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Abstract— In this paper we provide a theoretical foundation
for the problem of network localization in which some nodes
know their locations and other nodes determine their locations
by measuring the distances to their neighbors. We construct
grounded graphs to model network localization and apply graph
rigidity theory to test the conditions for unique localizability
and to construct uniquely localizable networks. We further
study the computational complexity of network localization and
investigate a subclass of grounded graphs where localization
can be computed efficiently. We conclude with a discussion of
localization in sensor networks where the sensors are placed
randomly.

I. I NTRODUCTION

Location service is a basic service of many emerging
computing/networking paradigms. For example, in pervasive
computing [1], [2], knowing the locations of the computers
and the printers in a building will allow a computer to send
a printing job to the nearest printer. In sensor networks, the
sensor nodes need to know their locations in order to detect
and record events, or to route packets using geometric-aware
routing, e.g., [3].

One method to determine the location of a node is manual
configuration. However, this is unlikely to be feasible for any
large-scale deployment or when nodes move often. Another
possibility is GPS [4]. However, GPS is costly both in terms
of hardware and power requirements. Furthermore, since GPS
requires line-of-sight between the receiver and the satellites,
it may not work well in buildings or in the presence of
obstructions such as dense vegetation, foliage, or mountains
blocking the direct view to the GPS satellites.

Recently, novel schemes have been proposed to determine
the locations of the nodes in a network where only some
special nodes (called beacons) know their locations,e.g., [5],
[6]. In these schemes, network nodes measure the distances
to their neighbors and then try to determine their locations.
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The process of computing the locations of the nodes is called
network localization. For example, in [5], Savvides et al.
propose the iterative multilateration scheme to determine the
locations of nodes that do not know their locations initially.

Although the designs of the previous schemes have demon-
strated great engineering ingenuity, and their effectiveness
is verified through extensive simulations, some fundamental
questions have not been addressed; as a result, the previous
schemes are mainly heuristic-based and a full theoretical
foundation of network localization is still lacking.

Specifically, we identify the following two fundamental
questions:

1) What are the conditions for unique network localiz-
ability? Although the network localization problem has
already been studied extensively, the precise conditions
under which the network localization problem is solv-
able are not known.

2) What is the computational complexity of network local-
ization? Even though the computational complexity of
general graph embeddability problem has been studied
before [7], the computational complexity of determining
the locations of the nodes in a uniquely localizable net-
work has not been studied. Furthermore, constraints on
the communication and computational resources of the
network nodes may be severe in settings such as sensor
networks. The localization problem in such resource-
constrained settings needs to be investigated.

The objective of this paper is to provide systematic answers
to these two questions. We address the first question using
graph rigidity theory and the second question for general
uniquely localizable networks and random geometric graphs.

More specifically, in order to answer the first question,
we proposegrounded graphs. In these graphs, each vertex
represents a network node, and two vertices in the graph are
connected if the distance between the two is known,i.e., when
the distance between the two nodes is measured or when the
two nodes are beacon nodes and thus their distance isimplicitly
known. Given our construction of grounded graphs, we show
that a network has a unique localization if and only if its
corresponding grounded graph isgenerically globally rigid.
By observing this connection, we are able to apply the results



from the graph-rigidity literature to network localization and
provide a systematic answer to the first question.

We further propose inductive sequences for constructing
uniquely localizable networks, both in the plane and in 3-
space. By following these sequences, a designer of a network
can be assured that the constructed network is uniquely
localizable, thus avoiding expensive trial-and-error procedures.

To answer the second question, we study the computational
complexity of localization. We analyze the computational
complexity when a grounded graph is a generically globally
rigid graph. To reduce the computational and communication
complexity of localization, which is important in settings
such as sensor networks, we study a class of graphs called
trilateration graphs. We show that trilateration graphs are
uniquely localizable and the locations of the nodes can be
computed efficiently. We also show that in a random geometric
graph, a network will be a trilateration graph with high
probability if a certain node density or communication radius
is reached. We provide asymptotic results on the densities of
the beacons sufficient for trilateration to be carried out inO(1)
step,O(

√
log(n)) steps, orO(

√
n) steps, respectively, where

n is the number of nodes in the network.
The rest of this paper is organized as follows. The specific

network localization problem to be addressed is formulated
in Section II. The concepts of rigidity and global rigidity
are discussed in Section III. In Section IV, we study the
computational complexity of solving the localization problem.
In Section V, we study random geometric graphs. In Sec-
tion VI, we present simulation results. In Section VII, we
discuss related work. Our conclusion and future work are in
Section VIII.

II. FORMULATION

A. The Network Localization Problem

In this paper we shall be concerned with the “network
localization problem with distance information” which can be
formulated as follows. One begins with a networkN in real
d-dimensional space (whered = 2 or 3) consisting of a set
of m > 0 nodes labelled1 throughm that represent special
“beacon” nodes together withn − m > 0 additional nodes
labelledm + 1 throughn that represent ordinary nodes. Each
node is located at a fixed position inIRd and has associated
with it a specific set of “neighboring” nodes. Although a
node’s neighbors are typically defined to be all other nodes
within some specified range, other definitions could also be
used. The essential property we will require in this paper
is that the definition of a neighbor be a symmetric relation
on {1, 2, . . . , n} in the sense that nodej is a neighbor of
node i if and only if node i is also a neighbor of node
j. Under these conditionsN’s neighbor relationships can be
conveniently described by an undirected graphGN = (V,EN)
with vertex setV = {1, 2, . . . , n} and edge setEN defined
so that(i, j) is one of the graph’s edges precisely when nodes
i and j are neighbors. We assume throughout thatGN is
a connected graph. Thenetwork localization problem with
distance informationis to determine the locationsxi of all

nodes inIRd given the graph of the networkGN, the positions
of the beaconsxj , j ∈ {1, 2, . . . , m} in IRd, and the distance
δN(i, j) between each neighbor pair(i, j) ∈ EN.

The network localization problem just formulated is said
to be solvable if there is exactly one set of vectors
{xm+1, . . . xn} in IRd consistent with the given dataGN,
{x1, x2, . . . , xm}, and δN : EN → IR. In this paper we will
be concerned with “generic” solvability of the problem which
means, roughly speaking, that the problem should be solvable
not only for the given data but also for slightly perturbed
but consistent versions of the given data. It is possible to
make precise what generic solvability means as follows. Fix
GN and let e1, e2, . . . , eq denote the edges inEN. Note
that for any set ofn points y1, y2, . . . , yn in IRd there is
a unique distance vectorz whosek − th component is the
distance betweenyi and yj where (i, j) = ek. This means
that there is a well-defined functionf : IRnd → IR(md+q)

mapping{y1, y2, . . . , yn} 7−→ {y1, y2, . . . , ym, z}. Solvability
of the network localization problem is equivalent tof being
injective at{x1, x2, . . . , xn} in the sense that the only set of
points{y1, y2, . . . , yn} ∈ IRnd for which f(y1, y2, . . . , yn) =
f(x1, x2, . . . , xn) is {y1, y2, . . . , yn} = {x1, x2, . . . , xn}. In
this context it is natural to say that the network localiza-
tion problem isgenerically solvableat {x1, x2, . . . , xn} if
it is solvable at each point in an open neighborhood of
{x1, x2, . . . , xn}. In other words, the localization problem is
solvable at{x1, x2, . . . , xn} if there is an open neighborhood
of {x1, x2, . . . , xn} on whichf is an injective function.

B. Point Formations

To study the solvability of the network localization problem,
we reformulate the problem in terms of a “point formation.”
As we shall see, the point formation relevant to the network
localization problem has associated with it thegrounded graph
of the network,ĜN, with the same vertices asGN but with a
slightly larger edge set which adds “links” or edges from every
beacon to every other. It is a property ofĜN rather thanGN

which proves to be central to solvability of the localization
problem under consideration.

We begin by reviewing the point formation con-
cept. By a d-dimensional point formation [8] at p

∆=
column {p1, p2, . . . , pn}, written Fp, is meant a set ofn
points {p1, p2, . . . , pn} in IRd together with a setL of k
links, labelled (i, j), where i and j are distinct integers in
{1, 2, . . . , n}; the lengthof link (i, j) is the Euclidean distance
between pointpi and pj . The idea of a point formation
is essentially the same as the concept of a “framework”
studied in mathematics [9], [10], [11] as well as within the
theory of structures in mechanical and civil engineering. For
our purposes, a point formationFp = ({p1, p2, . . . , pn},L)
provides a natural high-level model for ann-node network
in real 2 or 3 dimensional space. In this context, the points
pi represent the positions of nodes,i.e., both beacons and
ordinary nodes, inIRd and the links inL label those specific
node pairs whose inter-node distances are given. Thus for the
network N, L would consist of all edges in̂GN, since the



distance between every pair of beacons is determined by their
specified positions.
Fp uniquely determines a graphGFp

∆= {V,L} with vertex

set V
∆= {1, 2, . . . , n} and edge setL, as well as a distance

function δ : L → IR whose value at(i, j) ∈ L is the distance
betweenpi andpj . Let us note that the distance function ofFp

is the same as the distance function of any point formationFq

with the same graph asFp providedq is congruentto p in the
sense that there is a distance preserving mapT : IRd → IRd

such thatT (qi) = pi, i ∈ {1, 2, . . . , n}. In the next section, we
will say that two point formationsFp and Fq are congruent
if they have the same graph and ifq and p are congruent.
It is clear thatFp is uniquely determined by its graph and
distance functionat mostup to a congruence transformation.
A formation that isexactlydetermined up to congruence by
its graph and distance function is called “globally rigid.” More
precisely, ad-dimensional point formationFp is said to be
globally rigid if eachd-dimensional point formationFq with
the same graph and distance function asFp is congruent to
Fp. It is clear that any formation whose graph is complete
is globally rigid. The following simple generalizations of
this fact in Lemma 1 provide sufficient conditions for global
rigidity that are especially relevant to the network localization
problem. Ind dimensions, we say a set of pointsp1, . . . , pd+1

is in general positionif it does not lie in a proper subspace
(i.e., three points in the plane do not lie on a line, and four
points in space do not lie in a plane).

Lemma 1:
1) Let Fp = ({p1, p2, . . . , pn},L) be ann-point formation

in IR2 that contains three pointspa, pb, andpc in general
position. Suppose that the graph of the formationGFp
contains the complete graph on{a, b, c}. If the only n-
point formation inIR2 that contains these three points
and has the same link set asFp is Fp itself, thenFp is
globally rigid.

2) Let Fp = ({p1, p2, . . . , pn},L) be ann-point formation
in IR3 that contains four pointspa, pb, pc, and pd in
general position. Suppose that graph of the formation
GFp contains the complete graph on{a, b, c, d}. If the
only n-point formation inIR3 that contains these four
points and has the same link set asFp, is Fp itself then
Fp is globally rigid.

These properties are direct consequences respectively of the
fact that the identity onIR2 is only distance preserving map
T : IR2 → IR2 that leavespa, pb, and pc unchanged and the
fact that the identity onIR3 is the only distance preserving
map T : IR3 → IR3 that leavespa, pb, pc and pd unchanged.
A proof of the lemma will not be given.

C. Solvability of the Network Localization Problem

With the previous definition of point formations, we can
now restate the network localization problem in terms of
its associated point formationFx. In the present context,
the problem is to determineFx, given the graph and dis-
tance function ofFx as well as the beacon position vectors

x1, x2, . . . , xm. Solvability of the problem demands thatFx

be globally rigid; for if Fx were not globally rigid it would
be impossible to determineFx up to congruence, let alone
to determine it uniquely. AssumingFx is globally rigid,
solvability of the network localization problem reduces to
making sure that the group of transformationsT that leaves
the set{x1, x2, . . . , xm} unchanged – namely distance pre-
serving transformationsT : IRd → IRd for which T (xi) =
xi, i ∈ {1, 2, . . . , m} – also leaves unchanged the set
{xm+1, . . . , xn}. The easiest way to guarantee this inIR2 is to
require{x1, x2, . . . , xm} to contain three pointsxi1 , xi2 , xi3

in general position; for if this is so, then the only distance
preserving transformation that leaves{x1, x2, . . . , xm} un-
changed is the identity map onIR2. Similarly, if in IR3,
{x1, x2, . . . , xm} contains at least four points in general
position, thenT will again be an identity map, in this case
on IR3. We summarize.

Theorem 1:Let N be a network inIRd, d = 2 or 3, consist-
ing of m > 0 beacons located at positionsx1, x2, . . . , xm and
n−m > 0 ordinary nodes located at positionsxm+1, . . . , xn.
Suppose that for the cased = 2 there are at least three beacons
in general position. Similarly, for the cased = 3 suppose
there are at least four beacons positioned at points in general
position. LetFx denote the point formation whose points are
at x1, x2, . . . , xn and whose links are those labelled by all
neighbor pairs and all beacon pairs inN. Then for bothd = 2
andd = 3 the network localization problem is solvable if and
only if Fx is globally rigid.

III. R IGIDITY AND GLOBAL RIGIDITY

In the previous section, we established that under certain
mild conditions, the solvability of the network localization
problem is equivalent to the “global rigidity” of point for-
mation. In this section we focus on global rigidity and related
concepts from rigidity.

As we have already stated, ad-dimensional point formation
Fp is globally rigid if eachd-dimensional point formationFq

with the same graph and distance function asFp is congruent
to Fp. In order to clearly present properties of global rigidity,
we need several other mathematical concepts whose roots can
be found in the rich classical theory of rigid structures.

A. Rigidity

LetFp be ad-dimensional point formation, with the distance
function measuring all edges inL, δ : IRnd → IRk. We are
interested in all possible formations with the same distances,
that is, inδ−1(δ(p)). This is a smooth manifold inIRnd [9] and
we want to know whether it contains only points congruent
to p. Our best tool for studying this manifold is through its
tangent space and the matrix equation defining this tangent
space with a linearized version of the distance constraints.

For each edge(i, j) ∈ L, the distance equation(qi −
qj)T (qi − qj) = δ(i, j)2 generates the corresponding linear
equation

(qi − qj)T (q̇i − q̇j) = 0



in the unknown vector(q̇1, q̇2, . . . , q̇n). If a vector satisfies all
these equations, then it lies in the tangent space. This entire
system is written as a matrix equation:

R(Fq)q̇ = 0, (1)

whereq̇ = column (q̇1, q̇2, . . . , q̇n), andR(Fq) is the specially
structuredk × dn array called therigidity matrix of the
formation. In structural engineering and mathematics, the
solutions q̇ are calledfirst-order flexes(infinitesimal flexes,
or virtual velocities) [9], [10], [11].

The tangent vectors to the congruences of the spaceIRd

generate a subspace of trivial solutions, called thetrivial flexes.
In the plane, provided that we have at least two distinct points,
this space has dimension3, generated by two translations
and the tangent vector to a rotation about the origin. In3-
space, if we have three non-collinear points, this space has
dimension6, generated by three translations along the axes and
the derivatives of three rotations about the three axes though
the origin. If these trivial flexes are the entire space of first-
order flexes, the formation with isfirst-order rigid. In short,
provided we have at least three vertices [9], [11]:

Theorem 2:AssumeFp is a formation with at leastd nodes
in d-space,

rank R(Fp) ≤
{

2n− 3 if d = 2
3n− 6 if d = 3.

The formationFp in the plane is first-order rigid if and only
if rank R(Fp) = 2n− 3. The formationFp in 3-space is first-
order rigid if and only ifrank R(Fp) = 3n− 6.

It is easy to see from the form of the rigidity matrix that
the entries inR(Fp) are polynomial (actually linear) functions
of p. Because of this, the values ofp for which the rank of
R(Fp) is below its maximum value form a proper algebraic
set inIRdn. This observation lies at the roots of the following
equivalences [10], [11]:

Theorem 3:Given a formation graphG with n ≥ 2 vertices
in the plane (resp.n ≥ 3 vertices in3-space) the following
are equivalent:

1) for some formationFp with this graph,rank R(Fp) =
2n− 3 (resp.rank R(Fp) = 3n− 6 in 3-space);

2) for all q ∈ IR2n in an open neighborhood ofp, the
formationFq on the graphG is first-order rigid in the
plane (resp.q ∈ IR3n, Fq is first-order rigid in3-space);

3) for all q in an open dense subset ofIR2n, the formation
Fq on the same graphG is first-order rigid in the plane
(resp. open dense subset ofIR3n, Fq is first-order rigid
in 3-space).

When property 3) holds, we say that the graphG of Fp is
generically rigid in the space. It is well known that first-order
rigidity implies all of the other standard forms of rigidity for a
formation, but the converse can fail [9], [10], [12]. For readers
thinking of other concepts of rigidity, we point out that if one
of these alternative forms of rigidity holds for a non-empty

open set, then all of the properties in Theorem 3 hold [9],
[10].

For the plane we have a strong combinatorial characteriza-
tion of the generically rigid graphs. We note that this leads to
a fast (O(|V |2) algorithm for generic rigidity testing [13].

Theorem 4 (Laman [14]):A graph G = (V,L) with n
vertices is generically rigid inIR2 if and only if L contains
a subsetE consisting of2n− 3 edges with the property that
for any nonempty subsetE′ ⊂ E, the number of edges inE′

cannot exceed2n′ − 3 wheren′ is the number of vertices of
G which are endpoints of edges inE′.

There is no comparable complete result for3-space, and
no known polynomial time algorithm, though there are useful
partial results [10], [11].

B. Conditions for Global Rigidity

We are interested in the stronger concept of generic global
rigidity. This concept is intimately related with first-order
rigidity. If the formation Fp is not first-order rigid, there is
a non-trivial first-order flexṗ that does not come from a con-
gruence. This is enough to guarantee that a small perturbation
will create a formation that is not globally rigid.

Theorem 5 (Averaging Theorem [10], [11]):Given a non-
degenerate formationFp with a non-trivial flex q̇, the forma-
tionsFp+tq̇ andFp−tq̇ on the same graph, for allt > 0, have
the same edge lengths for all links but are not congruent.

We say that a formationFq is generically globally rigidif
every sufficiently small perturbationq of p creates a globally
rigid formation Fq. The result above shows that any non-
degenerate generically globally rigid formationFp must be
first-order rigid. However, as Fig. 1 illustrates, the converse is
not true.

(a)

d c

c

b b

(b)

a

d

a

Fig. 1. Two first-order rigid formations with the same graph and the same
distance values.

A graphG is redundantly rigidin IRd if the removal of any
single edge results in a graph that is also generically rigid in
IRd. As Fig. 2 suggests, we need the graph to be generically
redundantly rigid to ensure generic global rigidity.

Recall that a graphG is k-connectedif it remains connected
upon removal of any set of< k vertices. Thek-connectivity
of a complete graph withn vertices is defined to ben −
1. A simple mental check also confirms that for more than
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Fig. 2. A globally rigid formation in the plane.

d + 1 vertices in dimensiond, we need at leastd + 1 vertex
connectivity, to avoid a reflection of one component through
a mirror placed on a disconnecting set of sized.

An graphG = {V,L} with n vertices isgenerically globally
rigid in IRd if there is an open dense set of pointsp ∈ IRdn

at whichFp is a globally rigid formation with link setL. In
the plane, a recent result gives a complete characterization of
generically globally rigid graphs.

Theorem 6 ( [15]): A graph G with n ≥ 4 vertices is
generically globally rigid inIR2 if and only if it is 3-connected
and redundantly rigid inIR2.

Notice that to actually carry out a test to decide whether or
not a given graphG is generically globally rigid inIR2, one
must establish that it is both3-connected and redundantly rigid
in IR2. Various tests for 3-connectivity are known, and we refer
the reader to [16], [17] for details including measures of the
complexity of the tests involved. Tests for redundant rigidity
in IR2 have been derived [13] based on variants of Laman’s
theorem [14].

Since these properties are also required for even a non-
empty open set of globally rigid formations in the plane,
we can see that the existence of one generically globally
rigid formation Fp implies the graph is generically globally
rigid. In 3-space, whether having one generically globally rigid
formation is enough to show that the graph is generically
globally rigid is an open question [18].

As with generic rigidity, we do not have a generalization
of Theorem 6 to higher dimensions. However, it extends as a
necessary but not sufficient condition.

Theorem 7 ([13], [18]): If a graph with more thand + 1
vertices is generically globally rigid ind-space, thenG is re-
dundantly rigid and at leastd+1 connected. In all dimensions
d ≥ 3, there are redundantly rigid and at leastd+1 connected
graphs that are not generically globally rigid.

C. Inductive Construction of Generically Globally Rigid
Graphs

It is possible to derive useful sufficient conditions and
inductive constructions for generically globally rigid graphs
in spaces of all dimensions [12], [18].

One simple construction inserts new nodes of degreed + 1
into existing generically globally rigid formations to create
larger generically globally rigid formations. Since we will use
this construction later, we give some formal definitions using
the term ‘trilateration’ from the plane as a general term.

Lemma 2:Given a generically globally rigid point forma-
tion Fp, and a new pointp0 linked to d + 1 nodesp1, ...pd+1

of Fp, in general position, then the extended point formation
F̄p+p0 is generically globally rigid.

Proof: Consider any location for the distances inF̄p.
We show that the location ofp0 is unique, given these prior
locations.

We first give the proof inR2, whereFp has three non-
collinear pointspa, pb, pc. We have the distances fromp0 to
these three points. The distances from the first two points,
pa, pb, define two intersections of corresponding circles cen-
tered atpa and pb. The distances from any third pointpc to
these two solutions are different, sincepc is not on the line
throughpa, pb. Therefore there is a unique position forp0 for
the given distance topc.

The same argument works in all dimensions, starting with
the two points of intersection ford spheres with centers in
general position.

Now, consider a second formation̄Fq+q0 with the same link
lengths. Since the generically globally rigid formationFp is
contained in this extended formation, the location of its nodes
is unique, up to congruence. The unique congruenceT defined
by the d + 1 general position points of attachment induces
a position T (p0) that satisfies our construction. Since the
constructed point was unique, we conclude thatT (p0) = q0

and the two extended formations are congruent. We conclude
that the extended formation is globally rigid.

The general position property used is stable under small
perturbations ofp. Therefore the global rigidity holds for all
small perturbations and the extended formation is generically
globally rigid.

For the network setting in2 dimensions, we can start with
the globally rigid formation onm ≥ 3 beacons asFp. We can
then sequentially add new nodes as pointsqm+1, . . . , qn, each
along with3 edges to distinct nodes in the existing formation,
to make a formation̄Fq. Provided that all sets of points which
will be used in extensions are in general position, we create
a generically globally rigid formation̄Fq with n points. This
process can be worded in terms of generically globally rigid
graphs.

Definition 1: A trilateration extensionin dimensiond of a
graphG = (V, E), where|V | ≥ d + 1 produces a new graph
G′ = (V ∪ {v}, E ∪ {(v, w1), . . . , (v, wd+1)}), wherev /∈ V ,
andwi ∈ V .

Definition 2: A trilaterative ordering in dimensiond for a
graphG is an ordering of the vertices1, . . . , d+1, d+2, . . . n
such thatKd+1, the complete graph on the initial vertices, is
in G, and from every vertexj > d + 1, there are at least
d + 1 edges to vertices earlier in the sequence. Graphs for



which a trilaterative ordering exists in dimensiond are called
trilateration graphs in dimensiond.

Theorem 8:Trilateration graphs in dimensiond are gener-
ically globally rigid in dimensiond.

Proof: Any formation on the complete graph ond + 1
vertices is generically globally rigid if the points are in
general position. We take such a formation. We can then apply
Lemma 2 to add each point along the trilaterative ordering,
with its guaranteedd + 1 edges, to create a larger generically
globally rigid formation with all points in general position. We
can then add any additional edges beyond thed + 1 needed,
without changing the generic global rigidity of the extended
formation.

Repeated application of this leads to a generically globally
rigid formation on the whole graph. Since the conditions of
being in general position apply to an open dense subset of the
space, we conclude that the graph is generically globally rigid.

A trilateration graphG may have more than one trilaterative
ordering and even more than oneseed— the initial complete
graphKd+1. We will look at algorithmic aspects of trilatera-
tion graphs in the next section.

IV. COMPUTATIONAL COMPLEXITY OF LOCALIZATION

We have seen in previous sections that global rigidity is a
necessary condition for the solvability of network localization.
We will now move from the decision problem of solvability
to an associated search problem, graph realization.

Specifically, we define the graph realization problem as the
problem of assigning coordinates to vertices of a weighted
graphG, so that the edge weight of every edge(i, j) equals the
distance between the points assigned to verticesi andj. Note
that a given graph may not be realizable under a particular set
of edge weights. In the context of network localization, the
graphs under study are the grounded graphs associated with
network point formations.

A. Realizing Globally Rigid Graphs

Although global rigidity testing is computable in polynomial
time, Saxe has shown that testing the realizability of weighted
graphs is NP-hard [7]. Below, we will argue that realizing
a graph is still hard, even if it is known that the graph is
globally rigid and that it has a realization. Note that below
we will restrict ourselves to the plane. We first prove a useful
NP-hardness result.

Claim 1: Theset-partition-searchproblem is the following:
Given a set of numbersS with a set-partition, find its set-
partition. The set-partition-search problem is NP-hard.

Proof: Assume that algorithmA solves set-partition-
search. LetS be a set of numbers for which it is unknown
whether there is a set-partition. RunA on inputS for time t
equal to the running time ofA on a valid input of size|S|.

If A has not terminated, thenS has no set-partition. IfA has
terminated, thenS has a set-partition if and only the output of

A is a set-partition ofS. Since set-partition is NP-complete,
set-partition-search is NP-hard.

We now show another result which will prove to be useful.
Fig. 3 shows a particular realization of the wheel graphW6.

Fig. 3. Wheel graphW6.

Claim 2: The wheel graphWn is globally rigid.
Proof: We will refer to nodes in the cycle,Cn−1, as

rim nodes, the central node as thehub, an edge between the
hub and a rim node as aspoke, and an edge between two rim
nodes as arim edge.

If we remove two rim vertices, the graph remains connected
through the hub. If we remove the hub and one rim vertex,
the graph remains a connected path on the remaining vertices.
Therefore removing two vertices does not disconnect the
graph, and it is3-connected.

As Lemma 2.1 of [19] observes, a wheel is a minimally
redundantly rigid graph for the plane. By Theorem 6, it is
generically globally rigid.

We now analyze the complexity of realization of globally
rigid graphs. A precise formulation of the realization problem
requires that the edge lengths be noisy measurements of
underlying edge lengths subject to bounded errors. Note that
with probability 1, these error-corrupted edge lengths will not
correspond to realizable weights. In this case, the realization
problem becomes an approximation problem; namely, finding
an assignment of coordinates for the graph vertices so that
the resulting discrepancies with the noisy weights are below
a tolerance parameter. However, due to space limitations, we
do not present our rigorous proof of the NP-hardness of this
problem in this paper. Rather, we present arguments that
the more difficult problem of realization of globally rigid
weighted graphs with realizablei.e., exact, edge weights is still
hard. To formalize the argument below, one major revision is
that we need to compute rational approximations (i.e., noisy
measurements) of thesin function in order to obtain rational
edge weight inputs to our algorithm.

Assume we have an algorithmA that takes as input a
realizable globally rigid weighted graph and outputs the unique
realization. Consider a set ofn positive rational numbers
S = {s1, s2, . . . , sn}, for which a set-partition exists, scaled
without loss of generality such that

∑n
i=1 si ≤ π/2. Let us

now label the nodes ofWn+1 as follows: we label the hub0,



and the rim nodes1 throughn, where there is an edge from
i to i + 1 for i ∈ {1, 2, . . . , n− 1} and fromn to 1. We will
refer to the spoke from0 to i asspokei.

Let us now construct a weighted version ofWn+1. Let the
weight of each spoke ber, where r is a positive rational
number. Let the weight of the rim edge between nodei and
node i + 1 for i ∈ {1, 2, . . . , n − 1} be 2r sin(si/2), and
let the weight of the rim edge between noden and node1
be 2r sin(sn/2). We now argue that this weighted version of
Wn+1, call it W′

n+1, has a realization in the plane.
If we imaginesi as the modulus of the angle between spokei

and spokei+1 for i ∈ {1, 2, . . . , n− 1} andsn as the modulus
of the angle between spoken and spoke1 in a realization of
Wn+1, we can determine a set of edge weights. Fix the weight
of each spoke to ber, where r is a positive real number.
Then the weight of the rim edge between nodei and node
i + 1 for i ∈ {1, 2, . . . , n − 1} must be2r sin(si/2), and the
weight of the rim edge between noden and node1 must be
2r sin(sn/2). SinceS has a set partition, we can form a cycle
of these chords in the plane. Therefore the wheel graph with
these edge weights,W′

n+1 has a realization.
Run algorithmA on the realizable globally rigid weighted

graphW′
n+1 obtaining its realization. From this realization,

determine the angles′i including its sign between spokei and
spokei+1 for i ∈ {1, . . . , n − 1} and between spoken and
spoke1. By construction, the set of positives′i and the set of
negatives′i are a set-partition ofS.

This procedure solves set-partition-search with one call to
a graph realization algorithm and polynomial time additional
computation. Since set-partition-search is NP-hard, realizable
globally rigid weighted graph realization in the plane is hard.

B. Global/Distributed Optimization for Localization

The previous subsection has shown that the computational
complexity of network localization is likely to be high. In
practice, one way to solve the general localization problem
is to formulate it as an optimization problem. Specifically,
realization of a graphG = (V, E) with edge weight function
δ(i, j) can be formulated as a global optimization over vectors
of points{x1, x2, . . . , x|V |} of the following form,

minimize
∑

(i,j)∈E

(δ(i, j)− ‖ xi − xj ‖)2 .

This formulation of the problem has been used by biol-
ogists studying molecular conformation [20]. Because such
optimization is computationally expensive, strategies such as
divide-and-conquer [21] and objective function smoothing [22]
have been proposed.

In the context of network localization, distributed optimiza-
tion algorithms may be desirable. In this case, algorithms such
as [21] may be applied by dividing the global network into
small globally rigid sub-components [23] (clusters) to reduce
overall complexity. Each cluster computes its relative local-
ization using some optimization technique. Then the global
localization can be achieved by merging the localizations of

individual components. With these algorithms, a tradeoff will
likely emerge between the advantage of small cluster size and
the disadvantage of having to reconcile a large number of
localized clusters.

C. Realizing Trilateration Graphs

Although realization of general globally rigid graphs is hard,
we have already seen a class of globally rigid graphs that are
computationally efficient to realize. In what follows, we define
trilateration to be the operation whereby a node with known
distances to three other nodes in general position determines its
own position in terms of the positions of those three neighbors.
We assume that this operation is efficiently computable.

Theorem 9:A trilateration graphG = (V, E) with realiz-
able edge weights is realizable in a polynomial number of
trilaterations.

Proof: There is a sequence of trilateration extensions
that result inG when applied toK3. If we know a seed of
G, then we can do the following: Localize one of the nodes
of the seed at the origin, another on the positivex-axis, and
the remaining node at a position with a positivey coordinate.
At each step, we can calculate positions for all unlocalized
nodes with edges to three localized nodes. BecauseG is a
trilateration graph, we are guaranteed to be able to calculate
positions for all nodes with at most|V | − 3 trilaterations.

If we do not know any seed ofG, we can guess it in at most(
n
3

)
tries. A guess is correct if and only if the above procedure

succeeds in localizing all nodes in a linear number of steps.
Hence, we can realize a trilateration graph in a polynomial
number of steps.

As we shall see, there are scenarios in which it is reasonable
to assume that we know a seed of the trilateration graph, and
in these cases, the linear algorithm will be applicable.

V. L OCALIZATION IN RANDOM GEOMETRIC GRAPHS

In previous sections, we presented theory for localization of
general networks. In this section, we specialize to the setting of
sensor networks with a large number of randomly distributed
sensors. An abstraction that corresponds well to this setting is
the random geometric graph.

A. Definition and Properties of Random Geometric Graphs

We define random geometric graphs in terms of point
formations.

Definition 3: Given n ∈ N and r ∈ [0, 1], the random
geometric graphsGn(r) are the graphs associated with two
dimensional point formationsFp with all links of length less
than r, where p = {p1, p2, . . . , pn} is a set of points in
[0, 1]2 generated by a two dimensional Poisson point process
of intensityn.

The parameters of the model,n and r, correspond respec-
tively to the physical parameters of sensor density and sensing
radius.

We next review some useful properties of the connectivity
of Gn(r). Note that the results we present in this section are



asymptotic and that because of this, we neglect collinearity as
a low probability phenomenon.

As in the case of the Erdös-Ŕenyi random graph model
[24], there is a phase transition in the random geometric
graph model at which the graph becomes connected with
high probability [25]. Penrose [26] generalizes this tok-
connectivity with the result that ifGn(r) has a minimum
vertex degree ofk then with high probabilityGn(r) is k-
connected.

Since it is was proved in [27] for somer ∈ O(
√

log n
n ),

Gn(r) has a minimum vertex degree ofk for k ∈ O(1)

with high probability, r ∈ O(
√

log n
n ) can also ensurek-

connectivity.

B. Global Rigidity of Random Geometric Graphs

Recalling that3-connectivity is a necessary condition for
global rigidity, and using a recent result that6-connectivity is
sufficient for global rigidity in the plane [15], we conclude
thatGn(r) is globally rigid with high probability if and only

if r ∈ O(
√

log n
n ).

An interesting result is that ifG = (V, E) is 2-connected,
then the graphG2 = (V, E ∪ E2), whereE2 is the set of
edges between endpoints of paths consisting of two edges in
G, is globally rigid. For random geometric graphs, this means
thatGn(2r) is globally rigid with at least the probability that
Gn(r) is 2-connected.

For some largen andδ ∈ (0, 1), let ri denote the smallest
radius at whichGn(r) becomesi-connected with probability
1−δ and letrg denote the radius at which it becomes globally
rigid with probability 1− δ. Note thatr2 ≤ r3 ≤ rg ≤ r6 and
that rg ≤ 2r2. This behavior is illustrated in Fig. 4.

r2 r3 r6

1-δ

0

1

rg 2r2

? ?pr
ob

ab
ili

ty

sensing radius

Fig. 4. Probability thatGn(r) is k-connected. Dotted line represents the
probability thatGn(r) is globally rigid.

C. Realization of Random Geometric Graphs

We now explore conditions forGn(r) to yield an efficient
realization computation.

Theorem 10:If limn→∞ nr2

log n > 8, with high probability,
Gn(r) is a trilateration graph.

Proof: Partition [0, 1]2 into cn
log n squares of equal size

wherec < 1. Note that with high probability, every square con-

tains at least three nodes. Additionally, sincer > 2
√

2
√

log n
n ,

every node has edges between it and all nodes in its own
square and adjacent squares.

Starting from some square we label as0, we iteratively label
every square in[0, 1]2. In stepi ∈ {1, . . . ,

√
cn

log n}, we label

with i every unlabelled square that adjoins a square labelled
i − 1 horizontally, vertically, or diagonally. We will refer to
the union of all squares with the same labeli as alayer, Li.

We now iteratively label alln nodes in the grid. In step
−1, we choose three nodes inL0 and label them1, 2, and3.
In step0, we label the rest of the nodes inL0 with numbers
greater than3. In stepi, we label all nodes inLi with numbers
larger than every label inLi−1.

Every node inL0 with a label greater than three has edges
to 1, 2, and3. By construction, a node labelledm in Li, i > 0
has edges to at least three nodes inLi−1 with labels less than
m. Thus we have a trilaterative ordering from Definition 2,
andGn(r) is a trilateration graph.

An intuitive argument that perhaps yields more insight into
the previous result is that assuming in the limit of largen that
nodes1, 2, and3 can be considered to occur at a single point
p0, if every node inGn(r) is connected to three other nodes
closer than itself top0, thenGn(r) has a trilaterative ordering.
Sincep0 can be in any direction from an arbitrary point, this
is assured in the event that every node has three neighbors in
any120◦ sector of the circle with radiusr about it, or at least
nine neighbors. Denoting byrt the radius at whichGn(r) has
probability1−δ of being a trilateration graph, we suspect that
rt approachesr9 from above in the limit of largen.

These results immediately yield insight into the complexity
of realizingGn(r).

Theorem 11:For somer ∈ O(
√

log n
n ), if the positions of

three nodes with edges to each other are known, then with
high probability, a realization ofGn(r) is computable in linear
time.

Proof: By the proof of Theorem 10, the three nodes
with known positions form the seed of a spanning trilateration
graphG with high probability. By Theorem 9, the positions of
all nodes inG can be computed in linear time. SinceGn(r)
is spanned byG, it can be realized in linear time.

D. Localization in Random Sensor Networks

We now study a simple localization protocol for random
sensor networks we call ITP in Fig. 5. Theorem 11 allows us
to analyze the effectiveness of our procedure.

Definition 4: A random sensornetSn(r) is a sensornet of
n sensors with sensing radiusr placed at random on[0, 1]2

by a two-dimensional Poisson point process. Abeaconis a
sensor that knows its position.

One could define a random sensornet in terms of a uniform
distribution over[0, 1]2, but we do not consider this case.

The following results are summarized in Table I.

Claim 3: For somer ∈ O(
√

log n
n ), with high probability,

all sensors inSn(r) will have determined their positions with



. Sensors have two modes: localized and unlocalized

. Sensors determine distance from heard transmitter

. All sensors are pre-placed and plugged-in

Localized mode:
Broadcast position

Unlocalized mode:
Listen for broadcast
if broadcast from (x,y) heard

Determine distance to (x,y)
if three broadcasts heard

Determine position
Switch to localized mode

Fig. 5. The iterative trilateration protocol (ITP).

ITP by O(
√

n
log n ) time if three beacons are placed anywhere

in [0, 1]2 so that they are in sensing range of each other.
Proof: We setr and partition[0, 1]2 into labelled squares

as in the proof of Theorem 10, this time so that the three
beacons are in the square labelled0. We say that a layer
is localized when all sensors in that layer have determined
their positions. Assuming ITP broadcast, distance calculation,
and trilateration take place in constant time,L0 will be
localized in a single constant-time step. Additionally, givenLi

localized, ITP will localizeLi+1 in a single constant-time step.
Therefore, all layers will be localized in at mostO(

√
n

log n )
steps and our claim is established.

Claim 4: For somer ∈ O(
√

log n
n ), with high probability,

all sensors inSn(r) can determine their positions with ITP
and will have done so by expected time of at mostO(

√
log n)

if beacons are placed on[0, 1]2 by a Poisson point process of
intensityO(n/ log n).

Proof: We setr and partition[0, 1]2 into squares of area
A as in the proof of Theorem 10. The Poisson point process
places beacons into each square at a rateλ ∝ nA/ log n ∈
O(1). Therefore, the probability that a square contains at least
three beacons is a constantp.

The probability that all squares contains less than three
beacons isqO(n/logn), where q = 1 − p, so some square
contains at least three beacons with high probability, and
consequently, all sensors can localize as in claim 3.

We now bound the expected time it takes for every sensor to
localize given some square contains three beacons. We say a
square is localized if every sensor it contains has determined
its position. In a single constant-time step, ITP localizes a
square if it contains three beacons or if any of its neighbors
are localized. Because of this, in what follows we will refer
to discretized time rather than steps.

The probability that a square does not localize by timek
is the probability that all squares within a square of squares
with side2k + 1 contain fewer than three beacons,q(2k+1)2 .
The probability that the last square to localize does so after
a certain time is less than the probability that at least one of
the squares localizes after that time. More formally, whereti

is the time at which squarei localizes, since the number of
squares isO( n

log n ), the following is true,

Pr[max(ti) > k] ≤ min(1, O(
n

log n
)qO(k2)).

Therefore, the expected time for all squares to localize
satisfies the inequality

E[max(ti)] ≤
∞∑

k=0

min(1, O(
n

log n
)qO(k2)).

Observing that for somek0 ∈ O(
√

log n− log log n),

O(
n

log n
)qO(k2) > 1 ⇐⇒ k < k0,

we see that

E[max(ti)] ≤ O(
√

log n) + O(
n

log n
)
∞∑

k=k0

qO(k2).

In calculations we will not include here, it can be shown
that O( n

log n )
∑∞

k=k0
qO(k2) ∈ O(1).

We have thus shown that with high probability, all sensors
will localize in expected time at mostO(

√
log n).

Claim 5: For somer ∈ O(
√

log n
n ), with high probability,

all sensors inSn(r) can determine their positions and will
have determined their positions byO(1) time if beacons are
placed on[0, 1]2 by a Poisson point process of intensityO(n).

Proof: If r ∈ O(
√

log n
n ), the Poisson point process

places beacons in the sensing region of a sensor at rateλ ∝
nr2 ∝ log n. Since we expectO(log n) beacons connected to
every sensor, with high probability, we will haveO(1) i.e.at
least three beacons connected to every sensor, and all sensors
will localize in O(1) time with high probability.

beacons sensing radius E[tloc]

O(1) O(
√

log n
n

) O(
√

n
log n

)

O( n
log n

) O(
√

log n
n

) O(
√

log n)

O(n) O(
√

log n
n

) O(1)

TABLE I

LOCALIZATION IN VARIOUS BEACON PLACEMENT SCHEMES.

VI. EVALUATIONS

We simulate random geometric graphs in 3-space by gen-
erating points randomly in[0, 1]3, placing four beacons in the
center of the unit cube within sensing range of each other. We
then simulate ITP by localizing nodes in computational rounds
in which we determine positions for all nodes connected to
four nodes with known position. We terminate the simulation
when a round does not determine the position of any node.

In our first simulation, for three values ofr, we track
the percentage of nodes whose positions can be determined.



Consistent with our prediction of the behavior of ITP using
random graph theory, we observe in Fig. 6 an increasingly
sharp phase transition in the percentage of localizable nodes
as we increasen.
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Fig. 6. Percentage of nodes localizable with 4-beacon ITP.

In our second simulation, we calculate the smallest radius at
which the percentage of localizable nodes is greater than95%.
We see behavior similar to that predicted by theory in Fig. 7.
Note that the asymptotic result more accurately models actual
behavior asn increases. The difference for smalln is explained
by the contribution of logarithmic terms in the localization
probability that becomes significant whenn is small.
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Fig. 7. Trilateration graph phase transition radius inGn(r).

Our last simulations investigate the number of computa-
tional rounds necessary to localize all nodes that can be
localized. In Fig. 8, we observe forn = 2000 that the percent-
age of localized nodes at a given step increases dramatically
with modest increases in sensing radius. Note that below the
phase transition, atr = 0.1, the procedure fails to localize
practically any nodes and completes in four steps. Forr
straddling the phase transition, Fig. 9 plots the number of steps
before completion. The spike is due to a sudden increase in
connectedness above the phase transition at which the radius
is minimal for total localizability.

VII. R ELATED WORK

Network localization is an active research field,e.g., [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [5], [41], [6], [42]. The previous approaches can be
classified into two types: coarse-grained and fine-grained.
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Fig. 8. Time-evolution of the number of localized nodes.
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The focus of this paper is fine-grained localization. As we
discussed in the Introduction, the previous approaches are
mainly heuristics, and this paper provides the first theoretical
analysis of network localization.

A related problem called molecular conformation has been
studied in the chemistry community,e.g., [21], [22], [43].
However, the focus of these studies is on 3D. Also, since
the structure of a molecule is given, they do not consider the
network construction process.

One major building block of our analysis is rigidity theory
and computational geometry. Rigidity has been long studied
in mathematics and structural engineering (see for example
[14], [10], [44], [9], [11]) and has a surprising number of
applications in many areas.

We formally analyzed the performance of network localiza-
tion in networks of randomly placed nodes. Even though some
researchers have studied random graphs in sensor networks,
e.g., [45], [46], [47], [48], the focus is mainly on routing but
not on localization. In [47], D́ıaz, Petit and Serna analyzed
the performance of localization for optical sensor networks.
However, their analysis is for the case in which a sensor can
derive its position from a single beacon.

VIII. C ONCLUSION AND FUTURE WORK

The unique localization of networks from distance measure-
ments shares a number of features with work in several other
active fields of study: rigidity and global rigidity in frame-
works; the coordination formations of automonous agents; and
geometric constraints in CAD. In this paper, we have drawn on



techniques and results from the first two fields, also combined
in some previous joint work [12], as well as specific results
on global rigidity [15], [18]. With these concepts, we were
able to lay a coherent solid foundation for the underlying
problem of when a network is uniquely localizable, for almost
all configurations of the points. Specifically, we constructed a
formation and then a graph for each network such that the
localization problem for the network is uniquely solvable,
almost always, if and only if the corresponding graph is
generically globally rigid. From these connections, we drew
specific results and showed that the trilateration networks are
uniquely localizable for almost all initial locations.

It should be noted that as stated, the localization problem
with precise distance is not in general numerically well posed
since even if it is solvable with the given data, it may
be unsolvable with data arbitrarily “close” to that which is
given. In practical terms, this means that special attention
must be paid to the computation process and to assessing
the significance of “approximate solutions.” It also means that
only graphs which are generically globally rigid are capable
of having computationally stable solutions for given data
sets. This confirms our choice of conceptual framework for
this problem. However, we comment that even approximate
solutions are hard to compute due to the hardness of the
localization problem.

We also studied the computational complexity of network
localization and presented computational properties of trilat-
eration graphs in that context. For networks based on random
locations and communication radiusr, we provided some
necessary and some sufficient conditions for the network to be
uniquely localizable with high probability. We have included
some computational evaluations of these techniques.

Other work such as [42] approaches network localization
with angles, bearings and headings in addition to some dis-
tance constraints. Drawing on more general work on geometric
constraints such as angles and directions in CAD, we have
further generic global uniqueness results that can give new
insights where certain patterns of angles or headings are
used [12], as well as insights into the complexity of general
patterns of angle constraints. This will be explored further in
a future paper.
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