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RIGIDITY OF SURFACES WHOSE GEODESIC FLOWS
PRESERVE SMOOTH FOLIATIONS OF CODIMENSION 1

JOSÉ BARBOSA GOMES AND RAFAEL O. RUGGIERO

(Communicated by Michael Handel)

Abstract. Let S be a closed orientable surface. Assume that there exists a
codimension one foliation F of class C3 in the unit tangent bundle of S, whose
leaves are invariant under the geodesic flow of S. Then, the curvature of S is
a nonpositive constant.

Introduction

The study of the relationships between the smoothness of foliations which are
invariant under the geodesic flow and geometric rigidity has produced a beautiful
body of work involving dynamical systems, foliation theory, Riemannian geome-
try and group actions. The seminal work of Hurder and Katok [25] showed how
the Godbillon-Vey theory could be used to get rigidity results for the geometry
of surfaces of negative curvature by assuming smoothness of the central foliations
of the geodesic flow. The study of the rigidity associated to the smoothness of
central foliations of Anosov flows defined in circle bundles was concluded by Ghys
[14], who proves that compact surfaces whose geodesic flows are Anosov and have
C2 central foliations have constant negative curvature and classifies up to smooth
conjugacies all Anosov flows in circle bundles whose central foliations are C2. In
higher dimensions, there are also rigidity results for compact manifolds of negative
curvature under smoothness assumptions of the invariant foliations of the geodesic
flow (Kanai [26], Katok-Feres [11], [12] for pinched negative curvature, Hamenstädt
[21], Benoist-Foulon-Labourie [2]), but a complete classification of manifolds admit-
ting Anosov geodesic flows whose central foliations are sufficiently smooth is still
an open problem.

The present paper deals with surfaces whose geodesic flows preserve highly
smooth codimension one foliations. The existence of such foliations is a very ex-
ceptional feature of the dynamics, and we might well expect to get some rigidity
of the geometry as in the case of surfaces with Anosov geodesic flows. The ana-
lytic foliation by invariant tori of the geodesic flow of a flat metric in the torus is
a particular case of Liouville’s theorem about completely integrable Hamiltonian
systems. The regularity of the central foliations of the geodesic flow in a surface of
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constant negative curvature is a consequence of the smoothness of the action of the
affine group in the unit tangent bundle of the surface, which is a quotient of the
universal covering of PSL(2, R). The main result of this paper is the following.

Theorem A. Let (S, g) be a compact, orientable C∞ surface whose geodesic flow
ϕt preserves a C3 codimension one foliation F , i.e., ϕt(F(θ)) = F(ϕt(θ)) for every
θ in the unit tangent bundle of (S, g), where F(θ) is the leaf containing θ. Then
the curvature of (S, g) is a nonpositive constant.

Let us give a sketch of the proof of Theorem A. We show first of all that the
assumption of existence of an invariant codimension one foliation implies that the
surface has no conjugate points. This is a consequence of a result due to Mañé [28]
about continuous, Lagrangian invariant subbundles of the geodesic flow. Hence the
surface is either a flat torus by Hopf [23], or the genus of the surface is greater than
one. In this latter case, it is not hard to show that the invariant foliation has no
compact leaves, and hence a result due to Ghys [16] implies that if the foliation is
of class C3, then it is C3 conjugate with the central foliation of the geodesic flow
of a metric of constant negative curvature in the surface. Now, the link between
the smoothness of the foliation and the rigidity of the surface can be made through
the Godbillon-Vey theory and the work of Mitsumatsu [29], who calculates the
Godbillon-Vey number of a C2 central foliation of an Anosov geodesic flow which
is C2 conjugate with the central foliation of the geodesic flow of a surface with
constant negative curvature. Since Theorem A has no assumption on the dynamics
of the geodesic flow, we cannot apply directly Mitsumatsu’s result to conclude that
the curvature of the surface is constant. So the last step of the proof of Theorem
A is to generalize Mitsumatsu’s calculation of the Godbillon-Vey number for the
invariant foliation of Theorem A and to show that the curvature of the surface is
constant if and only if Mitsumatsu’s defect (see Section 3 for the definition) of the
invariant foliation is zero.

Theorem A generalizes from the dynamics point of view the rigidity theorem of
Ghys concerning Anosov geodesic flows with smooth central foliations. However,
there is a subtle difference between the regularity of the central foliations required
by the theorem of Ghys and the regularity of the invariant foliation in Theorem A:
in the former case the regularity is C2 and in the latter case the regularity is C3. In
fact, the work of Ghys [16] implies that we can replace the C3 assumption on the
invariant foliation by C2 with Lipschitz C2 derivatives (see Section 4 for details).
Of course, Theorem A is false if we just assume that the foliation is C1 because the
central foliations of any Anosov geodesic flow in a compact surface are C1 by the
work of Hopf [24]. We do not know if Theorem A holds assuming that the foliation
is C2. However, we believe that the theorem should be true in this case as well.

1. Preliminaries

We shall denote by (M, g) a pair formed by a C∞ manifold M endowed with
a C∞ Riemannian metric g. The universal covering of M will be denoted by M̃ ,
the covering map is Π : M̃ −→ M , and the universal covering endowed with the
pullback of the metric g by the covering map Π is (M̃, g̃). The tangent space at
p ∈ M is TpM , and the unit tangent bundle of (M, g) will be denoted by T1M .
The canonical coordinates in the unit tangent bundle are (p, v), where p ∈ M and
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v ∈ TpM is a unit tangent vector. The canonical projection π : TM −→ M is the
map defined by π(p, v) = p.

The geodesic flow of (M, g) will be denoted by ϕt : T1M −→ T1M , and the
geodesic of (M, g) with initial point p and initial tangent vector v will be denoted
by γ(p,v)(t). We shall assume that all geodesics are parametrized by arc length. The
geodesic γ(p,v)(t) has no conjugate points if each Jacobi field along the geodesic has
at most one zero. The Riemannian manifold (M, g) has no conjugate points if
γ(p,v)(t) has no conjugate points for every (p, v) ∈ T1M .

There are many equivalent definitions of manifolds without conjugate points. In
fact, (M, g) has no conjugate points if and only if the exponential map at every
point is nonsingular. Moreover, (M, g) has no conjugate points if and only if every
geodesic of (M̃, g̃) is globally minimizing. In other words, given a geodesic γ ⊂ M̃
parametrized by arc length, the curve γ[a, b] is the unique geodesic joining γ(a)
and γ(b), and hence, γ[a, b] is the unique minimizer of the length of curves joining
its endpoints for every a < b. Manifolds with nonpositive curvature are typical ex-
amples of manifolds without conjugate points, although there are examples of such
manifolds where the curvature changes sign (see, for instance, [20], [6]). Compact
manifolds whose geodesic flows are Anosov have no conjugate points, according to
a famous theorem due to Klingenberg [27].

The global geometry of surfaces without conjugate points has many features in
common with the global geometry of manifolds with nonpositive curvature. The
well-known work of Morse [30] implies that every geodesic in the universal covering
of a compact surface without conjugate points is shadowed by a geodesic of the
hyperbolic plane. Geodesic rays in the universal covering of a compact surface
without conjugate points diverge according to the work of Green [18], and the only
metrics in the torus without conjugate points are the flat metrics (Hopf [23] proves
this fact for dimension two, and Burago and Ivanov [3] show the same result in any
dimension). Eberlein generalizes most of the global geometry features of surfaces
without conjugate points of higher genus to visibility manifolds (for the definition
we refer to [7], [1]) of any dimension. The later introduction by Thurston and
Gromov [19] of the so-called hyperbolic groups shows that the same picture of the
global geometry of surfaces without conjugate points and higher genus occurs in a
much more general setting.

2. Lagrangian subbundles and the Riccati equation

In this section we make the first step towards the proof of the main theorem: we
show the relationship between the existence of codimension one, invariant foliations
in T1M and manifolds without conjugate points. We recall briefly some basic
notions concerning the so-called Riccati equation associated to Jacobi fields and
Lagrangian subbundles of the geodesic flow (see, for instance, [28], [31]). Let

〈〈
,
〉〉

be the Sasaki metric in the unit tangent bundle of (M, g). Given θ ∈ T1M , let us
denote by Vθ ⊂ TθT1M the vertical subspace of TθT1M (namely, the kernel of dπ,
the differential of the canonical projection). Let us denote by Hθ ⊂ TθT1M the
horizontal subspace of TθT1M , and let Xθ ∈ TθT1M be the unit vector tangent to
the direction of the geodesic flow, i.e., d

dtϕt(θ) = Xϕt(θ) for every t ∈ R. Recall that
Xθ ∈ Hθ for every θ ∈ T1M , and that the vertical and the horizontal subspaces at θ
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are perpendicular with respect to the Sasaki metric. Let us consider the subspaces

Nθ = {v ∈ Tθ(T1M);
〈〈

v, Xθ

〉〉
= 0},

Hθ = Hθ ∩ Nθ.

The differential of the geodesic flow preserves the bundle of subspaces Nθ, and the
differential Ω of the canonical one-form of the geodesic flow defines a symplectic
two-form when restricted to each Nθ, that is also invariant under the geodesic flow.

Definition 2.1. Let (M, g) be a complete, smooth Riemannian manifold of dimen-
sion n. A continuous subbundle of subspaces θ → Lθ, where Lθ ⊂ Nθ, is called
Lagrangian if Ω(v, w) = 0 for every v, w ∈ Lθ, and dim(Lθ) = n − 1, for every
θ ∈ T1M .

If the dimension of M is two, every continuous bundle Lθ ⊂ Nθ of dimension-one
subspaces is Lagrangian. A Lagrangian bundle that is invariant under the action of
the differential of the geodesic flow will be called an invariant Lagrangian bundle.
The following result is due to R. Mañé ([28]).

Theorem 2.2. Let (M, g) be a compact Riemannian manifold. If there exists a
continuous invariant Lagrangian bundle E in the tangent space of T1M , then (M, g)
has no conjugate points.

In fact, the proof of Mañé’s theorem consists in showing that

Eθ ∩ Vθ = {0}

for every θ ∈ T1M . From this fact it is easy to show the following well-known result
(see [31] for instance) that we state without proof.

Lemma 2.3. Let (S, g) be a compact surface without conjugate points. Given a
continuous Lagrangian subbundle E of TT1S that is invariant under the geodesic
flow, there exists a continuous function U : T1S −→ R such that

(1) the subspace Eθ is the graph of the linear map Ūθ : Hθ −→ Vθ given by
Ūθ(Z) = U(θ)Z for every θ ∈ T1S;

(2) the function uθ(t) given by uθ(t) = U(φt(θ)) is a solution of the Riccati
equation

u′ + u2 + K = 0,

for every θ ∈ T1S.

3. Godbillon-Vey class and Mitsumatsu’s defect

Let (S, g) be a C∞, closed oriented surface of genus greater than 1 with Gaussian
curvature function K = Kg : S → R. Let {ϕt} be the geodesic flow and X = Xg

be the geodesic vector field. Let W =
∂

∂ζ
be a smooth vector field tangent to the

vertical fibers of T1S whose norm is equal to one in the Sasaki metric. The goal of
this section is to prove the following result.

Theorem 3.1. Let F be a C2 foliation in T1S of codimension 1 whose leaves
are invariant under the geodesic flow. Let U : T1S −→ R be the Riccati operator
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associated to the foliation F defined in Lemma 2.1. Then,

(1) the Godbillon-Vey number of F can be written as

gv(F) = 4π2χ(S) − 3
∫

T1S

(WU)2ω ∧ θ1 ∧ θ2,

where χ(S) is the Euler characteristic of S;
(2) the function U is constant along the fibers, i.e., WU ≡ 0, if and only if the

metric g in S has constant curvature ≤ 0.

We shall define the number 3
∫

T1S
(WU)2ω∧θ1∧θ2 to be Mitsumatsu’s defect.

This notation is based on the fact that the number 4π2χ(S) is the Godbillon-Vey
number of the central foliations of the geodesic flow in any compact, orientable
surface of constant negative curvature, according to Roussarie. So Theorem 3.1
implies that the Godbillon-Vey number of a C2, codimension one, invariant foliation
is maximal if and only if the surface has constant negative curvature.

Following Mitsumatsu ([29]), we describe briefly how to calculate the Godbillon-
Vey number of a C2 invariant, codimension one foliation F in T1S in terms of the
solution U of the Riccati equation defined in the previous section. Observe that
the tangent bundle of the foliation F gives us an invariant Lagrangian subbundle,
namely, Eθ = TθFθ ∩Nθ. So we shall consider throughout the section the operator
U described in Lemma 2.3 associated to the subbundle E .

To begin with the calculation, let us recall Cartan’s formalism for two-dimension-
al Riemannian geometry. Let ω be the connection 1-form in T1S, and let θ1 and
θ2 be the canonical 1-forms satisfying the Cartan structural equations (see, for
example, [33]) {

dθ1 = ω ∧ θ2,
dθ2 = −ω ∧ θ1,

dω = −(K ◦ π)θ1 ∧ θ2.

Let {W, X, Y } be the orthonormal dual basis, where W (dual to ω) is the vertical
vector field, and X is the geodesic vector field. Then, X and Y span the horizontal
space.

The structural equations in dual form are

[Y, W ] = X, [W, X] = Y,

[X, Y ] = KW.

Since Eθ is the graph of the map Uθ : Hθ → Vθ, and the subbundle E is invariant
under the geodesic flow, the function uθ(t) = U(φt(θ)) is the slope of the subspace
dθϕt(Eθ) in the plane Nφt(θ) for every θ ∈ T1S. The Riccati equation, viewed as a
differential equation in T1S, can be written as

XU + U2 + K ◦ π = 0.

Therefore, the tangent space TθFθ of the leaf Fθ at the point θ is spanned by Xθ

and Yθ + U(θ)Wθ, and the 1-form

β = ω − Uθ2

defines F .
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We have that

dβ = dω − (dU) ∧ θ2 − U · dθ2 = −(k ◦ πS)θ1 ∧ θ2 − (dU) ∧ θ2 − U(−ω ∧ θ1)
= −(k ◦ πS)θ1 ∧ θ2 − (dU) ∧ θ2 + U · ω ∧ θ1.

If we set η = (WU) · θ2 − U · θ1, then

η ∧ β = dβ

and
η ∧ dη = [−2(WU)2 + U(W 2U) − U2]ω ∧ θ1 ∧ θ2.

As in [29], we get, using the Riccati equation and the Gauss-Bonnet theorem,

gv(F) = 4π2χ(S) − 3
∫

T1S

(WU)2ω ∧ θ1 ∧ θ2,

where χ(S) is the Euler characteristic of S, thus proving item (1) of Theorem 3.1.
To show item (2) of Theorem 3.1, let us first observe that constant, negative

curvature implies that WU = 0. This is due to the fact that the unique codimension
1 foliations which are invariant under the geodesic flow in this case are the stable and
the unstable central foliations, whose Godbillon-Vey number is precisely 4π2χ(S)
by the work of Roussarie. Therefore, the integral term in the formula of item 1 of
Theorem 3.1 has to be zero and since the integrand is continuous and nonnegative
it has to vanish everywhere in the unit tangent bundle. So we have to show that if
WU = 0, then the curvature of (S, g) is constant.

Claim. If WU = 0, then the function U is constant.

Let us sketch the proof of this assertion. We would like to point out that in
[29] the proof of the Claim in the Anosov case used the existence of the stable
and the unstable solutions of the Riccati equation. The new fact in our argument
is that the existence of just one smooth solution of the Riccati equation already
implies that such a solution must be constant. Since the function U is constant in
the vertical fibers, we have that U(p, v) = U(p,−v) for every (p, v) ∈ T1S. Since
π(φt(p, v)) = π(φ−t(p,−v)) we have that U(φt(p, v)) = U(φ−t(p,−v)) for every
(p, v) ∈ T1S and t ∈ R. Let us denote θ = (p, v) and −θ = (p,−v). According to
the above equations, the solutions uθ(t), u−θ(t) of the Riccati equation along the
orbits φt(θ), φ−t(−θ) respectively, satisfy

uθ(t) = u−θ(−t),

or equivalently,
uθ(−t) = u−θ(t),

for every θ ∈ T1S and t ∈ R. Taking derivatives with respect to t in both sides of
the equation we get − d

dtuθ(−t) = d
dtu−θ(t), and since u−θ(t) is a solution of the

Riccati equation, we get

−u′
θ(−t) + u2

θ(−t) + K(−t) = 0,

for every t ∈ R. Analogously, uθ is a solution of the Riccati equation, so we have

u′
θ(−t) + u2

θ(−t) + K(−t) = 0,

for every t ∈ R. Subtracting the two last equations we obtain u′
θ(−t) = 0 for every

t ∈ R, and therefore, uθ(t) is constant with respect to t for every θ ∈ T1S. In other
words, the function U is constant along the orbits of the geodesic flow in T1S.
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Now, as Mitsumatsu observes in [29], any two points in the unit tangent bundle
T1S can be joined by a continuous path formed by three smooth curves, each of
which is either a subset of an orbit of the geodesic flow or a subset of some vertical
fiber. This clearly yields that U is constant in T1S.

From the claim and the Riccati equation, we have that K(p) = −U2(p, v) for
every p ∈ S, and any unit vector v ∈ TpS, thus concluding the proof of the theorem.

4. The proof of Theorem A

Let (S, g) be a compact, orientable surface whose geodesic flow preserves a codi-
mension one, C3 foliation F . By Theorem 2.1 (S, g) has no conjugate points, so
it is either a flat torus or a surface of genus greater than one. If (S, g) is the flat
torus, Theorem A holds, so we are left to consider surfaces of genus greater than
one.

Lemma 4.1. Let F be a C1 codimension 1 foliation of T1S which is invariant
under the geodesic flow of (S, g). Then F has no compact leaves.

Proof. The proof is very simple and we make a sketch for the sake of completeness.
Let F0 be a compact leaf of F . Since F0 is invariant under the geodesic flow it
carries a nonsingular vector field and hence F0 is a torus. Moreover, by Theorem
1.1, F0 is transversal to the vertical fibers of T1S and therefore the restriction to
F0 of the canonical projection π : T1S −→ S is a covering map. This implies that
the canonical projection π(F0) is a compact surface without boundary in S, so the
restriction of π to F0 has to be surjective and hence a covering map. This is clearly
impossible since a torus cannot be a covering of a surface of genus greater than
1. �

Now, we can use the following result due to E. Ghys ([16], Theorem 5.3).

Theorem 4.2. Let F be a Cr codimension 1 foliation without compact leaves of the
unit tangent bundle of a compact surface S of genus greater than 1, where r ≥ 3.
Then F is Cr conjugate with the central foliation of the geodesic flow of a metric
with constant curvature −1 in S.

By this theorem and [25], the Godbillon-Vey number of F equals the Godbillon-
Vey number of a hyperbolic central foliation, so we can apply item (2) of Theorem
3.1 to conclude that the curvature of (S, g) is constant. This finishes the proof of
Theorem A.

Remark. Ghys in [16] observes that Theorem 4.2 holds if F is C2 and has Lipschitz
C2 derivatives. Since a C2 conjugacy with a hyperbolic central foliation is enough to
apply Gobdillon-Vey theory, Theorem A remains true if we assume that F satisfies
this weaker hypothesis.
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