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RIGIDITY OF COMPACT MANIFOLDS WITH BOUNDARY

AND NONNEGATIVE RICCI CURVATURE

CHANGYU XIA

(Communicated by Christopher Croke)

Abstract. Let Ω be an (n + 1)-dimensional compact Riemannian manifold

with nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume
that the principal curvatures of M are bounded from below by a positive
constant c. In this paper, we prove that the first nonzero eigenvalue λ1 of
the Laplacian of M acting on functions on M satisfies λ1 ≥ nc2 with equality
holding if and only if Ω is isometric to an (n + 1)-dimensional Euclidean ball

of radius 1
c
. Some related rigidity theorems for Ω are also proved.

1. Introduction

In [SS], Schroeder and Strake proved the following rigidity theorem for manifolds
with nonnegative Ricci curvature and convex boundary [SS, Theorem 1]:

Let Ω be a compact Riemannian manifold with convex boundary and nonnegative
Ricci curvature. Assume that the sectional curvature is identically zero in some
neighborhood U of ∂Ω and that one of the following conditions holds:

a) ∂Ω is simply connected.
b) dim ∂Ω is even and ∂Ω is strictly convex in some point p ∈ ∂Ω, then Ω is

flat.
This theorem is a counterpart for manifolds with nonnegative Ricci curvature

of the rigidity results for sectional curvature of Gromov [BGS, §5] which were
generalized in [SZ].

As pointed out in [SS], the condition that the metric is flat in a whole neighbor-
hood of ∂Ω in the above result is very strong. Schroeder and Strake asked whether
if it suffices to assume that the sectional curvature vanishes only on the boundary.
Furthermore, they proved that this is true in the special case of a metric ball (cf.
[SS, Theorem 2]).

In this paper, we study a similar rigidity problem for compact manifolds with
convex boundary and nonnegative Ricci curvature. By using a different method we
prove the following

Theorem 1. Let Ω be an (n+ 1)-dimensional compact Riemannian manifold with
nonnegative Ricci curvature and nonempty boundary M = ∂Ω endowed with the
metric induced from Ω, and let N be the inner unit normal on M . Assume that the
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principal curvatures of M are bounded from below by a positive constant c (i.e., if
we denote by σ the second fundamental form of M with respect to N , then σ ≥ cI
in the matrix sense). Then, the first nonzero eigenvalue of the Laplacian acting
on functions on M satisfies λ1(M) ≥ nc2 with equality holding if and only if Ω is
isometric to an (n + 1)-dimensional Euclidean ball of radius 1

c .

By using Theorem 1, we can prove the following rigidity theorem which gives a
partial answer to the problem proposed by Schroeder and Strake as above.

Theorem 2. Let Ω be an (n+ 1)-dimensional compact Riemannian manifold with
nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the
sectional curvature K of Ω satisfies K(π) = 0 for all 2-planes with footpoints on
M which are tangent to M and that the mean curvature of M is nonnegative at
one point x ∈M . If M is isometric to a Euclidean n-sphere of radius r, then Ω is
isometric to an (n + 1)-dimensional Euclidean ball of radius r.

By using similar methods as in the proof of Theorem 1, we obtain also the
following

Theorem 3. Let Ω be an (n+ 1)-dimensional compact Riemannian manifold with
nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the
principal curvatures of M are bounded from below by a positive constant c and that

the mean curvature of M is bounded from below by λ1(M)
nc . Then, Ω is isometric to

an (n + 1)-dimensional Euclidean ball of radius 1
c .

2. Preliminaries

In this section, we list some known facts which we need. Let Ω be an (n + 1)-
dimensional compact Riemannian manifold with boundary M = ∂Ω. We denote by
〈, 〉 the metric on Ω as well as that induced on M , and by ∇ and ∇ the Riemannian
connections on Ω and M , respectively. Let dV and dA be the canonical measures
on Ω and M , respectively, and V and A the volume of Ω and the area of M . Given
f in C∞(Ω) we denote z = f |M and u = ∂f

∂N |M , where N is the inner unit normal
on M . Reilly’s formula [R] states that∫

Ω

{(∆f)2 − |∇2
f |2 − Ric(∇f,∇f)}dV(1)

=

∫
M

{−2(∆z)u+ nHu2 + σ(∇z,∇z)}dA,

where ∇f,∆f and ∇2
f are the gradient, the Laplacian and the Hessian, respec-

tively, of f in Ω, Ric is the Ricci curvature of Ω, ∇z and ∆z are the gradient and the
Laplacian, respectively, of z in M , σ and H are the second fundamental form and
the mean curvature of M with respect to N , respectively, i.e., σ(u, v) = 〈∇uv,N〉
for u, v ∈ TM and H = 1

n trσ. The principal curvatures of M are defined to be the
eigenvalues of σ. Thus if all the principal curvatures of M are bounded from below
by a constant c, then σ ≥ cI in the matrix sense, and the converse is also true.

The following Lemma is an easy consequence of Theorem 1 in [Ro1].

Lemma 1. Let Ω be an (n + 1)-dimensional compact Riemannian manifold with
smooth boundary M = ∂Ω and nonnegative Ricci curvature. If the mean curvature

of M satisfies H ≥ 1
n+1 · A(M)

V (Ω)
, then Ω is isometric to a Euclidean ball. Here A(M)

and V (Ω) denote the area of M and the volume of Ω, respectively.
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3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. Let z be an eigenfunction corresponding to the first nonzero
eigenvalue λ1 of the Laplacian of M :

∆z + λ1z = 0.(2)

Let f in C∞(Ω) be the solution of the Dirichlet problem{
∆f = 0 in Ω,

f = z on M.

It then follows from (1) and the nonnegativity of the Ricci curvature of Ω that

0 ≥
∫

Ω

{(∆f)2 − |∇2
f |2 − Ric(∇f,∇f)}dV(3)

=

∫
M

{−2(∆z)u+ nHu2 + σ(∇z,∇z)}dA.

Since σ ≥ cI, we have

H ≥ c and σ(∇z,∇z) ≥ c|∇z|2.(4)

Substituting (2) and (4) into (3) and noticing∫
M

|∇z|2dA = −
∫
M

(∆z)z dA = λ1

∫
M

z2 dA,(5)

we obtain

0 ≥
∫
M

{−2(−λ1z)u+ ncu2 + c|∇z|2}dA(6)

=

∫
M

{2λ1zu+ ncu2 + cλ1z
2}dA

=

∫
M

{nc(u+
λ1

nc
z)2 + (cλ1 − λ2

1

nc
)z2}dA

≥
∫
M

{(cλ1 − λ2
1

nc
)z2}dA.

Thus we have from (6)

cλ1 − λ2
1

nc
≤ 0,

or

λ1 ≥ nc2.

This completes the proof of the first part of Theorem 1.
If Ω is isometric to an (n + 1)-dimensional Euclidean ball of radius 1

c , it is well

known that λ1(M) = nc2. Now we assume conversely that λ1 = nc2. In this case
inequalities (3), (4) and (6) must take equality sign. In particular, we have

∇2
f = 0, H = c and u = −λ1

nc
z = −cz.(7)
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From ∇2
f = 0, we know that |∇f |2 is a constant and is not zero since f is not a

constant. Without loss of generality, we can assume |∇f |2 = 1. Thus for any point
p ∈ M , we have

1 = |∇f |2(p) = |∇z|2(p) + u2(p).(8)

It follows from (8) by integration and u = −cz, that

A(M) =

∫
M

{|∇z|2 + u2}dA(9)

=

∫
M

{λ1z
2 + u2}dA

=

∫
M

{nc2z2 + u2}dA

=

∫
M

{(n+ 1)u2}dA.

On the other hand, from

1

2
∆(f2) = |∇f |2 + f∆f = 1(10)

and the divergence theorem we have

V (Ω) =

∫
Ω

1

2
∆(f2)dV = −

∫
M

zu dA =

∫
M

u2

c
dA.(11)

Combining (9) and (11), we find

H = c =
1

n + 1
· A(M)

V (Ω)
.(12)

From (12) and Lemma 1 we conclude that Ω is isometric to a Euclidean ball. Since
λ1(M) = nc2, the radius of Ω is easily seen to be 1

c . This completes the proof of
Theorem 1.

Corollary 1. Let Ω be an (n+1)-dimensional compact Riemannian manifold with
nonnegative Ricci curvature and nonempty boundary M = ∂Ω. Assume that the

principal curvatures of M are bounded from below by
√

λ1(M)
n . Then Ω is isometric

to an (n + 1)-dimensional Euclidean ball of radius
√

n
λ1(M) .

Proof. Since λ1 = n · (
√

λ1

n )2, Corollary 1 follows from the rigidity part of Theorem

1.

In [YY], Yang and Yau proved that if (M,ds2) is a compact orientable Riemann-
ian surface of genus g with area A, then λ1(M) ≤ 8π(g + 1)A−1. Thus, Yang and
Yau’s theorem together with Theorem 1 immediately implies the following

Corollary 2. Let Ω be a 3-dimensional compact Riemannain manifold with non-
negative Ricci curvature and nonempty orientable boundary M = ∂Ω. Denote by g
the genus of M and assume that the principal curvatures of M are bounded from
below by c > 0. Then the area of M satisfies A(M) ≤ 4π(g + 1)c−2 and equality
holds if and only if Ω is isometric to a 3-dimensional Euclidean ball of radius 1

c .
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Proof of Theorem 2. For any point p ∈ M , we denote by σ1(p) , ..., σn(p) the prin-
cipal curvatures corresponding to the unit orthogonal principal directions e1(p) , ...,
en(p) of M at p, and by K the sectional curvature of M . Since M is isometric to
an n-sphere of radius r, it has constant sectional curvature 1

r2 . By the assumption

on the sectional curvature of Ω and the Gauss equation, we have for 1 ≤ i 6= j ≤ n,

1

r2
= K(ei(p) ∧ ej(p))(13)

= K(ei(p) ∧ ej(p)) + σi(p)σj(p) = σi(p)σj(p),

where ei(p) ∧ ej(p) denotes the plane spanned by ei(p) and ej(p).
Since p is arbitrary and the principal curvatures are continuous functions on M ,

we conclude therefore that either σ1 = · · · = σn ≡ 1
r or σ1 = · · · = σn ≡ − 1

r .
The latter possibility is ruled out since the mean curvature of M is nonnegative
at the point x. On the other hand, since M is isometric to a Euclidean n-sphere
of radius r, it is well known that λ1(M) = n · 1

r2 . Hence, Ω is isometric to an
(n + 1)-dimensional Euclidean ball of radius r by Theorem 1. This completes the
proof of Theorem 2.

Proof of Theorem 3. As in the proof of Theorem 1, let z be an eigenfunction cor-
responding to the first nonzero eigenvalue λ1 of the Laplacian of M and let f in
C∞(Ω) be the solution of the Dirichlet problem{

∆f = 0 in Ω,

f = z on M.

From (1), the assumption on the Ricci curvature of Ω and

σ(∇z,∇z) ≥ c|∇z|2, H ≥ λ1

nc
,(14)

we have

0 ≥
∫

Ω

{(∆f)2 − |∇2
f |2 − Ric(∇f,∇f)}dV(15)

=

∫
M

{−2(∆z)u+ nHu2 + σ(∇z,∇z)}dA

≥
∫
M

{2λ1zu+
λ1

c
u2 + cλ1z

2}dA

=

∫
M

λ1

c
(u + cz)2dA

≥ 0.

Thus, the inequalities (14) and (15) must take equality sign. In particular, we have

∇2
f = 0, H =

λ1

nc
and u = −cz.(16)
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As in the proof of the second part of Theorem 1 we can assume from ∇2
f = 0 that

1 = |∇f |2 and so 1 = |∇z|2(p) + u2(p) for any p ∈ M . Consequently, we obtain

A(M) =

∫
M

{|∇z|2 + u2}dA =

∫
M

{λ1z
2 + u2}dA

=

∫
M

{λ1

c2
+ 1}u2dA = (

λ1

c2
+ 1)c ·

∫
M

(−zu)dA(17)

= (
λ1

c2
+ 1)c ·

∫
Ω

1

2
∆(f2)dV = (

λ1

c2
+ 1)cV (Ω).

It then follows from H = λ1

nc ≥ c and (17) that

A(M)

V (Ω)
=

λ1

c
+ c ≤ nH +H = (n + 1)H,(18)

or

H ≥ A(M)

(n + 1)V (Ω)
.

Hence, Ω is isometric to an (n+ 1)-dimensional Euclidean ball by Lemma 1. If we
denote by r the radius of Ω, then the principal curvatures of M are all equal to 1

r ,

that is, σ = 1
r I. We conclude therefore from σ(∇z,∇z) = c|∇z|2 that r = 1

c . This
completes the proof of Theorem 3.
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