RIGIDITY OF HYPERSURFACES OF CONSTANT SCALAR CURVATURE

BY C. E. HARLE ${ }^{1}$
Communicated by P. E. Thomas, October 30, 1969

Let M_{n} and \tilde{M}_{n+1} be Riemannian manifolds of dimension n and $n+1$ respectively.

Assume M_{n} isometrically immersed in \tilde{M}_{n+1}.
If each point p of M_{n} is contained in an open neighborhood $U \subset M_{n}$ (which may depend on p) such that no open submanifold of U is rigid in \widetilde{M}_{n+1}, then M_{n} is called locally deformable in \tilde{M}_{n+1}.

This concept allowed us to show that the result of NaganoTakahashi [3] holds without any restriction, i.e. that any homogeneous hypersurface of the Euclidean space E_{n+1} is isometric to the Riemannian product of a p-dimensional sphere and an $n-p$ dimensional Euclidean space.

This result is a consequence of the following
Theorem 1. Let M_{n} be a complete Riemannian manifold of dimension $n \geqq 3$, with constant scalar curvature $K \neq 0$.

If M_{n} is locally deformable in the Euclidean space E_{n+1}, then it is isometric to the Riemannian product of a 2-sphere of radius $1 / K$ and an $n-2$ dimensional Euclidean space.

The next result gives rigidity of certain hypersurfaces of nonEuclidean space forms.

Theorem 2. Let M_{n} be an n-dimensional Riemannian manifold $n \geqq 4$, with constant scalar curvature K. Assume M_{n} isometrically immersed in the space form $\tilde{M}_{n+1}(c)$, with $c \neq 0$ and $K \neq n(n-1) c$. Then M_{n} is rigid in $\tilde{M}_{n+1}(c)$.

References

1. E. Cartan, La deformation des hypersurfaces dans l'espace reel a n-dimensions, Bull. Soc. Math. France 45 (1917) 57-121.
2. S. Dolbeaut-Lemoine, Sur la déformabilité des variétés plongées dans un espace de Riemann, Ann. Ecole Norm. Sup. (3) 73 (1956), 357-438. MR 18, 819.
3. T. Nagano and T. Takahashi, Homogeneous hypersurfaces in euclidean spaces, J. Math. Soc. Japan 12 (1960), 1-7. MR 22 \#5008.

Universidade de Sao Paulo, Sao Paulo, Brazil
AMS Subject Classifications. Primary 5374; Secondary 5370.
Key Words and Phrases. Hypersurfaces, homogeneous locally deformable, scalar curvature, Riemannian product, space form, sphere, Euclidean space.
${ }^{1}$ This work has been supported by CNP_{q} (Rio de Janeiro, Brazil) and EPUSP (São Paulo, Brazil).

