,Λ, μ̄, μ) is a generic constant. Recall that by con-
struction we have

(A1/r)′ ≤ C

r2
.

Combining the above inequalities, we have
∣
∣
∣
∣

(η − η1)′

η1 +A1/r

∣
∣
∣
∣ ≤

C

rn+2
. (3.67)

Now since
|(η − η1)′| ≤ C

r
we have

|η − η1| ≤ C (3.68)
for r ∈ [R1, 9λR1]. This together with

|η′1| ≤ Crn

implies that ∣
∣
∣
∣

(η − η1)
(η1 +A1/r)2

[
η′1 + (A1/r)′

]
∣
∣
∣
∣ ≤

C

rn+2
. (3.69)

Equations (3.67) and (3.69) imply

|f ′| ≤ C

rn+2

for r ∈ [R1, 9λR1]. By choosing R1 large enough, we have

|f ′| ≤ 1
r2

which gives (3.28c).
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Next we demonstrate that by, if necessary, further increasing R1, we can
ensure that the condition

|∂kxf | ≤
1
rn

, k = 1, 2 ,

holds, where ∂x denotes partial differentiation with respect to any one of the
coordinates xi.

Recalling (3.64), we have

∂xf =
∂x(η − η1)
η1 +A1/r

− η − η1
(η1 +A1/r)2

(∂xη1) .

We estimate the second term first. By (3.68), |η − η1| ≤ C, so
∣
∣
∣
∣

η − η1
(η1 +A1/r)2

∂xη1

∣
∣
∣
∣ ≤

1
r2n+2

|∂xη1| .

Recalling

η1 = rn+1 +
n+ 1
n

|μ|ψ − r

n
|μ|ψ′ − A1

r
we find |∂xη1| ≤ C. Hence the modulus of the second term in ∂xf is bounded by
C/r2n+2.

Now consider the first term in ∂xf . Recall

η − η1 =
∫ r

R1

(1 − β)(η2 − η1)′dt

= (1 − β)(η2 − η1)
∣
∣
∣
∣

r

R1

+
∫ r

R1

(η2 − η1)β′dt

= [1 − β](η2 − η1) +
∫ r

R1

(η2 − η1)β′dt

so

∂x(η − η1) = −(∂xβ)(η2 − η1) − (1 − β)∂xη1

+
∫ r

R1

([
∂x(η2 − η1)

]
β′ + (η2 − η1)∂xβ′

)
dt .

Now,

∂xβ = (∂xm)
(∫ r

R1

α

η1 − η2

)

+m

∫ r

R1

(

∂x
α

η1 − η2

)

.

Recall,

1 +m

∫ 6λR1

R1

α

η1 − η2
= 0

so

m = − 1
∫ 6λR1

R1

α
η1−η2

= O(1/R1) .
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Hence,

∂xm = −
∫ 6λR1

R1
∂x

(
α

η1−η2

)

(∫ 6λR1

R1

α
η1−η2

)2 .

One can see that

∂x

(
α

η1 − η2

)

= O(1) ,

so
∂xm = O(1/R1) .

Hence we have, using m = O(1/R1),

∂xβ = O(1)

and therefore
∂xβ(η2 − η1) = O(1) .

Next we consider the second term in ∂xf . We have

|∂xη1| ≤ C ,

so
(1 − β)∂xη1 = O(1) .

Since m = O(1/R1), we have,

β′ = m
α

η1 − η2
= O(1/R1)

but,
∂x(η2 − η1) = O(1)

so,
∂x(η2 − η1)β′ = O(1/R1) .

Similarly,
∂xβ

′ = O(1/R1)
and

η2 − η1 = O(1) .
Hence, [

∂x(η2 − η1)
]
β′ + (η2 − η1)∂xβ′ = O(1/R1) ,

and therefore,
∫ r

R1

[(
∂x(η2 − η1)

)
β′ + (η2 − η1)∂xβ′

]
= O(1) .

Adding the three terms, we get,

∂x(η − η1) = O(1) .

This implies that the first term in ∂xf is
O(1)

η1 +A1/r
= O(1/rn+1) ,
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i.e.,

|∂xf | ≤ C

rn+1
.

Similar arguments give,

|∂2
xf | ≤

C

rn+1
.

By choosing R1 large enough we obtain,

|∂kxf | ≤
1
rn

, k = 1, 2 .

Lemma 3.8 follows. �

As discussed above, now that Lemma 3.8 is established, we have completed
the proof of Theorem 3.2. �

3.2. The case of vanishing mass aspect function

In this subsection, we prove the following.

Theorem 3.9. Let (Mn+1, g), 2 ≤ n ≤ 6, be an asymptotically hyperbolic manifold
with scalar curvature satisfying, S[g] ≥ −n(n + 1). If the mass aspect function
trh0 k vanishes identically, then (M, g) is isometric to hyperbolic space.

We note that while Theorem 3.9 generalizes Theorem 1.1, its proof relies on it.
We note also that our positivity of mass result, Theorem 3.1, follows immediately
from Proposition 3.3 and Theorem 3.9.

For notational convenience we set d = n+1. Further, let capital latin indices
run from 1, . . . , d − 1, let lowercase latin indices run from 1, . . . , d, and let yA be
coordinates on Sd−1. Further, let (xi) = (t, yA) be coordinates on (0, T ) × Sd−1,
and, as usual, let h0 be the standard metric on Sd−1.

3.2.1. Conformal gauge. Consider a conformally compact d-dimensional manifold
(M, g) where M is the interior of a manifold with boundary M̃ = M ∪ ∂M , and
suppose g is of the form g = ρ−2g̃, with ρ a defining function for ∂M for a metric g̃
which is smooth on M̃ .

Let θ be a positive function on M̃ . Letting g̃ → θ2g̃ and ρ → θρ leaves g
unchanged. Such a transformation can therefore be viewed as a change of conformal
gauge.

Let g̃ be a metric on M̃ which in a neighborhood of ∂M can be written in
the form

g̃ = dt2 + h0 + tdγ (3.70)

where γ = γijdx
idxj is a smooth tensor field on (0, T ) × Sd−1 for some T > 0,

such that the restriction of γ to ∂M is a smooth tensor on Sd−1, i.e., γ
∣
∣
∂M

=
γ(0, y)ABdyAdyB. The following lemma shows that after a change of conformal
gauge we may assume that g̃ is in Gauss coordinates based on ∂M .
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Lemma 3.10. Consider the conformally compact metric g = sinh−2(t)g̃. There is
a conformal gauge change so that g takes the form g = sinh−2(t̂)ˆ̃g, where t̂(p) =
dˆ̃g(p, ∂M), and ˆ̃g is of the form

ˆ̃g = dt̂2 + h0 + t̂dγ̂

where γ̂ = γ̂(t̂, y)ABdyAdyB is a t̂-dependent tensor field on Sd−1, such that
γ̂
∣
∣
∂M

= γ
∣
∣
∂M

. In particular, g is asymptotically hyperbolic in the sense of Def-
inition 3.1, with mass aspect tensor k = γ

∣
∣
∂M

.

Proof. Let ρ = sinh(t). Arguing as in [2, Section 5], we shall find a function θ such
that ρ̂ := θρ = sinh(t̂), where t̂ = dˆ̃g(p, ∂M), is the distance to the boundary in
the metric ˆ̃g. This is equivalent to the condition that f̂ := arcsinh(ρ̂) = t̂, with
|df̂ |ˆ̃g = 1. A calculation as in the proof of [2, Lemma 5.3] shows that this condition
is equivalent to the equation

ρg̃(dθ, dθ) + 2θg̃(dθ, dρ) = θ4ρ+ θ2a (3.71)

where a = ρ−1(1 − g̃(dρ, dρ)).
For g̃ of the form (3.70), we have a = −ρ + O(td). Equation (3.71) is a

system of first order partial differential equations, with characteristics transversal
to ∂M = {t = 0}, and satisfies the conditions for existence of solutions with initial
condition θ = 1 at ∂M , see [25, volume 5, pp. 39–40]. Hence there is a small
neighborhood U of ∂M , and a solution θ to (3.71) on U .

We shall need the following fact.

Claim. θ = 1 + td+1w, where w is smooth up to ∂M .

The proof of the claim is straightforward and is left to the reader. Now we
have that t̂ = arcsinh(θ sinh(t)) = t[1 +O(td+1)], and hence

t = t̂
[
1 +O(t̂d+1)

]

where the O(td+1) and O(t̂d+1) terms are smooth functions of (t, y) and (t̂, y),
respectively. It is straightforward to verify that

sinh−2(t) = sinh−2(t̂)[1 + t̂d+1]

and g = sinh−2(t̂)ˆ̃g, with

ˆ̃g = dt̂2 + h0 + t̂dγ̂

where γ̂ has the property that γ̂(0, y) = γ(0, y).
By construction, t̂ is the distance to ∂M , and hence the above is the form

of ˆ̃g in Gauss coordinates, based on ∂M . It follows that γ̂ is a t̂-dependent tensor
on Sd−1. �
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3.2.2. Conformal deformation. Assume (M, g) is asymptotically hyperbolic in the
sense of Definition 3.1. Then, in slightly different notation, (M, g) has a conformal
compactification (M̃, g̃) with conformal boundary ∂M̃ the round sphere, and such
that near ∂M̃ , g has the form,

g = ρ−2g̃ (3.72)
where ρ = sinh(t) and

g̃ = dt2 + h0 + tdγ , (3.73)
where h0 is the standard metric on Sd−1 and γ = γ(t, ·) is a t-dependent family of
metrics on Sd−1 smooth up to ∂M̃ . Note that the mass aspect tensor is given by,
k = γAB

∣
∣
∂M̃

.
Let h = h0 + tdγ be the metric induced on the level sets of t, and let s denote

the scalar curvature defined with respect to h. Further, let Kij = 1
2∂thij . The only

nonvanishing components of K are KAB = 1
2dt

d−1γAB +O(td).
Let ∇̃ denote the covariant derivative defined with respect to g̃ and let S̃ de-

note the scalar curvature of g̃. The formula for the scalar curvature of conformally
related metrics gives,

S = −d(d− 1)∇̃lρ∇̃lρ+ (2d− 2)ρ∇̃l∇̃lρ+ ρ2S̃ .

Claim. S has the asymptotic form,

S = −d(d− 1) +O(td+1) . (3.74)

Indeed, by Taylor’s theorem, we have s = S[h0] +O(td), and hence,

S̃ = s − 2hAB0 ∂tKAB − (hAB0 KAB)2 + 3KABK
AB

= (d− 1)(d− 2) − d(d− 1)td−2hAB0 γAB +O(td−1) .

Further, using ρ = sinh t,

∇̃l∇̃lρ = sinh(t) − g̃ijΓ̃tij cosh(t)

= sinh(t) + hAB0 KAB +O(td)

= sinh(t) +
d

2
td−1hAB0 γAB + O(td) .

Finally, we note that ∇̃lρ∇̃lρ = cosh2(t). Putting this together, one finds af-
ter a few manipulations that the terms involving the mass aspect function, μ =
hAB0 (γAB

∣
∣
∂M̃

), in S[g], at order td, cancel. Equation 3.74 follows.
By standard results [3, Theorem 1.2], there is a unique positive solution u

such that limx→∞ u(x) = 1, to the Yamabe equation for prescribed scalar curvature
−d(d− 1) in dimension d,

−4(d− 1)
d− 2

Δu+ Su+ d(d− 1)u
d+2
d−2 = 0 . (3.75)

Let v = u− 1 and let

Ŝ =
d− 2

4(d− 1)
(
S + d(d− 1)

)
.
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Then the Yamabe equation takes the form

−Δv + dv + Ŝv = −Ŝ −F(v) (3.76)

where

F(v) =
d(d− 2)

4

[

(1 + v)
d+2
d−2 − 1 − d+ 2

d− 2
v

]

.

In particular F(v) = O(v2). A straightforward application of the maximum prin-
ciple shows that since S[g] ≥ −d(d− 1), we have v ≤ 0 and hence

u ≤ 1 .

Linearizing the Yamabe equation around u = 1, we obtain the equation

−Δū+ dū + Ŝū = 0 .

The indicial exponents of this equation are −1, d. It follows that the solution to the
Yamabe equation is of the form u = 1+v with v = vd,1t

d log t+vdtd+higher order.
However since by Equation (3.74), Ŝ = O(td+1), it follows [1] that vd,1 = 0, and
in fact v is smooth up to boundary, with

v = vdt
d + higher order .

Let L = −Δ + d. Equation (3.76) takes the form

Lv = f (3.77)

with f given by
f = −Ŝu−F(u− 1) .

In particular, f ≤ 0 and f �= 0 except when Ŝ = 0. Let Lt be the operator defined
by

Ltu = − sinh2(t)∂2
t u+ (d− 2) sinh(t) cosh(t)∂tu+ du .

We have
Lu = Ltu− sinh2(t)∂t

√
deth∂tu− sinh2(t)Δhu ,

where Δh is the Laplacian on Sd−1 with respect to the metric h(t, ·) = h0 + tdγ.
In particular Δh involves only yA-derivatives.

We now introduce a function w which will be used as a supersolution, in
order to control the leading order term in v. Let w = −td(1 + dt).

Lemma 3.11. There exists constants t1 = t1(d) > 0, A = A(d) > 0 such that

Ltw > Atd+1 , for 0 < t < t∗ .

Proof. Using w = −td(1 + dt), we obtain,

Lt(w) = sinh2(t)
[
d(d− 1)td−2 + d2(d+ 1)td−1

]

− (d− 2) sinh(t) cosh(t)
[
dtd−1 + d(d+ 1)td

] − d(td + dtd+1)

=
[
d(d− 1)td + d2(d+ 1)td+1

] − (d− 2)
[
dtd + d(d+ 1)td+1

]

− [dtd + d2td+1] +O(td+2)

= d(d + 2)td+1 +O(td+2) ,

and the lemma follows. �
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We have,

Lw = Ltw − sinh2(t)∂t
√

deth∂tw .

For metrics of the form we are considering, trh∂th = O(td−1). Hence by Lem-
ma 3.11, we have

Lw > Atd+1 − Ct2d

where C = C(d, γ). This means there exists t2 > 0, t2 = t2(d, γ) such that

Lw > 0 , for 0 < t < t2 .

Lemma 3.12. Let (M, g) be asymptotically hyperbolic, so that (3.72) and (3.73)
hold. Let f be a function on (M, g), and assume that f is smooth up to ∂M̃ , with
fall off f = O(td+1). Let L = −Δ + d, and let v be the unique solution to

Lv = f

with v = O(td). Then v = vdt
d + td+1J with vd = vd(y) smooth on ∂M̃ and J

smooth up to ∂M̃ . If f ≤ 0, f �= 0, then vd < 0.

Proof. Let v̄a = aw and let v be as in (3.77). We have f ≤ 0, and hence by the
strong maximum principle v < 0 in the interior of M̃ . It follows that there is ε > 0,
t2 > t3 > 0, so that

sup
y∈Sd−1

v(t3, y) < −ε .

For each a ≥ 0, v̄a is a supersolution to L in the region 0 < t < t3 and for
0 ≤ a ≤ a∗, we have that v̄a(t3) > v(t3, y) for y ∈ Sd−1. Further, we clearly have
v̄a(0) = v(0, y) = 0 for y ∈ Sd−1. It follows from the maximum principle that
for small a, v̄a > v in the region 0 < t < t3. Fix an a with this property. Since
v̄a = −atd+O(td+1), dividing the inequality, v ≤ v̄a, by td and letting t↘ 0 gives
vd ≤ −a. �

We are now ready to state the following analogue of a well-known result in
the asymptotically flat setting (cf., [20]).

Proposition 3.13. Let (M, g) be asymptotically hyperbolic in the sense of Defini-
tion 3.1, with scalar curvature S[g] ≥ −d(d − 1), and with strict inequality some-
where. Then there exists a conformally related metric ĝ such that

1. (M, ĝ) is asymptotically hyperbolic,
2. S[ĝ] = −d(d− 1), and
3. μ[ĝ] < μ[g],

where μ[g], μ[ĝ] are the mass aspect functions of (M, g), (M, ĝ), respectively.

Proof. Lemma 3.12, together with the discussion prior to Lemma 3.11, shows that
the solution u to the Yamabe equation is of the form

u = 1 + udt
d + td+1J
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with ud = ud(y) < 0, and with J smooth up to ∂M̃ . Then, after a change of
coordinates, ĝ = u4/(d−2)g can be brought into the form,

ĝ = sinh−2(t)
(

dt2 + h0 + td
(

γ +
4

d− 2

(

1 +
1
d

)

udh0

)

+ td+1z

)

where z = zijdx
idxj is smooth up to ∂M̃ .

By Lemma 3.10, after a change of conformal gauge, we have

ĝ = sinh−2(t̂)
(

dt̂2 + h0 + t̂d
(

γ̂ +
4

d− 2

(

1 +
1
d

)

udh0

))

where γ̂ = γ̂(t̂, y)ABdyAdyB is smooth up to ∂M̃ and γ̂(0, y) = γ(0, y). It follows
from the above that the mass aspect functions satisfy,

μ[ĝ] = μ[g] +
4(d− 1)
d− 2

(

1 +
1
d

)

ud < μ[g] , (3.78)

since ud < 0. �

For the purpose of establishing Theorem 3.9, we need the following immediate
consequence of Propositions 3.3 and 3.13.

Corollary 3.14. Let (M, g) be as in Theorem 3.9; in particular, assume μ[g] = 0.
Then g has constant scalar curvature S[g] = −d(d− 1).

Proof. Suppose S[g] > −d(d − 1) somewhere. Then, by Proposition 3.13, there
exists a conformally related metric ĝ such that (M, ĝ) is asymptotically hyperbolic,
S[ĝ] = −d(d − 1), and μ[ĝ] < μ[g] = 0. But this directly contradicts Proposi-
tion 3.3. �

3.2.3. Deforming the metric. Now we will show that if g has constant scalar
curvature S = −d(d − 1) and vanishing mass aspect function, then it is Ein-
stein, Ricg = −(d − 1)g. Thus, let (M, g) be as in Theorem 3.9, and assume
S[g] = −d(d− 1).

Let

R̂ic = Ric − S

d
g

denote the traceless part of Ric. Note that since g has constant scalar curvature
Ric and R̂ic have vanishing divergence.

For the subsequent analysis, we shall need detailed information about the
asymptotic behavior of R̂ic.

Lemma 3.15. Let (M, g) be as in Theorem 3.9 (so that (3.72) and (3.73) hold, and
the mass aspect vanishes). Then

R̂ic = −d
2
td−2γ + td−1z

where z = zijdx
idxj.
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Proof. Let R̃ic, ∇̃ denote the Ricci tensor and covariant derivative defined with
respect to g̃. The conformal transformation formula for Ricci curvature is

Ricij = R̃icij + ρ−1
[
(d− 2)∇̃i∇̃jρ+ ∇̃l∇̃lρg̃ij

] − (d− 1)ρ−2∇̃lρ∇̃lρg̃ij (3.79)

where in the right hand side, indices are raised with g̃.
Note that if γ = 0, then R̃ic = (d− 2)h0 and the only nonvanishing terms in

the formula for Ric are

Rictt = (d− 1) sinh−2(t)

RicAB = (d− 1) sinh−2(t)h0AB .

Now we consider the case with nonvanishing γ, but with vanishing mass aspect
function, i.e., μ = hAB0 γAB

∣
∣
t=0

= 0.
LetKij = 1

2∂tg̃ij . Then the nonvanishing terms inK areKAB = 1
2dt

d−1γAB+
O(td). Let h,∇/, ric denote the induced metric, covariant derivative and Ricci tensor
on the level sets Mt of t. We use coordinates yA on these level sets, and raise and
lower indices with h. Note that h = h0 + tdγ, and hence, since ric involves no
t-derivatives, we have by Taylor’s theorem,

ric = Ric[h0] +O(td) = (d− 2)h0 +O(td) .

We have from the Gauss, Codazzi, and second variation equations

R̃ictt = −hAB∂tKAB +KACK
C
B

= −1
2
d(d− 1)td−2hABγAB +O(td−1)

which using μ = 0 gives,

= O(td−1) ,

R̃ictA = ∇/BKBA −∇/A(hBCKBC)

= O(td) ,

R̃icAB = ricAB − ∂tKAB + 2KACK
C
B −KABh

CDKCD

= (d− 2)h0 − 1
2
d(d− 1)td−2γAB +O(td−1) .

Thus we have

R̃ic = (d− 2)h0 − 1
2
d(d− 1)td−2γ + O(td−1) .

We next consider the remaining terms

Bij = ρ−1
[
(d− 2)∇̃i∇̃jρ+ ∇̃l∇̃lρg̃ij

] − (d− 1)ρ−2∇̃lρ∇̃lρg̃ij .

Recall that since we are in a Gauss foliation, the only non-vanishing terms in Γ̃tij
are

Γ̃tAB = −KAB .
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We have

Btt = −(d− 1) sinh−2(t) ,
BtA = 0 ,

BAB = sinh−1(t)
[
(d− 2)KAB cosh(t) + sinh(t)hAB

]

− (d− 1) sinh−2(t) cosh2(t)hAB ,

= −(d− 1) sinh−2(t)h0AB +
1
2
d(d− 2)td−2γAB +O(td−1) .

This shows that
Ric[g] = −(d− 1)g − d

2
td−2γ +O(td−1)

which gives the Lemma. �
Consider the curve,

λs = u4/(d−2)
s gs (3.80)

where, for s small, gs is the smooth curve of metrics, gs = g−sR̂ic[g], and us is the
conformal factor such that S[λs] = −d(d− 1). Note that u0 = 1. By Lemmas 3.10,
3.15, and our earlier discussion on the asymptotic form of solutions to the Yamabe
equation, λs is asymptotically hyperbolic in the sense of Definition 3.1. Let μs
denote the mass aspect function of λs.

Let ū = ∂us

∂s |s=0. Then, by differentiating the Yamabe equation (3.75), with
u = us and g = gs, with respect to the parameter s, we obtain the equation,

−Δū+ dū = −|R̂ic|2 .
By Lemma 3.12, we have

ū = ūdt
d +O(td+1) ,

with ūd = ūd(y) < 0 if R̂ic �= 0.

Lemma 3.16.

∂sμs
∣
∣
s=0

=
4(d− 1)
d− 2

(

1 +
1
d

)

ūd .

Proof. Clearly, α = ∂sμs
∣
∣
s=0

is of the form α = α
R̂ic

+ αu, where

α
R̂ic

= ∂sμ(gs)
∣
∣
s=0

and
αu = ∂sμ(u4/(d−2)

s g)
∣
∣
s=0

.

Let gs = sinh−2(t)g̃s. In order to determine the s-dependence of the mass aspect
function we consider g̃s. It follows from Lemma 3.15 that

sinh2(t)∂sg̃s =
d

2
tdγ +O(td+1) .

Since by assumption trh0γ
∣
∣
∂M

= 0, we have α
R̂ic

= 0. It follows that the first order
change in the mass aspect function of λs is given by αu, which clearly is determined
by the first order change in the conformal factor us. The result follows. �
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We are now ready to complete the proof of Theorem 3.9.

Proof of Theorem 3.9. Let (M, g) be as in Theorem 3.9. Recall d = n + 1. By
Corollary 3.14, S[g] = −d(d − 1). Suppose that g is not Einstein, i.e., R̂ic �= 0.
Let λs = u

4/(d−2)
s gs as in (3.80). As previously observed, λs is asymptotically

hyperbolic with scalar curvature S[λs] = −d(d− 1), and with mass aspect μs. By
Lemma 3.16, ∂sμs|s=0 < 0, and hence for small s > 0, λs has negative mass aspect
function. But in view of Proposition 3.3, μs < 0 gives a contradiction, and hence
it must hold that R̂ic = 0. We can now apply the rigidity result of Qing [21] (see
also [4, 7]) to conclude that in fact (M, g) is isometric to hyperbolic space. This
concludes the proof of the positive mass theorem in the case of vanishing mass
aspect function. �

Naturally, it would be desirable to find a way to remove the sign condi-
tion on the mass aspect from our positive mass result. Within the context of the
approach taken in this paper, one possible way to accomplish this would be to
extend the results of Corvino–Schoen [11, 12] and Chruściel–Delay [9] on initial
data deformations to the asymptotically hyperbolic setting. Starting from Propo-
sition 3.13, the aim would be to deform the time-symmetric initial data to be
exactly Schwarzschild-AdS outside a compact set, without changing the scalar
curvature and the sign of the mass. Starting from Schwarzschild-AdS with mass
m < 0, the deformation result of Section 3.1 is then easily proved.
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