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ABSTRACT 

We consider invariant measures for partially hyperbolic, semisimple, 

higher rank actions on homogeneous spaces defined by products of real 

and p-adic Lie groups. In this paper we generalize our earlier work to 

establish measure rigidity in the high entropy case in tha t  setting. We 

avoid any additional ergodicity-type assumptions but rely on, and extend 

the theory of conditional measures. 

1. I n t r o d u c t i o n  

This paper is a part of the program of studying invariant measures for hyperbolic 

actions of higher rank abelian groups: Z k and ~k for k > 2, based on the 

considerations of entropy and conditional measures on invariant foliations. This 

program was initiated in [18] and continued in [16, 6, 17]. We precede the 

description of our results by a general discussion of problems tha t  motivated 

our work. 
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1.1. THE FURSTENBERG CONJECTURE. In his seminal paper [11] H. Fursten- 

berg showed that the action of the multiplicative semigroup Em,n C N generated 

by • • (with m,n  not powers of the same integer) on It~/Z has only one 

infinite closed E-invariant set, namely ~ /Z itself. Since there are many closed 

sets that are invariant under • (or • this is a remarkable rigidity property 

of the joint action, which was subsequently generalized by D. Berend [1, 2] to 

the higher dimensional torus and other groups. 

Furstenberg also raised the question for the measure theoretic extensions of 

this. 

CONJECTURE 1.1 (Furstenberg): Let p be an Em,n-invariant and ergodic prob- 

ability measure on I~/Z. Then # is either atomic supported by tinitely many 

rational periodic points or # is the Lebesgue measure. 

The first partial result for the measure problem on ~ was given by Lyons 

[23] under a strong additional assumption. D. Rudolph [33] and A. Johnson 

[15] weakened this assumption considerably, and proved that p must be the 

Lebesgue measure provided that • (or • has positive entropy with respect 

to #. 

1.2. NUMBER THEORY AND DYNAMICS. There are numerous connections 

between number theory and dynamical systems. In fact Furstenberg's result 

mentioned earlier about Em,n-invariant closed sets can be viewed in that light: 

Given any two multiplicatively independent integers m, n _> 2 and an irrational 

ct E ]1{, the set (minJct: i , j  C N} is dense modulo 1. 

A slightly different setting is the following. Dynamics on the space of uni- 

modal lattices in ~ k  or equivalently on SL(k, I~)/SL(k, Z), play a key role for 

many problems in the theory of diophantine approximations. 

The long-standing Oppenheim Conjecture was solved by G. Margulis [24] 

through the study of the action of a certain subgroup H on the space of unimodal 

lattices in I~ 3. This conjecture, posed by A. Oppenheim in 1929, deals with 

density properties of the values of indefinite quadratic forms in three or more 

variables. So far there is no proof known of this result in its entirety which 

avoids the use of dynamics of homogeneous actions. 

An important property of the acting group H as above is that it is generated 

by unipotents: i.e. by elements of SL(k, ]1{) all of whose eigenvalues are one. 

Another situation where the action of a unipotent subgroup appears is the 

horocycle flow on (the unit tangent bundle of) quotients of the hyperbolic plane. 

Here H. Furstenberg [12] showed earlier that the horocycle flow is uniquely 
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ergodic if the quotient is compact. For non-compact quotients this is not true, 

but the only other ergodic measures are those supported by periodic horocycles 

as was shown by S. Dani and J. Smillie [5]. 

The dynamical results proved by Margulis, Furstenberg, Dani and Smillie 

were special cases of a conjecture of M. S. Raghunathan regarding the actions 

of general unipotents groups; if H C_ G is a subgroup of an arbitrary con- 

nected Lie group G that is generated by unipotents and F is a lattice in G, 

then the left action of H on the homogeneous space G /F  shows topological and 

measurable rigidity in the sense that the only possible H-orbit closures and H- 

ergodic probability measures are of an algebraic type. Raghunathan's conjecture 

was proved in full generality by M. Ratner in a landmark series of papers 

([27, 28] and others; see also the expository papers [29, 30]). 

A. Borel and G. Prasad [3] pointed out that a natural generalization of 

Raghunathan's conjecture to the case where G is an S-algebraic group (i.e. 

a product of real and p-adic algebraic groups) would imply an S-arithmetic 

analogue of the Oppenheim conjecture, and they proved a result in that 

direction. The S-algebraic Raghunathan's conjecture was proved in full in- 

dependently by G. Margulis and G. Tomanov [25] and by M. Ratner [31]. 

Notice that rigidity of measures or orbit closures holds in the above setting 

regardless of the size of the acting group as long as it is generated by unipotent 

elements. 

Another long-standing conjecture that is intimately linked to dynamics on 

SL(3, II~)/SL(3, Z) is the following. 

CONJECTURE 1.2 (Littlewood (c. 1930)): For every u,v  C N, 

(1.1) lim inf n(nu)(nv)  = O, 
n - - + o o  

where (w) = minnez ]w - n[ is the distance of  w E I~ to the nearest integer. 

However, here it is the left action of the group A of positive diagonal matrices 

on SL(3, II~)/SL(3, Z) that gives the connection. This is a particular case of 

a Weyl  chamber  flow whose dynamics is not as well understood as that of 

unipotent actions. Notice that, similar to the case of the Em,n action on N/Z, 

one-parameter subgroups of the Weyl chamber flow are par t ia l ly  hyperbol ic  

and do not show rigidity. The analogue to Furstenberg's result resp. conjecture 

are given by two conjectures of G. Margulis, both of which would imply Little- 

wood's conjecture. E. Lindenstrauss and B. Weiss [22] have obtained a partial 

result regarding the topological conjecture, and more recently we showed in joint 

work with E. Lindenstrauss the following 
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THEOREM 1.3 ([7, Thm. 1.3]): Let # be an A-invariant and ergodic measure 

on X = SL(k, lI~)/SL(k, Z) for k _~ 3. Assume that there is some one parameter 

subgroup of A which acts on X with positive entropy. Then # is algebraic. 

Moreover, we applied this to Littlewood's conjecture and proved that the set 

of exceptions has Hausdorff dimension zero [7, Thin. 1.5]. 

1.3. MEASURE RIGIDITY, LOW ENTROPY, AND HIGH ENTROPY. Rudolph's 

result [33] has subsequently been proved using slightly different methods by 

J. Feldman [10] and W. Parry [26] but positive entropy remained a crucial 

assumption. A further extension was then given by B. Host [13]. 

When Rudolph's result appeared, the second author suggested another test 

model for the measure rigidity: two commuting hyperbolic automorphisms of 

the three-dimensional torus. In joint work with R. Spatzier the second author 

developed a more geometric technique [18, 19], which was subsequently extended 

by B. Kalinin and the second author [16] as well as by B. Kalinin and R. Spatzier 

[17]. 

This method is based on the study of conditional measures induced by a given 

invariant measure it on certain invariant foliations. The foliations considered 

include stable and unstable foliations of various elements of the actions, as well 

as intersections of such foliations, and are related to the Lyapunov exponents 

of the action. For Weyl chamber flows these foliations are given by orbits of 

unipotent subgroups normalized by the action. 

Unless there is an element of the action which acts with positive entropy 

with respect to it, these conditional measures are well-known to be 5-measure 

supported on a single point, and do not reveal any additional meaningful infor- 

mation about it. Hence this and later techniques are limited to study actions 

where at least one element has positive entropy. Under ideal situations, such as 

the original motivating case of two commuting hyperbolic automorphisms of the 

three torus, no further assumptions are needed, and a result entirely analogous 

to Rudolph's theorem can be proved using the method of [18] (see also [16]). 

However, for Weyl chamber flows, an additional assumption is needed for 

the proof [18] to work. This assumption is satisfied, for example, if the flow 

along every singular direction in the Weyl chamber is ergodic (though a weaker 

hypothesis is sufficient, see also [17]). This additional assumption, which unlike 

the entropy assumption is not stable under weak* limits, precludes applying the 

results from [18] in many cases. 

Recently, two new methods of proofs were developed, which overcome this 

difficulty. 
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The first method was developed by the authors [6], following an idea men- 

tioned at the end of [18]. This idea uses the non-commutativity of the above- 

mentioned foliations (or more precisely, of the corresponding unipotent groups). 

This paper deals with general ll~-split simple Lie groups; in particular it is shown 

there that  if # is an A-invariant measure on X = SL(k, ll~)/F, and if the entropies 

of # with respect to all one parameter groups are positive, then # is the Haar 

measure. It should be noted that  for this method the properties of the lattice 

do not play any role, and indeed this is true not only for F = SL(k,Z)  but  

for every discrete subgroup F. Subsequently this was called the h igh  e n t r o p y  

case  and the corresponding method was one of the main tools for Theorem 1.3 

and the above mentioned partial result on Littlewood's conjecture [7]. A second 

key argument which appeared in [6] the first time was the product structure of 

tho conditional measures. 

A different approach was developed by E. Lindenstrauss [21] and was used to 

prove a special case of the quantum unique ergodicity conjecture. A special case 

of the main theorem of [21] is the following: Let A be an II~-split Cartan sub- 

group of SL(2, ~) • SL(2, ~). Any A-ergodic measure on SL(2, ~) • SL(2, ~ ) / F  

for which some one parameter subgroup of A acts with positive entropy is al- 

gebraic. Here F is, e.g., an irreducible lattice in SL(2, ~) • SL(2, 1~). Since the 

foliations under consideration in this case do commute, the methods of [6] are 

not applicable. This was the other method used for Theorem 1.3 and Little- 

wood's conjecture in [7] and was applied in the case where very few conditional 

measures are not (f-measures; this is the low e n t r o p y  case.  Here the earlier 

mentioned product  structure of the conditional measures was proved in a more 

formal setting and was crucial to the argument. 

1.4. GENERALIZING THE HIGH ENTROPY ARGUMENT. In this paper we gener- 

alize the method [6] for the high entropy case to the case of a semisimple action 

on a locally homogeneous space defined by a product  of real and p-adic Lie 

groups. This generalization is given by two separate theorems which give the 

product structure resp. translation invariance of the conditional measures. We 

expect that  these two theorems together with a generalization of the method 

[21] for the low entropy case will likely again lead to a full understanding of the 

positive entropy case in this setting. 

The importance of the understanding of conditional measures for measure 

rigidity lies in two central facts. 

�9 Positive entropy for a partially hyperbolic map is equivalent to the con- 

ditional measures not being atomic a.e. For the high entropy case it is 
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important  that  this statement can be made more quantitative; entropy 

can only be high if the support of the conditional measure is big; see also 

Section 9.1. 

�9 Secondly, translation invariance of the measure in question can be char- 

acterized by the conditional measures; see Proposition 5.7. 

These two facts allow one to show in certain cases that  positive entropy implies 

translation invariance of the measure. 

We now state the assumptions to the two main technical theorems of the 

paper which are stated below (not using some of the abbreviations defined in 

the course of the paper); see Section 3-4 for more details on the preliminary 

material needed. 

Let S be a finite set of places, i.e. a set containing rational primes and the 

symbol c~ (that stands for the Archimedean norm on Q). We write a for the 

elements of S, unless we want to specify that  we talk about a rational prime 

p or about the Archimedean place ec. So Q~ denotes either the field of p-adic 

integers QB or the real numbers ]R accordingly. 

Let G~ be a Lie group over Q~ for ~ E S and define Gs  to be the direct 

product  of these. Let X be a locally compact second countable metric space. 

Assume that  Gs  acts locally free by homeomorphisms of X, and write (h, x) 

hx for the action. Moreover, assume that  c~ is a Zk-action by homeomorphisms 

of X and 0 is a zk-action by automorphisms of Gs  such that  

~n(hx)=On(h)~n(x) f o r x E X ,  h E G s ,  a n d n E E  k. 

Then the derivative of 0 gives a (coordinate-wise linear) Zk-action A - -  t h e  

ad jo in t  a c t i o n  - -  on the product gs of the Lie algebras g~ of G~ for a E S. 

Local properties of ct with respect to the Gs-leaf can be formulated in terms 

of the 0-action and ultimately in terms of the linear action A. Recall that  A is 

semisimple if it is a direct product of diagonalizable linear actions (where we do 

not assume that  the eigenvalues lie in Q~). 

For instance, let m E Z k and let [~ be a sum of A-invariant Lie subalgebras 

I?~ C g~ such that  A m contracts every element of t}. The m - s t a b l e  s u b g r o u p  

H o f  Gs (associated to 0) is the minimal 0-invariant subgroup of Gs that  is 

a product  of (not necessarily closed) Lie subgroups H~ with Lie algebra 0~ for 

a E S; see Proposition 4.11. The associated leaves Hx for x E X are part  of 

the stable 'manifold' of x with respect to am. 

If a subgroup H I is in fact n-stable for all n that  lie in an open halfspace, then 

we call H ~ a coa r se  L y a p u n o v  s u b g r o u p .  We determine the halfspace by its 
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outward normal ray A and write H A -- H ~ for such a group. The basic Corollary 

4.13 shows that  every m-stable subgroup H can be written as a product of 

coarse Lyapunov subgroups H A 1 , . . . , H  A~, where Ai ~ Aj for i ~ j .  (This 

homeomorphism is in general not a group isomorphism.) 

Let # be an a-invariant measure on X. Then there exists a family of condi- 

tional measures #H for the foliation into H-orbits that  are almost surely locally 

finite measure on H.  Roughly speaking, these measures describes the behavior 

(including its dimension) of the original measure (near x) along the direction of 

H; see Section 5 for a formal definition and [21] for the construction. 

We are now ready to state the main technical theorems. 

THEOREM 8.4: Let a ,X ,O ,  Gs,  A and ~s be as above, and suppose the 

adjoint action A is a semisimple. Let H be an m-stable subgroup of Gs,  

let H A 1 , . . . , H  A~ be the different coarse Lyapunov subgroups of H, and let 

~: H A~ • . . .  • H A~ -+ H be the homeomorphism defined by ~b(gl,...,g~) = 

gl "" �9 g~. Then any (~-invariant probability measure # on X satisfies 

•  • ) a.e . ,  

where #H and #A~ are the conditional measures for the H-leaves and the 

H A~-leaves for { = 1 , . . . ,  f respectively. 

This decomposition helps to understand the structure of the conditional mea- 

sures (and therefore of the original measure) since the conditional measures for 

coarse Lyapunov subgroups are easier to study. For these there exists sequences 

nj for which the restriction of 0 nj are approximate isometries. 

A particular case of this theorem for abelian Gs,  namely Theorem 8.2, is one 

of the tools for a full analogue of Rudolph's theorem for the higher dimensional 

torus as announced [8] by E. Lindenstrauss and the first author. 

In case the coarse Lyapunov subgroups do not commute with each other, we 

obtain the following generalization of the high entropy argument. 

THEOREM 8.5: With the same notation and assumptions as before, for any 

a-invariant probability measure # there exist for a.e. x two subgroups 

H~C_P~CH 

with the following properties: 

(1) #H is supported by Px. 

(2) #H is left- and right-invariant under multiplication with elements of Hx. 
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(3) The subgroups Hx and Px are both products of subgroups of G~ for a E S. 

The latter are images under exp of Lie subalgebras of ~ .  Moreover, Hx 

and Px allow weight decompositions. 

(4) Hx is a normal subgroup of Pz and any elements g E Px N H A'~ and 

h C Px M H As of different coarse Lyapunov subgroups (r ~ s) satisfy that 

gH~ and hH~ commute with each other in P~/Hx. 

(5) #A~ is left- and right-invariant under multiplication with elements of 

Hx M H Ai for i = 1, . . . ,2 .  

The notion 'weight decomposition' is defined in Definition 6.1 - -  in the case 

of a real Lie group and real eigenvalues of A it is equivalent to Hx and Px being 

normalized by 8. 

In Section 2 we give a few corollaries of the above structure theorems for 

conditional measures. Moreover, E. Lindenstrauss and the first named author 

[9] apply Theorem 8.5 to show algebraicity of ergodic joinings for certain higher 

rank semisimple actions. 

1.5. ACKNOWLEDGEMENTS. We thank the referee and E. Lindenstrauss for 

their comments on the earlier draft. 

The authors gratefully acknowledge the hospitality of the Center for 

Dynamical Systems at the Penn State University and the University of 

Washington respectively. 
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2. M e a s u r e  r ig id i ty  in t h e  h igh  e n t r o p y  case  

We start  by a few definitions. Let S denote as before a finite set of places. 

De/inition 2.1: For every a E S let G~ be a Lie group over ( ~  with Lie 

algebra 9~. Then Gs = 1-I~esGa is an S-Lie  g r o u p  and 9s = ~ z e s g o  

its corresponding S-Lie  a lgebra .  

Notions like S-Lie subalgebra are defined similarly as products of the 

corresponding objects over ~ for a E S. 

Let F C Gs  be a discrete subgroup, and let a: Z k -+ Gs be a homomorphism. 

Then a induces a left action on X = Gs/F  by letting 

an(gF) = (a(n)g)F where gF E X. 
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Furthermore, a gives rise to an Zk-action 0 by automorphisms of Gs  and an 

adjoint Zk-action A on gs by letting On(g) = anga -n  and A n = Ads(n) for 

g C Gs  and n E Z k, see Section 3.2. 

Definition 2.2: Let 0-  C gs be an A-invariant S-Lie subalgebra such that  all 

eigenvalues of A m restricted to 0-  have absolute value less than one, and let H -  

be the corresponding m-stable S-Lie subgroup. Then mod(a  m, H - )  denotes the 

negative logarithm of the module of A m restricted to b (with respect to the Haar 

measure m 0 of I~), i.e. 

m o ( A m B )  = e-m~ for any measurable B C 0. 

A Lyapunov weight is a linear functional A: ll~ k --+ ~ (possibly zero) such that,  

for some joint eigenspace of the linear action A, the eigenvalues tm of A m satisfies 

log [tm[~ = A(m) for all m G zk; see Section 4. The corresponding Lyapunov 

weight space is the sum of all eigenspaces that  give rise to the same Lyapunov 

weight; it is denoted by g~, resp. by 0 h = O N 1~ if O is an A-invariant S=Lie 

subalgebra. In the case of a Caftan action and a real Lie group the Lyapunov 

weights coincides with the real part  of the roots, and the weight spaces with the 

sum of the root spaces that  give rise to the same Lyapunov weight. 

We now state the main assumption on the action needed for our theorem. 

Note that  the condition is local in its nature and independent of F. 

Definition 2.3: The restriction of the adjoint action A to an A-invariant S-Lie 

subalgebra 0 C gs has a r a n k  one  f a c t o r  if there exists an 0~ C_ Ij with the 

following properties: 

(1) b' is an S-Lie ideal. 

(2) ~' is invariant under A. 

(3) Any two nonzero Lyapunov weights A1 and A2 of ~, whose weight spaces 

0xl, 0~2 are both not contained in 0', are proportional. 

(4) 0 ' ~  O. 

In particular, if A restricted to 0 has no rank factors, then there are two 

linearly independent Lyapunov weights A1, A2 (set 0' = {0}), and so k _> 2. 

For every m E Z k there exists a unique maximal m-stable S-Lie subgroup H 

of Gs;  see Section 4. The notion of (maximal) m-unstable S-Lie subgroups is 

defined similarly. 

THEOREM 2.4: Let Gs be an S-Lie group, let F C Gs be a discrete subgroup, 

and let X = G s / F .  Let a be a Zk-action on X by left multiplication with 

elements of G s such that the adjoint action on the Lie algebra gs is semisimple. 
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Let m E Z k, and let t} be the S-Lie algebra that is generated by the maximal 

m-stable S-Lie subalgebra D- and the maximal m-unstable S-Lie subalgebra 

~+ of 9s. Assume that t} has no rank one factors. Then there exists some 

q < 1 (which is independent of F) such that every a-invariant and ergodic 

probability measure # on X with h~,(a m) ~ qmod(am, H - )  satisfies in fact 

h~(a m) = mod(a  m, H - )  and that # is invariant under left multiplication by 

elements of H -  and H +. 

Clearly, if we know additionally tha t  G s  is generated by H -  and H +, then 

F has to be a lattice in Gs and # = m x  is the Haar  measure of X.  

2.1. TWISTED WEYL CHAMBER FLOWS. Let G be a semisimple real connected 

Lie group, and let a: ]~k _+ G be a homomorphism into a Caf tan  subgroup of 

G (so tha t  Add(t) is semisimple for every t E ~k). For every discrete subgroup 

F C G and t E ~k we identify a t = a ( t )  with its left action on X = G/F and 

obtain the W e y l  c h a m b e r  f low a on X.  

Every root A of G can be restricted to the image of the derivative Da (with 

base point 0 E ~k ), and induces in this way a linear map A(a) = )~oDa: ~k ~ C. 

For measure rigidity in the high entropy case we need the following condition. 

Definition 2.5: We say tha t  a has no  local  r a n k  o n e  f a c t o r s  if for every 

simple factor of G there exist two roots A1, A2 of tha t  factor such tha t  Re A~a) 

and Re A~) are linearly independent. 

Clearly, the above condition implies that  none of the simple factors of G are 

compact .  Notice, furthermore, that  the above is a purely local condition that  

does not depend on the discrete subgroup F. 

Before we state the theorem we extend the above setting as follows. Let 

p: G -+ SL(n, ~) be a linear representation, and define the group structure on 

Gtw -- I~ n :~ G by 

g).  (v, h) = + p(g)v, gh). 

Let F C G be a discrete subgroup (lattice) and suppose p(F)(Z n) = Z n; then 

Ftw = Z n )4 F is a discrete subgroup (lattice) of Gt~. We define Xtw = Gtw/Ftw 

and identify a t for t E ~k again with its left action on Xtw so that  

at((u, g)rtw) = ((p(a')u, a'g))rtw. 

This defines a t w i s t e d  W e y l  c h a m b e r  flow. The projection map 

~: Xtw = Gtw/Ftw -+ X = G/F 
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defined by ~r((u, g)Ftw) = gF is a factor map from the twisted Weyl chamber 

flow to the corresponding Weyl chamber flow with tori as fibers. 

Definition 2.6: The twisted Weyl chamber flow a on Xtw acts w i t h o u t  c e n t e r  

on  t h e  t o r u s  f ibe rs  if there is no nonzero u E ~n that  is fixed under p(G). 

THEOREM 2.7: Let a be a (twisted) Weyl chamber flow on X (on Xtw ) that 

has no local rank one factors (and that acts without center on the torus fibers). 

Furthermore, let t E ~k be such that for every simple factor of G there exists 

a root ~ with Re )~(~)(t) r 0. Then there exists some q < 1 such that  for any 

a-invariant and ergodic probability measure # with 

h ' ( a t )  > q Z Re(A(~)(t))d(A) 

Re(),(~) (t))>0 

in fact # is the unique G-invariant Haar measure on X (Gtw-invariant Haar 

measure on Xtw ). In this case F is a lattice in G. Here the above sum goes over 

all roots A of G (and all weights A of the representation p) and d(A) is the real 

dimension of the root (weight) space to A. 

The sum in the above theorem is the entropy of a t with respect to the Haar 

measure on X (Xtw) in case F is a lattice in G. So the theorem states that  if 

the entropy is close to this maximal value, then in fact the entropy is equal and 

the invariant measure is the Haar measure. 

Without further assumptions on the discrete subgroup F Rees's example [32], 

[6, Sect. 9] shows even in the case of the Weyl chamber flow on SL(3, ~ ) / F  that  

positive entropy alone is not sufficient to guarantee algebraicity of the invariant 

measure #. 

2.2. THE CARTAN ACTION FOR PRODUCTS OF SL(k + 1,Q~). Because of 

the close connection to number theory dynamics on the homogeneous space, 

SL(k + 1,1~)/SL(k + 1, Z) is especially interesting. We consider here the S- 

algebraic analogue of the Cartan action by diagonal matrices. 

Let k >_ 2, let S be a finite set of places, let Gs  = 1-I~es SL(k + 1, Q~ ), and 

let F C Gs  be a discrete subgroup. For any m E Z k let a m be the diagonal 

matr ix with entries e m l , . . . ,  e ink, e -(ml+'''+mk) along the diagonal, similarly 

let a~ n be the diagonal matrix with entries pro1,... ,prnk,p--(ml+...+m~) along 

the diagonal. Each a~ for a E S defines a Zk-action on X = G s / F  by left 

multiplication. Note that  a ~  naturally extends to an I~k-action, but by only 

considering the Z k-action we get a slightly stronger result. 

Let Eij be the matrix with only one nonzero entry, namely a one in row i, 

column j ,  and let Ik+l denote the identity matrix. It is easy to see that  each 
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subgroup H (i'j) = Ik+l + Q~ Ely for 1 < i, j < k + 1 and i ~ j is normalized 

m for m E Z k. Moreover, the Lie algebra ~ E i j  is one of the common by a~ 

eigenspaces for the adjoint maps Aday  for m E Z k, i.e. one of the root spaces. 

We denote the conditional measures of # with respect to the foliation into H(~ i'j)- 

orbits by #~,(i,j); see Section 5 for a definition. High entropy can only occur if 

p~'(i'J) are non-atomic a.e. (i.e. the dimension of # along H(i'J)-orbits is positive) 

for many or all pairs ( i , j ) ;  see also Section 9.1 for the exact relation between 

entropy and the conditional measures. 

THEOREM 2.8: Let X = G s / F  and let ac~ for some fixed a E S be as above. 

Let # be an a~-invariant probability measure on X = G s /F .  I f  all conditional 

measures #~,(i,j) are non-atomic a.e. for i ~ j ,  then # is actually invariant under 

left multiplication by any dement  of SL(k + 1, Q~ ). 

Note that  we do not assume ergodicity of a~ here; this has the advantage 

that  we can apply the above for a measure invariant and ergodic under the joint 

action of all a~ with a E S. 

It is clear that  if p satisfies the conclusion of Theorem 2.8 for all a E S, then 

F is actually a lattice in Gs and # = m is the Haar measure of X = G s / F .  

Instead of that  we can also obtain a stronger conclusion by assuming ergodicity 

for a~ and combining our result with measure rigidity for groups generated by 

unipotent subgroups; see [25] or [31]. 

For this recall that  a measure # on X is a lgebra ic  if there exists a closed 

subgroup H C Gs and some x E X such that  #(Hx)  = 1 and p is the unique 

H-invariant probability measure on the (necessarily closed) orbit Hx.  

COROLLARY 2.9: Assume that # is an a~-invariant and ergodic probability 

measure on X = Gs /F .  Suppose that at least one of the following conditions is 

satisfied. 

(1) All conditional measures #~'(i'J) are non-atomic a.e. for i ~ j .  

(2) The measure theoretic entropy h , ( a  m) > 0 with respect to # is positive 

for all nonzero m E Z k. 

Then # is algebra/c. 

Note that  [6, Thin. 4.2] gives various additional statements for the homoge- 

neous space X = SL(3, II{)/F which can (with the tools provided here) easily be 

shown to hold in the S-algebraic setting discussed above as well. 

Another way to obtain a rigidity result for Gs  is to replace the assumption on 

the conditional measures in Theorem 2.8 or the above assumption on entropy for 

all elements of the action, by the assumption that  the entropy of some element 
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c~ m of the action is close to the maximal  value (which is determined only by 

k and m).  In this case it is enough t o  assume invariance with respect to an 

arbi t rary Z2-subaction of a~ for some a C S. This is a consequence of Theorem 

2.4. Moreover, we can apply this theorem also for a (sufficiently generic) higher 

rank subaction of the joint action of all a~ with a C S. 

2.3. OUTLINE OF THE PAPER. In Sections 3 and 4 we recall some basic mate-  

rial on p-adic numbers and Lie groups, and develop a basic theory of Lyapunov 

weights for real and p-adic Lie groups. 

In Section 5 we recall the definition and basic properties of conditional mea- 

sures from [21] for (T, H)-spaces,  which generalizes the notion of the foliation 

into Gs-orbi t s  considered above. The main difference is tha t  the T-leaves of a 

(T, H)-space  do not have a canonical 'coordinate map '  from the space T to the 

leaf corresponding to a base point x. 

In Section 6 we consider conditional measures for H-orbi ts ,  and show that  for 

a.e. x the subgroup under which the conditional measure is translation invariant 

has a special structure: it allows a weight decomposition. 

One tool which was used in an essential way, both  in the high and low entropy 

case, is the product  structure of the conditional measures. In Section 7 we 

use the framework of (T, H)-spaces to show Theorem 7.5 tha t  generalizes [21, 

Prop. 6.4]. In the algebraic case this theorem states that  the conditional measure 

of an invariant measure # for the foliation into H-orbi ts  is a product  measure 

if H = ST is itself a product  of two subgroups S, T such tha t  T is normal in H 

and (asymptotically) some par t  of the action acts isometrically on the induced 

S-orbits  while the T-orbi ts  are contracted. 

In the case of a semisimple higher rank action on a homogeneous space we 

prove in Section 8 the Theorems 8.4 and 8.5, which we already discussed in 

Section 1.4. 

Theorem 2.4, 2.7, and 2.8 all rely heavily on Theorem 8.5 and in part  also on 

the relation between the conditional measures and entropy. The lat ter  we recall 

from [25] and slightly extend in Section 9, where we will also prove the results 

presented in this section. 

3. P r e l i m i n a r i e s  on  loca l  f ie lds  a n d  Lie g r o u p s  

3.1. p-ADIC NUMBERS. For any rational prime number  p the p-adic field of 

rational numbers •p is defined as the completion of Q with respect to the norm 
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I" Ip defined by 

101p =0,  

pe ~ = p-e for ~, n, m E Z and p ~ nm.  
p 

Furthermore, Qp is a locally compact field and every t �9 Qp can be written as 

a converging sum 

t = E tipi 

for some n E Z and ti E {0, 1 , . . .  ,p - 1}. It is easy to check that  I " Ip and its 

extension to Qp satisfy 

Islp �9 {pk: k �9 z }  u {0} c 

Is + tip < max(Islp , ]tip), 

= Isl ltl, for all s, t �9 

The second of these properties is the ultrametric triangle inequality. 

The closure of Z in Qp is the compact ring Zp of p-adic integers and consists 

of all t �9 Qp allowing a representation as above but with n _> 0. Moreover, every 

ball Br Qp of arbitrary finite radius r and center 0 allows a similar description 

and is a compact open subgroup that  is isomorphic to Zp. 

Another main difference between real numbers and p-adic numbers is the 

multiplicative structure. It is easy to see that  Z~ is a compact open subgroup 

of Q~. The p-adic logarithm log is defined on a neighborhood of 1 in Zp and 

has the same Taylor series expansion as for the reals. Its inverse map is the 

p-adic exponential map which is defined on a neighborhood of 0, and again has 

the same Taylor series expansion as for the reals. Therefore, the multiplicative 

group Q~ is locally isomorphic to the additive group Zp. However, Q~ also 

contains the cyclic subgroup pZ = {p~ : n �9 Z}. Together, these two subgroups 

generate a finite index subgroup of Q~ that  is isomorphic to Z • Zp. 

For notational simplicity we write ( ~  = ~ and Itl~ = Itl for the usual norm. 

We will refer to c~ and to rational prime numbers as places and use the letter 

a to denote a place. Note that  for any of the fields ~ the Haar measure mo 

satisfies m~(tB)  = Itl~m~(B) for any measurable B C_ ~ .  Suppose K is a field 

extension of (}~ of degree d; then we extend I" I~ to IK normalized such that  

m~(tB)  = [tiding(B) for any measurable B C I~ 

3.2. LIE GROUPS OVER LOCAL F1ELDS. In this section we recall some of the 

basic facts about real and p-adic Lie groups; see [4]. Let a be a place, let K be 
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a finite field extension of 6 ,  and let GK be a Lie group over K with Lie algebra 

gK, i.e. gK is the tangent space of GK at the identity element e E GK with an 

induced commutator  map [., .]: g2 __+ ~K. Then we can consider Go = G~ as 

a Lie group over ~ and g~ = gK as the corresponding Lie algebra over Q~. 

Therefore, it is enough to consider Lie groups over 6 -  

Just as for the multiplicative group ~ in Section 3.1 there exist two locally 

defined maps between Go and g~ (see [4, Ch. III, w Prop. 3]): the exponential 

map 

exp : B~ ~ --+ Go 

is defined on some ball around 0 C $~ and has as its local inverse the logarithm 

map 

log : BR C~ --+ ~ 

which is defined on some ball around e E G~. (Note that  when a = cc the 

exponential map is of course defined on the whole of ~ . )  

Recall that  the commutator  [., .]: ~ --+ go is skew-symmetric, bilinear, and 

satisfies the Jacobi-identity 

(3.1) [u,[v, wl]+[v,[w,u]]+[w,[u,v]]=O forallu, v ,weg~ .  

Another useful fact is the Campbell-Hansdorff formula which allows one to 

express u* v = log((exp u)(exp v)) for sufficiently small u, v C g~ as a converging 

s u m  

(3.2) u .  v = u + v + v] + . . . .  Z Fn( , 
n = l  

where each Fn(u, v) is a finite sum of expressions of the form 

(3.3) [Wl, [w2, [ . . .  [Wn_l, wn].- .]]]  

with universal (rational) coefficients. If a = p is a prime number it is possible 

to choose p > 0 such that  B~ p * B~ p C_ B~ p. In other words, the image of B~ p 

under exp is an open compact subgroup Gp(p) C Gp (see [4, Ch. III, w Thm. 

1]). (This ultimately goes back to the ultrametric triangle inequality.) 

Of particular interest to us is the adjoint representation of G~ on go. For any 

a E Go the conjugation map h ~ aha -1 for h c Go fixes e and its derivative at 

C, 

A = Ada : go --+ go, 
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is the adjoint representation of a E Go. More generally, if 0: Gz -+ Go is a 

group automorphism, we will consider its derivative 

In both cases this linear automorphism of 9~ satisfies 

(3.4) A[u, v] = [Au, Av] for all u, v E 9~ 

and 

(3.5) exp(Au) = 0(exp(u)) for all sufficiently small u C 9~. 

3.3. S - L I E  GROUPS AND ACTIONS PRESERVING Gs-LEAVES.  Recall that  Gs 

denotes a direct product of Lie groups G~ over Q~ for cr c S, where S is a finite 

set of places. 

We will use expu,  logg, [u,v] for u,v C gs and g E Gs, and adjoint maps Ada 

for a E Gs freely; these are all defined as product maps. We identify Ga and 

~ with the corresponding subgroup of Gs resp. the corresponding subspace of 

9S" 

We define the "norm" II" II on gs by 

Ilvll = m 2 [  Ilvoll , 

where I]" lio denotes some fixed norm on go (which we will specify later). 

It is easy to see that  automorphisms of nilmanifolds and (twisted) Weyl 

chamber flows give actions of the following type. 

Detinition 3.1: Let X be a locally compact, second countable, metric space 

and suppose Gs acts continuously and locally free on X. Furthermore, let a be 

a Zk-action by homeomorphisms of X. Then a p r e s e r v e s  t h e  Gs - l eaves  if 

for every n E Z k there exists an automorphism O n of Gs such that  

(~n(gx) = On(g)anX for x E X,g  E Gs. 

Let A" = de0 n be the derivative of O n at e E Gs. Then A is the ad jo in t  a c t i o n  

to  (~. 

We will use the adjoint action to study the behavior of the action along the 

Gs-leaves. 
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4. L y a p u n o v  we igh t s  a n d  we igh t  s u b s p a c e s  

In this section we define Lyapunov weights and study their properties. This 

will lead to the notion of coarse Lyapunov subgroup GAs. Since we are only 

interested in this case, we assume from now on that  the adjoint action to a is 

semisimple. 

4 .1 .  SEMISIMPLE LINEAR MAPS. 

Definition 4.1: Let V be a finite dimensional vector space over Q~, and let 

A: V --+ V be a linear map. Then A is s e m i s i m p l e  if the minimal polyno- 

mial of A is a product of distinct irreducible polynomials. An action by linear 

automorphisms is semisimple if this is the case for all of its elements. 

LEMMA 4.2: Let V be a finite dimensional vector space over some field k. Let 

A: V --+ V be linear. Then A is semisimple i f  and only i f  we can find A-invariant 

subspaees Vi (for i = 1 , . . . ,  ~) such that V is the direct sum ~-~i=1 l/i, each V/ 

can be given a vector space structure with respect to some finite field extension 

Ki of  k, and A(v) = tiv for some ti E N4 and ali v E Vi. Moreover, each V/ can 

be defined as the kernel of  qi(A) for some irreducible factor q~(T) E k[T] of the 

minimal polynomiM of A. 

Proof: This is an easy exercise in algebra. We only note that  the linear map 

A gives V a module structure over the ring of polynomials k[T]. Since kiT] is a 

principal ideal domain, V allows a decomposition into submodules Vi annihilated 

by a power qn~ (T) of some irreducible polynomial qi(T) (see [14, Thm. 6.12(ii)]). 

Since A is semisimple we must have n~ = 1 and we can give V/ a vector space 

structure over I~ = k[T]/(qi(T)).  | 

We need to extend this to several commuting semisimple linear maps. 

PROPOSITION 4.3: Let V be a vector space over Q~r, and let A I , . . .  ,Ak  be 

commuting semisimple linear maps on V. Then there exist subspaces Vi (for 
e 

i = 1 , . . .  , f )  such that V is the direct sum ~ = 1 V i ,  each V~ is invariant under 

A 1 , . . . ,  Ak, each Vi can be given a vector space structure with respect to some 

finite field extension Ki ofQ~,  and Aj(v)  = t i ( j )v  for some fixed ti(j)  C Ni, for 

a l ly  E Vi, and for j = 1 , . . . , k .  

Proof'. The proposition follows by induction on k using Lemma 4.2. In every 

step the space Vi C_ V is defined using only A 1 , . . . ,  Ak-1 and is therefore in- 

variant under Ak. Moreover, the vector space structure on Vi over ]IQ is also 

defined using A1 , . . . ,  Ak-1 and the restriction of Ak becomes a linear map on 
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Vi over ItS. Applying the lemma to the restriction of Ak to V~ and the field 

we refine the decomposition of V if necessary. I 

4.2. (COARSE) LYAPUNOV WEIGHTS. Let a be a Zk-action on X that  pre- 

serves the Gs-leaves. Assume the adjoint action (i.e. the restriction of A to every 

g~ for a �9 S) is semisimple. Then we can decompose every g~ = ~ i  g~,i into 

common eigenspaces, so that  gz,i is a vector space over ~ , i  and Ads(n)(V) = 

t~,iv for every v �9 g~,i and n �9 Z k, where tn, i = t~,/(1) nl--- t~, i(k)  nk and 

t~#(1) , . . . ,  G#(k )  �9 l~ , i .  

Definit ion 4.4: For every eigenspace gz,i as above we define the L y a p u n o v  

we igh t  ~ = A~,i: Z k --+ R by 

k 

= log = log 
j= l  

Here ]. I~ is the extension to ]t~,i as in Section 3.1. Clearly A can be extended 

to a linear map A: l~ k -+ ~. Next we group the eigenspaces together in two 

different ways according to their Lyapunov weights and obtain subspaces with 

dynamical significance. 

Definition 4.5: For a Lyapunov weight A the L y a p u n o v  we igh t  s u b s p a c e  g~ 

is the sum of all subspaces g~,i for which ~ = )~,i. Moreover, let g~ = g~ M g~ 

for any a �9 S. 

Note that  g~ = ~ c s  g3 for any Lyapunov weight A and that  gs = ~ g~, 

where both sums are direct sums. The same holds similarly for the following 

notion. 

Definit ion 4.6: For a nonzero Lyapunov weight A the coa r se  L y a p u n o v  

we igh t  s u b s p a c e  is defined by g i  = ~ r  g~ where i = {tA: t > 0} = ]~+ A 

is the ray from the origin through A. Similarly let g i  = g i  M g~ for any a E S. 

4.3. BASIC PROPERTIES OF-(COARSE) LYAPUNOV WEIGHT SUBSPACES. 

LEMMA 4.7: We can choose the norms [[. [1~ on g~ for (7 E S such that the 

induced norm 

Ilvll =ma llv ll   orv �9 gs  
(T 

satisfies 

(4.1) ]]Anvl] = eX(")ilvil 
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for all n ~ Z k, v E [J~, and all Lyapunov weights A. 

Proof: 

187 

For any eigenspaces 9~,i we fix some bases v l , . . . ,  ve over l~, i  and define 

Z t ~ v j  = m~lX Ityl~. 
j = l  c~,i 

For some fixed a E S and u = ~ i u i  6 9~ with ui E 9~,i we define Ilullo = 

maxi IluiIki. It is easy to check that  I1" N satisfies the lemma. | 

The next lemma characterizes the (coarse) weight subspaces dynamically 

using the adjoint action. 

LEMMA 4.8: For a Lyapunov weight A we have u E g~ if  and only i f  there exists 

some constant c > 0 such that 

(4.2) [[Anu[[ _< ce~(n)[[ul[ for ali n C Z k. 

F~rthermore, u E ~ for A = (0, oc)A i f  and only i f  there exist c, O, ce > 0 such 

that 

(4.3) IlA"ull _< cmax(e C1Mn), eC~(n))lluII rot all n ~ Z k. 

Moreover, it is possible to set c = 1 in (4.2) and (4.3). 

Proof.' From Lemma 4.7 it is clear that  elements of g~ satisfy (4.2). So suppose 

that  u E gs satisfies (4.2), and let u = ~ , i u ~ , i  be the decomposition of u 

according to the eigenspaces g~,i. Since ~s is a direct sum of these eigenspaces, 

it is clear that  every u~,i satisfies 

I[Anu~,ill _< ce (")ll ll. 

Note that  u~,~ also satisfies (4.1) for A~,i. This implies that  

e;~'~(n)]lu~,i[] <_ ce~(n)l[ul[ 

for all n E Z k and so Aa,i = A unless u~,i = 0. The proof of the second statement 

is similar. 1 

By definition it is clear that  every (coarse) weight subspace is invariant under 

the adjoint action. However, 9s is also an S-Lie algebra and we study next how 

each of these decompositions respects the commutator.  (There is no reason to 

expect some kind of linearity of [., .] with respect to the vector space structure 

of 9a,i over ]I~,i .) 
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PROPOSITION 4.9: Let a: Z k -+ Gs be an Ad-semisimple homomorphism, and 

let A1, A2 be Lyapunov weights of a. Then for u E fl~ and v E fl~2 we have 

- ~  + ~ .  Therefore, any coarse weight subspace ~A is an S-Lie subalgebra, b,  v] �9 
i.e. 1~ h is a Lie subalgebra o f t~  over Q~ for every a E S. 

Proof: It is enough to consider u, v E go for some a E S. It is clear that  there 

exists some r > 0 such that  [B~ ~ , B~ ~] C_ B~ ~ . Let n E Z k and choose s E Q~ 

such that  ]s]o _> []A~u]l and ]sl~ is minimal with this property. If a = ~ then 

Isloo = IIA"ull = I l u l l s  ' (" )  = c1 eXl(n}, 

otherwise a = p is some rational prime and 

[Sip <_ piiAnuiI = pilulI e;h(n) = cxe ~l(n) 

We choose t E Q~ similarly such that  ]t[~ > ]]Anvi] and It]~ < c2e ~2(n). Prom 

(3.4) we see that  

][An[u, v]]I = ]stialis- ' t- l  An[u, v][I 

<_ clc2e(~+~2)(n)]i[s-lAnu, t-lAnv]][ <_ rclc2e (~+~z)(n). 

-~+~2 The second statement follows since Now Lemma 4.8 shows [u, v] E ~s �9 

A = (0, oc)A is closed under addition. I 

4.4. COARSE LYAPUNOV SUBGROUPS, m-STABLE, m-UNSTABLE SUBGROUPS. 

In the next proposition we show that  the exponential map has a canonical 

extension to coarse Lyapunov weight subspaces and find the subgroups corre- 

sponding to the coarse Lyapunov weight subspaces. A more general context 

gives the following definition. 

Definition 4.10: An S-Lie subalgebra I) C_ gs is an m - s t a b l e  S-Lie  sub-  

a l g e b r a  if tl is a closed under [., .], invariant under the adjoint action A, and 

t) = ~ = 1  I) ~j is a direct sum of Lyapunov weight spaces I) ~j = I)Mg~ j of I) such 

that  Aj(m) < 0 for j = 1 , . . . ,  e. Similarly, we define m-unstable Lie subalgebras 

by requiring that  Aj(m) > 0 for j = 1 , . . .  ,~ instead. 

Recall that  I) is nilpotent if there exists some n _> 1 such that  all Lie 

polynomials of degree n as in (3.3) with w l , . . . ,  wn E t) vanish. 

It follows from Proposition 4.9 that  the S-Lie subalgebra generated by two 

m-stable S-Lie subalgebras is also m-stable. Therefore, there exists a unique 

maximal m-stable S-Lie subalgebra. 
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PROPOSITION 4.11: Let a be a Zk-action on X that preserves the Gs-leaves 

such that its adjoint action A on gs is semisimple. Then every m-(un)s table  Lie 

subalgebra ~ is nilpotent as an S-Lie algebra, i.e. a direct sum of  nilpotent Lie 

algebras ~ = I) N tJr over Qz for a E S. The exponential map can be uniquely 

extended to the whole of  ~ such that 

(4.4) 0n(exp(u)) = exp(Anu) for all n E Z k, u E g~, 

where 0 is as in Definition 3.1. The image H = e x p [  is a Lie subgroup of  Gs .  

The inverse of  the exponential map is the logarithm map 

log: H -+ b, 

the map u*v = log((exp u) (exp v)) is defined on D 2, and the Campbell-Hausdorff  

formula (3.2) expresses u * v as a finite linear combination of  expressions as in 

(3.3). 
e 

Fhrthermore, i f  D = ~i=1 Di is a direct sum of  m-stable  Lie subalgebras and 

H~ = exp Di are the corresponding subgroups of  H,  then r H1 • "-" • He -+ H 

defined by r  ge) = gl " " ge is a homeomorphism. 

In the above proposition we do not require that  the Lie subgroup H carries 

the induced topology. 

Recall that  an element g E Gs  is unipotent if its adjoint Adg has only 1 as its 

eigenvalues, and that  a subgroup is unipotent if all of its elements are unipotent. 

We only note that  it is not too difficult to extend the above proposition: H is 

actually a unipotent subgroup of Gs.  

By Proposition 4.9 the coarse Lyapunov weight subspace g~ is an m-stable 

Lie subalgebra for some m E Z k, whenever A -- I~ + A and A ~ 0 is a Lyapunov 

weight. 

Definition 4.12: The image G A = exp g~ of a coarse Lyapunov weight subspace 

is a coa r se  L y a p u n o v  s u b g r o u p  and the image H = exp [} of an m-(un)stable 

Lie algebra as in the proposition is an m - ( u n ) s t a b l e  Lie  s u b g r o u p .  

Any m-stable Lie subalgebra [j we can decompose into coarse Lyapunov weight 

subspaces 0 A = b n g~ which are m-stable Lie subalgebras of [~ by Proposition 

4.9. Therefore we immediately obtain the following corollary. 

COROLLARY 4.13: A n y  m-stable  subgroup H is homeomorphic to the direct 

product  of  its coarse Lyapunov subgroups via the map that sends ( h i , . . . ,  he) E 

H hi x . . .  x H A~ to hi . . .  he. 
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Proof of Proposition 4.11: Note that  (4.4) already holds for sufficiently small 

u by (3.5). This shows that  we can find for every u E ~ some k _> 0 such tha t  

exp(Akmu) is already defined and that  

exp(u) = o-km(exp(Akmu)) 

does not depend on k. Similarly, we show that  this extended map exp is 

invertible and get the extension of log. 

We claim that  ~ is nilpotent. By definition ~ is a direct sum over Lyapunov 

weight spaces. Therefore and since [., .] is bilinear, it is enough to consider 

wi E ~ for i = 1 , . . .  ,n. By Proposit ion 4.9 we know that  the expression w in 

_~1+...+~,, However, since all Ae satisfy Ae(m) < 0 and there (3.3) belongs to us 

are only finitely many weights, we conclude that  for large enough n the sum 

A1 + . . .  + An cannot be a weight and w = 0 as claimed. 

This shows that  (3.2) is actually a finite sum and is well defined on the whole 

of ~. It  follows tha t  H = exp [} is a subgroup. We define the topology on H by 

requiring exp to be a homeomorphism. 

For a E S the restriction r of r to H1 • . "  • He has an invertible derivative 

at the identity and so is a local diffeomorphism. Therefore r is a local homeo- 

morphism. However, as for the exponential map we can use 0m to conclude that  

r is a homeomorphism. | 

4.5. A METRIC ON m-STABLE SUBGROUPS. Let H be an m-s table  subgroup. 

As before we will use subscripts and superscripts for 0 and H as for gs  and Gs ,  

e.g. [}~ = g ~ ~ and H A = H N G h. Furthermore,  we say A is a weight of H if 

~#0. 
In this subsection we define a right invariant metric 

d(g, h) = maxd~(g~, h~) 
aES 

for g, h E H by specifying for any (r E S a right invariant metric d~(-, .) on H~. 

We will show tha t  there exists X < 1 such that  

(4.5) d(Om(g),Om(h)) < xd(g,h), 

for any g, h E H ,  and equivalently if H is an mr-unstable subgroup then there 

exists X > 1 with 

(4.6) d(~m'(g),~m'(h)) > x'd(g,h). 
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LEMMA 4.14: For every a �9 S there exists a right invariant metric d~(.,.) 

satisfying (4.5), (4.6), and the following additional property. I f  A is a weight of 

H such that  there exists a t �9 I~ k with A(t) = 0 and ~(t) < 0 for any weight 

of H that is linearly independent to A, then 

d~(On(g), e) <_ max(e c~x(~), eC:)'(n))da(g, e) 

for some C1,C 2 > O, D,11 n ~ 7~ k, and all g �9 H A where A -- I~+A. 

Proof for cr = co: Let [[. [[ be a norm on Do derived from an inner product 

that  satisfies that  all weight spaces are orthogonal to each other. Let d o  denote 

the right invariant Riemannian metric on Hoo derived from If" If. 

Let A be as in the lemma. We claim that  d o  induces the Riemannian metric 

dh on H A (which again is induced by the restriction of 1[. 1[ to ~ ) .  Clearly 

do(g,  e) < tin(g, e) for any g �9 Hh~ (since any path in H A is also a path in H a ) .  

To show the opposite inequality define the Lie subalgebra ~ = ~ ( t ) < 0  ~ of 

ha .  Then ~oo = ~ + b' and I~oo/O' is metrically isomorphic to ~ .  Moreover, 

H ~ = exp ~ is a normal subgroup of Hoo and H ~ / H  ~ is isomorphic to HA. Any 

path V in H a  connecting e to g �9 HA induces a path in H / H  ~, and so in HA 

which again connects e to g. In this process the length of the path does not 

increase, and so d o  (e, g) = da (e, g) for all g �9 H ~ .  

Let cl,c2 > 0 be such that  all weights in A = (0, cx~)A are in fact ele- 

ments of [Cl,C2]A. Let g �9 H ~ ,  let n �9 Z k, and let 7 be a path connecting 

e to g within Hh~. Then we apply O n to 7 and obtain a new path 0 n o v  

connecting e to O~(g), and the lengths of the paths satisfy length(0 n o 7) -< 

max(e ~ ( n ) ,  e ~2A(n)) length(7 ). This shows the desired inequality. 

The proof of (4.5) is similar to the above. | 

Proof for a = p: Suppose H is an m~-unstable subgroup. We claim that  it is 

possible to choose for any weight a constant cx > 0 such that  

~(u)  = m axc~llu~l l  I/~(m') 

satisfies a ( u ,  v) < max(g(u), a(v)) for any u, v E Op. 

Note first that  a(u + v) _< max(a(u),  a(v)) holds independent of the choice of 

the constants. Because of that  it is enough to show that  a(tw) <_ max(a(u),  a(v)) 

whenever w is as in (3.3) and t is one of the universal constants. Let n be the 

degree of w. For n = 1 there is nothing to prove, so assume n > 1. By using 

the bi-linearity of [., .] we can reduce to the situation where w is defined by 
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various weight components ur E 0 r and v~ E b ~ of u = ~ r  ur resp. v = ~ v~. 

Suppose that  ~1, . . . ,  ~ are the weight for which ur appears in w, where we list 

a weight as often as the corresponding component appears. Let ~1, . . . ,  ~n-~ be 

the corresponding weights for v. Then w E O~ for 

(4.7) ~ = E ~ + E ~i 
i----1 i = l  

by Proposition 4.9. Since [., .] is bilinear there exists some constant C > 0 such 

that  ]ltwl] <_ V I i i  ]lur [L  ]lv~l] �9 Therefore 

m I m ~ a( tw)  = c,  lltwll 1/v(m') <_ e~cIIt~(u) <i(m')/~7(m') H g(v)~i( )/77( ) 
i=l i~l 

where c = c(C,cr , c~,,_~) is some combination of all these constants. Here 

the right hand side is cvc times a geometric mean of a(u) and a(v), so for the 

claim all we need is 

(4.8) c~c(C,cr ,c~,,_~) <_ 1. 

We can now define c~ inductively: For a weight A with minimal value A(m') 

we set c~ = 1. Suppose the constants are already defined for weights A with 

A(m') < r and let 77 be a weight with ~(m') = r; then we can choose cn small 

enough so that  (4.8) holds for all ways to express ~ as a sum as in (4.7). 

We define dp(g, h) = n(log(gh-1)) for g, h E H M Gp. Right invariance is 

obvious, the triangle inequality follows from 

dp(g, e) = ~(log(g)) = ~(tog(gh -1) �9 log(h)) 

max(a(log(gh-1), a(log(h))) = max(dp(g, h), dp(h, e)) 

and symmetry is similar. The last statement of the lemma follows fi'om (4.3) 

and the construction of the metric dp. Properties (4.5) and (4.6) follow similarly. 

| 

5. C o n d i t i o n a l  m e a s u r e s  

In this section we provide the framework of conditional measures, which we 

will need for the main technical results in the following sections, namely the 

generalization of [6, Prop. 8.3] and [21, Prop. 6.4] which both state in different 

settings that  certain conditional measures are product measures. In [21] the 
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framework of (T, H)-spaces and their conditional measures was developed and 

applied to the proof of arithmetic cases of the Quantum Unique Ergodicity 

conjecture, where the above mentioned fact was one of the tools for the proof. 

5.1. (T,H)-SPACES AND CONDITIONAL MEASURES. First we recall the notion 

of atoms [x]A and conditional measures #~ for a countably generated a-ring ,4. 

Clearly there exists a maximal element A E A and .Aim is a a-algebra. If A is 

generated by A1 , . . . ,  A i , . . . ,  the atom of x is defined by 

ix] : N N A\A,  
i:xEA~ i:x~A~ 

Then # x  is a probability measure on the atom [x]A for a.e. x E A, such that  

the conditional expectation can be expressed as an integral 

E(f lAl '4)(x)  = /A S ( y ) d ~ ( Y )  

for all integrable functions f .  

In the following T is a locally compact second countable metric space with 

a distinguished point e C T, and H is a subgroup of the group of isometries 

Isom(T) that  acts transitively on T. We will write BY(a) = {b �9 Y : d(a, b) < r} 

for the ball of radius r in the metric space Y and center a. If the center is e �9 T 

we also write B T = BT(e). 

Definition 5.1: A locally compact second countable metric space X is said to 

be a (T, H ) - s p a c e  if there is some countable open cover T of X by relatively 

compact sets, and for every U �9 T a continuous map tu: T x U --+ X with the 

following properties: 

(1) For every x �9 U �9 ~, we have tv(e, x) = x. 

(2) For any x �9 U �9 ~, any t �9 T and any V �9 T containing y = tu( t ,x) ,  

there exists a r �9 H with r = t and 

(5.1) t v ( ' , y )  = tu( ' ,x)  or  

(3) There is some ru > 0 so that  for any x �9 U the map tu( . ,x)  is injective 

on B T 
?'U" 

We define ~(x) = {U �9 T : x �9 U}. Proper ty  (2) above shows that  

the leaf tu (T ,x )  is independent of U �9 T(x) and furthermore how the two 

parameterizations tu( . ,x)  and ty( . ,y)  of tu (T ,x )  differ. It also implies that  

BT(x)  = t v ( B T , x )  is independent of U �9 T(x). The following lemma will be 

useful later. 
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LEMMA 5.2: Let Xo C U E 5~. Suppose 

(5.2) tu(.,Xo) is injective on BTr .  

Then for small enough e > 0 any y E A = tu (B  T, B~(x)) satisfies the following 

two properties: 

(1) BTr(y)  M A C BTr(y) and 

(2) ty ( ' ,y )  is injective on B T r  where V E q~(y). 

Proof'. The first statement was shown in [21, Lemma 3.2 (1)]. 

We claim that  (5.2) holds for small enough e > 0, in fact for all x C B~(xo). 

Assume by contradiction that  for every e > 0 there exists an xr with d(x~, Xo) <_ 

such that  (5.2) fails for x~. Then there exist two different t~, t~ C B T r  with 

y~ = tu(t~,x~) = tu(#~,x~). Note that  here y~ belongs to a fixed compact set 

which we can cover by finitely many V E 4, and let rK > 0 be the minimum 

over the corresponding rw as in Definition 5.1 (3). Choose V with y~ E V and 

r E H such that  tv(' ,y~) = tu(r  and r = e. Since r ~ e but 

tv(r y~) = y~ it follows that  d(t~, try) > rv  > rE. 

By choosing a converging subsequence we now obtain to, t~ E B T r  with 

d(to,t'o) > rK and tu(to,xo) = tv(t'o,Xo), which contradicts the assumption 

of the lemma. This shows the claim. To see that  this implies the second part  

of lemma, let y -- t v ( t , x )  for some t E B T and note that  the element r E H as 
T in Definition 5.1 (2) maps BT19r into B20 r. I 

The following algebraic case of this structure is of special interest to us. 

Definition 5.3: Let X be a locally compact second countable metric space X,  let 

H be a locally compact second countable metric group H with a right invariant 

metric. Then an H - s p a c e  is given by a locally free action of H on X,  which we 

write as (h, x) ~ hx. 

An H-space gives an example of an (H, H)-space, where H acts on itself by 

right translation Rg(s) = sg for g, s E H,  and tu(h ,x)  = hx is independent of 

V ~ ~:(x). 

In [21, Thm. 3.3] the family of conditional measures for the (T, H)-space was 

constructed (see also [18, Sect. 4] and [16, Sect. 1.4]). Since this is fundamental 

for what follows, we state this result but first we recall two more necessary 

definitions. 

Definition 5.4: A s e t  D C X i s a n o p e n  T - p l a q u e  if for a n y x  E D: D C_ 

t y (BT ,  x) for some r > 0, and t y ( . , x ) - l D  is open in T for some (all) V e ~(x).  
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Definition 5.5: A pair (.4, A) with A C_ /~ a countably generated a-ring and 

A C_ X its maximal element is called an r, T - f lower  w i t h  c e n t e r  C C X if 

(1) A is open and relatively compact, and C C_ A. 

(2) For every y E A the atom [Y].4 is an open T-plaque; in fact for V E T(y) 

we require that  

[Y]A = A M ty(BTr ,y) .  

(3) I f y  E C and Y E ~(y) then [Y]A D t y ( B T , y ) .  

The existence of r, T-flowers with a small disc as a base has been shown in 

[21, Cor. 3.5]. 

For the following it is convenient to write ~1 c< v2 if two measures Vl, v2 are 

equal up to a multiplicative constant, i.e. if there exists a constant C > 0 with 

vl (B) = Cv2 (B) for all measurable B. Furthermore, we will use for a measure 

v on Y and a measurable function f :  Y --+ Z the push forward f ,~  which is 

defined by f . ~ (A)  = v ( f - l A )  for any measurable A C_ Z. 

We let f l4~(T)  be the set of all locally finite Borel measures on T, equipped 

with the weak* topology defined by I f (p )  = fT f d p  for f E Co(T). Note that  

~ 4 ~ ( T )  (unlike the full dual of Cc(T)) is a metrizable, separable space with 

this topology. 

PROPOSITION 5.6 ([21, Thm. 3.6]): Let X be a (T, H)-space, let p be a Borel 

probability measure on X ,  and suppose that 

(5.3) tu ( . , x )  is injective for every U E ?~, and a.e. x E U. 

Then the conditional measures pu,x for U E q~(x) are Radon measures on T 

with the following properties: 

(1) The unit ball B T has measure one. 

(2) For any countably generated a-ring ,4 with maximal element A whose 

atoms are open T-plaques and for a.e. x E A and every U E q~(x), we have 

-1 ,4 U 
t u ( ' , x ) ,  Px o(. Px,Titu(.,z)-l[x].4. 

(3) There is a set Xo C_ X of~11 g-measure so that for every x, y E X0, t E T 

w i t h y  = t v ( t , x ) ,  U E T(x),  and V E f~(y) we have Px,TU or r where 

r E H is the isometry satisfying r = t and t v ( ' , y )  = t v ( . , x )  o r 
U Fbrthermore, the map x ~ PT, X from U to the set 2~4T Of Radon measures on 

T is measurable. 

In the case of an H-space the conditional measure does not depend on the 
v set U E ~, and we simply write pH = Px,H" Note that  the existence of the 
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conditional measures in the sense of Proposition 5.6 is linked to the assumption 

(5.3). When we speak below of a measure # with conditional measures #v,x for 

U E ~(x),  we implicitly assume that  (5.3) is satisfied. 

Note that  Proposition 5.6 (2) shows that  the conditional measure does not 

depend on the choice of the metric d(., .) on T (assuming the topology is induced 

by the metric and all properties of T-spaces are satisfied). 

It is well known that  translation invariance of the conditional measures #H 

implies translation invariance of the global measure # (see [18], [6, Prop. 3.3] 

or [21, Prop. 4.3]). 

PROPOSITION 5.7: Let X be an H-space, and let # be a probability measure 

such that the H-action for a.e. base point is free. Then # is H-invariant if, and 

only if, for #-a.e. x the conditional measure #H is a left invariant Haar measure 

on H.  

The following lemma follows easily from the construction of the conditional 

u (see [21, Lemma 3.7]) and is the reason why we can impose measures #x,T 

the normalization (1) in Proposition 5.6. Recall that  the support supp u of a 

measure u on Y is the complement of the biggest open set in Y that  is also a 

null set with respect to v. 

LEMMA 5.8: Let X be a (T, H)-space, let # be a probability measure with 

u for U E ~(x) .  Then for a.e. x E X and all U E 5~(x) conditional measures #z,T 

we have e E supp/~U,T. 

Another corollary of the construction of the conditional measures (Proposition 

5.6 (2) and the properties of #if) is the following (see [6, Lemma 3.1]). 

LEMMA 5.9: Let X be a (Ti, Hi)-space for i E I,  where I is a finite or countable 
u 

index set. Let # be a probability measure with conditional measures #x,T~ for 

U E T.i(x) and i E I.  Let N be a null set. Then there exists a null set N I D N 

u, ( t u~ ( . , x ) - lN , )  = 0 for 311 x E X \ N 1, i E I ,  and Ui E ~i(x) .  such that #x,T~ 

5.2. FIRST DYNAMICAL PROPERTIES OF THE CONDITIONAL MEASURES. Let 

X be a (T, H)-space. A homeomorphism a: X -+ X p r e s e r v e s  t h e  T- l eaves  

if 

(5.4) a o tv(x,  .) = t v ( a x ,  .) o Oy ,V 

for all U E ~(x),  V E T.(ax) and some homeomorphism 0y, v of T fixing e. In 

the case where X is an H-space, a p r e s e r v e s  t h e  H- l eaves  if (5.4) holds for 

some fixed group automorphism ~ of H (just as in Definition 3.1). 



Vol. 148, 2005 RIGIDITY OF MEASURES 197 

Clearly, this implies that  there exists for every n E Z, x E X,  U E g(x) ,  and 

V E 5s a homeomorphism (group automorphism) 0n~, 'y of T fixing e with 

(5.5) oe n o tu(x ,  .) -- tv(o~nx, ") o 0 U,V 
v n ,  x �9 

We say c~ acts i s o m e t r i c a l l y  on the T-leaves if additionally 

U , V  U , V  t d(0x s, 0x s ) = d(s, s') 

for all s, s' E T, x E X, and U, V as above. Furthermore, c~ u n i f o r m l y  e x p a n d s  

the T-leaves if it preserves them and there exists a constant X > 1 so that  

U , V  U , V  t d(O~ s,O~ s ) > xd(s, ~') 

for all s, s' E T, and x E X. Similarly a u n i f o r m l y  c o n t r a c t s  the T-leaves if 

a -1 uniformly expands them. A more general group action preserves the leaves 

(or acts isometrically on the leaves) if this is true for every element of the action. 

Note that,  if a uniformly expands (or contracts) the T-leaves and preserves 

the probability measure #, then (5.3), which is needed for the construction of 

the conditional measures, is automatically satisfied. To see this, note that  by 

Poincar4 recurrence for a.e. x E U E �9 there exists arbitrary large n > 0 with 

a - ~ x  E U. By Definition 5.1 (3), t t~( ' ,a-nx)  is injective on B r By (5.5) and 
r U �9 

T expansion, this implies that  tu(. ,  x) is injective on Br~x. .  

If p is an a-invariant measure and u #z,T are the conditional measures as in 

the last section, it follows that  

(5.6)  v u ,v  u tL~,T o( (0~ )*ttx,r 

for a.e. x E X. This can be seen as in the proof of [21, Prop. 5.2], which 

considers the case of an isometry: If c~ acts isometrically on the (T, H)-leaves 

then equality holds by the normalization in Proposition 5.6 (1). 

LEMMA 5.10: Let X be an H-space, and suppose (~ uniformly contracts the 

H-leaves. Let # be an a-invariant probability measure. Let Lh: H -+ H denote 

the left translation with h E H, i.e. Lh(g) = hg for all g E H. Then there exists 

a null set N C X with the following property, f f  x E X \ N satisfies that #H is 

left translation invariant by some h E H in the affine sense, i.e. (Lh) ,#  H oc #H, 

then in fact pH is translation invariant by h, i.e. (Lh)*# H = #xH" (The same 

holds similarly for right translation Rh (9) = 9h.) 

Proof'. Since H H Px (B2)  < oo for a.e. x, we can find for every m > 0 a set Km 

with#(K,~)  > 1 - 1 / m  such that  n n #~ (B 2 ) < Mm for some M,~ > 0 independent 
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of x E Km. Without loss of generality we can assume that  (5.6) holds for all 

x E Km and all o~ n for n _> 1. Let K~m C_/(m be the set of points x for which 

there exists infinitely many n > 1 with c~nx E t(m. By the Poincar~ recurrence 

#(K~)  = #(Kin), so that  N -- X \ Urn/~'lm is a null set. 

By continuity of the group multiplication in H,  there exists e > 0 with hB H C 

B H for all h E B H. Let x E X \ N, and suppose #H is translation invariant 

in the affine sense by Lh. Then x E //'~n for some m, and so anx belongs 

to Krn infinitely often. Since ~ is assumed to be a group automorphism of 

H,  (5.6) implies that  H #a~x is translation invariant in the affine sense by Lo,~h. 

Here the multiplicative constant C remains unchanged. Fix some g _> 1. Since 

a uniformly contracts the H-leaves, we can find n > 0 with an x  E Kn and 

Onhe E B H. It follows that  

H H Mrn > #~ (B 2 ) > #H((Onh)eBH) = C e. 

Since this holds for all ~ _> 1 (and some fixed m), we conclude that  C _~ 1. By 

applying the above to h -1 we see that  C = 1. I 

6. The structure of  the subgroup leaving the conditional m e a s u r e  

inva r i an t  

Let c~ be a Zk-action on X,  and let Gs  act continuously and locally free on 

X such that  c~ preserves the Gs-leaves (as in Section 3.3). Let 0 be the corre- 

sponding Zk-action by automorphisms of Gs  describing the action of c~ on the 

Gs-leaves, i.e. such that  an(gx) = On(g)an(x) for X E X and n E Z k. Finally, 

let A be the adjoint Zk-action on gs and assume that  A is semisimple. 

In this section we begin our study of c~-invariant probability measures on X.  

We will show that  the maximal subgroup leaving conditional measures invariant 

has a special structure. 

For this let H be an m-stable subgroup of Gs  and let d(., .) be the metric 

defined in Section 4.5. The metric is right invariant as required in Definition 5.3. 

Since ~ is invariant under the adjoint action A, it is easy to check that  the 

induced H-space structure is also preserved by the Zk-action a. Moreover, 

(4.5) shows that  oL m uniformly contracts the H-leaves. As we saw in Section 

5.2 this implies that  the conditional measures # s  exist for every a-invariant 

probability measure p on X.  We study in this section the maximal subgroup 

Hx of H that  leaves pH invariant by multiplication from the left (or right). 



Vol. 148, 2005 RIGIDITY OF MEASURES 199 

Definition 6.1: A closed subgroup H r C_ H = exp ~ of an m-stable subgroup 

H allows a we igh t  d e c o m p o s i t i o n  if H r = exp t} r for some ~' C_ ~ with the 

following properties: 

(1) C 

(2) = rn  

(3) [J' N b~ = ~ 0' N [)3 for all a �9 S, and 

(4) b' A [~ is a vector space over Q~ for all Lyapunov weights A and all a �9 S. 

In other words H' = exp [}' is an S-Lie subgroup of H with S-Lie algebra 0 r 

such that  [}' allows a decomposition into subspaces of Lyapunov weight spaces of 

b. Note that  we do not require invariance of [}' under the adjoint action A, and 

that  in the case of a real Lie group the above requirements show in particular 

that  H' is connected. 

PROPOSITION 6.2: Let X ,  a, Gs,  and A be as above, and let H = exp~ be an 

m-stable subgroup of Gs.  For any a-invariant probability measure # on X the 

conditional measures #H exist a.e. and the subgroup 

Hx = {h �9 H :  (Lh) ,#  H = , H )  

allows a weight decomposition. (The same holds similarly for the subgroup 

defined using right multiplication Rh.) 

The following easy facts will be useful for the proof of the proposition. 

LEMMA 6.3: Let h i, h �9 H and ~j, u be locally finite measures on H such that 

hj --+ h and vj --+ v for j --+ c~, where we use the weak* topology induced by 

all continuous functions with compact support. Then 

(Lhj) ,v j  --4 ( L h ) , ,  for j --+ ~ ,  

where Lh(g) = hg is left multiplication. (The same holds similarly for right 

multiplication Rh(g) = gh.) In particular, Hx as in Proposition 6.2 is dosed. 

LEMMA 6.4: Let # and H be as in Proposition 6.2. Then for a.e. x E X and 

all m E Z k we have Hw~x = Om(Hx). 

Proof: Let m C Z k. The lemma follows from the relationship between #H and 
H U,V o m  #~m x in (5.6). Recall that  in our situation Ore, x = is a fixed automorphism 

of H,  so that  #w-x = O~#x a.e. | 
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LEMMA 6.5: 

satisfies (1). 

A n y  subgroup H ~ C_ H satisfying (2)-(4) of  Definition 6.1, also 

Proof: Note first that  (2)-(4) imply that  i)' = log(H')  is an additive subgroup 

of 0. Since [., .] is bilinear and any element of I) ~ can be written as a sum of 

elements in I) ~ VI I)~ for various a E S and weights A, it is enough to consider 

u, v E I)' with u E I)~ and v E I)~ for some weights ~, ~. Since H '  is a subgroup, 

we have u*v E t)'. By (3.2) we can express u*v as a combination of u, v, [u, v] , . . . ,  

where each of these expressions belongs to a particular weight subspace t)~ as in 

Proposition 4.9. In particular, [u, v]E I)~ +r and this term is the only one in that  

particular weight subspace (using that  H is in-stable). However, Definition 6.1 

(3) and (4) now show that  [u, v] E t)'. | 

Proof  of  Proposition 6.2: Suppose H is m-unstable for an m E Z k such that  

additionally/~1 (m) ~ )~2 (m) for any two different weights A1, A2 of H.  We define 

/3 = am; then it is enough to show the proposition for the Z-action defined by 

/3. We denote the corresponding map on H by t~, and the adjoint action by A. 

Weights can be identified with real numbers, and so I) ~ will denote the weight 

space corresponding to r E II{. Moreover, we let 

t)I = E I)r for any interval I c_ I1~ + . 

rEI  

By our choice of m we are still considering the same weight subspaces, in fact 
Ij ~ = I~(,"). 

Let N be a null set such that  #ff is well defined and satisfies Lemma 6.4 for 

x ~ N. Let K C_ X \ N b e  a c o m p a c t  set w i t h # ( K )  > 1 - e  such that  #H 

depends continuously on x within K (Luzin's theorem). By Poincar~ recurrence 

there exists a set K ~ C_ K of equal measure such that  for all x E K ~ there exists 

a diverging sequence nj with /3nj x E K and/3nj  x --+ x for j --+ c~. We can 

require that  this holds for some sequence nj ~ oo as well as for some sequence 

nj ~ - o o  for j -~ ~ .  Since e is arbitrary, it is enough to show the proposition 

for any x E K ~. 

Let I)sl = ~p~S\{~} I) VI gp. Our first step towards the linear structure of 

I)x = log H~ is contained in the next lemma. 

LEMMA 6.6: 

morphism 

Let x E K '  and r > 0 be fixed. Then there exists a group homo- 
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which is linear on Ij[~ ~176 = I][ ~,~ N ~oo and has 

ker ~b~ = (I]~ '~) + Oss) 

as its kernel, such that  ~r (v) C_ [}~ for all v E b~ N dom r 

Proof: Let n j  --+ - o c  be such that/~nJx E K and/~nJx -~ x for j --+ co. Recall 

that  every/9-1 uniformly contracts the H-leaves. We define ~j  = M j A n J ,  where 

My = [e -n~r] and A is the adjoint action to/9.  Let V = I}[~ ~176 + I}sf. Then 

~jiy has only eigenvalues of absolute value less than or equal to one and its 

eigenvalues on I ~  are the only ones bounded away from zero. To see this, note 

first that  the natural number M j  has norm less than or equal to one with respect 

to all the non-Archimedean norms. Therefore the eigenvalues of ~j restricted to 

~sj are at least as small as the ones of A n~ and approach zero for j -+ co. For 

the real part  ~ we have chosen My such that  the eigenvalues have precisely 

the stated behavior. We assume without loss of generality that  ~oj -+ Cr on 

V : dom r where r is a group homomorphism as in the lemma. 

Suppose n o w v  E [~xND a n d t  E ~ Let g : e x p ( v )  6 Hx. S inceMj  ~ cx) 

we can choose some qj E Z with t -- l i m ( q j / N j ) .  Define vj  : q jA  nj (v), then 

exp(vj) : OnJ(g qi) E Ha'~kx by Lemma 6.4. Since Vj : ~ ) j ( V )  ~ tCr(V ) 

and # H  __+ #H by construction of K,  we conclude from Lemma 6.3 that  
a 3 x  

exp(tr 6 Hx. I 

LEMMA 6.7: Let  x E K ' .  Then  bx M O r  is a real vector  space for all r > O, and 

~x = ~ nl~L + ~x n ~s,. 

Proof: Fix some r > 0 and let ~ be as in Lemma 6.6. Choose a maximal list 

v l , . . . ,  Vd E t]x N dom r of vectors such that  r for i = 1 , . . . ,  d are linearly 

independent over 1~. Let 

w = <r i = 1 , . . . ,  d) 

denote the linear span. Since r  has image in [ ~  on which it is also injective, it 

follows that  any v E [~x N dom Cr can be expressed as v = vr + v' where vr E W 

and v' E ker r For otherwise we would have a list of d + 1 vectors with linearly 

independent image. 

We claim that  W C_ t}x is r For invariance note that  r E [~x, 

and therefore ~ ( v i )  E W by the first paragraph. Since Cr is injective on br~, 
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this shows that  Cr(W) = W. It remains to show that  W C_ bx- So let v E W 

and find t l , . . . ,  td C ~ with 

V : tl~)r2(Vl) + ' ' ' t d r  

By Lemma 6.6 we already know t i r  C bx. Since Hx is a group, we have 

u = (t lr  "*(tdr E Ox. By (3.2) and Proposition 4.9, u = u~+u>~ 

where 

Ur = t l C r ( V l ) + ' " t d C r ( V d )  

and u>~ E 0~'~) .  By Lemma 6.6, v = r = r E 0x. This proves the 

claim and the first statement of the lemma. 

For the second statement we show by induction that  for all r > ~0 

(6.1) O x M d o m r  oxno o+ ,nos,. 
s~[r,oo) 

For large enough r this is trivial because then domr = bss. So suppose 

for the inductive step that  v E 0x M dom~r .  Then we can decompose v :  

vr + ~s>~  Vs + vs  s according to the weights for the real part  and the remaining 

non-Archimedean parts. The first two paragraphs show that  v~ E W C_ 0x. 

We need to show that  vs ,vss  COx for all s > r. Since Hx is a group, we have 

u = v * ( - v r )  = v - v r -  �89 v~] + . . .  E [Jx by (3.2). Note that  u = ~s>~ Us+VSl 

already satisfies (6.1) by the inductive assumptions. This shows immediately 

that  vss C ~ .  Let s > r. Then 

1 
(6.2) us = vs - ~[vs-r,vT] + . . .  E 0~ r3 I)~o 

by Proposition 4.9, where all other terms are [., .]-polynomials in v~ and maybe 

several vt for t E (r, s). Therefore Vs = us E Ox when s is the smallest weight 

bigger than r. Suppose we already know vt E Ox for all t E (r ,s) .  Then 

v~ * vt * ( -Vr )  E ~z and the inductive assumptions shows [v~, vt] E O~ (just as 

in the proof of Lemma 6.5). Therefore, us and all the additional terms on the 

right of (6.2) belong to the vector space Ox M 0~.  We conclude that  vs E Ox for 

all s. For small enough r the second statement of the lemma is exactly (6.1). 

| 

Lemma 6.7 already shows that  ~ satisfies Definition 6.1 (3)-(4) hold for 

a = ~ and moreover that  Ox = b~ M 0~ + 0~ M 0ss. For Definition 6.1 (2) we 

still need to show that  

I]x nl)ss = E I j ,  nO~. 
pC S f 
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So suppose v E Ox M ~ss; then M v  = log((expv) M) E ~ M Osj for every integer 

M. Let p E SS; then we can find a sequence Mp,j for j = 1 , . . .  such that  

Mp,j --+ 1 with respect to ]. Ip but Mp,j --+ 0 with respect to I" ]q for any 

q E S S \ {p}. Since Oz is closed, Mp,jV --+ % E ~ N Op. Taking the sum we find 

tha t  v = ~peSs  Vp E Ox M OSs decomposes as claimed. 

Similar to the real case we will establish Definition 6.1 (3)-(4) for p E Sf  in 

two lemmata.  

LEMMA 6.8: Let p C Sf ,  x C K' ,  and r > 0 be fixed. 

Qp-linear map  

domr = + 

with kernel 

Then there exists a 

kergar = I) (~ 

such that QpCr(V) c_ Ox for all v E 0x M d o m ~ r .  

Proof: By definition of K '  there exists a sequence nj --+ (x) such tha t  fin, x E K 

and flnj x --+ x for j --+ c~. We choose some integer sequence Mj such that  

the eigenvalues of pMJAnJ restricted to b~ stay bounded and bounded away 

from zero. By choosing a subsequence if necessary we can assume that  these 

eigenvalues have a nonzero limit. Note that  the eigenvalues of A ~ restricted to 

b(p0,r) grow at a smaller rate. We denote the limit of the restriction of pMj A~j 

to o(o,r] by G-. 

Suppose v E ~M~(p ~ and M C Z. Then g = exp(v) E H~ and 8nj (g) E H~nj~ 

by Lemma 6.4. Since 

(8,~ ~ (g))pM,-M -+ exp(p_Mr ) for j --+ c~, 

we get p-Mr  E ~x from Lemma 6.3. Therefore mp-M~r(V)  C Oz for all 

m C Z, which implies that  Qp~r(v)  c Ox. I 

LEMMA 6.9: Let x C K '  and p E S f  . Then I)~ M I)~ is a vector space over Qp 

for all r > O, and bx M ~p = E r  Ox A ~;. 

Proos We prove by induction that  0~ M ~ is a vector space for s _> r and tha t  

for any v = ~8>oVs E ~x with v~ E I) M Ilp we have in fact Vs C ~x for s _> r. 

For large enough r this s ta tement  is vacuous, and for r = 0 it is a reformulation 

of the lemma. So it is enough to prove the inductive step. 

Let Vl , . . . ,Vd E ~ M I)~p be a maximal  set of linearly independent vectors, 

and let t l , . . .  ,td E Qp. By Lemma 6.8, ti~br(vi) E Ox for i = 1 , . . .  ,d, and so 
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W ----- ( t i e r ( V 1 ) )  * ' ' ' *  (tdCr(Vd)) E [Ix" Clearly w = ~--~s_>~w~ with we E O~ 

for s > r. By the inductive assumption we know w~ E [~x for s > r. Suppose 

t > r is the smallest weight with wt ~ 0; then w' = w * ( - w t )  E 0~ satisfies 
! 

tha t  w~ = w~ and w~ = 0. Continuing like tha t  we finally show that  w~ = 

t ie r (v1)  + . "  + td~r(Vd) E [Jx. Since vx , . . . ,Vd is a maximal  list of linearly 

independent vectors, we conclude that  r  ,r must have the same 

M r linear span over Qp and tha t  Ox [jp is a d-dimensional r vector space 

over Qp. 

To conclude the proof we need to show tha t  v~ E 0~ whenever v = ~ s > o  v~ E 

[~. Since we already know v~ E [~ for all s > r, we can show similar to the 

above tha t  w = ~e(0 ,~]  v~ E O~. By Lemma 6.8, r = r E O~, and 

invariance of Ox M O~ implies tha t  Vr E 0x as required. I 

So we have shown that  [Jz satisfies (2)-(4) of Definition 6.1 for any x E K ' .  

Together with Lemma 6.5 this concludes the proof of Proposit ion 6.2. I 

7. S t a b i l i t y  o f  c o n d i t i o n a l  m e a s u r e s  a n d  p r o d u c t  m e a s u r e s  

We return to the more general setup of (S, H)-spaces.  

Definition 7.1: Let a be a Zk-action on an (S ,H)-space  X tha t  preserves the 

S-leaves. Then the linear functional A is a c o a r s e  L y a p u n o v  w e i g h t  for the 

(S, H)-space  (with respect to a)  if there exists c2 _> Cl > 0 such that  for x E X,  

n E Z k, U E ~(x) ,  V E ~ (anx) ,  and s, s '  E S we have 

U,V nU, V tx d(0n, ~ s, ~n,x S ) _< max(eCl)'(n),eC2)'(n))d(s,s') for every n E Z k, 

where 8nU, 'V is the homeomorphism of S as in (5.5) for the element a n of the 

action. 

We give some general comments  about  coarse Lyapunov weights; if A(n) < 0, 

Definition 7.1 shows that  a n contracts the S-leaves at least by the factor e c'~(n) . 

If, on the other hand, A(n) > 0, a n expands the S-leaves at most by the factor 

e c2~(n). Using this also for a - n  in both  cases, it follows easily that  we also have 

a lower bound, i.e. the above is equivalent to 

U,V nU, V , \  min(e clx(n), e c2x(n))d(s, s') _< d(~n, ~ s, ~n,~ S ) _< max(e  clx(n) , e c2x(n))d(s, s'). 

If  there exists some n E Z k with A(n) = O, it follows tha t  a n acts isometrically 

on the (S, H)-leaves. Since we only consider a Zk-action, there might be no such 

element. 
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We can consider nonzero elements w E ]I{ k as asymptotic directions in Z k by 

using sequences nj  E Z k that  stay close to l~+w. We now extend [6, Prop. 5.1] 

and [21, Lemma 6.2] accordingly. 

Definition 7.2: Let A be a coarse Lyapunov weight for the Zk-action a on the 

(S, H)-space X, and let w E I~ k with A(w) = 0. Then x r w - a s y m p t o t i c a l l y  

b e l o n g s  to the S-leaf of x E U if there exists some So E S such that  y = tv(so, x) 

satisfies: for every diverging sequence nj  E Z k with bounded distance to ]~+w 

such that  an~x is relatively compact we have d(anjy ,anJx ~) --+ 0 as j --+ c~; see 

Figure 1. 

U Y anJ Y ~ ~ a n j  xt 

"'"'. j Ot nj X ~  

Figure 1. The points y and x r approach each other when a nj is applied. 

PROPOSITION 7.3: Let A be a coarse Lyapunov weight for the Zk-action a on 

the (S, H)-space X ,  and let w E ~k with A(w) = O. Suppose # is an a-invariant 

probability measure with conditional measures #xU, s for U E ~(x).  Then there 

exists a null set N such that for U,U' E ~, x E U \ N ,  and x' E U' \ N the 

conditional measures for the S-leaves satisfy 

(7.1) v u '  #x,s ~ ((I')*#x',S for some homeomorphism 

whenever x' w-asymptotically belongs to the S-leaf of x. (Here, ~ in general 

depends on x and x'.) 

Additionally, i r a  homeomorphism 9: S ~ S satisfies for any s E S that 

(7.2) d(a"J otu(q~(s),x),anJ otv , (s ,x ' ) ) - -+O forj--+oo 

along any diverging sequence nj E Z k with bounded distance to II~+w such that 

a"Jx is relatively compact, then �9 = q~ satisfies (7.1). 

Actually, it is possible to find an isometry ~ E Isom(S) that  satisfies (7.1). 

We will indicate at the end of the proof how to show this extension. 
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Proof: We first show that  there exists for every ~ > 0 a set Xr with #(X~) > 

1 - 2~ on which the proposition holds. Since pUs depends measurably on x e U 

(for every U E ~), there exists a compact set K of measure # (K)  > 1 - e 

on which these functions are continuous by Luzin's theorem. Without loss of 

generality assume that  (5.3), Proposition 5.6 (3), and (5.6) hold for all x E K 

and a n, n E Z k. 

We wish to apply the "ergodic theorem along the direction w".  Unless 

~ w N Z  k # {0} we need to use the suspension flow for this. Let Xs -- X x [0, 1) k, 

a'~(x,u) = (anx, u + v - n) where u E l~ k, (x ,u)  E Xs, and n E Z k is chosen 

such that  u + v  - n E [0, 1) k. It is easy to check that  as is a measurable ll~k-flow 

on Xs which preserves #s = # x A[0,1)k. Let Ks = K x [0, 1) k. By the ergodic 

theorem the function 

m--1 

f s (x ,u )  = lim --1 E 1K,(aJW(x'u)) 
m--+oo m 

j = 0  

exists for a.e. (x, u) and satisfies f fsd#s = i t(K) > 1 - e. 

We are going back to the space X. Clearly we can fix some u E [0, 1) k such 

that  f ( x )  = s  exists for a.e. x E X and f f d #  > 1 - e .  Let nj  E Z k 

be the unique sequence such that  u + j w  - nj  = vj E [0, 1) k for all j .  From 

Ks = K x [0, 1) k and the above we get that  

ra--1 

f(x)---- lim --1 E 1 K ( a n ~ ( x )  ) 
m-+oo m 

j = 0  

exists for a.e. x E X.  Furthermore, the sequence nj  E Z k diverges but does not 

leave a certain tube around ~w, in fact [[nj - jw][oo = [[u - vj[[oo < 1 and 
1 [A(nj)[ < [[A][ for j .  Let Z~ = {x:  f ( x )  exists and f ( x )  > 5}" Then 

f 2 1 ~ l - e <  fd#_< (1-#(Xr162 #(Xr 

and so #(Xr > 1 - 2e. We can again assume that  (5.6) holds for all x E Xr 

and a "  for n E Z k. 

Suppose now x, x' E X~ satisfy the assumption of the proposition. Since 

the asymptotic frequencies of the event c~"J (x) E K is given by f ( x )  and since 

f ( x ) ,  f ( x ' )  > 1, there exists a common subsequence of nj  (again denoted by nj)  

so that  c~ n~ x, a"Jx '  E K.  By compactness we find another subsequence such 

that  
X j  = oLnJx "-'+ Z 6 Ix'~ 

r Z I xj = v~ "jx '  ~ E K f o r j ~ e ~ .  
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U~ Y. 
"'". j 

/ ~  / ~ U / 

~ y  ! 

Figure 2. After choosing a subsequence we get two limit points z, z '  

on the same T-leaf. 

Suppose V c ~(z)  and V' C ~(z ' ) ,  then xj E V ,  y j , x ~  C V' for large enough 

j as in Figure 2. The construction of K implies that  

(7.3) v v Pxj,s --~ Pz,s for j --~ cx) 

U,V r U' V' 
' ' and z ~ Let Oj = 0nj,x and 0j = 0njlx, be as in and a similar s tatement  for xj 

(5.5). By (5.6) 

(7.4) (~nj o tv( ' ,x )  = t v ( ' , x j )  o Oj, 

(7.5) (oj)..x s 

and similarly for x~ and 0}. By Definition 7.1 and our estimate IA(nj)l _< IIAII 

the maps Oj satisfy 

e-C:Hxlla(Sl, s2) < d(Oj(sl), Oj(s2)) <_ eC:ll~lld(sl, s:). 

Therefore, we can pass to another  subsequence and assume that  Oj --+ 0 and 

0 5 --+ 0 ~ for j -+ oc and two homeomorphisms 0, 0 ~ which satisfy the above 

est imate as well. (The map 0 can be thought of as a map from the S-leaf 

through x to the S-leaf through z; see Figure 2.) Therefore (7.3) and (7.5) show 

that  

(7.6) v v , ,  v '  v '  O.#x,S oc #z,s and •.Px',s cx #z',S, 

since the proportionali ty constant in (7.5) has to converge to some nonzero real 

number. 

By the assumption on x, x ~ there exists some s0 E S such tha t  y = tu(So, x) 

satisfies (for the chosen subsequence) 

yj  ---- olnjy -+ Z I. 
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Continuity of the map t v  and (7.4) imply 

yj = a"Jy  = ty(tojSo,Xj) --+ tv(toso, z), 

and therefore z' = tv(toSo, z). By assumption, Proposition 5.6 (3) holds for all 

points in K.  Since z, z p E K there exists some r E Hs  such that  

(7.7) t v ( . , z )  o r  t v , ( ' , z ' )  and v v' = #z,S = r 

Together with (7.6) this shows that  the main assertion (7.1) of Proposition 7.3 

holds for @ = to-1 o r o to~, which satisfies 

(7.8) e-2C2[I;~l[d(81,82) ~ d(O(81), (I)(82)) _~ e2C2l[)~lId(sl, s2). 

Suppose �9 satisfies the assumptions stated in the proposition and let nj be 

the sequence constructed above. Using (7.4) we can reformulate (7.2) to 

d(tv(toj o @(s) ,x j ) , tv , ( to}(s) ,x}) )  -+ 0 for j --+ oo. 

Since toj --+ tO and to~ ~ to' for j --+ co, we conclude that  tv(to o @(s),z)  = 

tv,  (to~(s), z ~) for any s E S. Note that  �9 satisfies the same equation by definition 

of (I) and r in (7.7). By assumption, (5.3) holds for z E K,  and therefore we 

conclude that  (I) = fig. 

Since the above holds for all ~ > 0, we can find an increasing sequence X1/n  

such that  X \ U~ x 1 / n  is a null set and the proposition follows. 

We now show that  (7.1) also holds for an isometry. Let V C Rk be the 

smallest rational subspace that  contains w. Choose a basis of V consisting of 

elements of Z k N V that  are close to l~w. Then the restriction of a to Z k M V 

defines a new zk'-action a ~ where k ~ = dim(V). It follows from the definition 

that  the restriction A~ of A to V is a coarse Lyapunov weight for cd (with the 

same constants). However, by choosing the basis close to l~w we can achieve 

that  II~ll < 1/~ for some given t? > 1. (Here we use the maximum norm on V 

induced by the chosen basis and the dual norm on the space of linear functions 

on V.) Applying the above proof to a '  gives a homeomorphism ~ that  satisfies 

(7.1) and an improved version of (7.8). Varying g and choosing a subsequence 

we find the isometry (I) = lime Ce that  satisfies (7.1). I 

The stability of the conditional measure in Proposition 7.3 implies already 

that  the conditional measures are product measures. For this we will use the 

following general situation of a foliated space whose leaves are product spaces. 
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De~nition 7.4: Let S, T, S x T be locally compact second countable metric 

spaces such that  the metric on S x T induces the product topology and its 

restriction to S x  {e} and {e} x T  gives the metric on S and T. Let H C_ 

Isom(S x T) be such that  all r E H have the form r = a s  x aT for homeo- 

morphisms as:  S --+ S and aT: T --+ T (which are not assumed to be isometrics). 

Then we say H is a g r o u p  o f  p r o d u c t  maps .  

An important  case is the case where H is a group with two subgroups S and 

T such that  T i s  normal in H,  T M S  = {e} and H = S T  ~_ S x T .  If the 

additional requirements on the metric are satisfied, this gives an example of a 

group of product  maps. In fact, the right translation 

Rsoto(St) = (st)(soto) = (SSo)(soltsoto) E S T  

for every s, so E S and t, to C T is in this case a product  of two maps. 

Similar to the case studied in [21, Sect. 6], an (S • T, H)-space where H is 

a group of product maps induces an (S, Isom(S))-space and an (T, Isom(T))- 

space in a natural way: we use the same atlas ~ and the restrictions of the 

parametrization maps t v  (., x) to S and T respectively. 

We say that  a c o n t r a c t s  t h e  T- leaves  a long  w if 

(7.9) u,v u,v d(Ox,njtl,Oz,njt2 ) --+ 0 for j ~ cc 

for every tl,  t2 E T and every diverging sequence nj with bounded distance to 

ll(+w (and U, V ov, v , x ,n j  as in ( 5 . 5 ) ) .  

THEOREM 7.5: Let X be an (S x T, H)-space where H is a group o[ product 

maps and let a be a Z k-action on X preserving the (S x T, H)-/eaves as well as the 

two induced [oliations. Suppose ~ is the Lyapunov weight to the (S, Isom(S))- 

space and suppose w E ~k satis/~es A(w) = 0 and that the (T, Isom(T))-leaves 

are contracted along w.  Then [or every a-invariant probability measure # with 

u for U E Cf(x) we have [or almost every x E X conditional measures #x,s • T 

U U U 
] t x , S x  T OC ]_tx, S X ~ x , T "  

Our first step towards Theorem 7.5 is to study the relationship between the 

conditional measures for the (S x T, H)-leaves and the induced leaf structure. 

LEMMA 7.6: Let X, S x T, H and # be as in Theorem 7.5. Let rs,  rT > O, and 

choose r > rs > 0 such that Q = Qrs,rr = BSrs x BTr C_ BSr xT. Then for a.e. Xo 

there exists a-rings A x = A ( S  x T)  and A (S )  with common maximal dement  
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A such that A x is an r, S x T-flower with open center C containing Xo, A (S )  is 

countably generated, and the A(S) -a toms  are open S-plaques. For some fixed 

x E C and any (s ' , t ' )  E Q let f ( s ' , t ' )  = tu ( ( s ' , t ' ) , x ) .  Then wehave  

(7.10) 

and 

(7.11) 

[f(s ' ,  t')]A(S) M f ( Q )  = f(BS~s • {t'}) 

P 

A x ]~ A(S) -1 A(S) A x 
= (#x, ( f (O)) )  #x, If(Q)d#x (x') /~x If(Q) ~ ( Q )  

for a.e. x E C; see Figure 3. Furthermore, this is the decomposition of#x  A• If(Q) 

into conditional measures with respect to .4(S). 

For the proof that  the conditional measure is a product measure the above 

lemma will be useful, since it allows us to replace the atom [x]A• whose shape 

is in general unknown, by the rectangular set f (Q) .  

[x]A• 

i7  x x/1 
I [x']A(s).J 

Figure 3. For elements x E C of the common center we have f ( Q )  c_ 

[x]A• c_ A, and for x' = f ( s ' ,  t ') the A(S)-atom [x]A(s ) containing 

x' intersects f ( Q )  in f (B~s x {t'}). 

Proof: Let U E ~. Recall that  we assume that  tu(.,Xo) is injective for a.e. 

Xo E U (by our assumption that  the conditional measures exist). By [21, Cor. 

3.5] there exists an r, S x T-flower A x = A ( S  • T)  with maximal element A and 

center C. In fact the maximal element is A , /DSXT = ~U~D r , B~(Xo)) and the center 

is C = Be(xo) for any small enough e > 0. We choose e small enough such that  

Lemma 5.2 holds for the (S • T, H)-spaces structure, i.e. 

n S x T  for any y E A and V E X(y). (7.12) t y ( . , y )  is injective on ~19T 

We now construct the countably generated a-ring A(S )  with the same 

maximal element A as above. For Y0 C A, V C ~(Yo), and ~ > 0 we define 

D,(yo) : tv(BS4T, Bv(yo) M A) M A. 
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We claim that  

(7.13) BS4r(z) M A C D,7(yo ) for any z �9 Dv(yo ). 

To see this, note first that  

(7.14) B~r(z) C BSsr(y) 

for some y �9 Bv(yo ) M A by the triangle inequality and the definition of 

Dv(yo ). However, this implies B~(z )  M A C B ~ T ( y )  M A by Lemma 5.2 (1). 

By (7.14) and the injectivity statement in (7.12) this is equivalent to 

BSa~(z) M A C BS4r(y) M A C D,(yo). 

Now choose some countable dense sequence Ym �9 A and define A(S) to be 

the a-ring generated by the sets D1/n(Ym) for n , m  _> 1. Then the maximal 

element of A(S)  is A. For any z �9 A we can choose a sequence Ym,, such that  

d(z, ym,,) < 1/n for all n. Therefore, D = [')nDUn(Ym,,) contains z and by 

(7.13) also BS4~(z) M A. On the other hand, for any x �9 D there exist sequences 

y" --+ z and 8 n �9 BS4r with x = tV(Sn,Y~n), where we assume z ,y"  �9 V �9 5s 

Choosing a converging subsequence we find x = tu(s,  z) �9 A for some s �9 BhSr. 

Applying Lemma 5.2 again, it follows that  x �9 BS4r(z) and D = BS4r(Z) M A. 

Therefore, the A(S)-a tom containing z is 

(7.15) [z]A(s) = BS~(z) M A = d M ty(BS4~ • {e}, z). 

In fact, [z]A(s ) C D but the atom cannot be smaller by (7.13). This shows 

that  -4(S) is a countable generated a-ring that  has open S-plaques as atoms. 

Replacing -4(S) by -4(S) V ,4 • does not affect (7.15) since [z]A = Bs4.XT(z) N A 

by Definition 5.5 (2), i.e. we can assume that  -4• C -4(S). 

Let x �9 C = B~(xo) and (s ' , t ' )  �9 Bs4~ xT. We define x' = f (s ' , t ' )  = 

tu((s',  t ' ) ,x)  and choose some U' �9 ~(x ' ) .  Suppose r �9 H satisfies 

f o r = t~( . ,  x)  o r = tu , ( . ,  x ' )  

and r e)) = (s', t') as in Definition 5.1 (2). By Definition 7.4 we must have 

r  • {e}) = r  • CT(e) = S x {t'}. We assume in the following that  

x' = f ( s ' ,  t') �9 A. 

By Definition 5.5 (2) and (7.15) we have 

Ix]A• = d M f(BS4 xT )  = Ix']A• and 

[x']A(s) = AN tv,(BSr • { e } , x ' ) =  AN tv(r x {e}),x) 

= [x'].4• M f o r x {e}) = Ix]A• M f o r x {e}). 
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Assume now additionally that  (s', t') 6 Q. We are going to calculate the inter- 

section of [x']A(s) M f (Q).  For this, note first that  trivially 

O n r s. x {e}) c O n (S x {t'}) = BrS~ x {t'}. 

We claim that  in fact 

Q n r x {e})  = B s x {t'}. rS 

Solet g E BSrs; then (s ' , t ' ) ,  (g,t') 6 Q c BSr xT. Therefore, d((s',t '),  (~,t')) < 2r 

and since r is an isometry we find r t') E B ~  x {e}, which shows the 

claim. Since x is in the center C of the r, S x T-flower .4 x we also know that  

f (Q)  c [x]A• Therefore, and by (7.12), 

[m']A(s) M f (Q)  = f (Q)  M f o r x {e}) 

= f ( O  M r x {e})) 

= f(BSs x {t'}). 

�9 A ( S )  x '  Since A x c_ A(S) ,  the conditional measures /~x, for 6 [x]A• are the 
A • conditional measures for #z with respect to A(S)  (for #-a.e. x 6 A). In 

particular 
A x [ A(S), A x I..,~ 

#z = Jb #x' o#~ tx ). 
Lax 

We take the restriction of both sides to f (Q)  and get 

A x f _  , A(S) A x = t~x' If(Q)d/tx (x') 
~ x  If(Q) " t  z]-4 

ft~ ,A(s) ,p~r f ~(s) xx  = ~ ,  f(Q)t x t t ///  lf(p)(z)d#x, (z)d#z (x') 

J. l .(., .. 

= If(o)d#~, (z)d#x (x') 
]a 

= f (#~(s)(f(Q)))-I#Az(S)If(Q)d#~ • (z). 
J f  (Q) 

, A(S) 
Note in the second line that  the term (#z' ( f (Q) ) ) - I  is only undefined when 
t,A(s) A(s) A(s) x' If(Q) vanishes anyway. In the next line we used that  #z = #x, for 
A(s) 

#z ,  -a.e. z 6 [x ].4(s) (#•• And finally, we used that  #~(s) are the 
A x conditional measures for #z and the a-algebra A(S). I 

The next lemma is the main step towards Theorem 7.5 and shows that  the 
u 

conditional measure #x,SxT is the product measure of u Px,S and some second 

measure that  will be specified later. 
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LEMMA 7.7: Under the assumptions of Theorem 7.5 there exists for almost 

every x E U a locally finite measure u v on T such that  

U U U 
F t x , S x T  (X Jtx,  S X 12 x . 

Proof." Fix r s , r T  > O, and let r > 0 and Q be as in Lemma (7.6). Since 

X is second countable we can find countably many a-rings as in Lemma (7.6) 

such that  the union of their centers covers almost all of X (with respect to #). 

Suppose N is a null set so that  Lemma (7.6) holds for all x ~ N and all of the 

countably many a-rings constructed above. 

By Proposition 5.6 (2) 

(7.16) -1 A • u t U ( ' , X ) ,  J.t x (X px,S• • and 

t , j ~ - l ,  A(S) U' 
(7.17) tv ,~ ' ,~  j ,  ~x' c( #x,,sit,,(.,~,)-l[~,]~ls ~ 

hold for a.e. x E U, a.e. x' E U', all U, U' E ~, and all a-rings constructed 

above. Enlarge N to a null set such that  the above and Proposition 7.3 hold for 

x, x' E U \ N and the (S, Isom(S))-space. 

Let A• Jt(S) be two of the a-rings with common center C. Let x E U M C \ N 
A • be fixed such that  #x (N) -- 0 (which holds a.e. by the properties of the 

conditional measures). We write again f ( s ,  t) = t v ( ( s ,  t ) ,x) .  The idea for the 

proof of the lemma is to start  with (7.11) and use f , 1  as in (7.16) to push 

this equality to S • T. The difficulty with this is that  we have to identify the 
~--1 A(S) measure ] .  #x, on S x T. (Note that  f uses x as the base point, so that  we 

cannot apply (7.17) directly.) 

Let (s ' , t ' )  E S • T,  x'  = f ( s ' , t ' )  = t v ( ( s ' , t ' ) , x )  E U', and y = t v ( ( s ' , e ) , x ) .  

Suppose r E H satisfies 

(7.18) I o r = t u ( . , x )  o r = t u , ( . , x ' )  

and r  = (s ' , t ' )  as in Definition 5.1 (2). Then by Definition 7.4 we 

must have r -- Cs • CT and r  = (e, t l )  for some tl E T, and so 

y = tv , ( (e ,  t l ) ,X ' ) .  By (7.9) we have d(anJy, anJx ') --+ 0 as j ~ c~ for every 

diverging sequence nj E Z k with bounded distance to ~+w.  We conclude that  

(7.1) holds for some �9 E Isom(S) whenever x'  = f ( s ' ,  t') ~ N; see Figure 4. 

Let �9 = Cs: S --+ S. It follows similarly that  tv,  ((s, e), x')  = f o r e) = 

t v ( ( ~ ( s ) ,  t ' ) ,x)  and t v ( ( ~ ( s ) ,  e ) ,x )  are in the same T-leaf. Since the T-leaves 

are contracted along the direction R+w, this shows that  ffJ satisfies (7.2) and 

therefore (7.1) holds for �9 = ffJ. It follows that  

f -1  ,4(s) ~,~-1..4(s) , #~, = r  by (7.18) J* /~x' 
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(7.19) 

U I 

o< by (7.17) 
, I 

((r u t ).#x,,8)[r 

• by (7.1) 

whenever x '  = f ( s ' ,  t ') ~ N .  

Figure 4. The points y = f ( s ' , e )  and x '  = f ( s ' , t ' )  belong to the 

same T-leaf. Proposit ion 7.3 implies a strong coincidence of the 

conditional measures for the S-leaves. 

We now apply f . 1  to  both sides of (7.11); on the left this leads to a measure 

proportional  to ~U, sxT]Q by (7.16). For the measure in the integrant on the right 

we use (7.19) and (7.10) to arrive at a measure proportional  to #xUslB,~s X St,. 

However, the measure in the integrant of (7.11) (where we include in the measure 

the normalizing factor) is a probabili ty measure and therefore the proportion- 

ality constant is independent of x '  = f ( s ' ,  t'). This shows tha t  

JQ U U , , t, U, SxTIQ x 5t,)d#~,SxT(S ,t ). 

Recall tha t  Q = Qrs,rT. For the measure vrs,~ r defined by 

vrs,r~(A) v s A)  f o r a  T = I tx ,SxT(Brs  X measurable A C_ Br r  , 

we have shown tha t  

(7.20) x ItxUsxTIQ O( Vrs,rT 

To conclude the proof of the lemma, we need to extend the above to S x T. 

Suppose N is a null set such tha t  (7.20) holds for all rs ,  rT E N and all x E U \ N .  

Suppose x C U \ N .  We check that  the measures Vrs,~r can be natural ly extended 

to a measure v. I t  is obvious from the above definition tha t  V~sy r = VrS,rT [BrT 

whenever r T < fT.  Since #x,SxT[Q,.s,,.TU is a (nonzero) product  measure, we 

see furthermore tha t  v~,~ r ~ Vrs,r T for any two positive r~ < rs .  Therefore 
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U ~U(A) = (L'rS,rT(BT))--lVrS,rT(A) defines a measure v x on T independent of 

rs,  rT as long as A C_ B T' . It  follows tha t  #~,TU O( #x,sU X v~U. | 

The next lemma finishes the proof of Theorem 7.5; the proof follows closely 

the second par t  of the proof of [21, Prop. 6.4]. 

LEMMA 7.8: Under the assumptions of Theorem 7.5 the measure v U in Lemma 

7.7equals u ~tx, T a.e. 

Proof: We set rs  -- 1, fix rT > 0, and choose r > 0 such that  Q = Ql , r r  = 

B~ x Br T c_ --7.RSxT" Note that  Definition 7.4 and Lemma (7.6) are symmetric  in 

S and T. So we can apply Lemma (7.6) to S x T and T to find countably many 

r, S x T-flowers and a-rings with T-plaques as atoms, such tha t  the centers of 

the former cover almost all of X.  If A x and A ( T )  are two such a-rings with 
A x 

maximal element A, then the decomposition of #5 into conditional measures 

with respect to A(T)  is given by 

A • ~ff ~ A(T) . . . . . .  ~-1 A(T), d. AX(xt~ ---- I p x, [f~,t~))) Px' If(Q) t% t J for a.e. x C C ]tx If(Q) (Q) 

by Lemma (7.6), where as before f ( s , t )  = t u ( ( s , t ) , x )  and C is the center of 

.A x . 

Fix some x satisfying this, (5.3), and (7.16). Note tha t  Q c_ f- i[x]A• We 

conclude from (7.16) that  

#xVsxviQ = /Q(tt~sT~) (f (Q) ) )-l J *  t~f(s, t)A(T) IQdpU, sxT(S,  t), 

where we showed equality by evaluating both sides on the set Q (and using 

the fact that  the measure in the integrant is normalized to be a probabil i ty 

measure). Furthermore,  this is the decomposition of u Px,SxTIQ into conditional 

measures with respect to the a-algebra BB[ x {~, T 

By Lemma 7.7 we have v u u #x,SxT = #x,S X v x a.e. for some measure v U on T. 

This shows that  

FtxUsxTIQ ____ f ( p U ( B T  ~ - 1 5  pU T d u , . ,  jQk x k rT]] 8 X x B,. T ] tx ,SxT[8,[)"  

Clearly this is also a decomposition v of #z,S• into conditional measures with 

respect to g s ~  x {0, BT~, }. Therefore 

/ .A(T) --1 --1 .A(T) 

(7.21) (Pf(~,t)(f(Q))) S, # f ( , t )  Q = 
l]U T --1 U U for, ,s• cq. 
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For the lemma we need to know (7.21) also for (s, t) = (e, e). Here we use 

Luzin's theorem, for every e > 0 there exists a compact set K C_ C \ N with 
�9 A ( T )  

#(K)  > (1 - c)#(C) such that  t~=, depends continuously on x' 6 K (using 

the weak* topology on the space of probability measures). It is easy to see that  

#]K has conditional measures proportional to ItU, s• with respect to 

the (S • T, H)-space structure. By Lemma 5.8 

U 
(e,e) 6 supp(#x,SxTItv(.,x)-lK) for a.e. x 6 K. 

Suppose x 6 K satisfies the above, (7.21), Proposition 5.6 (2), and Lemma 5.8 
U S x T  - i  for the (T, Isom(T))-space structure. Then #x,SxT(B5 N /  K)  > 0 for every 

5 > 0, so there exists a sequence (sn, tn) --+ (e, e) such that  f ( sn ,  tn) 6 K and 

(7.21) holds for these particular values of (s, t). By continuity 

pxA(T) = l i m  Pr "" 
n--~<x) J( , n )  

Let g: X --+ [0, 1] be continuous with g(x) = 1 and [x]A• M suppg C_ f (Q).  
.A(T) 

By Lemma 5.8, fgdttAx (T) > 0. It follows that  an = Pf(s~,t~)(f(Q)) cannot 

converge to zero. We assume without loss of generality that  a = limn-+~ an > 0 

exists. Since f is a homeomorphism between Q and f (Q)  it follows from (7.21) 

that  
U f , I#A(T)IQ (X 5e • l] x ]B,T T. 

However, Proposition 5.6 (2) now shows that  

U #=u, TI. # ,,= I .#.  

Varying rT shows the lemma and Theorem 7.5. I 

8. The  coarse Lyapunov  d e c o m p o s i t i o n  and the  product  s tructure  of  

the  condi t ional  measure  

8.1. THE ABELIAN CASE. The results from the last section can be applied 

for higher rank actions as follows. Although we will not use the particular case 

of this section in the remainder of this paper, we start  with the case where 

So , . . . ,  Se are second countable, locally compact, abelian groups with transla- 

tion invariant metrics ds , ( ' , ' )  for i = 0 , . . . , L  We define T = So • . . .  • St and 

use dT(t, t') = maxi ds, (ti, t~) as its metric. We will give conditions which force 

the conditional measures #x,T to be a product measure of conditional measures. 

This situation appears, for instance, for a Zk-action on T m by commuting auto- 

morphisms where the spaces Si are (certain sums of) common eigenspaces of the 
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defining matrices (see [18] and [8]). This illustrates how we will use Theorem 

7.5 in the more complex situation of homogeneous spaces. 

Definition 8.1: Let T = So • -.- • St be as above, let X be a T-space, and 

let a be a Zk-action which preserves the T-leaves and the induced Si-leaves for 

i = 0 , . . . ,  ~. We say T = So •  �9 x Se is the c o a r s e  L y a p u n o v  d e c o m p o s i t i o n  

o f  T w i t h  c e n t r a l  s u b s p a c e  So and c o a r s e  L y a p u n o v  s u b s p a c e s  Si for 

i = 1 . . . .  , ~ if there exist linear functionals Ai for i = 1 , . . . ,  ~ with the following 

properties: 

(1) For T '  = {e} • $1 • " "  • St the T'- leaves are uniformly contracted by 

some a n, n E Z k. 

(2) Every a n, n E Z k acts isometrically on the S0-1eaves 

(3) The functionals Ai and Aj are linearly independent for 1 _< i < j _< g. 

(4) For 1 < i < g the induced Si-space has Ai as its coarse Lyapunov weight 

(in the sense of Definition 7.1). 

Note tha t  Condition (4) implies that  a nj acts asymptotical ly isometrically 

on Si for any sequence nj  with Ai(nj) --+ 0 for j -~ oc. Unfortunately, this 

means that  the above definition and the theorem below do not apply to the 

most general case of actions by commuting automorphisms of ~m together with 

sums of generalized eigenspaces. A separate argument  is needed in this case to 

move from the eigenspaces to the generalized eigenspaces; see also [16]. 

We can now formulate our first generalization of [21, Prop. 6.4] to higher rank 

actions and the coarse Lyapunov decomposition. 

THEOREM 8.2: Suppose T = So x . . .  • St is the product of second countable, 

locally compact, metric, and abelian groups, and let the metric dT on T be 

defined as above. Let X be a T-space. Let a be a Z k-action that preserves 

the T-leaves. Suppose T has a coarse Lyapunov decomposition with central 

subspace So and coarse Lyapunov subspaces Si for i = 1 , . . .  ,~. Let # be an 

a-invariant measure with conditional measures #z,T. Then for a.e. x 

#x,T : #x,So X . . .  X #x,S~. 

By assumption, the leaves corresponding to T I = {e} • $1 • . . .  x St are 

contracted by some a n which acts isometrically on the (So, Isom(S0))-leaves. 

By Theorem 7.5 we immediately get tha t  #x,T = #• • #~,T' a.e. The fact 

tt,,T, = #~,Sl • "'" X #~,S, follows similarly by induction. For this we only need 

to find some w E II~ k satisfying the assumptions of Theorem 7.5 for one of the 

remaining Sj (with 1 < j ~ ~). 
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LEMMA 8.3: Suppose Ai for i = 1 , . . . ,  ~ are pairwise linearly independent linear 

functionals on ~k such that there exists some n E Z k with A~(n) < 0 for 

i = 1 , . . . , ( .  Then there exist an index i and a vector w E I~ k such that 

A~(w) = 0 and  Aj(w) < 0 f o r j  # i. 

Proof: Define the convex set 

C = {A C E ] ~ + A i  : A(n) = - 1 }  

iCE 

of linear functionals.  Then  C has at  least one extremal  point.  

Let i be such tha t  ~ A i  is an extremal  point  of C. Then  there exists a 

linear functional  on C - -  which we identify with some w E I~ k - -  such tha t  

A(w) < 0 for all A E C \ {Ai} and Ai(w) = 0. This proves the lemma. | 

Proof of Theorem 8.2: We already showed tha t  we only have to consider the 

case of  T ~ -- $1 x . . .  x St. By L e m m a  8.3, we can find some i and w E I~ k with 

Ai(w) = 0 but  Aj(w) < 0 for j r i. We assume wi thout  loss of generali ty (using 

tha t  T is a direct product)  t ha t  i = 1. Theorem 7.5 shows #x,T, = #x,& X #~,T- 

where T "  = $2 x . . .  x St. Induct ion  concludes the proof. | 

8.2. THE HOMOGENEOUS CASE AND INVARIANCE RESULTING FROM NON- 

COMMUTING FOLIATIONS. In  this section we show tha t  the condit ional  mea- 

sures with respect to an m-s tab le  subgroup are produc t  measures. This is similar 

to the result obta ined above, bu t  if the different coarse Lyapunov  subgroups of 

H do not  commute  with each other  we are able to obtain  some invariance of  the 

condit ional  measure.  

THEOREM 8.4: Let  X be a Gs-space and suppose the Zk-action a preserves 

the Gs-leaves. Assume that the adjoint action A on the S-Lie algebra IJs is 

semisimple. Let  H = exp i} be an m-stable subgroup of Gs,  let H A 1 , . . . ,  H At 

be the different coarse Lyapunov subgroups of H, and let r H & x . . .  x H At -+ H 

be defined by r  �9 �9 gt) = gl "'" gt. Then any a-invariant probability measure 

# on X satisfies 

(8.1) #ff  oc r x . . -  x #A,) a.e., 

where #Y and  #& are the conditional measures  for the H-space and the 

H &-space X for i = 1 , . . . ,  f respectively. 

Notice tha t  we did not  give any restrictions on the order  of  the coarse 

Lyapunov  subgroups.  A priori the measure on the right of (8.1) depends on 
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the order. As we will see later this independence is related to the following 

theorem. 

THEOREM 8.5: Let X,  a, and H be as in Theorem 8.4. For any a-invariant 

probability measure p there exist for a.e. two subgroups 

Hx C_ Px C_ H 

with the following properties: 

(1) #H is supported by P~. 

(2) pH is left- and right-invariant under multiplication with elements of H~. 

(3) H~ and Px allow a weight decomposition; see Definition 6.1. 

(4) Hx is a normal subgroup of P~ and any elements g E P~ N H A,̀  and 

h E Pz N H A-~ of different coarse Lyapunov subgroups (r ~ s) satisfy that 

gH~ and hHx commute with each other in Px/Hx. 

(5) #A~ is left- and right-invariant under multiplication with elements of 

Hz N H A~ for i = 1, . . . ,~.  

Note that  in the case of commutative coarse Lyapunov subgroups H A~ for 

i = 1 , . . . ,  ~ the statement in (4) is equivalent to Px/H~ being commutative as 

well. 

8.3. THEOREM 8.4 FOR A PARTICULAR ORDER OF THE SUBGROUPS. In this 

section we prove by induction the following weaker version of Theorem 8.4. 

LEMMA 8.6: There exists a reordering of H A 1 , . . . , H  At such that (8.1) holds 

for that order. 

Proof." Suppose we already showed the lemma for less than ~ coarse Lyapunov 

subgroups. Let hi be Lyapunov weights with Ai = (0, c~)Ai for i = 1 , . . . , g .  

By Lemma 8.3, we can reorder the weights such that  there exists w C ~k with 

hi(w) = 0 and ~j(w) < 0 for j > 1. Therefore b' = [~h2 + . . .  + hat satisfies 

[•, ~] C_ b' by Proposition 4.9, and H '  = exp [}' is an m-stable normal subgroup 

of H. Let r H A2 • . . .  • H At ~ H' be the corresponding product map. By the 
H j inductive assumptions we can reorder these weights and obtain (8.1) for #x �9 

Let r H A1 • H '  --+ H be defined by r g') = gig'. Let d be the metric on 

H found in Section 4.5. Recall that  d is right invariant (as required in Definition 

5.3). Lemma 4.14 shows that  A1 is a coarse Lyapunov weight of the HAl-space 

with respect to a in the sense of Definition 7.1. Furthermore, 

d(0nj (g,), onj (h')) -+ 0 
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if g', h' 6 H '  and nj  6 Z k diverges with bounded distance to II~ + w. By Theorem 

7.5 this shows that  #H o( r  • #H') a.e., and together with the inductive 

assumptions the lemma follows. 1 

8.4. THE PROOF OF THEOREM 8.5. Note that  the order of the subgroups 

is not important  for Theorem 8.5, so that  we can use here the order found in 

Lemma 8.6. 

LEMMA 8.7: For a.e. x and r 7~ s we have 

( 8 . 2 )  : 

whenever g 6 supp #A,. and h 6 supp #A.,. Here Rg: H --+ H is right multiplica- 

tion Rg (g') = g' g. 

Recall that  Lemma 5.10 states that  a.s. the notions of affine invariance and 

invariance of the conditional #H are equivalent. 

Proof: Let N be a null set such that  Proposition 5.6 (3), Lemmas 5.8 and 5.10, 

Proposition 7.3 (for several vectors w specified below), and Lemma 8.6 hold for 

the conditional measures #A~ for i = 1 , . . . , g .  Again by Proposition 5.6 (3) we 

can ensure that  

H --1 H (8.3) ~g= ~ (Rg) ,~=  

holds for any x, gx ~ N where g E H.  By Lemma 5.9 we can assume that  

#i :  ({g :gx E N}) 0 for all x ~ N and similarly for A, 

Let g, h E H be as in the lemma. Then #h: (BA: (h)) for any e > 0 (where 

B A: (h) denotes the e-ball around h E H A: ). Therefore, there exists a sequence 

hn E H A: with hn -4 h and hnx ~ N.  Note that  the conditional measure for 

the H A:-leaves change 
- 1  A~ As 

( R h ~ ) , t t x  ~ tth~ x 

according to Proposition 5.6 (3), while phi A~ h,, x ---- Px for i # S. The latter follows 

from Proposition 7.3 if we use some wi E Rk satisfying Ai(wi) = 0 and As(wi) < 

0. In particular, g E supp pA~ and again there exists a sequence gn 6 H A'̀  with 
hn x 

g~ --+ g and Yn = gnhnx ~ N.  As before we see that  

- 1  A~ A~ (8.4) -1 i~ i,. and (Rh,)*Px c< #v:~" 

Since e E supp#  A" by Lemma 5.8, this implies that  gn I E supp#A~ and 

A~ Just as above we now construct two sequences g~ E similarly hn 1 E supp # y .  
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H A" and h~ C H A~ such that  fn -+ g - l ,  h~ --+ h -1, h~yn q~ N,  and z~ = 

' h'  gn nYn ~ N.  The analogue to (8.4) is now 

(8 .5)  --1 A,. A- - 1  A~ As (Rg, ),#y,, e( #z:: and (Rh, n ) ,#y:  oc #Zn" 

For i ~ r, s it follows similarly that  

(8.6) pA~ = A ,  A~ A, A, 
h~x : ~y,~ = IAh',~y,, "~ Pz,," 

We claim that  this implies that  #zA: converges (possibly after going to a sub- 

sequence) to a measure proportional to #A~ for any i. For i ~ r, s this is trivial 

because of (8.6). For i = r it follows from (8.4)-(8.5) that  #A:. is proportional 

),#~ . By Proposition 5.6 (1) the proportionality constant is just t o  ( R ~ l g .  Ar 

BA,~ , -1 I (P~'~( 1 g~gn)) . Since g~gn ~ e we have 

n a t  ! BA;2 C_ 1~ 1 gngn  ~ BA'~ 

for large enough n, and so all of the proportionality constants allow a uniform 

bound. Therefore, we can choose a subsequence and achieve that  # ~  converges 

to a measure proportional to #x h~ by Lemma 6.3. The case i -- s is similar. 

By Lemma 8.6 we know that  

A~ 

As before the proportionality constants are bounded, so that  #z H converges 

(possibly after going to a subsequence) to a measure proportional to px-H 

However, by (8.3) 
--1 H ~.~H ~ (Rg, h,g~ ' 

-/~--1 \ H where the right hand side converges to t g-lh-lgh)*Px �9 We conclude that  

r R - 1  ~ H 
p f f  O( [, g _ l h _ l g h ) . p  x , 

but by Lemma 5.10 the proportionality constant has to equal one. | 

We will now strengthen Lemma 8.7 using the Lie algebra 0. For this it will be 

convenient to say that  u E 0 h is a s u p p o r t  v e c t o r  ( for  t h e  coa r se  L y a p u n o v  

we igh t  A) if exp u E supp # I .  Moreover, v is a we igh t  c o m p o n e n t  (o f  a 

s u p p o r t  v e c t o r  for  A) if u = ~ , ~ h U i  with expu  E supp#  A, ui E 0 ~ ,  

A~ ~ Aj for i ~ j ,  and v = u~ for some i. We will consider [., .]-monomials w 

in weight components, and say that  w is m i x e d  if it is defined using weight 

components for at least two different coarse Lyapunov weights. 
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PROPOSITION 8.8: Let X ,  a, and H be as in Theorem 8.4. Then for a.e. x E X 

the following holds. Suppose w is a mixed [., .]-monomial in weight components. 

Then 

(8.7) (Rexp(w)),~tH H 

In particular, 

whenever u and v are weight components of support vectors for two different 

coarse Lyapunov weights. 

The following will be useful in the proof of Proposition 8.8. 

LEMMA 8.9: Every mixed higher order [-, .]-monomial can be expressed as a 

finite linear combination of [., .]-monomials of the form w = [v', v"] E i~r such 

that either 

(a) v' and v" are both mixed [., .]-monomial, or 

(b) v' E D ~' is a single weight component of a support vector, v" E ~ "  is a 

mixed [., .]-monomial, and ~', ~" are linearly independent. 

Proof'. We will use the Jacobi identity (3.1) in the form 

(8.8) Iv', v"]] = -Iv ' ,  Iv", w']] - Iv", [w', v']]. 

For instance, we can use this (repeatedly if necessary) to write every higher order 

monomial as a finite sum of monomials w = [w', w'] such that  w ~ is a single 

weight component and w" is a monomial in weight components. Starting with 

a mixed monomial it is clear that  we actually get a sum of mixed monomials 

since every term on the right of (8.8) uses all the vectors w ', v', v" of the original 

expression. We have two cases to study, either w" is mixed or not. 

Suppose w" = [v',v "] is mixed. Let w ~ E ~;', w" E i}r v' E [J~', and 

v" E ~ " .  If ( '  and (" are linearly independent then w = [w', w"] is as in (b). 

So assume ('  = c~" = c(~ ~ + ~') for some c > 0. In this case w" has to be a 

mixed monomial. If w" is a higher order monomial itself, we use induction and 

assume without loss of generality that  w" = [v', v ']  is an expression as in (a) or 

(b). In any case we use (8.8) again. If w" is as in (a), then it is clear that  both 

expressions on the right of (8.8) are also as in (a). If w" is as in (b), then ~t and 

~" are linearly independent and v" is mixed. Therefore [v', Iv", w']] is as in (b) 

since ~' and ~" + ( '  = (1 + c)~" + c~ are linearly independent, and [v", [w', v']] is 

as in (a) since ('  = c~ t + c~" and ~' are linearly independent. If w" is a degree 
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two monomial, then it follows quite similarly that  both terms on the right of 

(8.8) are as in (b). 

Suppose w" = [v ~, v"] is not mixed, i.e. w" is defined using weight components 

in 0R+r Then ~' and r are linearly independent since w = [w ~, w"] is mixed 

and w ~ is a single weight component. Applying (8.8) we get two expressions of 

the form Iv, u], where v is defined using weight components in 0~+r u E 0a 

is a mixed monomial, and ~" and A are linearly independent. If v is a single 

weight component then Iv, u] is as in (b). Otherwise, v = [Vl, v2] and we can 

apply (8.8) (repeatedly if necessary) to get a sum of expressions as in (b). I 

Proof of Proposition 8.8: We first prove (8.7) inductively for all possible choices 

of weight components for two different coarse Lyapunov weights. We start by 

describing the inductive argument, which at its heart uses Proposition 6.2 and 

Lemma 8.7. We fix some inner product on II~ k and use it to identify Lyapunov 

weights A with elements of l~ k and coarse Lyapunov weights A with rays in 

1R k . In this sense we can speak about the angle between two coarse Lyapunov 

weights. Choose some m E Z k such that  ~(m) > 0 for all weights ~ of H. 

Our inductive assumption is that  (8.7) already holds for mixed [., .]-monomials 

wE~ 
(i) whenever ~(m) < t, 

(iii) whenever ~(m) = t and w is defined using weight components for two 

coarse Lyapunov weights such that  the angle between them is less than 7. 

Since there are only finitely many weights, both assumptions are trivial for small 

enough t resp. for any t and small enough ~. For the inductive step we assume 

that  ~ satisfies ~(m) = t and that  w E 0~ is defined using weight components for 

two different coarse Lyapunov weights At and A1 such that  the angle between 

them is equal to ~. 

We first show (8.7) for every higher order [-,-]-monomial expression w. By 

Lemma 8.9 we can write w as a linear combination of [., .]-monomial expressions 

v = [v', v"] of special natural. By Proposition 6.2 it is enough to show (8.7) 

for each of these expressions separately. Here we use mainly the inductive 

assumptions. 

Suppose v is as in Lemma 8.9 (a). Then right multiplication by exp(v') and 

exp(v") fixes #ff by the inductive assumption in (i), and v = Iv', v"] satisfies 

the same by Proposition 6.2. 

Assume now v is as in Lemma 8.9 (b). Again by (i), (Re• = H #~ , and 

so exp(v") E supppff  (using that  e E supppff  by Lemma 5.8). However, since 

#ff is a product measure by Lemma 8.6 we conclude from this that  v" E [1 r 
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is a support vector. Therefore, v = [v', v"] is a [-, .]-monomial expression in the 

weight components v ~ and v" of support vectors. Note that  v" is defined using 

weight components for A1 and A2 and so ~" E A1 + A2. Therefore, the angle 

between I~ + ~" and Ai for i = 1, 2 is less than the angle between A1 and A2. By 

the assumption in (ii) we conclude that  v = Iv', v ' ]  satisfies (8.7) . 

It remains to consider the quadratic case w = [u~,v ~] E I)~ where u ~ E I) ~ 

and v ~ E I)r are weight components of support vectors u and v for different 

coarse Lyapunov weights ~+~  and ~ .  By Lemma 8.7 we already know that  

= ( -u )  * ( -v)  * u * v satisfies (8.7). By Proposition 6.2 this already shows 

that  the weight component ~ E I) ~ of ~ corresponding to the weight ~ satisfies 

(8.7). By (3.2) 
1 

u * v  = u + v + -~[u,v] + . . . ,  

1 
( - u ) ,  ( -v )  = - u -  v + ~ [ u , v ]  + . . . ,  

and 

(8.9) = ( - u )  �9 ( - v ) ,  u ,  v = + . - . ,  

where the dots indicate other higher order [., .]-monomial expressions in u and 

v with both appearing at least once in every expression. We can use this and 

Proposition 4.9 to find a similar expression for the weight component 

(8.10) ~ : [u',v'] + . - -  E I)x n t) ~, 

where ~ =/~ + ~ and the dots indicate various other higher order [., .]-monomial 

expressions in different weight components of u and v. Note that  w -- [u I, v ~] 

is the only quadratic term here, since ~ = ~ + ~" can only be written in this 

way as a linear combination of ~ and ~' .  We already showed that  ~ and all 

higher order terms in (8.10) (indicated by the dots) satisfy (8.7). This implies 

the same for w by Proposition 6.2 and concludes the induction in the case of 

two coarse Lyapunov weights. 

The case where w is defined using weight components to more than two coarse 

Lyapunov weights follows again by induction. In this case w is necessarily 

a higher order monomial, so we can use Lemma 8.9. Case (a) again follows 

from Proposition 6.2 and case (b) follows from the case of two coarse Lyapunov 

weights considered above. | 

Our last preparation for the proof of Theorem 8.5 is the next lemma. 
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LEMMA 8.10: Suppose  v is a locally finite measure  on H ,  and suppose  H ~ C_ 

P '  C_ H are subgroups allowing a weight  decomposi t ion.  I f  supp v C_ P~, H ~ is 

normal  in PI, and right mult ipl icat ion wi th  e lements  o f  H ~ leaves v invariant, 

then the same is true for left mult ipl ication.  The  same  implicat ion holds for 

reversed sides. 

Proof: Note first that  the Haar measure m r on H 1 is bi-invariant since H I is 

a nilpotent S-Lie group. Fix some R > 0 and restrict ~, to B P'. Since this 

restriction is finite, there exist conditional measures %A for the a-algebra 

P' _ p , \ B P ' } .  .4 = {A  �9 13 : A c_ B R , A H  \ A C 

p' 
In other words, A contains all measurable subsets A C_ B R that  are intersections 

p~ 
of B R and unions of left cosets g H q  Because of right invariance of v the 

conditional measures vg are almost surely proportional to the restriction of 

the Haar measure on g H  ~. Since H ~ is normal in P~, left multiplication by 

h �9 H r maps g H  ~ into itself and leaves the Haar measure on g H '  invariant. 
p'  

Therefore ~, g ( h B  ) = vg ( B ) almost surely whenever B,  h B  C_ B R . This implies 

v ( h B )  = v ( B ) .  Since R > 0 was arbitrary, it follows that  v is invariant under 

left multiplication by elements of H ~. II 

P r o o f  o f  Theorem 8.5: Suppose x satisfies Lemma 8.6 and Proposition 8.8. Let 

P~ = E (w~ :w is a [., .]-monomial in weight components)Q~, 
aGS 

where w~ E OcT for every a E S and w = ~-:~ w~. It is clear that  the above linear 

hull over ([~ is a Lie algebra over Q~. Therefore, Px = exp px is a subgroup of 

H that  allows a weight decomposition. Suppose g = r  ge) E supp pH. 
At Since , ~  ~ r  •  • , ~  ) it follows that  g~ �9 s u p p , ~ '  for i = 1 , . . . ,  e. 

Therefore log gi is a support vector and gi �9 P~ for all i, which shows that  

g�9  

We define I~x similarly but  use only mixed [., .]-monomials w as in Proposition 

8.8, i.e. we require that  w is defined using support vectors to at least two different 

Lyapunov weights. Again H~ = exp Ij~ is a subgroup of P~ which allows a weight 

decomposition. Moreover, it follows at once that  [bx, P~] C 1~ and therefore Hx 

is a normal subgroup of P~ by (3.2). By Proposition 8.8, #H is invariant under 

multiplication from the right by elements of Hx; by Lemma 8.10 the same is 

true for multiplication from the left also. 
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Suppose now g E Pz MH A~ and h E Pz M HA" with r # s. Then [log(g), log(h)] 

E ~z and the same holds similarly for all higher order [-, .]-monomials. By (8.9) 

this shows that  g - l h - l g h  E Hz, in other words that  gHz and hHz commute 

with each other in Pz /Hz .  

For the last statement suppose first i = 1. Since #H c( r •  x #h~) is 

left-invariant by multiplication with elements of Hz M H h~ , it follows that  the 

same is true for #h~. Furthermore, tt h~ is supported by Pz M H n~ and Hz M H hi 

is normal in this subgroup. Lemma 8.10 implies invariance under multiplication 

from the right for i = 1. Let H '  = H Az . . - H  A~. Then we show similarly that  
H ~ #z is invariant under multiplication from the right by elements of Hz M H' ,  

and secondly that  the same is also true from the left by Lemma 8.10. Induction 

completes the proof. I 

8.5. THE PROOF OF THEOREM 8.4. Recall that  we already showed a re- 

stricted version of Theorem 8.4 in Lemma 8.6. The first lemma we need for 

the extension is the following generalization of the fact that  the Haar measure 

on H is the image of the Haar measure on its Lie group ~ = log H under the 

exponential map exp: ~ -+ H.  

LEMMA 8.11: Let H'  C_ P C H be subgroups that allow weight decompositions. 

Suppose that H'  is a normal subgroup of P.  Let ~ be a locally finite measure 

on P and suppose that t, is right-invariant by multiplication with elements of  

H r. Then p = ~ �9 t}' for some closed subgroup p C_ p of the Lie algebra p = log P 

where b ~ = log H r. In that decomposition of p we have log, t/ = 5 x m~, for 

some locally finite measure f~ on p and the Haar measure m~, of ~'. 

Proo[: Let ~ = )- '~es P~ where ~ C p~ is a linear complement of ~ C_ pz. 

Suppose H is m-unstable. 

We claim that  vp = log, v is invariant under translation by elements of 0'. If 
9' 

we normalize m~, such that  mo,(B  1 ) = 1, then it is easy to see that  the claim 

implies that  vp = ~ • mo, where ~(A) = ~ (A + B[ ' )  for any measurable A C ~. 

For any weight A such that  A(m) is maximal, we have Iv, P] = 0 for any 

v E 0 h. If additionally v E i}', then w ~ w * v = w + v preserves vp. Suppose 

now the claim has been shown for all vectors v E ~' M ~ whenever ~(m) > r, 

and let v E ~' M 0 h with A(m) = r. Let ~_>r = ~-~-~:~(m)>r [}' M [}4 and ~<r = 

~-~:~(m)<~ [}'MO ~" Then p = (p+O_>~)OO<~ and, as above, we already know that  

vp = ~_>r • m~<,. for some measure v>r on p + ~>~. By assumption w ~ w * v 

preserves ,p. By (3.1), w * v = w + v + �89 v] + . . .  where [w, v] , . . .  E ~<~ since 

H '  _C P is a normal subgroup. Proposition 4.9 shows that  the additional terms 
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can be viewed as a shear along the directions in [)<r. It  is easily checked tha t  

this does not affect the measure, so tha t  vp is in fact invariant under translation 

by v. I 

Proof of Theorem 8.4: By Lemma 8.6 we already know that  the theorem holds 

for a particular order of the coarse Lyapunov subgroups. So suppose we have 

them in this order and let 7r be a permutat ion of { 1 , . . . ,  e}. Then we wish to 

show that  #S  ~ ( r  •  • #h~,)) ,  where 

O~: HA~(1) • "'" • HA~(*) -+ H 

is the homeomorphism defined by r  g~(e)) = g~(1) "" "g~(t)- 

Let 

X: HA1 • "'" x H At --+ H A1 x . . .  x H A* 

be the homeomorphism tha t  satisfies X(gl . . . .  , ge) = (g~ , . . . ,  g~) if and only if 

g{ "" "g} = g-0)  " "" g.(e)- Then the theorem follows if we know tha t  .X preserves 

pal  •  • #At. To see this let v = #A~ •  • #A,, let v~ = ~ AIr(l) x . . -  • t~r(*) , 

and let 

~r: H A~ • . . .  • H A* -+ H A'(~) • . . .  • H A"(*) 

be the map that  permutes  the coordinates according to 7r. Then ~r,v = v .  and 

r  o ~r -- r o X. So if X,v  = v, we conclude tha t  

as claimed in Theorem 8.4. 

Suppose ~(gl . . . .  ,ge) = (g~, . . .  ,g~) where gi,g~ E Px n H A  ̀ for i = 1 , . . .  ,*. 

By Theorem 8.5 (4) we already know that  giHx = g~Hx for i = 1 , . . .  ,e. More- 

over, it follows from (3.2) and Proposit ion 4.9 that  the weight components to 

any weight A satisfy 

(log(g~)) ~ = (log(gi)) ~ + . . . ,  

where the dots indicate [., .]-monomials tha t  depend only on the weight compo- 

nents log(gj)~ for ~(m) < A(m) and at least two different j (assuming tha t  H 

is m-unstable) .  Therefore all of the additional terms belong to I)x = log Hx, so 

the map induced by X on Px is just a shear along the subgroup ~x. 

We apply Lemma 8.11 for each of the coarse Lyapunov subgroups H A~ and 

the measure #A~ which, by Theorem 8.5 (5), is invariant under multiplication 

from the right by elements of H~ M H A~ . Then the logarithmic image log. #A~ 
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is invariant under translation by elements of [}~ n oA~. Therefore and from the 

description of X above, it follows that  X preserves u as claimed. | 

9. Linking conditional measures with entropy, and the high entropy 

case for rigidity of  measures 

9.1. V O L U M E  DECAY AND ENTROPY. In this section we give a formula relating 

entropy and conditional measures. We will use and slightly reformulate the 

results from [25, Sect. 9]. 

LEMMA 9.1: Let X be a Gs-space for an S-Lie group Gs. Let a be a Z k- 

action on X that preserves the Gs-leaves (as in Definition 3.1), and let 0 be 

the corresponding z k-action by automorphisms of G s. Assume that the adjoint 

action A on the S-Lie algebra gs is semisimple. Let H C Gs be an m-stable 

subgroup for some m E Z k (as in Definition 4.10). Then for any a-invariant 

probability measure # on X the limit 

H nm H 
volt~(am, H,x)  = -  lim l~ (0 (B 1 )) 

n--+oo n 

exists for a.e. x C X.  If  furthermore #H is supported by a subgroup Px C_ H 

that allows a weight decomposition, then 

(9.1) v~ ( a m ' H ' x )  ~- m~ Pz) = - E E A(m) dimQ~ (px N [J~) 

aE S )~ 

for a.e. x C X. Here p~ = log Px and ~ are all possible weights of H. 

We call the expression vo l , ( a  m, H,x)  v o l u m e  decay entropy at x - -  it 

can be thought of as a combination of the dimension of #H at x and the con- 

traction rates of 8 m (see Ledrappier-Young's entropy formula [20]). In case Px 

is invariant under 0, mod(a  m, Px) is the negative logarithm of the module of 

the restriction of 0 m to Px.  More generally, there exist cl, c2 > 0 such that  

Cl ( mp~ (Px ~ onm(B1H))  enm~ (-- c2 

where mg~ is the Haar measure of Px. 

Proof: Let ](x) H m H = #x (0 (B 1 )). Then (5.6) and Proposition 5.6 (1) show that  

, ,H( ( j4-1)m{ H ~  
f ( a - J m x )  H m g t*x ~0 ~B1 H 

= , -jmx(e (B1) )  = ,20Jm(Bl )) 
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for a.e. x and all j E Z, and so 
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n--1 

-- E log f(ol-Jmx) = -- log #H (onm(BH)). 

j=o 

229 

(9.3) (Rg),p9 H oc u~ 

holds for x E K and #H-a.e. g E H. We claim that  every x E K with 
H #x ({g E B~  : gx E K}) > 0 for every 6 > 0 satisfies (9.1) if #H is supported by 

Px. We show this by showing that  gx satisfies (9.1) for pH-a.e, g E B H. The 

claim then follows by continuity. 

Let e _> 0, let n be a positive integer, and define 

M~ = {g E BH : voltt(o<m,H, gx) > mod(a,  P x ) + e }  

and { 1 } 
M~ n = g E B1H : - - log#~(onm(B~)g)  > mod(c~,Px)+e . 

' n 

Let g E M~ such that  (9.2) and (9.3) hold for gx. Then #~(Ag) = C#~x(A ) for 

some C > 0 and all measurable A C_ H. Therefore, 

1 log #H (OnmBffg) __} volp,(oLm, H, gx) 
n 

and g E M~,n for large enough n. 

Fix for every weight A a basis v~ , . . . ,  Vd(~, ) ~  of pz M O~ and let 

D~ = exp E CzX(nm) [--(~' (~)V~ "[- Z BeMnm)5)" 
i=1 

Then for small enough 5 (independently of n) the set Px M onm(B H) contains 

D~D~ 1. It is easy to find a partition of Px consisting of right translates D~g 

for g in some index set I.  Since the Haar measure of Px is the image of the Haar 

Furthermore, - log f(x) >_ 0 and so 

(9.2) l_ log#H(onm(BH) ) -4 voltt(om H,x)  a.e. 
n 

by the ergodie theorem, where volu(a m, H,-): X -4 [0, c~] is measurable. 

By Luzin's theorem, there exists a compact set K with measure almost equal 

to one such that  vol(c~m, H, x) in (9.2) exists and is continuous for x E K.  

Furthermore, we can assume by Proposition 5.6 (3) and Lemma 5.9 that  
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measure of Px (see Lemma 8.11), we have mp~ (Dn) -~ e -nm~ P*)me~ (D~j- ~ 

for a l l n .  Let I '  = {g �9 I : D n g  C B P~}; then B p* C_ [.Jge,'Dng C_ B p* for 

large enough n. Therefore, 

nmod(am p~) mp~ (g  P~ ) 
II'l <_ ce ' with c - mp~ (D1) " 

let J = {g �9 I '  : DngnM~,n ~ O}. I fg  �9 J and h �9 DngNM~,n, Furthermore, 

then 
IAHx (Onm(BH)h) < e-nm~ 

by definition of Mr Clearly Dng C_ DnD'~lh C_ On~(BIH)h, and using the 

above estimate for every g �9 J we obtain H ce-n~ #~ (M~,n) < . Therefore 

# x ( M ~ ) < p x  M~,e < 1 - e  -~' 

#z (Mo) = O as which shows that  Me is a null set for every e > 0. Therefore, H 

claimed. | 

Definition 9.2: Let H be as above. A a-algebra ,4 of Borel subsets of X is 

s u b o r d i n a t e  to  H if .4 is countably generated, for every x E X the atom [X]A 

of x with respect to .4 is contained in the leaf Hx,  and for a.e. x 

BHxC_[X]A C_Bffx for s o m e e > O a n d p > O .  

A a-algebra A is m - d e c r e a s l n g  if a - m A  C A. 

LEMMA 9.3: Assume in addition to the assumptions of  Lemma 9.1 that .4 is 

an m-decreasing a-algebra that is subordinate to H. Then 

[-[tt(,,4[o~--m.,4) ~-~ / volu(am' H, x)dIA. 

Proof: Recall that  Hu(A[a -mA)  = f I u ( A [ a - m A ) ( x ) d #  and that  

H ({g: gx e Ix]A}) 
I , ( A l a - m A ) ( x )  = - log #~-mA([x]A ) = -- log H ({g: gx e 

where we used Proposition 5.6 (2) in the last equation. We define k(x) ---- 

#H({g : gx �9 IX]A}). It is easy to check that  k is measurable. By (5.6) 

k(olm(x)) ---- i, tam(x)H ({g: go~m(x) �9 [Olm(X)]A}) 

---- ~t xH ({e -mg:  goLm (X) �9 [o~m (X)]A})/Aam(x)(OmBIH)H 

= pS({h  : Om(h)am(x) �9 [am(x)] .a}) f (am(x))  

H = #x ({h:  hx �9 [X]a-mA})f(olm(x)), 
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where f is as in the proof of Lemma 9.1. Therefore 

I , ( .Ala-mJl)(x)  = - log k(x) + log k(t~mx) - log f(oLmx) 

and 

n--1 
nl E itt (,,410 _m A)(o~Jmx ) -- 1 (log k ( c ~ m x ) _  log k ( x ) ) -  nl~-lE log f(ozJmx). 

j=0 j=0 

Here the left hand side converges to a measurable function whose integral is 

H.(Ala-mA). The sum on the right converges to vol,(c~ m, H, x) by (9.2). For 

the remaining two terms on the right Poincar6 recurrence shows that  for a.e. x 

the difference is close to zero for arbitrarily large n. The lemma follows. | 

PROPOSITION 9.4: Let Gs be an S-Lie group, let F C Gs be a discrete sub- 

group, and let X = Gs/F.  Let a be an algebraic ZCaction on X that is either 

defined by left translation on X or induced by automorphisms of G s. Assume 

that the adjoint action on the Lie algebra gs is semisimple. Fix some m E Z k 

and let H be the maximal m-stable subgroup of Gs. Then 

ht~ (c~ m) = f vol# (oL m, H, x)d# 

for any a-invariant probability measure on X.  If additionally # is a-ergodic, 

then 

m) = volA  m, H, x) 

for a.e. x E X.  

Proof: For the second statement it is enough to check that  vol~(a m, H, x) = 

vol~(a m, H, anx) whenever x satisfies (5.6) for a n. More generally, if C C_ 

H is measurable and 0elmB~ C_ C C_ oe2mBH, then it is easy to check that  

l log#H(onmc). volu (C~ m, H, x) = l i m n - ~  - g  

For the first statement, assume first that  # is an c~m-invariant and ergodic 

measure #. By [25, Prop. 9.2] there exists a a-algebra .4 that  is subordinate to 

H and is m-decreasing. Moreover, hu(a m) = Hu(AI~-mA). Lemma 9.3 shows 

the first statement of the proposition in the c~m-ergodic case. 

Let now # be any a-invariant measure, and let # = f #~d# be the ergodic 

decomposition of # with respect to c~ m. Here g is the a-algebra of ctm-invariant 

sets; see also [21, Sect. 5]. Then hu(c~ m) = fw  hu~s(c~m)d# �9 On the other 
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hand, the first paragraph above shows that volt, (a m, H, x) is a'n-invariant, and 

therefore g-measurable. This implies that 

volu(am, H,x) = vol,(am, H,y) for #~-a.e. y 

holds for a.e.x. Recall that vol~(a m, H, x) is defined by the conditional measure 
H #z �9 By [21, Cot. 5.4] the conditional measures of the ergodic components satisfy 

(]Ax)ys H = ].tyH for p-a.e, x and #~-a.e.y. Suppose x satisfies all of this and that 

#z r is an am-invariant and ergodic measure. Then we have already shown that 

h#s (a m) -- vol,s (a m, H, y) = volt~(a m, H, y) for #~-a.e. y, which implies that 

h~.e(a m) = volu(am, H,x) by our assumption on x above. II 

9.2. APPLYING THEOREM 8 . 5  IN THE HIGH ENTROPY CASE. 

THEOREM 9.5: Let X be a Gs-space for an S-Lie group Gs, and let a be a 

zk-action on X that preserves the Gs-leaves whose adjoint action on the Lie 

algebra gs is semisimple. Let H C_ Gs be an m-stable subgroup for some 

m E Z k. There exists someq < 1 and an S-Lie subgroup H t C_ H that is 

invariant under the induced action O on Gs and is the image under exp of an S- 

Lie subalgebra 3' with the following properties for every a-invariant probability 

measure p on X.  

(1) If A1 ~ A2, then [log HAl , log H A2] C_ logH'.  

(2) For a.e. x E X, if 

(9.4) vol• (a m, H, x) > q mod(a m, H), 

then pH is invariant under left and right multiplication by elements of H'. 

(3) If (9.4) holds a.e., then # is invariant under left multiplication by elements 

of H'. 

Note that the above does not assume that the adjoint action has no rank one 

factors. Because of this, Theorem 9.5 can also be applied in the case of a higher 

rank action by automorphisms of a nilmanifold. 

Proof: Let 
mod(a m, P) 

q ---- m a x  
P mod(a re,H) 

where the maximum is taken over all proper subgroups P C_ H that allow a 

weight decomposition. Let 3' be the S-Lie ideal of 0 that is generated by all 

[~AI, ~A2] for different coarse Lyapunov weights AI ~ A2 of 3- Then H'  -- exp 3' 

satisfies (I). Suppose x satisfies Theorem 8.5, Lemma 9.1, and (9.4). Then the 
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choice of q shows that  Px = H. Since Hx allows a weight decomposition, it 

follows that  b' C_ I)x = log Hx. This shows (2). The last statement follows from 

Proposition 5.7 applied to the H'-space X. | 

We conclude the paper by the proofs of our results from Section 2. For this 

we will need the following lemma. 

LEMMA 9.6: Let A be the restriction of an adjoint action to an invariant 

S-Lie algebra O, and let V be a subspace of the dual of N k. Then 01 = 

(I) i ,  [t)r t}~] : ~, ~ ~ V) is an A-invariant S-Lie ideal in ~1. 

Therefore, i f  there are no rank one factors, then every element of t) ~ is a sum 

of expressions [v, w] with v E ~)r w E f)( and ~, ~ ~ ]~A. 

Proof: Clearly f)~ = ~ E S  I) I M g~. Moreover, it is clear that  I11 is invariant 

under A. It remains to show that  [I) n, I) ~] C_ ~)' for all ~/. 

Suppose first that  u E bn and v E t1r with r ~ V. If ~ ~ V then [u,v] E b', 

and otherwise [u, v] E bn+r C_ ~)' because ~ + ~ ~ V. 

L e t u E t )  v , v E t ) r 1 6 2  V. Again, i f ~ + ~ + ~  V t h e n  

there is nothing to show. So assume ~ + ~ + ( E V. If 77 ~ V then ~ + ( ~ I ~  

and we are again done. The remaining case is ~/, ~ + ~ + ~ E V. By the Jacobi 

identity (3.1), [u, [v, w]] = -[v,  [w, u]] - [ w ,  [u,v]], and the two expressions on 

the right belong to I) I since ~, ~ + ~/, (, ~ + ~ ~ V. 

For the final statement let V = 11~. Then b' satisfies (1)-(3) of Definition 2.3. 

Since there are no rank one factors, we have b I = b and every u E I) x belongs 

to b I. By restricting the sum that  expresses u to those terms that  belong to b x 

the lemma follows. | 

Proof of Theorem 2.4: By Proposition 9.4 we have vol , (a  m, H - ,  x) = h , ( a  m) 

for a .e .x .  As in the proof of Theorem 9.5 this implies for large enough q < 1 

that  Px = H -  for a.e. x, where Px is as in Theorem 8.5. Let A be a coarse 

Lyapunov weight of H - .  Then, moreover, #~ is not supported by any proper 

subgroup of G)  that  allows a weight decomposition. The same applies similarly 

for H +. 

We claim for a.e. x that  #~+r is left invariant under multiplication by exp(w) 

for any w E ~ R+r whenever ( (m) = 0 but ( r 0. By definition ~ is the Lie 

algebra generated by b-  and ~+, so every element of bee can be written as a 

sum of [., .]-monomials w in vectors u E ~- U b +. Moreover, by Lemma 9.6 

applied to V = {~ : ( (m) = 0} it is enough to consider quadratic monomials 

w = [ul,u2]. By Proposition 6.2 it is enough to show the claim for every 

individual such w. 



234 M. EINSIEDLER AND A. KATOK Isr. J. Math. 

Let w = [Ul,U2] with ui E g~ ,  i l l (m) < 0 and A2(m) > 0. Then ~ = 

A1 + A2 ~ 0, A1 and A2 are linearly independent, and we can find n E Z k with 

~(n), Al(n), A2(n) < 0. We apply Theorem 8.5 for the maximal n-stable S-Lie 

subgroup H~- that  satisfies log H~- C_ b~n. Since # ~  are not supported by any 

smaller subgroup than s , the claim follows for w. 

Now let A be a coarse Lyapunov weight such that  A -- ~ and A(m) < 0. 

Let w E [~m" By Lemma 9.6 we can assume that  w is (a finite sum of [., .]- 

binomials) [vl, v2] E b~ where vi E ~)~ and ~1, ~2 ~ ]I~. Clearly ~1 and ~2 

are linearly independent and there exists a n E Z k with ~1 (n), ~2 (n), A(n) < 0. 

We apply Theorem 8.5 for the maximal n-stable S-Lie group H~- that  satisfies 

l ogH~ C_ bm. If ~l(m) ~ 0 then we know expvl  E P~ a.e., since ~x ~ 1  is 

not supported by any smaller subgroup. If ~1 (m) = 0 then we already showed 

o ~ 1  C Px a.e. The (Lexp(vl)).~xR~a ,,R~I which implies that  expvl  E supp~ x ---- b~X , 

same holds similarly for v2. It follows that  (Lexp(w)).# i = p i  a.e. Since w E b i 

and A was arbitrary, it follows that  # is left invariant under H -  by Proposition 

5.7. 1 

LEMMA 9.7: The Lie algebra of Gtw is gtw = ]~n x g where g = gl • "'" • gr 

is the Lie algebra of G and gi for i = 1 , . . .  ,r  are the simple factors of g. The 

commutator in gtw is given by 

(9.5) [(u, a), (v, b)] = (Dp(a)(v) - Dp(b)(u), [a, b]) 

where Dp: g -+ SL(n, l~) is the derivative of p (at the identity element). 

Therefore, Dp(I) N g)(~n) C f) for every Lie ideal t) C gtw. 

Proof: Recall that  the multiplication in Gtw is defined by 

(u, g) . (v, h) = (u + p(g)(v), gh). 

From this it is easy to check that  (9.5) holds. The last statement follows from 

(9.5). I 

Proof  of Theorem 2. 7" We assume that  the twisted Weyl chamber flow atw on 

Xtw has no local rank one factors and acts without center on the torus fibers (in 

the sense of Definition 2.5-2.6). Furthermore, let t E II~ k be as in the theorem, 

so that  for every simple factor of G there exists a root A with Re A(a) (t) ~ 0. 

We are going to apply Theorem 2.4 for the restriction & of a to some lattice 

in ]~k that  contains t. Since c~ embeds [~k into a Cartan subgroup of G and G 

is semisimple, it follows easily that  the adjoint action to c~ acts by semisimple 
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elements on fltw. Furthermore,  notice tha t  ~ = Re A (a) are the Lyapunov weights 

of 0 when A goes through the roots A of g and the weights A of the representation 

p. 

Now let i} C_ gtw be the Lie algebra generated by the t-stable and t -unstable  

Lie algebras ~-  and I~ +. Let V = {~ : ~(t) = 0}. Then [~ is the Lie algebra 

generated by all Lyapunov weight spaces ~t~w with ~ ~ V. Lemma 9.6 shows 

b is in fact a Lie ideal in fltw. By the choice of t we have f l i N 0  ~ 0 for 

all i, and so g C [~ since ~ C ~tw is an ideal. By Lemma 9.7 we have W -- 

Dp(g)(R n) C [~. Clearly W is invariant under Dp(a) for any a E 9. Since fl is 

semisimple, this implies tha t  there exists an invariant complement W • C ~n to 

W. Clearly Dp(~)(W • C_ W • N W = {0} and so Dp(a) acts trivially on W • 

This contradicts the fact that  a acts without center on the torus fibers unless 

W • = 0. Therefore, we conclude that  [} = 9tw. 

Next we show that  the adjoint action on 9tw has no rank one factors. So 

assume tha t  the Lie ideal [}r C 9tw is as in Definition 2.3. If for some i the 

simple Lie algebra 9i is not par t  of [}r, then our assumption on a contradicts 

Definition 2.3 (3). Therefore, 9 C 0 r and just  as above I~ n C i} r as well, which 

shows that  there are no rank one factors. 

Finally, let p be a measure on Xtw as in Theorem 2.7. Then p is invariant 

under 0 but possibly not ergodic. However, it is easy to see tha t  almost all 

of its ergodic components v have the same entropy for the element a t, i.e. 

h~(a t) = h~(at) .  We choose q as in Theorem 2.4, and conclude that  v is 

invariant under H -  = exp [~- and H + = exp I} + . Let H .  C_ Gtw be the maximal  

subgroup such tha t  # is left invariant under all of its elements. Clearly H .  is 

closed, and since H - , H  + C H ,  it follows tha t  the Lie algebra to H .  is gtw. 

Since Gtw is connected, H~ = Gtw and v is the Haar  measure of Xtw. Since this 

holds for almost all ergodic components v of #, we conclude tha t  # must be the 

Haar  measure of Xtw. I 

Proof of Theorem 2.8: For m E Z k we define mk+l = --(ml + ""  + ink). 

Suppose a = p is a rational prime. Then a p  is the diagonal matr ix  with entries 

pml . . . ,Pmk+x and it is easy to check that  

(9.6) a~n(Ik+l + tEab)ap m = Ik+l + pm~-mbtEab 

for every t E Qp and every pair a r b of indices between 1 and k + 1. Similarly, 

a~m is the diagonal matr ix  with entries e '~1,..  . , e "~k+l and 

(9.7) a~(Ik+l  + tEab)a~ m = Ik+l + em~-mbtEab 
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for every t E ~. 

It follows from (9.6) resp. (9.7) that  H (i'j) for 1 < i, j < k + 1 and i # j are 

the coarse Lyapunov subgroups for cry. We will show that  the corresponding 

conditional measures #~'(~'J) are almost surely invariant under H (~'j). Then the 

well-known Proposition 5.7 will show that  # is invariant under H (i'j) , and the 

theorem will follow since SL(k + 1, Q~ ) is generated by these subgroups. 

Let g be another index between 1 and k + 1 (by assumption k _> 2) and 

choose m E Z k such that  mi > me > my. Then (9.6) and (9.7) show that  

H = ~-aTj(i'J) Tj(i'e)TJ(e'J)--a --0 is an m-stable subgroup if a = p and is an m-unstable 

subgroup if a --- cr By assumption, there exists a null set N such that  for x ~t N 

none of the conditional measures #~'(i'J), #~,(i,e) and #~,(e,j) are supported by 

the identity element alone. If x ~t N satisfies in addition Theorems 8.4 and 

8.5, then Px = H,  Hx contains H (i'j) , and #~,(i,j) is invariant under H (i'j) as 

claimed. I 

Proo f  of  Corollary 2.9: By Theorem 2.8 the first condition implies that  tt is 

invariant under SL(k + 1, Q~ ). So does the second condition; this can be seen 

just as in the real case [6, Thm. 4.1(iv)]. 

Since # is ergodic under ~a and ~m E SL(k + 1,Q~) for m E Z k, # is in fact 

invariant and ergodic under SL(k + 1,Q~). By [25, Thm. 2] or [31, Thm. 1] it 

follows that  # is algebraic. I 
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