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RIGIDITY OF INFINITE HEXAGONAL TRIANGULATION

OF THE PLANE

TIANQI WU, XIANFENG GU, AND JIAN SUN

Abstract. In this paper, we consider the rigidity problem of the infinite
hexagonal triangulation of the plane under the piecewise linear conformal
changes introduced by Luo in 2004. Our result shows that if a geometric
hexagonal triangulation of the plane is PL conformal to the regular hexagonal
triangulation and all inner angles are in [δ, π/2−δ] for any constant δ > 0, then
it is the regular hexagonal triangulation. This partially solves a conjecture of

Luo. The proof uses the concept of quasi-harmonic functions to unfold the
properties of the mesh.

1. Introduction

1.1. PL conformal. Given a smooth manifold M , two Riemannian metrics g and
g̃ are called conformally equivalent if

(1.1) g̃ = e2λg

where λ ∈ C∞(M) is called a conformal factor. In the discrete setting, Luo [5]
introduced a notion of PL conformal equivalence of two piecewise linear polyhedral
metrics in any dimension and developed a variational principle for PL conformality
for triangulated surfaces with PL metrics [5]. Specifically, suppose the surface Σ
has a triangulation T , i.e., a CW complex whose faces are triangles which are
glued edge-to-edge by isometrics. We denote such a triangulated surface by (Σ, T ),
and its sets of vertices, edges, and triangles of T by V , E and F , respectively. Two
triangulated surfaces (Σ, T ) and (Σ̃, T̃ ) are called combinatorially equivalent if there

is a homeomorphism between Σ and Σ̃ preserving the triangulation. For simplicity,
we use the same notation to denote two combinatorially equivalent triangulated
surfaces when the homeomorphism is not relevant or clear. Recall that a piecewise
linear metric (or simply PL metric) on (Σ, T ) is a metric on Σ so that its restriction
to each triangle is isometric to a Euclidean triangle. It is uniquely determined by
a function � : E → R>0 which assigns a length to each edge so that the triangle
inequalities hold for every triangle in F . With a PL metric, the triangulated surface
(Σ, T ) is locally isometric to the Euclidean plane or half-plane if there is boundary
except at the vertices where the metric may have cone-like singularities. In this
paper, we will always assume a triangulated surface is equipped with some PL
metric. We denote by ij the edge with vertices i and j, and by ijk the triangle with
vertices i, j and k. If f , g and h are the functions over V , E, and F , respectively,
for simplicity, we often write fi, gij and hijk for f(i), g(ij) and h(ijk).
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Figure 1. The length cross ratio of the edge ij is defined as
lilljk
likljl

.

Definition 1.1 (Luo [5]). Two PL metrics � and �̃ on combinatorially equivalent
triangulated surfaces (Σ, T ) are PL conformal if

(1.2) �̃ij = ewi+wj �ij

for some function w : V → R and for all edges ij.

The function w plays an analogous role of conformal factor in this PL setting
and thus is called a PL conformal factor. We call such change of a PL metric on
(Σ, T ) a PL conformal change. This defines an equivalent relation on PL metrics
on (Σ, T ). We call an equivalent class a PL conformal class on (Σ, T ). Motivated
by the smooth Yamabe problem, Luo [5] considered the existence and uniqueness
of PL metrics with prescribed curvature in a PL conformal class. Namely, suppose
d is a PL metric on (Σ, T ) and K : V → R is given. Is there a PL metric d′ on
(Σ, T ) which is PL conformal to d so that the curvature of d′ is K (discrete Yamabe
problem)? Is the metric d′ unique up to scaling? There has been work done on
solving both questions for finite triangulations of compact surfaces. The main issue
that we address in this paper is a conjecture of Luo [4] about the uniqueness of the
simplest infinite triangulation of the plane. Namely, suppose d is a PL metric on the
hexagonal triangulation of the plane so that (1) it is PL conformal to the regular
hexagonal tiling, (2) the metric d is complete and has zero curvature at each vertex.
Is d the regular hexagonal tiling? Our main result gives an affirmative answer to
this question for those PL metrics so that all inner angles are in (0, π/2 − δ] for
some δ > 0.

One can also look at the PL conformal transformation in terms of cross-ratio (see
Bobenko, Pinkall and Springborn [1]). For an interior edge ij incident to triangles
ijk and ilj as in Figure 1, if the quadrilateral iljk is embedded in the complex plane
Ĉ = C ∪ {∞} and we denote the vertex positions by zi, zj , zk, zl, any conformal

map of Ĉ preserves the cross ratio (zi, zj , zl, zk) :=
zi−zl
zi−zk

/
zj−zl
zj−zk

. One can see that

the absolute value of this cross ratio is
lilljk
likljl

(called length cross ratio by Bobenko,

Pinkall and Springborn [1]) which is preserved by the PL conformal change since
scale factors are cancelled.

Another motivation for Luo’s conjecture comes from Thurston’s conjecture on
the rigidity of hexagonal circle packing in the plane. In his famous address,1 “The
Finite Riemann Mapping Theorem”, Thurston gave a different approach to PL
conformal geometry for a triangulated surface using circle packings, which takes

1International Symposium in Celebration of the Proof of the Bieberbach Conjecture. Purdue
University, March 1985.
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Figure 2. Regular triangulation of the plane.

the view of the conformal map preserving infinitesimal circles. In Definition 1.1,

if we let l̃ij = (ewi + ewj ), we obtain a circle packing metric l̃ij in the sense of
Thurston. Thurston conjectured, among other things, that the only complete flat
circle packing metric on the hexagonal triangulation of the plane is the regular
hexagonal packing. This was proved by Rodin and Sullivan [6]. The main problem
that we study is the counterpart of Thurston’s conjecture in the new PL conformal
setting.

In the circle packing setting, it is natural to assign each vertex i a circle with the
radius ewi , and then the circles centered at two neighboring vertices are tangential
to each other. This PL conformal transformation map circles to circles, or in an
equivalent way. The identity lil + ljk = lik + ljl always holds for any edge ij.

This identity also holds for conformal transformation on Ĉ. One disadvantage
of this approach is that in general the meshes we get in practice do not satisfy
lil + ljk = lik + ljl, and usually we have to give up its edge-length information by
assuming l ≡ const to do the PL conformal transformation. However, in the new PL
conformality the initial metric information can be reserved and the transformation
can be done directly with the original mesh.

Let αi be the cone angle at the vertex i which is the sum of all inner angles having
the vertex i. The curvature is a function over the vertices: K : V → R defined by
Ki = 2π−αi if the vertex i is in the interior and Ki = π−αi if the vertex i is on the
boundary. It is obvious that the curvature is uniquely determined by the PL metric.
Its converse is the type of rigidity problem (uniqueness question) we consider here:
is the PL metric in a given PL conformal class uniquely determined up to a scaling
(i.e., an Euclidean similar transformation) by the curvature function? In this paper,
we will focus on the triangulated planes with the curvature function K ≡ 0, or the
triangulated flat planes for short. Notice that a triangulated flat plane may not be
isometric to the Euclidean plane.

1.2. Problem and main results. Below is the main problem which was first
studied in [5].

Given two PL metrics � and �̃ on combinatorially equivalent triangulated surfaces
(Σ, T ) so that both metrics are isometric to the complex plane C, if � and �̃ are PL
conformally equivalent, do they differ by a scaling?

In this paper, we restrict ourselves to the hexagonal triangulation of the plane
where every vertex is of degree 6. The regular hexagonal triangulation is the tiling
of the plane by regular equilateral triangles as shown in Figure 2, i.e., we assume a
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Figure 3. A hexagonal triangulation of the flat plane. (Color
available online.)

regularly triangulated plane is equipped with a PL metric where all the edges have
the same length. It is obvious that a regularly triangulated plane is isometric to
the complex plane. The main result of this paper is the following rigidity theorem.

Theorem 1. If a hexagonally triangulated plane with a piecewise flat metric �
satisfies the following conditions:

(1) it is PL conformal to the regularly triangulated plane,
(2) it is isometric to the complex plane C, and
(3) sup{all inner angles of the triangulation} < π/2,

then it has to be regular, i.e., � is constant, or equivalently, the conformal factor w
is constant.

Although our proof of the theorem relies on condition (3), we believe that it is
not a necessary hypothesis and conjecture the theorem still holds even without it.

Condition (2) is stronger than the flat condition that curvature K = 0. Indeed,
there are incomplete flat PL metrics on the plane. Condition (2) is equivalent to
the complete flatness. We call the conformal factor w linear if it is the restriction of
a linear function on C to the vertices in a regular triangulation. One can show that
a hexagonally triangulated plane is flat if it is conformal to a regular one with a
linear PL conformal factor w (see Lemma 2.5). This gives a two-parameter family
of the flat planes of hexagonal triangulation. Other than the regular ones, each of
them must have an overlap of positive area if it is immersed into the complex plane.

Figure 3 shows such an example with a linear PL conformal factor w. The left
picture shows the regular hexagonal triangulation of C. The mesh in the right figure
contains a nested infinite sequence of squares so that the ith square is transformed
to the (i+1)th square by a rotation of π/2 and a scaling whose ratio is independent
of i. One can choose this ratio so that the length cross ratio of each edge in the mesh
is 1. This mesh becomes a hexagonal triangulation of C\{0}. Extend this mesh to
the universal covering space of C\{0}, and obtain a flat plane with the hexagonal
triangulation where the length cross ratio of each edge is 1. Thus this extension of
the mesh in the right figure is PL conformal to the regularly triangulated plane. In
Figure 3, the colored edges on the left correspond to the edges of the same color on
the right. One can verify that the conformal factor w is linear based on the similarity
relation of the triangles in the mesh. It is shown in Lemma 2.6 that this extension
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of the mesh in the right figure cannot be immersed to C without overlapping. We
conjecture that this two-parameter family characterizes all hexagonal triangulation
of the flat plane conformal to the regular one.

Conjecture 1. A hexagonally triangulated flat plane is conformal to the regular
one if and only if the PL conformal factor w is linear.

The rigidity of the PL conformal transformation for a compact finitely triangu-
lated surface was initially investigated by Luo [5] where he proved that the metric
within a PL conformal class is locally uniquely determined by the curvature by
establishing a variational principle whose action functional is a locally convex func-
tion. In 2010, Bobenko, Pinkall and Springborn [1] found, among other things, an
explicit formula for the action functional and showed that it extends to a globally
convex one. Using this, they proved a global rigidity for finite triangulated surfaces.
However, the variational method cannot be extended to show the rigidity problem
for infinite triangulated surfaces since the action functional may become infinite.

A similar rigidity result has been proved in the infinite circle packing case. Rodin
and Sullivan [6] and He [2] proved the rigidity of hexagonal circle packings of the
complex plane and their methods can be extended to prove the rigidity of packings
with bounded valence. Schramm [7] used a topological property to extend the
rigidity for the packings of arbitrary (locally finite) planar triangulations. He [3]
showed that a variation along two conformal packings is a harmonic function on
a recurrent network and hence is constant. In this way, he proved the rigidity of
packings even with overlaps.

2. Outline of the proof

In this section we outline the proof of Theorem 1. With a properly chosen
coordinate system, one can index by a couple of integers (m,n) the vertices in the
regular triangulation with the edge length equal to 1:

V0 = {m+ nω|m,n ∈ Z, ω = −1

2
+

√
3

2
i}.

Since any hexagonal triangulation of the plane (Σ, T ) has the same combinatorial
structure as this regular one, we also index the vertices V of any hexagonal trian-
gulation in the same manner. We write i ∼ j if i, j ∈ V are two endpoints of an
edge in E.

The metric of a hexagonally trangulated plane (Σ, T ) conformal to a regular one
is uniquely determined by the PL conformal factor w up to a similarity. Condition
(2) in Theorem 1 that (Σ, T ) is isometric to C implies that the curvature induced
by the metric is everywhere 0, which in return imposes certain restrictions on the
function w. We introduce a conception called quasi-harmonic and show the function
w is quasi-harmonic.

Definition 2.1. We say a function f on V is quasi-harmonic if there exists m > 0
depending on f such that, for any i ∈ V , with its six neighbors i1, i2, · · · , i6, there
exist mi

1,m
i
2, · · · ,mi

6 ≥ m, satisfying

6∑
j=1

mi
j = 1 and f(i) =

6∑
j=1

mi
jf(ij).

We call such m a harmonic factor of f .
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We also define the discrete difference of the PL conformal factor w as follows.

Definition 2.2. For any c ∈ V , we define the difference of w with vector c as
Δcw(i) = w(i+ c)− w(i).

With this definition of quasi-harmonic and the difference operator, we have the
following lemma.

Lemma 2.1. If a hexagonally triangulated flat plane (Σ, T ) is PL conformal to a
regular one and

sup{all inner angles of the triangulation} = θ < π/2,

then for any constant c ∈ V , the function Δcw is quasi-harmonic and its harmonic
factor m(θ) depends only on θ.

By definition, if m is a harmonic factor of a quasi-harmonic function f , any m̃ ∈
(0,m) is also a harmonic factor. It should be noted that quasi-harmonicity is weaker
than harmonicity related to the graph Laplace operator. In quasi-harmonicity the
weight mj

i is directed, i.e., mj
i is not necessarily equal to mi

j . This means the

random walk on the 1-skeleton of T defined by the weightsmj
i may not be reversible.

Nevertheless, a quasi-harmonic function satisfies the maximal principle. Note that
it is only Lemma 2.1 whose proof in this paper requires condition (3) that all inner
angles of the hexagonal triangulation are strictly acute.

It is well known that a bounded harmonic function on a recurrent network must
be constant ([3, Lemma 5.5]). We show that a quasi-harmonic function on a network
has a similar property of almost constant over an arbitrarily large region. We
assume a graph distance between any two vertices i, j in V , i.e.,

d(i, j) = inf{t ∈ N |∃a path with t edges in E connecting i and j}.
We denote B(i, R) = {j ∈ V |d(i, j) ≤ R}. Note that in the definition we use ≤
instead of < and it’s a little different from the continuous case.

Lemma 2.2. Given a quasi-harmonic function f on V with harmonic factor m, if
there exist M ∈ R, R > 0, ε > 0 and i ∈ V so that

f(i) ≥ M − εmR and f |B(i,R) ≤ M,

we have f |B(i,R) ≥ M − ε.

In the case where the given quasi-harmonic function f is bounded, we can choose
M as its least upper bound and for any R, ε > 0 choose vertex i satisfying f(i) ≥
M − εmR, and then by Lemma 2.2 we have f |B(i,R) ≥ M − ε. This shows there
is an arbitrarily large region (specified by R) where a bounded quasi-harmonic
function is a constant up to an arbitrarily small perturbation (specified by ε). Based
on Lemma 2.2, we can prove a stronger result which says there is an arbitrarily
large region where any two bounded quasi-harmonic functions are simultaneously
constant up to an arbitrarily small perturbation.

Lemma 2.3. Given two bounded quasi-harmonic functions f1, f2 on V , assume
the least upper bound of f1 is M . Then for any R > 0, ε > 0, there exists N ∈ R

and i ∈ V such that
M − ε ≤ f1|B(i,R) ≤ M,

N − ε ≤ f2|B(i,R) ≤ N.
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Given a PL conformal factor w on the vertices V , we focus on two functions Δ1w
and Δωw. The following lemma claims both functions are indeed bounded.

Lemma 2.4. If a hexagonally triangulated flat plane (Σ, T ) is PL conformal to a
regular one, then supi∼j |w(j)− w(i)| < ∞.

This, together with Lemma 2.1, shows both Δ1w and Δωw are bounded quasi-
harmonic under the hypotheses of Theorem 1. Thus there is a large region where
both functions are close constants. To see the consequence of this fact, we first
investigate that of both Δ1w and Δωw being exactly constant, or equivalently, w
being linear. The following lemma claims that the linearity of w implies the flatness
of the plane.

Lemma 2.5. If it is conformal to a regular one with a linear PL conformal factor,
then a hexagonally triangulated plane (Σ, T ) has to be flat.

As we mentioned in the introduction section, this shows that there exists a two-
parameter family of the flat plane conformal to a regular one where w is induced by
any linear function ax+ by on the complex plane with a, b ∈ R. However, we show
that only if the function w is constant can the flat plane isometrically be embedded
into the complex plane.

Lemma 2.6. Assume (Σ, T ) is a hexagonally triangulated plane and conformal to
a regular one, with PL conformal factor w, if there exist M > 0, N ∈ R, so that

Δ1w ≡ M and Δωw ≡ N.

Then there exists R(M,N) > 0 depending on M,N such that for any i ∈ V ,
B(i, R) ⊆ V cannot be isometrically immersed into C without an overlap of positive
area.

Based on the above result, we are able to show the following lemma if the PL
conformal factor w is nearly linear over a large region.

Lemma 2.7. Assume (Σ, T ) is a hexagonally triangulated flat plane and conformal
to a regular one, with PL conformal factor w, and all inner angles of the triangu-
lation are in a compact set S ⊆ (0, π). For any M > 0, there exist ε > 0, R > 0
only depending on M,S such that for any N ∈ R, i ∈ V with

M − ε ≤ Δ1w|B(i,R) ≤ M and N − ε ≤ Δωw|B(i,R) ≤ N,

B(i, R) ⊆ V cannot be isometrically embedded into C without an overlap of positive
area.

With the above lemmas, we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 2.1 and Lemma 2.4, Δ1w and Δωw are both
bounded quasi-harmonic. If w is not constant, we may assume M = sup{Δ1w} > 0.
By condition (3), we have that all inner angles are in [π − 2θ, θ] ⊆ (0, π). Choose
R > 0, ε > 0 depending on M and θ according to Lemma 2.7. Once R and ε are
chosen, one can choose N and i according to Lemma 2.3 such that the PL conformal
factor w satisfies

M − ε ≤ Δ1w|B(i,R) ≤ M and N − ε ≤ Δωw|B(i,R) ≤ N.

Now by Lemma 2.7 this implies the part of the plane covering B(i, R) ⊆ V cannot
be isometrically embedded into C without an overlap of positive area. This reaches
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Figure 4. An acute triangle can be deformed to the target acute
triangle in a monotonic way.

a contradiction to (Σ, T ) being isometric to C. Therefore the PL conformal factor
w must be constant.

3. Properties of w (Lemmas 2.1 and 2.4)

3.1. Proof of Lemma 2.1. We first show the following two lemmas. Lemma 3.1
shows that when an edge is fixed, one acute triangle can be deformed to a target
acute triangle in a monotonic way (see Figure 4). Lemma 3.2 describes a relation
between the angles and the edge lengths of two triangles.

Lemma 3.1. {i1, j1, k1}, {i2, j2, k2} are two triangles with each inner angle <
π/2 and li1 = li2 . There exists a flow deforming {i1, j1, k1} to {i2, j2, k2} with
corresponding edge length li(t), lj(t), lk(t) satisfying

(1) li(t) = li1 = li2 ;
(2) lj(0) = lj1 , lj(1) = lj2 ;
(3) lk(0) = lk1

, lk(1) = lk2
;

(4) lj(t), lk(t), θi(t), θj(t), θk(t) are monotonic, continuous and piecewise
differentiable where θi(t), θj(t), θk(t) are the three inner angles.

Lemma 3.2. For any angle θ < π/2 there exist 0 < m(θ) < M(θ) such that for
any two triangles {i1, j1, k1}, {i2, j2, k2} with all the inner angles no larger than
θ and edge length li2 = li1 , lj2 = lj1e

ũj , lk2
= lk1

eũk , there exist a, b satisfying
m(θ) ≤ a, b ≤ M(θ) and θi2 − θi1 = −aũj − bũk.

We will prove Lemma 2.1 in the following three steps: (1) show Lemma 2.1 by
assuming Lemma 3.2 holds; (2) show Lemma 3.2 by assuming Lemma 3.1 holds;
(3) show Lemma 3.1.

3.1.1. Proof of Lemma 2.1 provided Lemma 3.2 holds. Assume i1, i2, . . . , i6 are six
neighbors of i arranged counterclockwise, and then i1 + c, i2 + c, . . . , i6 + c are
six neighbors of i + c arranged counterclockwise. We denote the angle of i in

triangle {i, j, k} as θjki . For simplicity, when i is fixed, we denote θ
ijij+1

i = θji ,

θ
(ij+c)(ij+1+c)
i+c = θji+c (assume i7 = i1) (see Figure 5).
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similar transformation

Figure 5. An acute triangle can be deformed to the target acute
triangle in a monotonic way.

We consider two triangles �iijij+1, �(i + c)(ij + c)(ij+1 + c) (see Figure 5).
Perform a similar transformation on the latter so that l′i+c = li and we obtain

l′ij+c = lije
Δcw(i)−Δcw(ij+1) and

l′ij+1+c = lij+1
eΔcw(i)−Δcw(ij).

By applying Lemma 3.2 to �iijij+1 and the similarly transformed version of
�(i+ c)(ij + c)(ij+1 + c), we have

θji+c − θji = −aj(Δcw(i)−Δcw(ij))− bj(Δcw(i)−Δcw(ij+1))

where m(θ) ≤ aj , bj ≤ M(θ), m(θ),M(θ) are determined by θ only. Sum the
equality above over all j = 1, 2, . . . , 6, and we obtain

0 =
6∑

j=1

(θji+c − θji ) (for K(i) = K(i+ c) = 0)

=−
6∑

j=1

(aj(Δcw(i)−Δcw(ij)) + bj(Δcw(i)−Δcw(ij+1)))

which leads to

Δcw(i) =

6∑
j=1

aj + bj−1∑6
j=1(aj + bj)

Δcw(ij) (b0 = b6)

where

aj + bj−1∑6
j=1(aj + bj)

>
2m(θ)

12M(θ)
=

m(θ)

6M(θ)
and

6∑
j=1

aj + bj−1∑6
j=1(aj + bj)

= 1.

Therefore Δcw is quasi-harmonic and m(θ)
6M(θ) is its harmonic factor. �
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3.1.2. Proof of Lemma 3.2 provided Lemma 3.1 holds. From Lemma 3.1 there exists
a monotonic flow deforming {i1, j1, k1} to {i2, j2, k2}. Assume uj(t) and uk(t) are
functions on [0, 1] satisfying

lj(t) = lj1e
uj(t) and lk(t) = lk1

euk(t).

It is easy to verify that uj(0) = uk(0) = 0, uj(1) = ũj , uk(1) = ũk. It can be
calculated that

∂θi
∂uj

= − cot θk and
∂θi
∂uk

= − cot θj .

By the properties of the deforming flow stated in Lemma 3.1, we have that
uj(t), uk(t) are monotonic, continuous and piecewise differentiable, and all the inner
angles remain in the interval [π − 2θ, θ] during the flow. Thus we can apply the
integral mean value theorem and obtain

θi2 − θi1 =θi(1)− θi(0)

=

∫ 1

0

dθi
dt

dt

=

∫ 1

0

(
∂θi
∂uj

duj

dt
+

∂θi
∂uk

duk

dt
)dt

=

∫ 1

0

(− cot θk)
duj

dt
dt+

∫ 1

0

(− cot θj)
duk

dt
dt

=− cot θk(xk)

∫ 1

0

duj

dt
dt− cot θj(xj)

∫ 1

0

duk

dt
dt (0 ≤ xj , xk ≤ 1)

=− cot θk(xk)uj(1)− cot θj(xj)uk(1).

Let m(θ) = cot θ, M(θ) = cot(π − 2θ). As θj(t) and θk(t) remain in the interval
[π − 2θ, θ] for all t ∈ [0, 1], we have m(θ) ≤ cot θk(xk), θj(xj) ≤ M(θ). This proves
the lemma. �

We remark that here we need the acute triangle assumption to ensure that
cot θk(t), cot θk(t) > 0 are positive and bounded.

3.1.3. Proof of Lemma 3.1. As li is fixed in this deforming flow, θi, θj and θk are
the functions of lj and lk. Conversely, lj and lk are the functions θj and θk. Note
that the triangles are assumed to be acute and therefore cot θi, cot θj and cot θk are
all positive. It can be calculated that

∂θj
∂lj

=
cot θi + cot θk

lj
> 0,

∂θk
∂lj

= −cot θi
lj

< 0,

∂θk
∂lk

=
cot θi + cot θj

lk
> 0,

∂θi
∂lk

= −cot θj
li

< 0,

∂θi
∂lj

= −cot θk
li

< 0 and
∂θi
∂lk

= −cot θj
li

< 0.
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Similarly, we have

∂lj
∂θj

= lj(cot θj + cot θi) > 0,
∂lj
∂θk

= lj cot θi > 0,

∂lk
∂θk

= lk(cot θk + cot θi) > 0 and
∂lk
∂θj

= lk cot θi > 0.

We prove the lemma by specifying the deforming flow for different cases as fol-
lows:

(1) If θj(0) ≤ θj(1) and θk(0) ≤ θk(1), we can choose the flow such that θj(t)
and θk(t) are both linear. This means θi(t) is linear too. Thus θ′j(t) ≥ 0,

θ′k(t) ≥ 0 and θi(t), θj(t), θk(t) are all acute for any t. Therefore
dlj
dt =

∂lj
∂θj

θ′j +
∂lk
∂θk

θ′k ≥ 0 and dlk
dt = ∂lk

∂θj
θ′j +

∂lk
∂θk

θ′k ≥ 0.

(2) If θj(0) ≥ θj(1) and θk(0) ≥ θk(1), this case is similar to case (1).
(3) If lj(1) = lj(0), we choose lj(t) = lj(0) and lk(t) is linear. Now we show

that θi(t), θj(t) and θk(t) are monotonous. It suffices to show they are

monotonic in variable lk.
∂θk
∂lk

= (cot θj + cot θi)/lk > 0 as θi + θj < π.
Note that we have not shown the acuteness of θj and θi. Without loss of
generality we may assume that li ≥ lj , and thus θj(t) < π/2. We have
∂θi
∂lk

= − cot θj/lk < 0 and thus θi is monotonic. This forces that θi(t) lies

between θi(0) and θi(1) and thus cot θi(t) > 0 for any 0 < t < 1. Therefore
∂θj
∂lk

= − cot θi/lk < 0 and θj is monotonic.

(4) If lk(0) = lj(1), this case is similar to case (3).
(5) If θj(0) ≤ θj(1), θk(0) ≥ θk(1), lj(0) ≤ lj(1) and lk(0) ≥ lk(1), we keep an-

gle θi fixed, and let θj increase and θk decrease at the same rate. This can
be done by moving the vertex i along the circumscribing circle of �i1j1k1.
Based on the sine law, lj increases and lk decreases. All the quantities are
moving close to their counterparts in �i2j2k2. Stop once one of the follow-
ing happens: (i) lj(t) reaches lj(1), or (ii) lk(t) reaches lk(1), or (iii) θj(t)
reaches θj(1), or (iv) θk(t) reaches θk(1). Note that one of the above four
cases must happen at some point t, which is a previously discussed case (1
or 2 or 3 or 4).

(6) If θj(0) ≥ θj(1), θk(0) ≤ θk(1), lj(0) ≥ lj(1) and lk(0) ≤ lk(1), this case is
similar to case (5).

Here we remark that the case where θi(0) = θi(1) must fall into either
case (5) or case (6).

(7) If θj(0) > θj(1), θk(0) < θk(1), lj(0) < lj(1) and lk(0) < lk(1), we fix lj
and increase θk. From the cosine law we have that lk increases at the same
time. By the same reasoning as in case (3), both θi and θj decrease at the
same time. We stop deforming once one of the following happens: (i) θi
reaches θi(1), or (ii) θj reaches θj(1), or (iii) θk reaches θk(1), or (iv) lk
reaches lk(1). Again, during the deformation, all the quantities are moving
close to their counterparts in �i2j2k2. Thus one of the above four cases
must happen at some point t, which is a previously discussed case.

(8) There are three cases left: (i) θj(0) < θj(1), θk(0) > θk(1), lj(0) > lj(1)
and lk(0) > lk(1), or (ii) θj(0) < θj(1), θk(0) > θk(1), lj(0) < lj(1) and
lk(0) < lk(1), or (iii) θj(0) > θj(1), θk(0) < θk(1), lj(0) > lj(1) and
lk(0) > lk(1). They are similar to case (7). �
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Figure 6. Illustration for the proof of Lemma 2.4.

3.2. Proof of Lemma 2.4. We prove Δ1w(i) = w(i+1)−w(i) has a lower bound
and the other inequalities can be shown in a similar way. Let i1, i2, . . . , i6 be six
neighbors of i and i1 = i+ 1 (see Figure 6). Let ew(i1)−w(i) = 1/m. We show that
m is no bigger than 6. Consider the triangle �ii1i2. We have l12/l1 = ew(i1)−w(i) =
1/m. By the triangle inequality, l2 > (m − 1)l12, and thus ew(i2)−w(i) = l12/l2 <
1/(m − 1). Now consider the triangle �ii2i3. Similarly we obtain ew(i3)−w(i) <
1/(m− 2). We can continue to consider the triangles around i and obtain

ew(i4)−w(i) < 1/(m− 3), . . . , and ew(i6)−w(i) < 1/(m− 5).

By contradiction, assume m > 6. For any 1 ≤ j ≤ 6, we have ew(ij)−w(i) < 1 and
w(i) > w(ij). Thus lj,j+1 is the shortest side in �iijij+1 and its corresponding

angle θji is the smallest and thus less than π/3. Then Ki = 2π −
∑6

j=1 θ
j
i > 0.

This contradicts K ≡ 0. Therefore m ≤ 6 and ew(i1)−w(i) = 1/m > 1/6, and
w(i1)− w(i) ≥ log(1/6). �

4. Properties of quasi-harmonic functions (Lemmas 2.2 and 2.3)

4.1. Proof of Lemma 2.2. Consider any j ∈ B(i, R − 1), and let j1, j2, · · · , j6
be its six neighbors. Since f is quasi-harmonic, there exist m1,m2, · · · ,m6 ≥ m,
satisfying

∑6
k=1mk = 1 and f(j) =

∑6
k=1 mkf(jk). Thus for any k, we have

M − f(jk) ≤ (M − f(j))/m. In other words, for any two neighboring vertex j � l
with j ∈ B(i, R − 1), we have M − f(l) ≤ (M − f(j))/m. By induction, we can
show that M − f(j) ≤ (M − f(i))/mn if d(i, j) = n ∈ N+. In particular, since
M − f(i) < εmR, for any j ∈ B(i, R), M − f(j) < ε, i.e., M − ε ≤ f |B(i,R). �

4.2. Proof of Lemma 2.3. Let m be a harmonic factor of both f1 and f2. Choose
a proper M2 such that |f2(i)| < M2 for any vertex i. Let n be an integer larger
than 2M2/(εm

R) and R2 = nR. Since M is the least upper bound of f1, there
exists a vertex i such that f1(i) > M − εmR2 . By Lemma 2.2, f1|B(i,R2) > M − ε.

Let F (k) be the maximum of f2 in B(i, kR), i.e. F (k) = maxj∈B(i,kR) f2(j) (k =
0, 1, . . . , n). By the definition of F , we have −M2 ≤ F (0) ≤ F (1) ≤ · · · ≤ F (n) ≤
M2. So there exists k ∈ {1, 2, . . . , n} such that F (k)− F (k − 1) ≤ 2M2/n ≤ εmR.
Choose j0 ∈ B(i, (k − 1)R) s.t. f2(j0) = F (k − 1) ≥ F (k) − εmR. For B(j0, R) ⊆
B(i, kR), we have f2|B(j0,R) ≤ F (k). By Lemma 2.2, f2|B(j0,R) ≥ F (k) − ε. Let
N = F (k) and we have N − ε ≤ f2|B(j0,R) ≤ N . As B(j0, R) ⊆ B(i, R2), we also
have M − ε ≤ f1|B(j0,R) < M . We can just take j0 here as i in the lemma. �
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Figure 7. In the case where w is linear, there are only two types
of triangles in the hexagonal mesh up to a similar transformation.
(Color available online.)

5. Consequences of w being (almost) linear

(Lemmas 2.5, 2.6 and 2.7)

5.1. Proof of Lemma 2.5. Since w is linear, there exist M and N such that
Δ1w ≡ M and Δωw ≡ N . One can show that for any vertex i, �ii1i2, �i4ii3 and
�i5i6i are similar to each other, and thus θ1i + θ3i + θ5i = π (see Figure 7). For the
same reason, θ2i + θ4i + θ6i = π. Therefore Ki = 0 for any vertex i ∈ V .

5.2. Proof of Lemma 2.6.

Lemma 5.1. Assume we have an immersion g from Σ to C, and we take a vertex in
V just as the points in Σ, with unit vector e ∈ {±1,±ω,±(ω+1)}. For any i ∈ V ,
we have a unique orientation preserving similar transformation (non-degenerated
1-dimension complex affine transformation) T on C such that for any k ∈ Z,
T (g(i+ ke)) = g(i+ (k + 1)e).

Proof. From the proof of Lemma 2.5, there are two types of triangles up to similar
transformation in the triangulation, which means the angle between vector

−−−−−−−−−−−−−−−−→
g(i+ (t− 1)e)g(i+ te),

−−−−−−−−−−−−−−−−→
g(i+ te)g(i+ (t+ 1)e)

is independent of t. Here t is an integer. By the linearity of w, one can also verify
that

|
−−−−−−−−−−−−−−−−→
g(i+ (t− 1)e)g(i+ te)|/|

−−−−−−−−−−−−−−−−→
g(i+ te)g(i+ (t+ 1)e)|

is independent of t. Thus there exists the unique k ∈ C such that

(g(i+ (t+ 1)e)− g(i+ te)) = k(g(i+ te)− g(i+ (t− 1)e)).

If we denote b = g(i + (t + 1)e) − kg(i + te) = g(i + te) − kg(i + (t − 1)e), then b
is a constant independent of t. Therefore g(i + (t+ 1)e) = kg(i + te) + b, and the
transformation T : z �→ kz + b is the unique map as we claimed. �

Assume we have an immersion g from Σ to C. From the hypothesis, w is linear on
V0. For any i ∈ V , there are at least two unit vectors e1, e2 ∈ {±1,±ω,±(ω + 1)}
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such that w(i + e1) − w(i) < 0, w(i + e2) − w(i) < 0. By Lemma 5.1, there
exists the unique contract affine transformation T1 on C which maps g(i + te1)
to g(i + (t + 1)e1) and has the unique fixed point denoted O1. Similarly, there
exists the unique contract affine transformation T2 on C which maps g(i+ te2) to
g(i+ (t+ 1)e2) and has the unique fixed point denoted O2.

For ||T1|| = e2(w(i+e1)−w(i)) < 1, ||T2|| = e2(w(i+e2)−w(i)) < 1, by the fixed point
theorem Tm

1 (g(i)) → O1, T
m
2 (g(i)) → O2 as m → ∞.

|O1 −O2|
= lim

m→∞
|Tm

1 (g(i))− Tm
2 (g(i))|

= lim
m→∞

|g(i+me1)− g(i+me2)|

≤ lim
m→∞

(
m∑
s=1

|g(i+me1 + (s− 1)e2)− g(i+me1 + se2)|

+
m∑
s=1

|g(i+me2 + (s− 1)e1)− g(i+me2 + se1)|)

≤ lim
m→∞

(m|g(i+me1)− g(i+me1 + e2)|+m|g(i+me2)− g(i+me2 + e1)|)

= lim
m→∞

m(||T1||m2 |g(i)− g(i+ e2)|+ ||T2||m2 |g(i) + g(i+ e1)|)

= 0 (for ||T1||, ||T2|| < 1).

So O1 = O2. We may assume it is the origin and T1(z) = r1e
2πiα1z, T2(z) =

r2e
2πiα2z. There exist ms → +∞, ns → +∞ such that rms

1 r−ns
2 → 1. And

for any ε > 0, because {|T−ns
2 Tms

1 (g(i))| : ∀s} is bounded, there exists s �= t
such that |T−ns

2 Tms
1 (g(i)) − T−nt

2 Tmt
1 (g(i))| < ε/2 and rms

1 r−ns
2 > 1/2, and thus

|g(i) − Tns−nt
2 Tmt−ms

1 (g(i))| < ε. Choose R = |ns − nt| + |mt − ms| and then
Tns−nt
2 Tmt−ms

1 g(i) ∈ B(i, R), and when ε is small enough, Tns−nt
2 Tmt−ms

1 g(i) must
be in the hexagonal neighborhood of g(i) and this indicates overlapping. �

5.3. Proof of Lemma 2.7. For the sake of convenience, assume i = 0 and w(0) =
0. Otherwise one can perform a similar transformation to the mesh to make w(0) =
0. For any positive integer R, let

WR = {w : B(0, R) → R|w(0) = 0},
W f

R = {w ∈ WR|w induces zero curvature in B(0, R)}, and
W o

R = {w ∈ W f
R|The immersion of B(0, R) into the plane has an

overlap of positive area}.

WR is a linear space of finite dimension and can be equipped with a metric,

for instance, induced from L2 norm. W f
R and W o

R are two subsets (not necessarily

subspaces) of WR and have a natural inherent metric. Based on Lemma 2.4, W f
R is

bounded. When we immerse the mesh in B(0, R) with w ∈ W f
R into the plane, we

have the freedom of choosing a base point and the orientation of an edge incident to
the base point. On the other hand, once they are chosen, the immersion is uniquely
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determined. By induction, one can show that the positions of the immersed vertices
are continuous functions of w. In addition, whether the immersion has an overlap
of position area is independent of the choice of the base point and the orientation
of that edge. Therefore for any w ∈ W o

R, any sufficiently small perturbation of w

in W f
R will not move w out of W o

R. So W o
R is an open subset of W f

R.
According to the hypothesis of the lemma, we fix M > 0. For any N , let wM,N

be the linear PL conformal factor i.e., Δ1wM,N ≡ M and ΔωwM,N ≡ N . By

Lemma 2.5, wM,N |B(0,R) ∈ W f
R for any R. For simplicity, when it is clear from

the context, we also denote wM,N as its restriction to B(0, R). By Lemma 2.6, we
know for any N there exists R(N) large enough such that wM,N ∈ W o

R(N). Since

W o
R(N) is open in W f

R(N), there exists a neighborhood of wM,N in W f
R(N) which

remains in W o
R(N). In particular, there exists ε(N) > 0 sufficiently small such that

for any N ′ ∈ (N − ε(N), N + ε(N)), any w ∈ W f
R(N) satisfying |Δ1w −M | < ε(N)

and |Δωw −N ′| < ε(N) is still in W o
R(N).

So far both ε(N) and R(N) depend on N . To obtain ε and R independent on
N as claimed in the lemma, our strategy is to show that all possible N form a
compact set. Then based on the above results, we have an open covering of this
compact set using the intervals (N − ε(N), N + ε(N)) for any N . From the com-
pactness, we have a finite subcover and thus obtain a uniform ε and R independent
on N .

Let S̃ denote an open set such that S ⊆ S̃ ⊆ S̃ ⊆ (0, π), and define a set

NM = {N |all inner angles in the hexagonal mesh

with the conformal factor wM,N are in S̃}.

We claim that there exists ε0 ≥ 0 such that for any ε ≤ ε0 and any R > 2, if N is a
real number so that there exists a conformal factor w satisfying the hypotheses of
the lemma, in particular including that

(i) the metric induced by w is flat,
(ii) all inner angles are in S,
(iii) M − ε ≤ Δ1w|B(i,R) ≤ M , and
(iv) N − ε ≤ Δωw|B(i,R) ≤ N ,

then N ∈ NM . This indeed shows NM is the set of all possible N .
To prove the above claim, consider the following two triangles�i(i−1)(i+ω) and

�i(i+1+ω)(i+ω) (see Figure 8). The inner angles of�i(i−1)(i+ω) are continuous
functions of Δ1w(i − 1) and Δωw(i), and the inner angles of �i(i+ 1 + ω)(i+ ω)
are continuous functions of Δ1w(i+ ω) and Δωw(i). Denote

D1 = {(Δ1w(i− 1),Δωw(i))|the inner angles of �i(i− 1)(i+ ω) are in S},

D2 = {(Δ1w(i+ ω),Δωw(i))|the inner angles of �i(i+ 1 + ω)(i+ω) are all in S},

D̃1 = {(Δ1w(i− 1),Δωw(i))|the inner angles of �i(i−1)(i+ω) are all in S̃}, and

D̃2 = {(Δ1w(i+ ω),Δωw(i))|the inner angles of �i(i+1+ω)(i+ ω) are all in S̃}.
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Figure 8. Illustration for the proof of Lemma 2.7. (Color avail-
able online.)

By Lemma 2.4 we know that D1, D2 are bounded in R2. As S is compact and S̃ is

open, D1 and D2 are closed and thus compact, and D̃1, D̃2 are open neighborhoods

of D1 and D2, respectively. So d(D1, D̃
c
1) > 0, d(D2, D̃

c
2) > 0. Choose ε0 <

1
2 min{d(D1, D̃1

c
), d(D2, D̃2

c
)}.

Now for any R ≥ 2 and any ε < ε0, let N be a number so that there exists a
conformal factor w satisfying the above hypotheses (i, ii, iii, iv). Then we have
(Δ1w(i − 1),Δωw(i)) ∈ D1 and d((Δ1w(i − 1),Δωw(i)), (M,N)) < 2ε ≤ 2ε0 <

d(D1, D̃1

c
), Thus (M,N) ∈ D̃1. Similarly, (M,N) ∈ D̃2. Note that from the proof

of Lemma 2.5, in a hexagonally triangulated plane conformal to a regular one with
a linear conformal factor wN,M , there are only two types of triangles up to similar
transformation, which can be represented by�i(i−1)(i+ω) and�i(i+1+ω)(i+ω).
Thus we have N ∈ NM .

According to the discussion above, for any N ∈ NM there exist R(N) and ε(N)

such that for any N ′ ∈ (N − ε(N), N + ε(N)), if w ∈ W f
R(N) satisfies |Δ1w−M | <

ε(N) and |Δωw−N ′| < ε(N), then w is inW o
R(N). Now

⋃
N∈NM

(N−ε(N), N+ε(N))

is an open cover ofNM and there exists a finite subcover
⋃n

j=1B(Nj , ε(Nj)). Choose

ε = min{ε0, ε(N1), · · · , ε(Nn)} and R = max{2, R(N1), · · · , R(Rn)}.
Finally, for any N , if w satisfies the above hypotheses (i, ii, iii, iv) for the chosen

ε and R, from the above claim, we have that N ∈ NM . Thus N ∈ (Nj − ε(Nj),

Nj − ε(Nj)) for some 1 ≤ j ≤ n. By the choice of ε and R, we have w ∈ W f
R(Nj)

and |Δ1w−M | < ε(Nj) and |Δωw−N | < ε(Nj). This implies w ∈ W o
R and proves

the lemma. �
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