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Abstract—In this paper we provide a theoretical foundation The process of computing the locations of the nodes is called
for the problem of network localization in which some nodes network localization For example, in [5], Savvides et al.
know their locations and other nodes determine their locations propose the iterative multilateration scheme to determine the

by measuring the distances to their neighbors. We construct I Hi f nodes that d t K their locati nitiall
grounded graphs to model network localization and apply graph '0C&lIons of nodes that do not know their locations iniually.

rigidity theory to test the conditions for unique localizability Although the designs of the previous schemes have demon-
and to construct uniquely localizable networks. We further strated great engineering ingenuity, and their effectiveness
,Srfugg’t_;haetecoamzugg;ggf gforggeﬁ%gfg”rgg‘gk 'ﬁgfgzig?ar;_ g%n is verified through extensive simulations, some fundamental
investi u u wi izati - . :
can be computed efficiently. We conclude with a discussion of questions have nqt been agd_ressed, as a result, the preylous
localization in sensor networks where the sensors are placed Schémes are mainly heuristic-based and a full theoretical
randomly. foundation of network localization is still lacking.

Specifically, we identify the following two fundamental

questions:

Location service is a basic service of many emerging 1) what are the conditions for unique network localiz-
computing/networking paradigms. For example, in pervasive ~ gpjjity? Although the network localization problem has
computing [1], [2], knowing the locations of the computers  gready been studied extensively, the precise conditions

and the printers in a building will allow a computer to send under which the network localization problem is solv-
a printing job to the nearest printer. In sensor networks, the  gple are not known.

sensor nodes need to know their locations in order to detechy \what is the computational complexity of network local-
and record events, or to route packets using geometric-aware  ;,ation? Even though the computational complexity of

routing, e.g, [3]. ] ) ] general graph embeddability problem has been studied
One method to determine the location of a node is manual  pefore [7], the computational complexity of determining
configuration. However, this is unlikely to be feasible for any  he |ocations of the nodes in a uniquely localizable net-
large-scale deployment or when nodes move often. Another  york has not been studied. Furthermore, constraints on
possibility is GPS [4]. However, GPS is costly both in terms  the communication and computational resources of the
of hardware and power requirements. Furthermore, since GPS  etwork nodes may be severe in settings such as sensor
requires line-of-sight between the receiver and the satellites, networks. The localization problem in such resource-

it may not work well in buildings or in the presence of constrained settings needs to be investigated.

obstructions such as dense vegetation, foliage, or mountainsh biecti  thi ) id .
blocking the direct view to the GPS satellites. The objective of this paper is to provide systematic answers

Recently, novel schemes have been proposed to deterrr{f?léhesef FWO questions. We address the firsF question using
the locations of the nodes in a network where only son‘gata_1ph r|g|d|ty_theory and the second question fqr general
special nodes (called beacons) know their locatiens, [5], uniquely localizable networks and random geometric graphs.
[6]. In these schemes, network nodes measure the distancd¥ore specifically, in order to answer the first question,

to their neighbors and then try to determine their locationd® Proposegrounded graphsin these graphs, each vertex
represents a network node, and two vertices in the graph are
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I. INTRODUCTION



from the graph-rigidity literature to network localization andhodes inR¢ given the graph of the networy, the positions
provide a systematic answer to the first question. of the beacons;;, j € {1,2,...,m} in R?, and the distance
We further propose inductive sequences for constructidg (¢, j) between each neighbor pdit, j) € En.
uniquely localizable networks, both in the plane and in 3- The network localization problem just formulated is said
space. By following these sequences, a designer of a netwtwk be solvable if there is exactly one set of vectors
can be assured that the constructed network is uniquély,, 1,...x,} in RY consistent with the given dat@y,
localizable, thus avoiding expensive trial-and-error procedur€s:;, zs, ..., z,}, anddn : Ex — IR. In this paper we will
To answer the second question, we study the computatiobal concerned with “generic” solvability of the problem which
complexity of localization. We analyze the computationaheans, roughly speaking, that the problem should be solvable
complexity when a grounded graph is a generically globallyot only for the given data but also for slightly perturbed
rigid graph. To reduce the computational and communicatidsit consistent versions of the given data. It is possible to
complexity of localization, which is important in settingamake precise what generic solvability means as follows. Fix
such as sensor networks, we study a class of graphs calfed and let eq,es,...,e, denote the edges itEn. Note
trilateration graphs We show that trilateration graphs arehat for any set ofn points y1,vs, ...,y in IR¢ there is
uniquely localizable and the locations of the nodes can beunique distance vectar whosek — th component is the
computed efficiently. We also show that in a random geometdistance betweern; and y; where (i, j) = e;. This means
graph, a network will be a trilateration graph with highthat there is a well-defined functiofi : R"¢ — R(™+2)
probability if a certain node density or communication radiusiapping{y:, vz, - - - ¥n} — {¥1,¥2, - - - , Ym, 2} Solvability
is reached. We provide asymptotic results on the densitiesaffthe network localization problem is equivalent fobeing
the beacons sufficient for trilateration to be carried ouP{i) injective at{zy,s,...,z,} in the sense that the only set of
step,O(y/log(n)) steps, ofO(,/n) steps, respectively, wherepoints {1, >, ..., yn} € R™ for which f(y1,y2,...,yn) =
n is the number of nodes in the network. flar,xa, . xy) 1S {y1, 42, -« -, yn} = {21,22,...,Zn}. IN
The rest of this paper is organized as follows. The specifigis context it is natural to say that the network localiza-
network localization problem to be addressed is formulateidn problem isgenerically solvableat {z1,z2,...,2z,} if
in Section Il. The concepts of rigidity and global rigidityit is solvable at each point in an open neighborhood of
are discussed in Section Ill. In Section IV, we study théz,,z,,...,z,}. In other words, the localization problem is
computational complexity of solving the localization problemsolvable at{x1, x5, ..., z,} if there is an open neighborhood
In Section V, we study random geometric graphs. In Seof {z;,zs,...,z,} on which f is an injective function.
tion VI, we present simulation results. In Section VII, we

discuss related work. Our conclusion and future work are f Point Formations
Section VIII. To study the solvability of the network localization problem,

we reformulate the problem in terms of a “point formation.”
Il. FORMULATION As we shall see, the point formation relevant to the network
A. The Network Localization Problem localization problem has associated with it ireunded graph

In this paper we shall be concerned with the “networRf the networkGn, with the same vertices &y but with a
localization problem with distance information” which can bélightly larger edge set which adds “links” or edges from every
formulated as follows. One begins with a netwdxkin real beacon to every other. It is a property @ rather thanGn
d-dimensional space (where = 2 or 3) consisting of a set Which proves to be central to solvability of the localization
of m > 0 nodes labelled throughm that represent special problem under consideration.

“peacon” nodes together with — m > 0 additional nodes We begin by reviewing the point formation con-
labelledm + 1 throughn that represent ordinary nodes. Eaclkept. By a d-dimensional point formation [8] at p 2
node is located at a fixed position IR? and has associatedcolumn {p1,po,...,p,}, written F,, is meant a set oh

with it a specific set of “neighboring” nodes. Although goints {p1,p2,...,ps} In R together with a setC of k
node’s neighbors are typically defined to be all other nodésks, labelled (¢, j), wherei and j are distinct integers in
within some specified range, other definitions could also He,2,..., n}; thelengthof link (7, j) is the Euclidean distance
used. The essential property we will require in this pap&etween pointp; and p;. The idea of a point formation

is that the definition of a neighbor be a symmetric relatiois essentially the same as the concept of a “framework”
on {1,2,...,n} in the sense that nodg is a neighbor of studied in mathematics [9], [10], [11] as well as within the
node ¢ if and only if nodei is also a neighbor of nodetheory of structures in mechanical and civil engineering. For
j. Under these conditionN’s neighbor relationships can beour purposes, a point formatidf, = ({p1,p2,...,pn}, L)
conveniently described by an undirected grépt = (V, En) provides a natural high-level model for annode network
with vertex setV = {1,2,...,n} and edge sefn defined in real 2 or 3 dimensional space. In this context, the points
so that(z, j) is one of the graph’s edges precisely when nodes represent the positions of noddsg., both beacons and

i and j are neighbors. We assume throughout tia§ is ordinary nodes, ifR? and the links in label those specific

a connected graph. Theetwork localization problem with node pairs whose inter-node distances are given. Thus for the
distance informationis to determine the locations; of all network N, £ would consist of all edges iK@N, since the



distance between every pair of beacons is determined by theirz,, ..., z,,. Solvability of the problem demands that,
specified positions. be globally rigid; for if F,, were not globally rigid it would
FF,, uniquely determines a gragy, 2 {V, £} with vertex be impossible to determing, up to congruence, let alone
setV 2 {1,2,...,n} and edge set, as well as a distance 0 det_e_rmine it uniquely. Assu_ming?x is globally rigid,
function § : £ — IR whose value ati, j) € £ is the distance soIv§b|I|ty of the network localization proplem reduces to
betweerp; andp;. Let us note that the distance functionf making sure that the group of transformandﬁsthat leaves
is the same as the distance function of any point formafipn the set{z, za,..., zm} unchgnged P namely distance pre-
with the same graph &8, providedq is congruentto p in the ~Serving transformation” : IR" — IR" for which T(z:) =
sense that there is a distance preserving ffiapR? — R? i» ¢ € {1,2,...,m} — also leaves unchanged the set
such thatl'(¢;) = p;,i € {1,2,...,n}. In the next section, we {a:mﬂ, ..., Ty }. The easiest way_to guarant(_ae thidRA is to
will say that two point formations, andF,, are congruent '€duiré{z1,zz,..., 2y, } to contain three points;,, z,, zi,
if they have the same graph anddfand p are congruent. "N gene_ral position; for_ if this is so, then the only distance
It is clear thatF, is uniquely determined by its graph and’reServing transformation that legvés}’@v'“zxm} un-
distance functiorat mostup to a congruence transformationchanged is the identity map ofit™. Similarly, if in IR”,
A formation that isexactly determined up to congruence byt®1,%2;---;Zm} cONtains at least four points in general
its graph and distance function is called “globally rigid.” Moréms't'g”' thenT" will again be an identity map, in this case
precisely, ad-dimensional point formatior¥,, is said to be ©NIR". We summarize.
globally rigid if each d-dimensional point formatiof¥, with Theorem 1:Let N be a network ifR%, d = 2 or 3, consist-
the same graph and distance functionFasis congruent to ing of m > 0 beacons located at positions, 2o, . . . , 2., and
Fp. Itis clear that any formation whose graph is completg _ ,, > o ordinary nodes located at positions, 1, . .., Zn.
is globally rigid. The following simple generalizations ofsyppose that for the cage= 2 there are at least three beacons
this fact in Lemma 1 provide sufficient conditions for globajn general position. Similarly, for the casé = 3 suppose
rigidity that are especially relevant to the network localizatioghere are at least four beacons positioned at points in general
problem. Ind dimensions, we say a set of pois ..., pa+1  position. LetF, denote the point formation whose points are

is in general positionif it does not lie in a proper subspacest 4, 15, ..., 2, and whose links are those labelled by all
(i.e, three points in the plane do not lie on a line, and foufeighbor pairs and all beacon pairsih Then for bothd = 2
points in space do not lie in a plane). andd = 3 the network localization problem is solvable if and
Lemma 1: only if F, is globally rigid.
1) LetF, = ({p1,p2,...,pn}, L) be ann-point formation
in IR? that contains three poings,, p,, andp,. in general [11. RIGIDITY AND GLOBAL RIGIDITY
position. Suppose that the graph of the format®s, In the previous section, we established that under certain

contains the complete graph ¢n, b, c}. If the only n-  mild conditions, the solvability of the network localization
point formation inIR* that contains these three pointsyroblem is equivalent to the “global rigidity” of point for-
and has the same link set &5 is I, itself, then[F,, is  mation. In this section we focus on global rigidity and related
globally rigid. concepts from rigidity.
2) LetF, = ({p1,p2,-..,pn}, L) be ann-point formation  As we have already stateddadimensional point formation
in R’ that contains four pointg,,ps,pe, @andpa N F_is globally rigid if eachd-dimensional point formatiof,
general position. Suppose that graph of the formatiqfith the same graph and distance functiorifgss congruent
Grp contains the complete graph da,b,¢,d}. If the  to r,,. In order to clearly present properties of global rigidity,
only n-point formation inIR” that contains these four e need several other mathematical concepts whose roots can
points and has the same link setligs is I, itself then pe found in the rich classical theory of rigid structures.
I, is globally rigid. o
. , ) A. Rigidity
These properties are direct consequences respectively of the _ ) . ) ) )
fact that the identity orlR? is only distance preserving map,_ -CtFy be ad-dimensional point formation, with the distance
T : R? — RR? that leavesp,, py, and p. unchanged and the function measuring all edges id, 6 : R™ — IR". We are
fact that the identity odR® is the only distance preserving'nter_es'[_eOI 'T al possw_)le_ formations W'th. the_sarzge distances,
mapT : R> — IR? that leavesy,, py, p. and py unchanged. thatis, ind=*(d(p)). This is a.smooth_ manifold |If_{ [9] and
A proof of the lemma will not be given. we want to know whether |t.conta}|ns onI.y p0|_nts congrugnt
to p. Our best tool for studying this manifold is through its
C. Solvability of the Network Localization Problem tangent space and the matrix equation defining this tangent
With the previous definition of point formations, we carspace with a linearized version of the distance constraints.
now restate the network localization problem in terms of For each edggi,j) € L, the distance equatiofg; —
its associated point formatioff,. In the present context, ¢;)*(¢; — q;) = 6(i,5)* generates the corresponding linear
the problem is to determin&,, given the graph and dis- equation
tance function ofF, as well as the beacon position vectors (i —q;) (i — ;) =0



in the unknown vecto(qs, 4o, . - ., 4n). If @ vector satisfies all open set, then all of the properties in Theorem 3 hold [9],

these equations, then it lies in the tangent space. This enfit8].

system is written as a matrix equation: For the plane we have a strong combinatorial characteriza-
tion of the generically rigid graphs. We note that this leads to

a fast O(|V|?) algorithm for generic rigidity testing [13].

whereg = column (1, g2, - - -, 4n), ano!R_(I_Fq) is the specially  Theorem 4 (Laman [14])A graph G = (V, L) with n
structuredk x dn array called therigidity matrix of the | arices is generically rigid ifR? if and only if £ contains

formation. In structural engineering and mathematics, thegpsets consisting of2n — 3 edges with the property that
solutions ¢ are calledfirst-order flexes(infinitesimal flexes, ¢,, any nonempty subsef’ C E, the number of edges if’

or virtual velocities) [9], [10], [11]. cannot excee@n’ — 3 wheren’ is the number of vertices of
The tangent vectors to the congruences of the sfiate G which are endpoints of edges .

generate a subspace of trivial solutions, calledtivéal flexes

In the plane, provided that we have at least two distinct points, There is no comparable complete result 8space, and
this space has dimensioh generated by two translationsn0 known polynomial time algorithm, though there are useful
and the tangent vector to a rotation about the origin34n partial results [10], [11].

space, if we have three non-collinear points, this space h@s
dimensior6, generated by three translations along the axes and . . _
the derivatives of three rotations about the three axes thougVe are interested in the stronger concept of generic global
the origin. If these trivial flexes are the entire space of firstigidity. This concept is intimately related with first-order

order flexes, the formation with iirst-order rigid. In short, rigidity. If the formationF,, is not first-order rigid, there is
provided we have at least three vertices [9], [11]: a non-trivial first-order flexy that does not come from a con-

] . ) gruence. This is enough to guarantee that a small perturbation

in d-space,

R(Fq)¢ =0, 1)

Conditions for Global Rigidity

Theorem 5 (Averaging Theorem [10], [11]}Given a non-
2n—-3 ifd=2 degenerate formatioR, with a non-trivial flexq, the forma-
3n—6 ifd=3. tionsF,,.; andF,_.; on the same graph, for all> 0, have

] ] o o the same edge lengths for all links but are not congruent.
The formationF, in the plane is first-order rigid if and only

if rank R(F,) = 2n — 3. The formationF,, in 3-space is first- ~ We say that a formatioif, is generically globally rigidif
order rigid if and only ifrank R(F,) = 3n — 6. every sufficiently small perturbatiog of p creates a globally
) o ] rigid formation F,. The result above shows that any non-
It is easy to see from the form of the rigidity matrix thaﬁegenerate generically globally rigid formatidf, must be

the entries inz(F,,) are polynomial (actually linear) functionsfirst_order rigid. However, as Fig. 1 illustrates, the converse is
of p. Because of this, the values pffor which the rank of 5 trye.

R(F,) is below its maximum value form a proper algebraic
set inIR?". This observation lies at the roots of the following d d C
equivalences [10], [11]:

rank R(F,) < {

Theorem 3:Given a formation grapfs with n > 2 vertices
in the plane (respn > 3 vertices in3-space) the following
are equivalent: a b a b

1) for some formatiori¥, with this graph,rank R(F,) =
2n — 3 (resp.rank R(F,) = 3n — 6 in 3-space);

2) for all ¢ € IR*™ in an open neighborhood qf, the c
formation F, on the graphG is first-order rigid in the @ (b)
plane (respq € IR*", F, is first-order rigid in3-space);

3) for all ¢ in an open dense subset B®*". the formation Fig9- 1. Two first-order rigid formations with the same graph and the same

- S distance values.

F, on the same grapfy is first-order rigid in the plane
(resp. open dense subsetIBf"”, F, is first-order rigid
in 3-space).

A graphG is redundantly rigidin IR? if the removal of any
single edge results in a graph that is also generically rigid in
When property 3) holds, we say that the graptof I, is IRY. As Fig. 2 suggests, we need the graph to be generically
generically rigidin the space. It is well known that first-orderredundantly rigid to ensure generic global rigidity.
rigidity implies all of the other standard forms of rigidity for a Recall that a grapf is k-connectedf it remains connected
formation, but the converse can fail [9], [10], [12]. For readengpon removal of any set of k vertices. Thek-connectivity
thinking of other concepts of rigidity, we point out that if oneof a complete graph withn vertices is defined to be —
of these alternative forms of rigidity holds for a non-empty. A simple mental check also confirms that for more than



One simple construction inserts new nodes of degreel
into existing generically globally rigid formations to create
larger generically globally rigid formations. Since we will use
b this construction later, we give some formal definitions using
the term ‘trilateration’ from the plane as a general term.

Lemma 2:Given a generically globally rigid point forma-
tion F,,, and a new poinp, linked to d + 1 nodespy, ...p4+1
of I, in general position, then the extended point formation
C d Fp1p, is generically globally rigid.
Proof: Consider any location for the distances Tiy.
We show that the location qf, is unique, given these prior
locations.

d + 1 vertices in dimensionl, we need at leasf + 1 vertex ~ VVe first give the proof inR<, whereF,, has three non-

connectivity, to avoid a reflection of one component througiP!lin€ar pointspa, py, p.. We have the distances from to
a mirror placed on a disconnecting set of size these three points. The distances from the first two points,

An graphG = {V, £} with n vertices isgenerically globally Pa>Pe: define two interse_ctions of correspond_ing circles cen-
rigid in R? if there is an open dense set of poipts: R tered atp, and;z_;b. The dls_tances frqm any third poipt. _to
at whichF, is a globally rigid formation with link se. In these two solutions are different, singg is not on the line

the plane, a recent result gives a complete characterizatiorff§PU9hPa ps. Therefore there is a unique position fay for

generically globally rigid graphs. the given distance tp... _ _ _ _ _
The same argument works in all dimensions, starting with

Theorem 6 ( [15]):A graph G with n > 4 vertices is the two points of intersection fod spheres with centers in
generically globally rigid inR? if and only if it is 3-connected general position.

and redundantly rigid ifR”. Now, consider a second formatid@., ,, with the same link

Notice that to actually carry out a test to decide whether berngths. Sl_nce_the generically gl(_)bally rigid f".rma"@ﬂ 'S
not a given graplG is generically globally rigid inR2, one contained in this extended formation, the location of its nodes

must establish that it is botliconnected and redundantly rigidIS unique, up to congruence. The unique congrudhdef_lned
in IR2. Various tests for 3-connectivity are known, and we refé)ry thg d +1 general pos.m(')n points of attac.hment. induces
the reader to [16], [17] for details including measures of tHe position T'(po) that satisfies our construction. Since the

complexity of the tests involved. Tests for redundant rigiditgggst'[;uc;[ed po!{nt (\;‘la; fumqut_e, we conclude mfib%\)/ — lud
in IR? have been derived [13] based on variants of Lamari € two extended formations areé congruent. Ve conclude

that the extended formation is globally rigid.
Since these properties are also required for even a non:rhe general position property used is stable under small

empty open set of globally rigid formations in the planeE'Jerturbations o_fn. Therefore the global rigidity hqlds for gll
we can see that the existence of one generically globa ?1all per_tu_rbatlons and the extended formation is generically
rigid formation FF,, implies the graph is generically globallyg obally rigid. u
rigid. In 3-space, whether having one generically globally rigid
formation is enough to show that the graph is genericallje giohally rigid formation onn > 3 beacons af,. We can
globally rigid is an open question [18]. __ then sequentially add new nodes as poipts1, . . ., g., each
As with generic rigidity, we do not have a generalizationong with3 edges to distinct nodes in the existing formation,

of Theorem 6 to higher dimensions. However, it extends ag@make a formatiof,. Provided that all sets of points which
necessary but not sufficient condition. will be used in extensions are in general position, we create

Theorem 7 ([13], [18]): If a graph with more thanl + 1 & generically globally rigi'd formatiof¥, With n points. This' .
vertices is generically globally rigid id-space, therf is re- Process can be worded in terms of generically globally rigid

dundantly rigid and at leagt+ 1 connected. In all dimensions 9"aPhs. - . . S _
d > 3, there are redundantly rigid and at ledst 1 connected ~ Definition 1: A trilateration extensiorin dimensiond of a

Fig. 2. A globally rigid formation in the plane.

theorem [14].

For the network setting iR dimensions, we can start with

graphs that are not generically globally rigid. graphG = (V, E), where|V'| > d + 1 produces a new graph
G = VU{v}, EU{(v,wy),...,(v,wqs1)}), Wherev ¢ V,
andw; € V.

C. Inductive Construction of Generically Globally Rigid

Definition 2: A trilaterative ordering in dimensionl for a
Graphs

graphG is an ordering of the verticel ..., d+1,d+2,...n

It is possible to derive useful sufficient conditions anduch thatK,,,, the complete graph on the initial vertices, is
inductive constructions for generically globally rigid graphén G, and from every vertey > d + 1, there are at least
in spaces of all dimensions [12], [18]. d + 1 edges to vertices earlier in the sequence. Graphs for



which a trilaterative ordering exists in dimensidrare called A is a set-partition ofS. Since set-partition is NP-complete,
trilateration graphs in dimensiow. set-partition-search is NP-hard. [ ]

Theorem 8:Trilateration graphs in dimensiaod are gener-  We now show another result which will prove to be useful.

ically globally rigid in dimensiond. Fig. 3 shows a particular realization of the wheel graph.

Proof: Any formation on the complete graph ah+ 1
vertices is generically globally rigid if the points are in
general position. We take such a formation. We can then apply
Lemma 2 to add each point along the trilaterative ordering,
with its guaranteed + 1 edges, to create a larger generically
globally rigid formation with all points in general position. We
can then add any additional edges beyonddhe1 needed,
without changing the generic global rigidity of the extended
formation.

Repeated application of this leads to a generically globally
rigid formation on the whole graph. Since the conditions of
being in general position apply to an open dense subset of the Fig. 3. Wheel graphiVe.
space, we conclude that the graph is generically globally rigid.

[ |

Claim 2: The wheel graphV,, is globally rigid.

A trilateration graphG may have more than one trilaterative Proof: We will refer to nodes in the cycleC,_;, as
ordering and even more than oseed— the initial complete iy nodes the central node as theub, an edge between the
graphKg;,. We will look at algorithmic aspects of trilatera-pp and a rim node asspoke and an edge between two rim
tion graphs in the next section. nodes as aim edge

If we remove two rim vertices, the graph remains connected
through the hub. If we remove the hub and one rim vertex,

We have seen in previous sections that global rigidity istAe graph remains a connected path on the remaining vertices.
necessary condition for the solvability of network localizationtherefore removing two vertices does not disconnect the
We will now move from the decision problem of solvabilitygraph, and it is3-connected.
to an associated search problem, graph realization. As Lemma 2.1 of [19] observes, a wheel is a minimally

Specifically, we define the graph realization problem as thedundantly rigid graph for the plane. By Theorem 6, it is
problem of assigning coordinates to vertices of a weightgnerically globally rigid. ]
graphG, so that the edge weight of every edggj) equals the ) L
distance between the points assigned to verticesd j. Note V& now analyze the complexity of realization of globally
that a given graph may not be realizable under a particular Lgid _graphs. A precise formulation of the_ realization problem
of edge weights. In the context of network localization, thEfduires that the edge lengths be noisy measurements of

graphs under study are the grounded graphs associated Wf€rying edge lengths subject to bounded errors. Note that
network point formations. with probability 1, these error-corrupted edge lengths will not

correspond to realizable weights. In this case, the realization
A. Realizing Globally Rigid Graphs problem becomes an approximation problem; namely, finding

Although global rigidity testing is computable in ponnomiaf’J‘n assiglr!mer(;t_ of coord_inate_shfoL the graph _virtices St()) It hat
time, Saxe has shown that testing the realizability of Weighté\lilje resulting discrepancies with the noisy weignts are below

graphs is NP-hard [7]. Below, we will argue that realizin tolerance parametgr. However, due to space limitations, we
a graph is still hard, even if it is known that the graph i 0 not present our rigorous proof of the NP-hardness of this

globally rigid and that it has a realization. Note that belo roblem in this paper. Rather, we present arguments that

we will restrict ourselves to the plane. We first prove a usef € more difficult PrOb'e'_m of realization of gl(_)bally_ ”g!d
NP-hardness result. weighted graphs with realizabie., exact, edge weights is still

hard. To formalize the argument below, one major revision is
Claim 1: Theset-partition-searciproblem is the following: that we need to compute rational approximations.,(noisy
Given a set of number$ with a set-partition, find its set- measurements) of then function in order to obtain rational
partition. The set-partition-search problem is NP-hard. edge weight inputs to our algorithm.

Proof: Assume that algorithm4 solves set-partition- Assume we have an algorithd that takes as input a
search. LetS be a set of numbers for which it is unknowrrealizable globally rigid weighted graph and outputs the unique
whether there is a set-partition. Rufion input.S for time ¢ realization. Consider a set of positive rational numbers
equal to the running time aft on a valid input of sizdS|. S = {s1,s2,...,s,}, for which a set-partition exists, scaled

If A has not terminated, thefihas no set-partition. It has without loss of generality such that! , s; < m/2. Let us
terminated, ther$ has a set-partition if and only the output oow label the nodes d#,,; as follows: we label the hub,

IV. COMPUTATIONAL COMPLEXITY OF LOCALIZATION



and the rim noded throughn, where there is an edge fromindividual components. With these algorithms, a tradeoff will
itoi+1forie{l,2,...,n—1} and fromn to 1. We will likely emerge between the advantage of small cluster size and
refer to the spoke fromd to i asspoke. the disadvantage of having to reconcile a large number of

Let us now construct a weighted version®f,, ;. Let the localized clusters.
weight of each spoke be, wherer is a positive rational . i i
number. Let the weight of the rim edge between nogmd C- Realizing Trilateration Graphs
nodei + 1 for i € {1,2,...,n — 1} be 2rsin(s;/2), and Although realization of general globally rigid graphs is hard,
let the weight of the rim edge between nodeand nodel we have already seen a class of globally rigid graphs that are
be 2rsin(s, /2). We now argue that this weighted version ofomputationally efficient to realize. In what follows, we define
W1, call it Wi, has a realization in the plane. trilateration to be the operation whereby a node with known

If we imagines; as the modulus of the angle between spokélistances to three other nodes in general position determines its
and spokg,; fori € {1,2,...,n—1} ands, as the modulus own position in terms of the positions of those three neighbors.
of the angle between spakeand spoke in a realization of We assume that this operation is efficiently computable.
W.,.11, we can determine a set of edge weights. Fix the weight
of each spoke to be, wherer is a positive real humber.
Then the weight of the rim edge between nadand node
i+1forie{1,2,...,n— 1} must be2rsin(s;/2), and the
weight of the rim edge between nodeand nodel must be
2rsin(s,/2). SinceS has a set partition, we can form a cycl
of these chords in the plane. Therefore the wheel graph wi
these edge weight8y; ., has a realization.

Run algorithm.A on the realizable globally rigid weighted
graph W, ., obtaining its realization. From this realization
determine the angle; including its sign between spokand
spokg;; for i € {1,...,n — 1} and between spokeand
spokg. By construction, the set of positivé and the set o
negatives; are a set-partition of.

This procedure solves set-partition-search with one call
a graph realization algorithm and polynomial time additionill
computation. Since set-partition-search is NP-hard, realizal?]
globally rigid weighted graph realization in the plane is hard.

Theorem 9:A trilateration graphG = (V, E) with realiz-
able edge weights is realizable in a polynomial number of
trilaterations.

Proof: There is a sequence of trilateration extensions
that result inG when applied toKs. If we know a seed of
then we can do the following: Localize one of the nodes
the seed at the origin, another on the positivaxis, and
the remaining node at a position with a positiveoordinate.

At each step, we can calculate positions for all unlocalized
nodes with edges to three localized nodes. Becduss a
trilateration graph, we are guaranteed to be able to calculate
¢ positions for all nodes with at mo$V’| — 3 trilaterations.

If we do not know any seed d@F, we can guess it in at most
”) tries. A guess is correct if and only if the above procedure
cceeds in localizing all nodes in a linear number of steps.
ence, we can realize a trilateration graph in a polynomial
dmber of steps. [ ]

o o o As we shall see, there are scenarios in which it is reasonable
B. Global/Distributed Optimization for Localization to assume that we know a seed of the trilateration graph, and

The previous subsection has shown that the computatiofathese cases, the linear algorithm will be applicable.
complexity of network localization is likely to be high. In
practice, one way to solve the general localization problem
is to formulate it as an optimization problem. Specifically, In previous sections, we presented theory for localization of
realization of a grapls = (V, E) with edge weight function general networks. In this section, we specialize to the setting of

4(i,j) can be formulated as a global optimization over vecto&nsor networks with a large number of randomly distributed
of points {z1, za, ..., x|y} of the following form, sensors. An abstraction that corresponds well to this setting is

the random geometric graph.

V. LOCALIZATION IN RANDOM GEOMETRIC GRAPHS

A. Definition and Properties of Random Geometric Graphs

We define random geometric graphs in terms of point

This formulation of the problem has been used by biofermations.
ogists studying molecular conformation [20]. Because suchDefinition 3: Given n € N and r € [0,1], the random
optimization is computationally expensive, strategies such gsometric graphss,, () are the graphs associated with two
divide-and-conquer [21] and objective function smoothing [22]imensional point formation#, with all links of length less
have been proposed. than r, wherep = {p1,p2,...,pn} IS @ set of points in

In the context of network localization, distributed optimizaf0, 12 generated by a two dimensional Poisson point process
tion algorithms may be desirable. In this case, algorithms suchintensity n.
as [21] may be applied by dividing the global network into The parameters of the model,andr, correspond respec-
small globally rigid sub-components [23] (clusters) to redudé&ely to the physical parameters of sensor density and sensing
overall complexity. Each cluster computes its relative locatadius.
ization using some optimization technique. Then the globalWe next review some useful properties of the connectivity
localization can be achieved by merging the localizations of G,,(r). Note that the results we present in this section are



asymptotic and that because of this, we neglect collinearity egery node has edges between it and all nodes in its own

a low probability phenomenon. square and adjacent squares.
As in the case of the Eitd-Renyi random graph model Starting from some square we labeltasve iteratively label
[24], there is a phase transition in the random geometiwery square irf0, 1)2. In stepi € {1,..., 1§§n}’ we label

graph model at which the graph becomes connected Wiffy, ; every unlabelled square that adjoins a square labelled
high probability [25]. Penrose [26] generalizes this 0 ; _ 1 norizontally, vertically, or diagonally. We will refer to
connectivity with the result that ifG,,(r) has a minimum iye union of all squares with the same labels alayer, ;.
vertex degree of: then with high probabilityG..(r) is k- \we now iteratively label all. nodes in the grid. In step
connected. —1, we choose three nodes iy, and label theni, 2, and3.
Since it is was proved in [27] for some € O(,/ T step0, we label the rest of the nodes iy, with numbers
Gn(r) has a minimum vertex degree &f for k € O(1) greater tham. In stepi, we label all nodes it; with numbers

with high probability, » € O(1/X€") can also ensurg- larger than every label i, ;.

n

connectivity. Every node inL, with a label greater than three has edges
. i to 1, 2, and3. By construction, a node labelled in L;, i > 0
B. Global Rigidity of Random Geometric Graphs has edges to at least three noded.jn; with labels less than

Recalling that3-connectivity is a necessary condition for,, Thus we have a trilaterative ordering from Definition 2,
global rigidity, and using a recent result thiatonnectivity is gnd G, (r) is a trilateration graph.

sufficient for global rigidity in the plane [15], we conclude ™
that G,,(r) is globally rigid with high probability if and only

_ oo An intuitive argument that perhaps yields more insight into
if € O(y/~&"). the previous result is that assuming in the limit of largthat

An interesting result is that ity = (V, £) is 2-connected, nodesl, 2, and3 can be considered to occur at a single point
then the graphG? = (V, E U E?), where E is the set of ;. if every node inG,(r) is connected to three other nodes
edges between endpoints of paths consisting of two edgesigser than itself tg,, thenG,, (r) has a trilaterative ordering.
G, is globally rigid. For random geometric graphs, this mearsincep, can be in any direction from an arbitrary point, this
that G, (2r) is globally rigid with at least the probability thatis assured in the event that every node has three neighbors in
Gy (r) is 2-connected. any 120° sector of the circle with radius about it, or at least

For some large: and§ € (0,1), let r; denote the smallest pine neighbors. Denoting by the radius at whict,, (1) has
radius at whichG,,(r) becomesi-connected with probability probanility 1 —§ of being a trilateration graph, we suspect that
1—4 and letr, denote the radius at which it becomes globally, approaches, from above in the limit of larger.

rigid with probability 1 — 6. Note thatry <73 <7, <76 and  These results inmediately yield insight into the complexity

thatr, < 2r. This behavior is illustrated in Fig. 4. of realizing G, (r).
1 Theorem 11:For somer € 0(1:10%), if the positions of
1-6 L three nodes with edges to each other are known, then with
high probability, a realization dof,,(r) is computable in linear
time.

Proof: By the proof of Theorem 10, the three nodes
with known positions form the seed of a spanning trilateration

> graphG with high probability. By Theorem 9, the positions of
3 all nodes inG can be computed in linear time. Sin€g, (r)
E is spanned byG, it can be realized in linear time. |
: = panned oY
sensing radius I, M3 Iy M D. Localization in Random Sensor Networks

We now study a simple localization protocol for random
Fig. 4. Probability thatG,(r) is k-connected. Dotted line represents thesensor networks we call ITP in Fig. 5. Theorem 11 allows us
probability that,(r) is globally rigid. to analyze the effectiveness of our procedure.
o . Definition 4: A random sensorne$,,(r) is a sensornet of

C. Realization of Random Geometric Graphs n sensors with sensing radiusplaced at random of0, 1]2

We now explore conditions fo&,(r) to yield an efficient by a two-dimensional Poisson point processbéaconis a
realization computation. sensor that knows its position.

Theorem 10:If Tim,,_... lzr’j‘n > 8, with high probability, _One c_ould define a random sensornet in terms_ of a uniform

£ distribution over|0, 1]?, but we do not consider this case.

G, (r) is a trilateration graph. : ) )
Proof: Partition [0, 1)? into n_ squares of equal size The following results are summarized in Table I.
wherec < 1. Note that with high probability, every square con- cjaim 3: For somer ¢ O(1/'282)  with high probability,

n

tains at least three nodes. Additionally, since 2v/21/%%£%,  a|| sensors irS,,(r) will have determined their positions with




> Sensors have two modes: localized and unlocalized is the time at which square localizes, since the number of
> Sensors determine distance from heard transmitter squares ISO( ), the following is true,
> All sensors are pre-placed and plugged-in

Pr[max( i) > k] < min(1, O( )qo(kz)).

Localized mode: log n
Broadcast position )
Unlocalized mode: Therefore, the expected time for all squares to localize
Listen for broadcast satisfies the inequality

if broadcast from (x,y) heard

Determine distance to (x,y)
if three broadcasts heard Elmax(t;)] < z min(1, O(
Determine position k=0

Switch to localized d ;
witch to localized mode Observing that for somé&, € O(y/logn — loglogn),

O(kZ))'

logn)q

Fig. 5. The iterative trilateration protocol (ITP). O(logn)qO(kQ) >1 <= k <k,
we see that
ITP by O( ) time if three beacons are placed anywhere
2
n [0,1]2 so that they are in sensing range of each other. Elmaz(t;)] < O(y/logn) + O(—— 1 ogn Z @),
Proof: We setr and partition[0, 1]2 into labelled squares k=ko

as in the proof of Theorem 10, this time so that the threen calculations we will not include here, it can be shown
beacons are in the square labelledWe say that a layer that O (%) Yoo ko qO(k ) e 0(1).

is localized when all sensors in that layer have determinedwe have thus shown that with high probability, all sensors
their positions. Assuming ITP broadcast, distance calculationill localize in expected time at mog@(y/logn). [ ]
and trilateration take place in constant timey will be
localized in a single constant-time step. Additionally, givgn
localized, ITP will localizel;, in a single constant-time step.aII sensors inS,(r) can determine their positions and will

Therefore, all Iay(_ars _Wi” be Ipcalized in at moSt(, /5o)  have determined their positions ty(1) time if beacons are
steps and our claim is established. B placed on0, 1]? by a Poisson point process of intensigyn).

Proof: If r € O(,/IOEL"), the Poisson point process

Claim 4: For somer € O(y/%™), with high probability, places beacons in the sensing region of a sensor at\rate
all sensors inS, (r) can determine their positions with ITPnsr2  logn. Since we expeo®(logn) beacons connected to
and will have done so by expected time of at mOs$t/logn) every sensor, with high probability, we will hav(1) i.eat
if beacons are placed df, 1]? by a Poisson point process ofleast three beacons connected to every sensor, and all sensors
intensity O(n/logn). will localize in O(1) time with high probability. ]

Proof: We setr and partition[0, 1]? into squares of area

A as in the proof of Theorem 10. The Poisson point process

Claim 5: For somer € O(4/ 1Og”) with high probability,

. beacons| sensing radiug  E[t;oc]
places beacons into each square at a hate nA/logn € oz n —
O(1). Therefore, the probability that a square contains at least o) O(\/T) O(\/ 1ogn)
three beacons is a constant O(52s) o(\/lo%) O(+/Togn)

The probability that all squares contains less than three oz n
beacons isg@("/l°9m)  whereq = 1 — p, SO some square O(n) O(\/T) o)

contains at least three beacons with high probability, and
consequently, all sensors can localize as in claim 3.

We now bound the expected time it takes for every sensor to
localize given some square contains three beacons. We say a
square is localized if every sensor it contains has determined
its position. In a single constant-time step, ITP localizes a VI. EVALUATIONS
square if it contains three beacons or if any of its neighborsWe simulate random geometric graphs in 3-space by gen-
are localized. Because of this, in what follows we will refeerating points randomly if0, 1]3, placing four beacons in the
to discretized time rather than steps. center of the unit cube within sensing range of each other. We

The probability that a square does not localize by tilne then simulate ITP by localizing nodes in computational rounds
is the probability that all squares within a square of squaragswhich we determine positions for all nodes connected to
with side 2k + 1 contain fewer than three beacorqﬁ?’*’“)?. four nodes with known position. We terminate the simulation
The probability that the last square to localize does so aftehen a round does not determine the position of any node.

a certain time is less than the probability that at least one ofln our first simulation, for three values of, we track
the squares localizes after that time. More formally, whgre the percentage of nodes whose positions can be determined.

TABLE |
LOCALIZATION IN VARIOUS BEACON PLACEMENT SCHEMES



Consistent with our prediction of the behavior of ITP using 8
random graph theory, we observe in Fig. 6 an increasingly B ]
sharp phase transition in the percentage of localizable nodes 3 ]
as we increase. % ]
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Fig. 6. Percentage of nodes localizable with 4-beacon ITP. E—
38
. . . o
In our second simulation, we calculate the smallest radius at @
which the percentage of localizable nodes is greater $h&h ?,
We see behavior similar to that predicted by theory in Fig. 7. 0 ‘ ‘ ‘
Note that the asymptotic result more accurately models actual 0.08 012 0.16 0.2 0.24
behavior as: increases. The difference for smalis explained radius
by the contribution of logarithmic terms in the localization
probability that becomes significant whenis small. Fig. 9. Required steps for algorithm completion.
g 0.35 measured behavior The focus of this paper is fine-grained localization. As we
3 034  asymptoticprediction - 1 discussed in the Introduction, the previous approaches are
g 025 mainly heuristics, and this paper provides the first theoretical
= 02 b5 analysis of network localization.
é 015 | ‘ A related problem called molecular conformation has been
8 ' studied in the chemistry communitg.g, [21], [22], [43].
s 01t However, the focus of these studies is on 3D. Also, since

0.05 : : the structure of a molecule is given, they do not consider the
0 1000 2000 ;
network construction process.
number of nodes One major building block of our analysis is rigidity theory
Fig. 7. Trilateration graph phase transition radiusdn(r). ?-nd CompUta_‘tional geometry. Rigid_ity has been long studied
in mathematics and structural engineering (see for example

Our last simulations investigate the number of computét4l; [10], [44], [9], [11]) and has a surprising number of
tional rounds necessary to localize all nodes that can BBPlications in many areas.
localized. In Fig. 8, we observe for = 2000 that the percent-  We formally analyzed the performance of network localiza-
age of localized nodes at a given step increases dramaticli§p in networks of randomly placed nodes. Even though some
with modest increases in sensing radius. Note that below ti@searchers have studied random graphs in sensor networks,
phase transition, at = 0.1, the procedure fails to localize €-9- [45], [46], [47], [48], the focus is mainly on routing but
practically any nodes and completes in four steps. Fornot on localization. In [47], az, Petit and Serna analyzed
straddling the phase transition, Fig. 9 plots the number of stdp§ Performance of localization for optical sensor networks.
before completion. The spike is due to a sudden increaseHAwever, their analysis is for the case in which a sensor can
connectedness above the phase transition at which the radifgve its position from a single beacon.

is minimal for total localizability. VIIl. CONCLUSION AND FUTURE WORK

VIl. RELATED WORK The unique localization of networks from distance measure-

Network localization is an active research fietdg, [28], ments shares a number of features with work in several other
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], active fields of study: rigidity and global rigidity in frame-
[40], [5], [41], [6], [42]. The previous approaches can b&orks; the coordination formations of automonous agents; and
classified into two types: coarse-grained and fine-grainegeometric constraints in CAD. In this paper, we have drawn on



techniques and results from the first two fields, also combineid] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava, “Dynamic
in some previous joint work [12], as well as specific results
on global rigidity [15], [18]. With these concepts, we were
able to lay a coherent solid foundation for the underlyinge]
problem of when a network is uniquely localizable, for almost
all configurations of the points. Specifically, we constructed a
formation and then a graph for each network such that thg
localization problem for the network is uniquely solvable,

almost always, if and only if the corresponding graph i

e]

generically globally rigid. From these connections, we drew
specific results and showed that the trilateration networks are

uniquely localizable for almost all initial locations.

El

It should be noted that as stated, the localization problefg,
with precise distance is not in general numerically well posed

since even if it is solvable with the given data, it ma 1]
i

be unsolvable with data arbitrarily “close” to that which

given. In practical terms, this means that special attention

must be paid to the computation process and to assesdi?y

the significance of “approximate solutions.” It also means that
only graphs which are generically globally rigid are capable
of having computationally stable solutions for given daté3l
sets. This confirms our choice of conceptual framework f?{4
this problem. However, we comment that even approximate
solutions are hard to compute due to the hardness of {h&l

localization problem.

We also studied the computational complexity of networkg
localization and presented computational properties of trilat-
eration graphs in that context. For networks based on rand&rfi

locations and communication radius we provided some

necessary and some sufficient conditions for the network to jae
uniquely localizable with high probability. We have included?®l

some computational evaluations of these techniques.

Other work such as [42] approaches network localization
with angles, bearings and headings in addition to some di&l]
tance constraints. Drawing on more general work on geometric
constraints such as angles and directions in CAD, we haye
further generic global uniqueness results that can give new
insights where certain patterns of angles or headings &#
used [12], as well as insights into the complexity of general
patterns of angle constraints. This will be explored further 4]

a future paper.
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