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RIGIDITY OF SINGULAR SCHUBERT VARIETIES IN
Gr(m, n)

Jaehyun Hong

Abstract

Let a = (pq1
1 , . . . , pqr

r ) be a partition and a′ = (p′1
q′
1 , . . . , p′r

q′
r)

be its conjugate. We will prove that if qi, q
′
i ≥ 2 for all 1 ≤ i ≤ r,

then any irreducible subvariety X of Gr(m, n) whose homology
class is an integral multiple of the Schubert class [σa] of type a is
a Schubert variety of type a.

1. Introduction

Let Gr(m, n) be the Grassmannian of m-planes in C
n. For a partition

a = (a1, . . . , am), a Schubert variety σa of type a is defined by the set
of all m-planes E such that dim (E ∩ C

n−m+i−ai) ≥ i for all 1 ≤ i ≤ m
for a flag {C

1 ⊂ . . . ⊂ C
n}. Then they form a basis for the homology

space H∗(Gr(m, n), Z).
For a = (pq)∗ = ((n−m)m−q, (n−m− p)q), the Schubert variety σa

of type a is smooth and every smooth Schubert varieties in Gr(m, n)
is of this form. Smooth Schubert varieties in Gr(m, n) are Schur rigid
with trivial exceptions: for any smooth Schubert variety σa in Gr(m, n)
other than a non-maximal linear space, any irreducible subvariety whose
homology class is an integral multiple of the Schubert class [σa] of type
a is a Schubert variety of type a ([W], [B] and [Ho]).

In this paper, we will prove the Schur rigidity of singular Schubert
varieties of certain types in Gr(m, n).

Theorem. Let a = (pq1
1 , . . . , pqr

r ), pr �= 0 be a partition and let a′ =
(p′1

q′1 , . . . , p′s
q′r), p′r �= 0 be its conjugate. Then, the Schubert variety σa

in Gr(m, n) is Schur rigid if qi, q
′
i ≥ 2 for all 1 ≤ i ≤ r.

The proof is divided by two parts as in [W], [B] and [Ho]: Schubert
rigidity and the equality Ba = Ra∗ . Schubert differential system Ba is
the differential system with a fiber at x ∈ Gr(m, n) given by the set of
all the tangent space of Schubert varieties of type a passing through x.
If any irreducible integral variety of Ba is a Schubert variety of type a,
then we say that the Schubert variety σa is Schubert rigid.
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Putting together the tangent space of all the subvarieties X with
[X] = r[σa], r ∈ Z at each point, we get another differential system
Ra∗ , which we call the Schur differential system ([B], [W]). By the
construction, if any irreducible integral variety of Ra∗ is a Schubert
variety of type a, then the Schubert variety σa is Schur rigid. Further-
more, the Schubert differential system Ba is always contained in the
Schur differential system Ra∗ . Thus, the equality Ba = Ra∗ and the
Schubert rigidity is a necessary and sufficient condition for the Schur
rigidity ([B]). While proving the equality Ba = Ra∗ is computing in-
tegral elements of exterior differential systems, which is an algebraic
problem, proving the Schubert rigidity is finding integral varieties of a
differential system, which is a local differential geometric problem.

To prove the Schubert rigidity of a singular Schubert variety σa, we
use the fact that there is a natural foliation on σa by smooth Schubert
varieties of type, say b. But this does not say that any integral variety of
Ba is foliated by the Schubert varieties of type b. We find a condition
that is needed to get such a foliation by applying the theory on the
integral varieties of F -structures by Goncharov (Section 3.2).

Once we get such a foliation on the integral variety of Ba, the space of
leaves is again a Schubert variety of type, say c, in the parameter space
of the Schubert varieties of type b. Then we can apply the induction
to get the result. This inductive step forces us to consider the following
problem: When σa is contained in a smooth Schubert variety of type
b, then will any integral variety of Ba be contained in a Schubert vari-
ety of type b? We obtain a condition which ensures such an inclusion
by using the theory on the integral varieties of F -structures as above
(Section 3.3).

To prove the equality Ba = Ra∗ ⊂ Gr(k, E∗ ⊗Q) for the fibers of Ba

and Ra∗ at [E] ∈ Gr(m, n), we use the description Ra = Gr(k, E∗⊗Q)∩
P(Sa(E∗) ⊗ Sa′(Q)) as in [Ho] and then we compute the complement
of the tangent space of Ba in the tangent space of Gr(k, E∗ ⊗ Q) by
hands, while in [Ho] the theory of Lie algebra cohomology developed
by Kostant used to compute it (Section 4).

One of the applications covered in [B] is the one to the holomorphic
vector bundles generated by global sections which satisfies vanishing of
certain Chern classes. It is related to Schubert varieties in Gr(m, n)
and from our result on the rigidity of Schubert varieties in Gr(m, n),
one can get the classification of such holomorphic bundles for various
vanishing conditions.

Even though Grassmannian Gr(m, n) we considered is a special Her-
mitian symmetric space, most of the method in this paper can be applied
to prove the rigidity of singular Schubert varieties in general Hermitian
symmetric space. The only thing to do is to verify the conditions in the
above, which needs some works on the representation theory of simple
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Lie algebra. We expect that the result in this paper will be generalized
to Hermitian symmetric spaces.

Acknowledgements. I wish to thank Professor D. Burns for suggest-
ing the idea of using a natural foliation by smooth Schubert varieties
on a singular Schubert variety to prove its rigidity. Some results of
the present paper have been worked out while I was visiting MSRI in
Berkeley in November 2003. I would like to thank this institute for its
hospitality, and Professor R. Bryant, one of the organizers of the pro-
gram “Differential Geometry”, for stimulating discussions and encour-
agement. This work was supported by the Post-Doctorial Fellowship
Program of Korea Science and Engineering Foundation (KOSEF).

2. Differential systems

2.1. Schubert and Schur differential systems. Let Gr(m, n) be
the Grassmannian of m-dimensional subspaces of V = C

n. Let P (m, n)
be the set

{a = (a1, . . . , am)| n − m ≥ a1 ≥ · · · ≥ am ≥ 0}
of partitions. Fix a flag {V•} of V with dimVi = i. For a ∈ P (m, n),
define the Schubert variety σa(V•) of type a by the set

{E ∈ Gr(m, n)| dim(E ∩ Vn−m+i−ai) ≥ i}.
Then σa(V•) is an irreducible subvariety of Gr(m, n) of codimension
|a| := a1 + · · · + am. By varying the flag {V•}, we get a family of
Schubert varieties σa of type a.

For a ∈ P (m, n), define its dual a∗ by

a∗ = (n − m − am, . . . , n − m − a1)

and define its conjugate a′ = (a′1, . . . , a′n−m) by

a′i = the number of {j |aj ≥ i} for 1 ≤ i ≤ n − m.

The Young diagram Ya is defined by the set of boxes consisting of ai

boxes in the i-th row, the row of boxes lined up on the left.
Then the Young diagram Ya∗ is obtained by rotating the complement

of the Young diagram Ya by 180 degree and the Young diagram Ya′ is
obtained by transposing the Young diagram Ya.

Example. Let m = 5, n − m = 6. Young diagrams Ya, Ya∗ , Ya′ for
a = (6, 6, 4, 2, 2). a∗ = (4, 4, 2), a′ = (5, 5, 3, 3, 2, 2) are given by
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Ya Ya∗
Ya′

Define na to be the vector space of matrices Z = (za
i ) ∈ Mn−m,m that

satisfy za
i = 0 when a > n − m − ai. This is the tangent space of the

Schubert variety σa.
For a as in the above Example, na is the spaces of all matrixes of the

form

* * *
* * *

* *
* *

0 0
0 0
0 0 0
0 0 0
0 0 0 0 0
0 0 0 0 0

We will use the notation a = (pq1
1 , . . . , pqr

r ), pr �= 0 for the partition
with q1 p1’s, . . ., qr pr’s.

Now, we will define two differential systems Ba and Ra∗ associated to
the Schubert variety σa following [W] and [B]. A differential system F
on a manifold M is a subvariety of the Grassmannian bundle Gr(k, TM)
of tangent k-subspaces of M . So, it assigns a family Fx of k-subspaces
of the tangent space TxM at each point x ∈ M .

A subvariety X of M is said to be an integral variety of F if at each
smooth point x ∈ X, its tangent space TxX is contained in the fiber Fx.
We say that F is integrable if at each point x ∈ M and y ∈ Fx, there is
an integral variety passing through x and tangent to the subspace Wy

of TxM corresponding to y.
A typical example of an integrable differential system is obtained

from a family of subvarieties of M which covers M , by assigning at each
point x ∈ M the set of all tangent space of the subvarieties in the family
passing through x.

Definition. For each a ∈ P (m, n), the Schubert differential system
Ba of type a is the differential system with a fiber consisting of the
tangent space to the Schubert varieties σa of type a passing through a
given point. We say that σa is Schubert rigid if Schubert varieties of
type a are the only irreducible integral varieties of Ba.

Let [E] ∈ Gr(m, n) and Q = C
n/E. Then T[E]Gr(m, n) = E∗ ⊗ Q

and ∧k(E∗⊗Q) = ⊕|a|=kSa(E∗)⊗Sa′(Q), where Sa is the Schur functor
of type a. There exists a SU(n)-invariant positive (k, k)-form φa which
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can be written as the sum (
√−1)k2 ∑

i ξi ∧ ξi at [E], where {ξi} is an
orthonormal basis of Sa(E) ⊗ Sa′(Q∗) ⊂ ∧k(T ∗

[E]Gr(m, n)). Then we
have

∫
σa∗

φb = δb
a for a,b ∈ P (m, n). (For details, see [B].)

Definition. For each a ∈ P (m, n), the Schur differential system Ra

of type a is defined by the intersection

∩b�=a,|b|=|a|Z(φb),

where Z(φb) is the set of |b|-subspace of TE(Gr(m, n)) on which φb

vanishes. We say that σa is Schur rigid if Schubert varieties of type a∗
are the only integral varieties of Ra.

Thus Ra is the differential system on Gr(m, n) such that X is a
subvariety of Gr(m, n) with [X] = r[σa∗ ] for an integer r if and only if
X is an integral variety of Ra([B], [W]). Clearly, Ba∗ is contained in
Ra.

2.2. F -structures, prolongations and integral varieties. In this
section, we review the theory on the integral varieties of F -structures
([G]).

Definition. Let F be a submanifold of Gr(k, V ) with a transitive
action of a subgroup of GL(V ). A fiber bundle F ⊂ Gr(k, TM) on a
manifold M of dimension n = dim V is said to be an F -structure if at
each point x ∈ M there is a linear isomorphism ϕ(x) : V → TxM such
that the induced map ϕ(x)k : Gr(k, V ) → Gr(k, TxM) sends F to Fx.

Schubert differential systems are F -structures for various F ’s. In-
tegrability and the uniqueness can be obtained by studying the co-
homology space Hk,1(F ) and Hk,2(F ) associated to (Wf , V, TfF ) for
f ∈ F ([G]). When an F -structure is integrable, if Hk,1(F ) = 0, then
the family of all integral varieties passing through a fixed point and
tangent to a fixed subspace has dimension

∑
j≤k−1 dimHj,1(F ). In par-

ticular, if H1,1(F ) = 0, there is only one such integral subvariety. Higher
cohomology gives the information on the higher jet of the integral vari-
eties.

In general, Schubert differential system for singular Schubert variety
has order ≥ 2, i.e. its integral varieties are determined by higher jets.
But smooth Schubert varieties depend only 1-jet and there is a canonical
map from the differential system of a singular Schubert variety to that
of a certain smooth Schubert variety(Proposition 3.1). So, in this paper,
we will consider only the first cohomology H1,1(F ), which contains the
information on the 2-jets of integral varieties.

Let F be a subvariety of Gr(k, V ) with a transitive action of a sub-
group of GL(V ). Let F be an F -structure on M with the projection
map π : F → M . For x ∈ M and y ∈ Fx, let Wy denote the k-subspace
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of TxM corresponding to y. For a k-subspace H of TyF such that
π∗ : H → Wy is an isomorphism, define ∂H : ∧2Wy → TxM/Wy by

∂H(V1, V2) = [Ṽ1, Ṽ2] mod Wy,

Ṽi, i = 1, 2 is a local vector field on M with Ṽi(x′) ∈ Wψ(x′) for a local
section ψ of F with ψ∗(Wy) = H. It is well defined([G]).

A k-subspace H of TyF is said to be a 2-jet of an integral variety if
π∗ restricts to an isomorphism H ⊂ TyF → Wy ⊂ TxM and ∂H = 0.
Such an H is indeed a candidate for the 2-jets of actual integral varieties
of F and the set of such an H is again a subvariety of Gr(k, V + TfF ).

Proposition 2.1. Let F be an F -structure on M . Let x ∈ M and
let y ∈ Fx. If X is an integral variety of F passing through x and
tangent to Wy, then the tangent space H = TyX̃ ⊂ TyF of the lifting
X̃ := {(x, [TxX])|x ∈ X, [TxX] ∈ Gr(k, TxM)} of X to Gr(k, TxM)
satisfies

(1) π∗ : H → Wy is an isomorphism
(2) ∂H = 0.

Proof. See Chapter 1 of [G]. q.e.d.

The condition that π∗ : H → Wy is an isomorphism is equivalent to
the condition that H is the graph of a map p : Wy → Ty(Fx) ⊂ W ∗

y ⊗
(TxM/Wy). Define ∂p : ∧2Wy → TxM/Wy by ∂p(V1, V2) = p(V1)(V2) −
p(V2)(V1), considering Ty(Fx) as a subspace of W ∗

y ⊗ (TxM/Wy). Then,
∂H = 0 if and only if ∂p = 0.

Definition. Let F be an F -structure on M . The first prolongation
F (1) of F is defined by the union ∪y∈FF (1)

y of the set of all 2-jets of
integral varieties tangent to Wy for y ∈ F

Put H1,1(F ) = Ker(∂ : W ∗
f ⊗ TfF → ∧2W ∗

f ⊗ (V/Wf )) and put
F (1) = {H ⊂ V + TfF |H is the graph of a map p ∈ H1,1(F )}, where
f ∈ F . Then, F (1) is an F (1)-structure on F .

If H1,1(F ) = 0, then F (1) is just a point and the first prolongation
defines a distribution on F . In this case, the integrability of this dis-
tribution is equivalent to the integrability of the F -structure F . So,
there is at most one integral manifold passing through a given point
and tangent to a given k-subspace of the tangent space. For the details,
see Chapter 1 of [G].

3. Schubert rigidity

3.1. Description of the Schubert differential system. For a se-
quence (n1, . . . , nr) with n1 ≤ · · ·nr ≤ n, denote by F (n1, . . . , nr, n)
the flag space of all flags (V1, . . . , Vr) in V = C

n with dim Vi = ni for
1 ≤ i ≤ r.
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Example. For a = (pq)∗, the Schubert variety σa of type a is the
sub-Grassmannian {E ∈ Gr(m, n)|Cm−q ⊂ E ⊂ C

m+p}  Gr(q, p + q).
The Schubert differential system Ba is the flag space F (m − q, m, m +
p, n) and the parameter space of the family of Schubert varieties of
type a is F (m − q, m + p, n). In this case, there is a double fibration
F (m − q, m + p, n) ← Ba → Gr(m, n).

In general, the Schubert differential systems Ba is a generalized flag
variety because SL(n) acts on Ba transitively and Ba is compact. Thus,
we have only to find the corresponding subset of simple root system
generating the isotropy group which is parabolic.

Let S = {α1, . . . , αn−1} be the set of simple roots of G = SL(n) and
let P be the parabolic subgroup of SL(n) generated by S1 = S −{αm},
i.e. S1 is the set of simple roots of the semisimple part SL(m)×SL(n−
m) of P . Then, Gr(m, n) is expressed as G/P .

Proposition 3.1. For a = (pq1
1 , . . . , pqr

r ), pr �= 0, put

Sa = S1 − {αq1 , . . . , αq1+···+qr} ∪ {αn−p1 . . . , αn−pr}.
Let Qa be the parabolic subgroup of SL(n) generated by Sa ∪ {αm} and
Pa be the parabolic subgroup of SL(m) × SL(n − m) generated by the
set Sa. Then Ba is the homogeneous manifold G/(Qa ∩ P ) and Pa is
the isotropy group of the action of SL(m) × SL(n − m) on the fiber
Ba of Ba → Gr(m, n). If Sa ⊂ Sb, then there exists a quotient map
ϕa,b : Ba → Bb which preserves the fibers.

For example, the following figure describes na, ma and Qa for n =
10, m = 4 and a = (6, 4, 2, 2), where ma denotes the tangent space of
Ba. na is the space of all n × n-matrix with non-zero elements only in
∗ and ma is the space of all n × n-matrix with non-zero elements only
in •. The Lie algebra of the reductive part of Qa is the space of all
n × n-matrix with non-zero elements only in �.

�
• �
• • � �
• • � �

∗ ∗ ∗ � �
∗ ∗ ∗ � �

∗ ∗ • • � �
∗ ∗ • • � �

• • • • � �
• • • • � �
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3.2. Foliation by smooth Schubert varieties. In general, a Schu-
bert variety which is Schubert rigid depends on higher jets (See Example
13 in [B] and our Theorem). But smooth Schubert varieties in Gr(m, n)
depends on only one jet, which will play a central role in proving the
Schubert rigidity of singular Schubert varieties.

Proposition 3.2. For a = (pq)∗, the Schubert variety σa of type a
is Schubert rigid except when (p = 1 and q �= m) or (p �= n − m and
q = 1). Furthermore, there is a unique Schubert variety passing through
a given point and tangent to a given tangent subspace.

Proof. See [W] or [Ho]. q.e.d.

We will say that a Schubert variety σa is strongly rigid if there is a
unique Schubert variety passing through a given point and tangent to
a given tangent subspace.

To prove the Schubert rigidity of general Schubert varieties, we start
with the simplest case and then will use the induction to generalize it.

Example. The case when a = (pq) is studied in Example 13 and
Remark 33 of [B]. Fix a (n − m − p + q)-subspace Λ = C

n−m−p+q of
C

n. Then, σa(Λ) can be expressed as a union of a family of Schubert
varieties of type b = ((n − m)q) = ((n − m)(m−q))∗.

σa(Λ) = {E ∈ Gr(m, n)| dim(E ∩ Λ) ≥ q}
=

⋃
Cq⊂Λ

{E ∈ Gr(m, n)|Cq ⊂ E}

Note that Gr(q, n) is the parameter space of the Schubert varieties of
type b and {C

q ∈ Gr(q, n)|Cq ⊂ Λ} is a Schubert variety of type c =
((n − m − p)q)∗ in Gr(q, n).

a =

0 0 0 0
ma 0 0 0
na na 0 0
0 na ma 0

b =

0 0 0 0
mb 0 0 0
0 nb 0 0
0 nb 0 0

c =

0 0 0 0
0 mc 0 0
nc 0 0 0
0 mc 0 0

From this expression, we get the following desingularisation π2 of
σa(Λ).

Bb = F (q, m, n) π1−→ Gr(q, n) ⊃ Gr(q, Λ)
π2 ↓
Gr(m, n) ⊃ σa(Λ)

Here, σa(Λ) is equal to π2(π−1
1 (Gr(q, Λ))) and π2 : π−1

1 (Gr(q, Λ)) →
σa(Λ) is generically one-to-one. The smooth locus of σa(Λ) is foliated
by Schubert varieties of type b in Gr(m, n) and the space of leaves of
this foliation is a Schubert variety of type c in Gr(q, n).
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In the same way as above, we get a different desingularisation of
σa(Λ) by considering σa(Λ) as a union of a family of another type of
Schubert varieties:

σa(Λ) =
⋃

Λ⊂Cn−p

{E ∈ Gr(m, n)|E ⊂ C
n−p}.

Proposition 3.3. For the partition a = (pq), the Schubert variety
σa of type a is rigid if p > 1 and q > 1.

It is proved in Example 13 and Remark 33 of [B]. We will prove it
again in such a way that can be generalized to the case of the Schubert
differential systems of other singular Schubert varieties.

Lemma 3.4. Let a and b be two partitions such that nb is a subspace
of na with Sa ⊂ Sb (and thus, there is a projection ϕa,b : Ba → Bb as
in Proposition 3.1). Assume that Bb is strongly rigid. For p : na → ma,
define p̃ by the composition na → ma � mb.

If p̃(v) = 0 for all v ∈ nb and for all p ∈ H1,1(Ba), then the smooth
locus of any integral variety of Ba is foliated by integral varieties of Bb,
which are Schubert varieties of type b.

Proof. By the strong rigidity of Bb, its first prolongation B(1)
b gives

a distribution D on Bb which is integrable because Bb is integrable.
Integral varieties of D are isomorphic to Schubert varieties of type b
via the map πb : Bb → Gr(m, n).

Let X be an integral variety of Ba. Let X̃ ⊂ Ba be the lifting of X,
that is, X̃ = {(x, [TxX])|x ∈ X}. It suffices to show that ϕa,b(X̃) is
foliated by the integral varieties of the distribution D induced by B(1)

b ,
that is, at each point y ∈ X̃, (ϕa,b)∗(TyX̃) contains Dϕa,b(y).

B(1)
b↓

X̃ ⊂ Ba
ϕa,b−→ Bb ⊃ ϕa,b(X̃)
↘ ↙

X ⊂ Gr(m, n)

The map (ϕa,b)∗ is given by the projection m + ma → m + mb and
TyX̃ is the graph of a map p : na → ma with ∂p = 0. So, (ϕa,b)∗(TyX̃) is
the graph of the map na

p→ ma → mb with ∂p = 0. On the other hand,
Dϕa,b(y) is the graph of the zero map nb → mb. By the assumption,
p̃(v) is zero for all v ∈ nb, so ϕa,b(TyX̃) contains Dϕa,b(y). q.e.d.

Consider the Schubert differential system Ba on Gr(m, n) for a = (pq)
and the Schubert differential system Bc on Gr(q, n) for c = ((n − m −
p)q)∗.
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Lemma 3.5. For a subvariety A ⊂ Gr(q, n), define a subvariety XA

of Gr(m, n) by XA := π2(π−1
1 (A)). If XA is an integral variety of Ba on

Gr(m, n) and dim(π−1
1 (A)) is equal to dim(XA), then A is an integral

variety of Bc on Gr(q, n).

Bb = F (q, m, n) π1−→ Gr(q, n) ⊃ A
π2 ↓
Gr(m, n) ⊃ XA

Proof. We will follow the arguments in Example 16.6 of [H]. Define
π̃i, i = 1, 2 to be the projection from Gr(q, n) × Gr(m, n) to the first
and second component, respectively. Then π2(π−1

1 (A)) is π̃2(π̃−1
1 (A) ∩

F (q, m, n)).
Let Γ be a smooth point in A. Then π̃−1

1 (A) is smooth at (Γ, E) for
all E ∈ Gr(m, n) with the tangent space

T(Γ,E)π̃
−1
1 (A) =

{
(η, ϕ)| η : Γ → C

n/Γ, η ∈ TΓA
ϕ : E → C

n/E,

}
.

The tangent space of F (q, m, n) at (Γ, E) is

T(Γ,E)F (q, m, n) =
{

(η, ϕ)| η : Γ → C
n/Γ,

ϕ : E → C
n/E, ϕ|Γ ≡ η mod E

}
.

By dimension counting, we see that the two tangent spaces are transver-
sal so that π−1

1 (A) = π̃−1
1 (A) ∩ F (q, m, n) is smooth at all (Γ, E) with

Γ ⊂ E, and the tangent space of π−1
1 (A) at (Γ, E) is given by

T(Γ,E)π
−1
1 (A) =

{
(η, ϕ)| η : Γ → C

n/Γ, η ∈ TΓA
ϕ : E → C

n/E, ϕ|Γ ≡ η mod E

}
.

For each E ∈ XA, there are only finitely many Γ ∈ A with Γ ⊂ E. If
there are more than one Γ ∈ A with Γ ⊂ E, then XA is not smooth at
E (Proposition 16.8 of [H]). Let E be an element in XA such that there
is only one Γ ∈ A with Γ ⊂ E. Then, π2 : π−1

1 (A) → XA is one-to-one
over E so XA is smooth at E with the tangent space

TE(XA) = {ϕ : E → C
n/E | ϕ|Γ ≡ η mod E, η ∈ TΓA, }.

Since TE(XA) is of type a in Gr(m, n), TΓA is of type c in Gr(q, n).
q.e.d.

Proof of Proposition 3.3. We will show that for all p : na → ma with
p ∈ H1,1(Ba), the induced map p̃ : nb ⊂ na → ma → mb is zero. Then,
for an integral variety X of Ba, the space of leaves A = π1(ϕa,b(X̃)) ⊂
Gr(q, n) of the foliation on X given by Lemma 3.4 satisfies the conditions
in Lemma 3.5. Thus, A ⊂ Gr(q, n) is an integral variety of Bc(Gr(q, n)).
Since q > 1 Bc is rigid. So, A is the Schubert variety Gr(q, Λ) for a
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(n−m− p + q)-subspace Λ of C
n and hence, X is the Schubert variety

σa(Λ).
Let Ei,j be the n × n-matrix with only one non-zero element in the

i-th row and j-th column. Then, [Ei,j , Ek,�] = δj,kEi� − δi,�Ek,j for all
1 ≤ i, j, k, � ≤ n.

Since [p(X), Y ]− [p(Y ), X] ∈ na for all X, Y ∈ na and [ma/mb, nb] ⊂
nb, [p̃(X), Y ] − [p̃(Y ), X] ∈ na for all X, Y ∈ nb. Assume that q + 1 ≤
i, j ≤ m and m + 1 ≤ r, s ≤ n − p and n − p + 1 ≤ a, b ≤ n. Note that
for a fixed a, if X ∈ mb and [X, Ea,i] = 0 for all i, then X = 0.

0 0 0 0
mb 0 0 0
∗ Er,i 0 0
0 Ea,i • 0

From [p̃(Ea,i), Er,j ] − [p̃(Er,j), Ea,i] ∈ na, we get both [p̃(Ea,i), Er,j]
and [p̃(Er,j), Ea,i] are contained in na. Thus, [p̃(Er,j), Ea,i] is zero, which
implies that p̃(Er,j) = 0.

Since [p̃(Ea,i), Eb,j ] − [p̃(Eb,j), Ea,i] is contained in na, it should be
zero and thus, both [p̃(Ea,i), Eb,j ] and [p̃(Eb,j), Ea,i] should be zero for
a �= b. Here, we use the condition that p > 1. So, p̃(Eb,j) is zero. q.e.d.

3.3. Sub-Grassmannians. To extend the result in Proposition 3.3
to the general case, we consider the following problem: Suppose that
a Schubert variety σa is contained in a proper sub-Grassmannian of
Gr(m, n) and σb is the minimal sub-Grassmannian among them. Then,
will any integral variety of Ba be contained in a sub-Grassmannian σb?

Proposition 3.6. Let a = (pq1
1 , . . . , pqr

r ) ∈ P (m, n) be a partition and
let a′ = (p′1

q′1 , . . . , p′r
q′r) be the conjugate of a. Suppose that na is con-

tained in a proper rectangle in m. Let b be the partition corresponding
to the minimal rectangle among them. Then any integral variety of Ba

is contained in a sub-Grassmannian σb except when q1 + · · · + qr = m
and qr = 1 or q′1 + · · · + q′r = n − m and q′r = 1.

If both q1 + · · · + qr < m and q′1 + · · · + q′r < n − m hold, then
there is no proper sub-Grassmnnian containing σa. So, the cases we
will consider below are either when q1 + · · · + qr = m and qr ≥ 2 or
when q′1 + · · · + q′r = n − m and q′r ≥ 2.

Lemma 3.7. Let a and b be two partitions such that na is a subspace
of nb with Sa ⊂ Sb and thus, there is a projection Ba → Bb as in
Proposition 3.1. Assume that Bb is strongly rigid. For p : na → ma,
define p̃ by the composite map na → ma � mb. If p̃ = 0 for all p ∈
H1,1(Ba), then any integral subvariety of Ba is contained in an integral
variety of Bb, which is a Schubert variety of type b.
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Proof. The proof is similar to the proof of Lemma 3.4. q.e.d.

Proof of Proposition 3.6. First, we consider the case a = (pq1
1 , pq2

2 , pq3
3 ),

p3 �= 0 is a partition with q1 + q2 + q3 = m and q3 ≥ 2. As the proof
will show, the general case can be obtained in the same way.

Claim. Put b = (pm
3 ).

a =

0 0 0 0 0 0
• 0 0 0 0 0
• • 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 ∗ • 0 0
0 0 0 • • 0

b =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ 0 0 0
0 0 0 • • 0

Then any integral variety of Ba is contained in a Schubert variety of
type b.

Proof of the Claim. Let p : na → ma be a map with ∂p = 0 Then
[p(X), Y ]− [p(Y ), X] ∈ na for all X, Y ∈ na. Put p̃ : na → mb to be the
composition of p with the projection ma → mb.

Since [ma/mb, na] ⊂ nb, we have [p̃(X), Y ] − [p̃(Y ), X] ∈ nb for all
X, Y ∈ na. Assume that q1 + 1 ≤ k, � ≤ q1 + q2, q1 + q2 + 1 ≤ i, j ≤ m,
m+1 ≤ r, s ≤ n−p1 and n−p1+1 ≤ a, b ≤ n−p2. Note that for X ∈ mb,
if [X, Er,i] = [X, Ea,i] = 0 for all r and a for a fixed i, then X=0.

0 0 0 0 0 0
• 0 0 0 0 0
• • 0 0 0 0
0 Er,k Er,i 0 0 0
0 0 Ea,i • 0 0
0 0 0 mb mb 0

From [p̃(Er,k), Es,i]− [p̃(Es,i), Er,k] ∈ nb, we see that both [p̃(Er,k), Es,i]
and [p̃(Es,i), Er,k] are contained in nb. So, [p̃(Er,k), Es,i] = 0. The same
equation holds if we replace Es,i by Ea,i. Thus, p̃(Er,k) = 0.

Put c = ((n − m)(q1+q2), pq3
3 ).

c =

0 0 0 0 0 0
0 0 0 0 0 0
• • 0 0 0 0
0 0 ∗ 0 0 0
0 0 ∗ 0 0 0
0 0 0 • • 0
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Then p̃ restricts to a map nc → mb ⊂ mc. Also, we have [p̃(X), Y ] −
[p̃(Y ), X] ∈ nc for all X, Y ∈ nc. Since q3 ≥ 2, Bc is strongly rigid so
that p̃ is zero on nc. Hence, p̃ is zero. By Lemma 3.7, any integral
variety of Ba is contained in a Schubert variety of type b.

In the same way, we can show that any integral manifold of Ba is
contained in a Schubert variety of type b̂ for b̂ = (p′3

n−m).

a =

0 0 0 0 0 0
• 0 0 0 0 0
• • 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 ∗ • 0 0
0 0 0 • • 0

b̂ =

0 0 0 0 0 0
• 0 0 0 0 0
• 0 0 0 0 0
0 ∗ ∗ 0 0 0
0 ∗ ∗ 0 0 0
0 ∗ ∗ 0 0 0

Here, we use the rigidity of the Schubert differential system Bĉ with
ĉ = (m(q′1+q′2), p′3

q′3), q′3 ≥ 2.

ĉ =

0 0 0 0 0 0
• 0 0 0 0 0
• 0 0 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 • 0 0
0 0 0 • 0 0

q.e.d.

Theorem 3.8. Let a = (pq1
1 , . . . , pqr

r ) be a partition and let a′ =
(p′1

q′1 , . . . , p′r
q′r) be its conjugate. Then, σa is Schubert rigid if qi, q

′
i ≥ 2

for all i ≤ r.

Proof. We will use the induction on r. Thanks to Proposition 3.6, we
may assume that there is no proper sub-Grassmannian containing σa so
that q1 + · · · qr < m and q′1 + · · · q′r < n − m.

By Lemma 3.4 and the same argument as in Proposition 3.3, any
integral varieties of Ba are foliated by the Schubert varieties of type
b = ((n − m)q), where q = q1 + · · · qr. Then the space of leaves A
of this foliation will be an integral variety of the Schubert differential
system Bc on Gr(q, n), c = ((p1 + (m − q))q1 , . . . , (pr + (m − q))qr).
By Proposition 3.6, any integral varieties of Bc are contained in a sub-
Grassmannian of type ((pr + (m − q))q) in Gr(q, n). Thus, A is an
integral variety of the Schubert differential system Bd, d = ((p1 −
pr)q1 , . . . , (pr−1 − pr)qr−1) on this sub-Grassmannian, which is rigid by
the induction hypothesis.

q.e.d.
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4. Schur rigidity

Let σa be a Schubert variety of type a in Gr(m, n). If σa is Schubert
rigid and the Schur differential system Ra∗ is equal to the Schubert
differential system Ba, then σa is Schur rigid. In the previous section,
we proved the Schubert rigidity of σa under some assumptions on a
(Theorem 3.8). In this section, we will prove that Ba is equal to Ra∗

under a weaker assumption (Proposition 4.3) and that this assumption
is critical (Remark 2).

4.1. Criterions for the equality Ba = Ra∗. Let a be a partition
in P (m, n) and b be a partition with |b| = |a|. Since φb is equal
to (

√−1)|b|2
∑

i ξi ∧ ξi for an orthonormal basis {ξi} of (Sb(E∗) ⊗
Sb′(Q))∗ at the origin, the intersection Ra = ∩b�=a,|b|=|a|Z(φb) is equal
to Gr(|a|, E∗ ⊗ Q) ∩ P(Sa(E∗) ⊗ Sa′(Q)) ⊂ P(∧|a|(E∗ ⊗ Q)) (Proposi-
tion 2.8 of [Ho]).

Note that we adapt the convention that σa is a Schubert variety of
dimension |a∗|, while Xw is a Schubert variety of dimension �(w) in
[Ho]. Thus, when a∗ ∈ P (m, n) corresponds to w ∈ WP , Ba is equal to
Bw and Ra∗ is equal to Rw.

From the transitive action of P0 on the fiber Ba, we have the de-
composition p0 = ma + la + m∗

a, where the tangent space of Ba at a
point is isomorphic to ma. Put Ia = Sa∗(E∗) ⊗ S(a∗)′(Q). By compar-
ing the tangent space T[na]Ba and the intersection of the tangent spaces
T[na]Gr(k, E∗ ⊗Q) and T[∧na]P(Ia), we get a sufficient condition for the
equality Ba = Ra∗ as Proposition 3.4 in [Ho].

Proposition 4.1. Assume that for the highest weight vector ϕ of
every irreducible la-representation space in the complement of ma in
n∗a ⊗ m/na, we have

ϕk(v1 ∧ · · · ∧ vk) �∈ Ia/ ∧k na,

where {v1, . . . , vk} is a basis of na and ϕk : ∧kna → ∧km/∧kna is defined
by

ϕk(v1 ∧ · · · ∧ vk) =
∑

i

v1 ∧ · · · ∧ ϕ(vi) ∧ · · · ∧ vk mod ∧k na.

Then Ba is equal to Ra∗.

Now, we will compute all the irreducible la-representation spaces in
the complement of ma in n∗a⊗m/na. Let E be an m-subspace of C

n and
Q be the quotient C

n/E. Then m is equal to E∗ ⊗ Q. Take a partition
a = (pq1

1 , . . . , pqr
r ) ∈ P (m, n) and let a′ = (p′1

q′1 , . . . , p′r
q′r), p′r �= 0 be its

conjugate.
Write E = ⊕rE

i=1Ei and Q = ⊕rQ

a=1Qa so that la = (⊕rE
i=1sl(Ei)) ⊕

(⊕rQ

a=1sl(Qa)). Note that rE is r if q1 + · · · + qr = m and is r + 1,
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otherwise, and rQ is r if q′1 + · · · q′r = n − m and is r + 1, otherwise.
We indexed Ei and Qa keeping the order of the basis {e1, . . . , en} of C

n

such that {e1, . . . , em} is a basis of E. Set ri = dimEi and sa = dimQa

for 1 ≤ i ≤ rE and 1 ≤ a ≤ rQ. Then Ei = 〈eri−1+1, . . . , eri〉 and
Qa = 〈qsa−1+1, . . . , qsa〉, where qp := em+p for p = 1, . . . , n − m.

Let Π be the index set of (i, a) such that na = ⊕(i,a)∈Π(E∗
i ⊗ Qa).

Then m/na = ⊕(i,a) �∈Π(E∗
i ⊗ Qa). As a subspace of n∗a ⊗ m/na, ma =

(⊕i<jE
∗
i ⊗ Ej) ⊕ (⊕b<aQ

∗
b ⊗ Qa) is equal to

(⊕i<jE
∗
i ⊗ Ej ⊗ 〈Id⊕a∈Πi,j

Qa〉C) ⊕ (⊕b<a〈Id⊕i∈Πb,a
Ei〉C ⊗ Q∗

b ⊗ Qa)

where Πi,j = {a : (i, a) �∈ Π, (j, a) ∈ Π} and Πb,a = {i : (i, b) ∈
Π, (i, a) �∈ Π}.

We may choose the order of the set of roots of SL(n) in such a way
that the maximal root is located in the most left and the lowest box
E∗

1⊗Qs and the minimal root is located in the most right and the highest
box E∗

r ⊗Q1. Then the highest weight vector in ma ⊂ n∗a⊗m/na is either∑
a∈Πi,j

∑
qp∈Qa

x∗
αp
⊗xβp , where xαp = e∗rj

⊗qp and xβp = e∗ri−1+1⊗
qp for some i < j, or,∑

i∈Πb,a

∑
ep∈Ei

x∗
αp

⊗ xβp , where xαp = e∗p ⊗ qsb−1+1 and xβp =
e∗p ⊗ qsa for some b < a,

For example, consider a = (92, 72, 34) in P (10, 19). Then, we have
E = ⊕4

i=1Ei, Q = ⊕3
a=1Qa and

Π = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}.
The highest weight vector of ma is like

E1 E2 E3 E4

Q1

Q2

Q3

•1•2•3•4•5•6•7•8•9

×1×2×3×4×5×6×7×8×9

E1 E2 E3 E4

Q1

Q2

Q3

•3•4•5•6•7•8•9

×3×4×5×6×7×8×9

xαp = •pxβp = ×p xαp = •pxβp = ×p

or

Proposition 4.2. Let E = ⊕iEi and Q = ⊕aQa be the decomposition
associate to a as in the above and {e1, . . . , en} be a basis for C

n indexed
as in the above. Then, the highest weight vector of an irreducible la-
representation space in the complement of ma in n∗a ⊗ m/na is either

(1) a decomposable vector x∗
α ⊗ xβ, where xα = e∗rj

⊗ qsb−1+1 is the
lowest weight vector of E∗

j ⊗ Qb and xβ = e∗ri−1+1 ⊗ qsa is the
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highest weight vector of E∗
i ⊗ Qa for some (j, b) ∈ Π, (i, a) �∈ Π,

or,
(2)

∑
qp∈Qa

x∗
αp

⊗xβp , where xαp = e∗rj
⊗ qp and xβp = e∗ri−1+1 ⊗ qp for

some (j, a) ∈ Π, (i, a) �∈ Π such that (j, a− 1) ∈ Π and (i, a− 1) �∈
Π, or,

(3)
∑

ep∈Ei
x∗

αp
⊗xβp , where xαp = e∗p ⊗ qsb−1+1 and xβp = e∗p ⊗ qsa for

some (i, b) ∈ Π, (i, a) �∈ Π such that (i+1, b) ∈ Π and (i+1, a) �∈ Π.

Proof. If i �= j and a �= b, then (E∗
j ⊗Qb)∗⊗(E∗

i ⊗Qa) is an irreducible
la-representation space. The highest weight vector of the irreducible
representation spaces (E∗

j ⊗ Qb)∗ ⊗ (E∗
i ⊗ Qa) is of type (1).

But if i �= j and a = b, then (E∗
j ⊗Qa)∗⊗(E∗

i ⊗Qa)  Ej⊗E∗
i ⊗(Q∗

a⊗
Qa) is decomposed as (Ej ⊗ E∗

i ⊗ 〈IdQa〉C) ⊕ (Ej ⊗ E∗
i ⊗ sl(Qa)), each

of which are irreducible sl(Ej) × sl(Ei) × sl(Qa)-representation spaces.
The highest weight vector of the irreducible representation spaces (Ej ⊗
E∗

i ⊗ sl(Qa)) is of type (1).
The component E∗

i ⊗ Ej of ma corresponds to the component E∗
i ⊗

Ej ⊗ 〈Id⊕a∈Πi,j
Qa〉C in n∗a ⊗ m/na, so its complement in ⊕a∈Πi,jE

∗
i ⊗

Ej ⊗ 〈IdQa〉C is ⊕a∈Π̃i,j
E∗

i ⊗ Ej ⊗ 〈IdQa〉C, where Π̃i,j = {a : (i, a) �∈
Π, (j, a) ∈ Π, (i, a − 1) �∈ Π, (j, a − 1) ∈ Π} is obtained from Πi,j by ex-
cluding the smallest index in Πi,j . The highest weight of the irreducible
representation space in these components is of type (2).

Considering the case when i = j and a �= b, we obtain the highest
weight vectors of type (3). q.e.d.

For example, the highest weight vector
∑

qp∈Qa
x∗

αp
⊗ xβp of type (2)

is

E1 E2 E3 E4

Q1

Q2

Q3

•3•4•5•6

×3×4×5×6

E1 E2 E3 E4

Q1

Q2

Q3

•7•8•9

×7×8×9

xαp = •pxβp = ×p xαp = •pxβp = ×p

or

4.2. Proof of the equality Ba = Ra∗. We will use the same notations
as in the previous section. When {v1, . . . , vk} is a basis of na such that
v1 = xα, we will use the notation xβ∧ x̂α∧· · ·∧vk to denote the k-vector
obtained from v1∧· · ·∧vk, which may be considered as a base k-vector,
by replacing v1 = xα with xβ.
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We call the union of all the columns corresponding to ep’s in Ei the
Ei-column. Similarly, we call the union of all the rows corresponding
qp’s in Qa the Qa-row.

Proposition 4.3. Let a = (pq1
1 , . . . , pqr

r ) be a partition and let a′ =
(p′1

q′1 , . . . , p′r
q′r) be its conjugate. Take a decomposition E = ⊕iEi and

Q = ⊕aQa associated to a as in the previous section. Let Π be the index
set of (i, a) such that na = ⊕(i,a)∈ΠE∗

i ⊗ Qa.
Suppose that for any (i, a) �∈ Π with (i + 1, a) ∈ Π and (i, a− 1) ∈ Π,

both Ei and Qa are not one dimensional. Then the Schubert differential
system Ba∗ is equal to the Schur differential system Ra.

Proof. We will divide the proof into two parts: I. when the highest
weight of the irreducible component in the complement of ma in n∗a ⊗
m/na is of type (1) and II. when it is of type (2) or (3). (See Proposition
4.2 for the types of the highest weight vectors.)

I. Type (1): Fix (j, b),∈ Π, (i, a) �∈ Π. Let {v1, . . . , . . . , vk} be a
basis of na with v1 = xα is a lowest weight vector of E∗

j ⊗ Qb and xβ is
the highest weight vector of E∗

i ⊗Qa. We will show that xβ∧x̂α∧· · ·∧vk

has a non-zero component in Ib for a partition b �= a with |b| = |a|.
Then by Proposition 4.1, Ba∗ is equal to Ra.

na nb

xα = one of •’s
xβ = one of ×’s

xβ′ = ◦
xα′ = �

ad(xγ4 )−→

ad(xγ3)

↑

ad(xγ2)−→

ad(xγ1)

↑

•

×

•

× ×

>

◦

�

Case 1. Assume that q′i ≥ 2 for all i. Denote by xβ′ the highest
weight in the boxes E∗

j ⊗ Qc for all c with (j, c) ∈ Π and by xα′ the
lowest weight vector in the boxes E∗

k ⊗ Qa for all k with (k, a) �∈ Π.
Then, there is a partition b such that nb = na − {xβ′} ∪ {xα′}.
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By construction, there is xγj , j = 1, . . . , 4 in p0 such that

ad(xγ2)ad(xγ1)xβ = xα′ and ad(xγ4)ad(xγ3)xβ′ = xα.

If all xα, xβ, xβ′ and xα′ lie neither in the same Ei-column nor in the
same Qa-raw as in the picture, then all γi are distinct. Thus,

ad(xγ4) · · · ad(xγ1)(xβ ∧ · · · ∧ x̂α ∧ · · · ∧ vk) = xα′ ∧ · · · ∧ x̂β′ ∧ · · · ∧ vk.

But xα′∧· · ·∧x̂β′∧· · ·∧vk is the lowest weight vector of Ib. Since ad(p0)
preserves Ib, there is a non-zero Ib-component in xβ ∧ · · · ∧ x̂α ∧ · · · ∧ vk

and thus, it is not contained in Ia.

If all xα, xβ, xβ′ and xα′ lie either in the same Ei-column or in the
same Qa-row, then either γ2 is equal to γ4 or γ1 is equal to γ3. We
consider the case when γ2 = γ4 as in the picture (the proof for the other
case is similar to this case).

na nb

ad(xγ3)

↑

ad(xγ1)

↑

•

×

↓

◦
�

g←→

•
×

→ ◦
�

Then the multivector xα′ ∧ x̂β′ ∧ · · · ∧ vk ∈ Ib can be obtained from
the multivector xβ ∧ x̂α ∧ · · · ∧ vk by applying g ◦ ad(xγ3)ad(xγ1), where
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g ∈ SL(m)×SL(n−m) which exchanges the most left column e∗si−1+1⊗
qp , 1 ≤ p ≤ n − m with the most right column e∗si

⊗ qp , 1 ≤ p ≤ n − m
in the Ei-column. This shows that xβ ∧ x̂α ∧ · · · ∧ vk is not contained
in Ia.

Case 2. If some q′a = 1, then there may be no partition b with such
property as in Case 1. This is the case when dim Qa is one and a = b+1
and E∗

j+1 ⊗ Qa �∈ na. Then xα′ is left to xβ′ and they are adjacent so
we cannot find such a partition b.

na nb

•

× ◦�

But in this case, consider b′ such that nb′ = na−{xβ′′}∪{xα′} where
xβ′′ is the highest weight vector in the boxes E∗

k ⊗ Qb for all k with
(k, b) ∈ Π and xα′ is the lowest weight vector in the boxes E∗

i ⊗ Qc for
all c with (i, c) �∈ Π.

nb′

◦
�

If i �= j + 1, then there is such a partition b′. If i = j + 1, then, by
the assumption, dim Ei is not equal to one and thus, we can find such a
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partition b′. Then by the same argument as in the case 1, we can prove
that xβ ∧ x̂α ∧ · · · ∧ vk is not contained in Ia.

II. Type (2) or (3): Let
∑

qp∈Qa
x∗

αp
⊗ xβp be the highest weight

vector of type (2) of an irreducible representation space in the comple-
ment of ma in n∗a ⊗ m/na, where xαp = e∗rj

⊗ qp and xβp = e∗ri−1+1 ⊗ qp

for some (j, a) ∈ Π, (i, a) �∈ Π such that (j, a−1) ∈ Π and (i, a−1) �∈ Π.
We will show that

∑
qp∈Qa

xβp ∧ x̂αp ∧· · ·∧vk has a non-zero component
in Ib+Ic if dimQa ≥ 2, and has a non-zero component in Ib, otherwise,
for some partition b and c.

Applying the adjoint actions successively to
∑

qp∈Qa

xβp ∧ x̂αp ∧ · · · ∧ vk = xβsa−1+1 ∧ x̂αsa−1+1 ∧ · · · ∧ vk

+
p=sa∑

p=sa−1+2

xβp ∧ x̂αp ∧ · · · ∧ vk,

we can get

xβsa−1+1 ∧ x̂αsc
∧ · · · ∧ vk + xβsa−2+1 ∧ x̂αsc

∧ · · · ∧ vk,

where xβsa−2+1 = e∗ri−1+1 ⊗ qsa−2+1 and xαsc
= e∗rj

⊗ qαsc
and c is the

largest index c such that (j, c) ∈ Π.

↑
↑
↑
↑

↑↑↑
•3•4•5•6

×3×4×5×6

xαp = •pxβp = ×p

→ →

→
•

×
×

⇒

Applying the adjoint actions again, we can get

yβsa−1+1 ∧ ŷαsc
∧ · · · ∧ vk + yβsa−2+1 ∧ ŷαsc

∧ · · · ∧ vk,

where yβsa−1+1 = e∗rh
⊗ qsa−1+1 and yβsa−2+1 = e∗ri

⊗ qsa−2+1 and yαsc
=

e∗rj−1+1 ⊗ qαsc
and h is the largest index h such that (h, a) �∈ Π. This

is the sum of the lowest weight vector of Ib and that of Ic for some
partition b and c such that all a, b, c are distinct.
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nb nc

◦

�

�

◦

+

q.e.d.

By Theorem 3.8 and Proposition 4.3, we get

Theorem 4.4. Let a = (pq1
1 , . . . , pqr

r ), pr �= 0 be a partition and let
a′ = (p′1

q′1 , . . . , p′r
q′r), p′r �= 0 be its conjugate. Then σa is Schur rigid if

qi, q
′
i ≥ 2 for all i ≤ r.

Remark. One of the problems in algebraic geometry is the smootha-
bility of a singular Schubert variety Xw of G/P . We say Xw is smooth-
able if there is a smooth subvariety X of G/P with [X] = [Xw] in
H∗(G/P, Z)([B]). Assume that a = (pq) and that p = 1 or q = 1, but
both are not 1. Then σa is a singular Schubert variety and the non-
smoothability of Xa is proved in [B]: if X is a subvariety of Gr(m, n)
with [X] = [σa], then X is a Schubert variety of type a. By Theorem 4.4,
for a partition a = (pq1

1 , . . . , pqr
r ) with its conjugate a′ = (p′1

q′1 , . . . , p′r
q′r),

if qi, q
′
i ≥ 2, for all i, then the singular Schubert varieties σa of type a

is not smoothable, neither.

Remark. With the same notations as in Proposition 4.3, if both Ei

and Qa are one dimensional for some (i, a) �∈ Π with E∗
i ⊗ Qa adjacent

to na, then Ba is a proper subvariety of Ra∗ .
Consider the highest weight vector x∗

α ⊗ xβ of an irreducible com-
ponent in the complement of ma in n∗a ⊗ m/na such that xα ∈ na and
xβ ∈ E∗

i ⊗ Qa ⊂ m/na. Then one can check that xβ ∧ x̂α ∧ · · · ∧ vk

is contained in Ia. Thus, this gives a non-trivial element in Ta :=
T[na]Gr(k, m) ∩ T∧kna

P(Ia) ⊂ n∗a ⊗ m/na. Note that as an element of
T[∧kna]P(Ia), this tangent vector gives the map

xα ∧ v2 ∧ · · · ∧ vk �−→ xβ ∧ v2 ∧ · · · ∧ vk ∈ Ia/ ∧k na,

where {v1 = xα, v2, . . . , vk} be a basis of na. Then, c(t) = (xα + txβ) ∧
v2 ∧ · · · ∧ vk, t ∈ C, is a curve in Ra = Gr(k, m) ∩ P(Ia) whose tangent
vector is x∗

α ⊗ xβ. But this tangent vector is not contained in ma and
thus, Ba is a proper subvariety of Ra∗ . This is a generalization of the
counterexamples considered in [W] or Example 9 of [B].
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