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Abstract. In this paper, we give a characterization of Clifford tori S1(
√

nr+2−n
nr ) ×

Sn−1(
√

n−2
nr ) and Sm(a) × Sn−m(

√
1 − a2) (2 ≤ m ≤ n − 2, 0 < a2 < 1) in a unit sphere

Sn+1(1). Our results extend the results due to Cheng and Yau [4], and Wang and
Xia [11].

2000 Mathematics Subject Classification. 53C42, 53C20.

1. Introduction. Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1)
of dimension n + 1. Now let us state a theorem due to Cheng and Yau [4].

THEOREM 1.1 ([4]). Let M be an n-dimensional compact hypersurface with constant
scalar curvature n(n − 1)r in Sn+1(1). If

(1) r ≥ 1,
(2) the sectional curvature of M is nonnegative,

then M is either a totally umbilical hypersurface or a Riemannian product

Sk(a) × Sn−k(
√

1 − a2), 1 ≤ k ≤ n − 1,

where Sk(a) denotes the sphere of radius a.

On the other hand, Wang and Xia [11] have proved the following theorem.

THEOREM 1.2 ([11]). Let M be an n-dimensional (n ≥ 3) compact orientable
hypersurface immersed in Sn+1(1) with constant scalar curvature n(n − 1)r and two
distinct principal curvatures λ and µ of multiplicities n − 1 and 1, respectively.
Assume that λµ ≤ −1 holds on M. Then M is isometric to a Riemannian product

S1(
√

1 − n − 2
nr ) × Sn−1(

√
n − 2

nr ).

In the proof of Theorem 1.1, the condition r ≥ 1 is necessary. Moreover, the
topological assumption that M is compact in Theorem 1.2 plays an important role in
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the proof of this theorem. However, it can be easily checked that many hypersurfaces
with constant scalar curvature n(n − 1)r,(r < 1) also have nonnegative Ricci curvature.

EXAMPLE. M1,n−1 = S1(a) × Sn−1(
√

1 − a2). Then M1,n−1 has two distinct constant
principal curvatures

λ1 = · · · = λn−1 = λ = − a√
1 − a2

, λn = µ =
√

1 − a2

a
(1.1)

and constant mean curvature H = 1
n

∑n
i=1 λi = 1−na2

na
√

1−a2 .
From (1.1), first we know nH = (n − 1)λ + µ. Then, by the formula (2.5) in sec-

tion 2 the Ricci curvatures are given as follows:

R00 = (n − 1)(1 + λµ) = 0, Rii = (n − 1) + (n − 2)λ2 + λµ ≥ n − 2 ≥ 0 (1.2)

for i = 1, . . . , n − 1. Then it can be easily seen that all Ricci curvatures of M1,n−1 =
S1(a) × Sn−1(

√
1 − a2) (0 < a2 < 1) are nonnegative. By a straightforward compu-

tation for M1,n−1 = S1(a) × Sn−1(
√

1 − a2), we obtain

a2 = nr + 2 − n
nr

> 0, i.e. r >
n − 2

n
. (1.3)

Hence S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ) has constant scalar curvature n(n − 1)r and the Ricci

curvatures of S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ) are nonnegative.

Now, in this paper, we consider a complete hypersurface M in Sn+1(1) with constant
scalar curvature n(n − 1)r and two distinct principal curvatures. Then, we assert the
following results.

THEOREM 1.3. Let M be an n-dimensional (n ≥ 3) complete connected hypersurface
with constant scalar curvature n(n − 1)r in Sn+1(1). If

(1) M has two distinct principal curvatures,
(2) the Ricci curvatures of M are nonnegative,

then M is isometric either to the Riemannian product S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ) or to

Sm(a) × Sn−m(
√

1 − a2) (2 ≤ m ≤ n − 2, 0 < a < 1).

THEOREM 1.4. Let M be an n-dimensional (n ≥ 3) complete connected hypersurface
immersed in Sn+1(1) with constant scalar curvature n(n − 1)r and two distinct principal
curvatures λ and µ of multiplicities n − 1 and 1, respectively. Assume that λµ ≤ −1 holds

on M. Then M is isometric to a Riemannian product S1(
√

1 − n−2
nr ) × Sn−1(

√
n−2
nr ).

REMARK 1.1. Theorems 1.1 and 1.2 are different from Theorems 1.3 and 1.4. In
the proof of Theorems 1.1 and 1.2, the topological assumption that M is compact is
necessary. But in Theorems 1.3 and 1.4 we only assume that M is complete.

REMARK 1.2. When M is compact, our Theorem 1.4 reduces to Theorem 1.2.

2. Preliminaries. Let M be an n-dimensional hypersurface in an (n + 1)-
dimensional unit sphere Sn+1(1) with constant scalar curvature n(n − 1)r. Let
{e1, . . . , en} be a local orthonormal basis of M with respect to the induced metric,
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ω1, . . . , ωn their dual form. Let en+1 be the local unit normal vector field. In this paper,
we shall make use of the following convention on the ranges of indices:

1 ≤ i, j, k, . . . ≤ n, 1 ≤ a, b, . . . ≤ m, m + 1 ≤ α, β, . . . ≤ n.

Then we have the structure equations

dx =
∑

i

ωiei, (2.1)

dei =
∑

j

ωi jej +
∑

j

hi jωjen+1 − ωix, (2.2)

den+1 = −
∑

i,j

hi jωjei, (2.3)

where hi j denotes the components of the second fundamental form of M.

By the equation of Gauss the curvature tensor, the Ricci tensor and the scalar
curvature of M in Sn+1(1) are respectively given by

Ri j k l = (δi kδj l − δi lδj k) + (hi khj l − hi lhj k), (2.4)

Ri k = (n − 1)δi k + nHhi k −
∑

j

hi jhj k, (2.5)

n(n − 1)r = n(n − 1) + n2H2 − S, (2.6)

where r denotes the normalized scalar curvature, S = ∑
i,j h2

i j the squared norm of the
second fundamental form and H the mean curvature H = 1

n

∑
k hkk respectively.

Now we assume that M has two distinct principal curvature λ and µ, that is,

hi j = λiδi j, λ1 = λ2 = · · · = λm = λ, λm+1 = · · · = λn = µ.

Then from (2.5) the Ricci curvatures are respectively given by the following (see
also the notion of Ricci curvatures in the second author and Yang [10]),

Raa = (n − 1) + (m − 1)λ2 + (n − m)λµ,

Rαα = (n − 1) + mλµ + (n − m − 1)µ2.
(2.7)

Now we must consider two cases.

Case 1: 2 ≤ m ≤ n − 2.

In [9], Otsuki proved the following result.

LEMMA 2.1 (Theorem 2 and Corollary of [9]). Let M be an n-dimensional
hypersurface in a unit sphere Sn+1(1) such that the multiplicities of principal curvatures
are all constant. Then the distribution of the space of principal vectors corresponding
to each principal curvature is completely integrable. In particular, if the multiplicity
of a principal curvature is greater than 1, then this principal curvature is constant on
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each integral submanifold of the corresponding distribution of the space of principal
vectors.

From Lemma 2.1. we can easily obtain the following result.

PROPOSITION 2.1 ([3]). Let M be an n-dimensional hypersurface in a unit sphere
Sn+1(1) with constant scalar curvature n(n − 1)r and with two distinct principal curvatures.
If the multiplicities of these two distinct principal curvatures are greater than 1, then M
is isometric to the Riemannian product Sm(a) × Sn−m(

√
1 − a2), 2 ≤ m ≤ n − 2.

Case 2: m = n − 1 or m = 1.

In this case, we assume

λ1 = λ2 = · · · = λn−1 = λ and λn = µ,

where λi denotes the principal curvature of M. From Gauss equation (2.6), we get

n(n − 1)(r − 1) = (n − 1)(n − 2)λ2 + 2(n − 1)λµ. (2.8)

If λ = 0 at some point p, then r = 1 at this point. Since the scalar curvature
n(n − 1)r is constant, we obtain r ≡ 1 on M. We see from (2.8) that λ((n − 2)λ +
2µ) ≡ 0, then we have λ ≡ 0 on M. In fact, let N = {x | x ∈ M, λ(x) �= 0}, Q = {y | y ∈
M, (n − 2)λ(y) + 2µ(y) = 0}. Since these principal curvatures λ and µ are continuous
on M, we know that N is an open set, Q is a close set and N �= M (since λ(p) = 0).
Next we prove N = Q. On one hand, if x ∈ N, then λ(x) �= 0. By λ((n − 2)λ + 2µ) ≡ 0,
we obtain (n − 2)λ(x) + 2µ(x) = 0, that is, x ∈ Q. Hence N ⊆ Q. On the other hand, if
y ∈ Q, then (n − 2)λ(y) + 2µ(y) = 0. Since λ and µ are two distinct principal curvatures
of M, we have λ(y) �= µ(y). We see from (n − 2)λ(y) + 2µ(y) = 0 that λ(y) �= 0. (If
λ(y) = 0, then µ(y) = 0 = λ(y). This is a contradiction). Thus y ∈ N, and we then have
Q ⊆ N. Therefore N = Q. We see that N is not only an open set but also a closed set.
Combining M connected with N �= M, we deduce that N is an empty set. It follows
that λ ≡ 0 on M. By (2.5), we have that the sectional curvature of M is not less than 1.
Hence M is compact by use of Bonnet-Myers Theorem. We see from Theorem 1.1 that
M is a totally umbilical hypersurface. Thus λ �= 0.

From (2.8), we have

µ = n(r − 1)
2λ

− n − 2
2

λ, λ − µ = n
λ2 − (r − 1)

2λ
�= 0 (2.9)

and it follows that λ2 − (r − 1) �= 0. If λ2 − (r − 1) < 0, from (2.9) we deduce that

r > 1 and λ2 − λµ = n
2

[λ2 − (r − 1)] < 0.

Therefore λµ > λ2. We obtain the sectional curvature of M is greater than 1 from (2.5).
Then M is a totally umbilical hypersurface by use of Theorem 1.1. As a result, we get
λ2 − (r − 1) > 0. Put w = [λ2 − (r − 1)]−1/n. Cheng [3] proved the following.

PROPOSITION 2.2 (Theorem 2.1 of [3]). Suppose that n ≥ 3. If M is an n-dimensional
hypersurface in Sn+1(1) with constant scalar curvature n(n − 1)r and with two distinct
principal curvatures, and the space of principal vectors corresponding to one of them
is of one dimension, then M is a locus of the moving (n – 1)-dimensional submanifold
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Mn−1
1 (s) along which the principal curvature λ of multiplicity n – 1 is constant and which

is locally isometric to an (n – 1)-dimensional sphere Sn−1(c(s)) = En(s) ∩ Sn+1(1) of
constant curvature and w = [λ2 − (r − 1)]−1/n satisfies the ordinary differential equation
of order 2

d2w

ds2
− w

(
n − 2

2
1
wn

− r
)

= 0, (2.10)

where En(s) is an n-dimensional linear subspace in the Euclidean space Rn+2 which is
parallel to a fixed En.

3. Proofs of Theorems 1.3 and 1.4. In order to give complete proofs of Theo-
rems 1.3 and 1.4 we must verify the following.

LEMMA 3.1. Equation (2.10) is equivalent to its first order integral

(
dw

ds

)2

+ rw2 + 1
wn−2

= C, (3.1)

where C is a constant; for a constant solution equal to w0, one has that r > 0 and
wn

0 = n−2
2r , so

C0 = n
2

(
2r

n − 2

)(n−2)/n

. (3.2)

Moreover, the constant solution of (2.10) corresponds to the Riemannian Product

S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ).

Proof. From [3], we have ∇en en = 0. Hence, we know that any integral curve of the
principal vector field corresponding to µ is a geodesic. Then we can deduce that w(s)
is a function defined in (−∞,+∞) since M is complete and any integral curve of the
principal vector field corresponding to µ is a geodesic.

The left hand side of equation (2.10) multiplied by 2 dw
ds is precisely the derivative

of the left hand side of equation (3.1). Let w(s) = w0 in (2.10) and (3.1), so that
wn

0 = n−2
2r and the corresponding value of the constant C is C0. Combining these with

w = [λ2 − (r − 1)]−1/n and (2.9), we obtain λ2 = n(r−1)+2
n−2 and µ2 = n−2

n(r−1)+2 . Hence we
get from Cartan’s result in [2] that the constant solution of (2.10) corresponds to
the Riemannian product S1(a) × Sn−1(

√
1 − a2) and λ2 = n(r−1)+2

n−2 = a2

1−a2 . That is, the

constant solution of (2.10) corresponds to S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ). This completes

the proof of Lemma 3.1.

Proof of Theorem 1.3. We assume that M has two distinct principal curvatures λ

(multiplicity m) and µ (multiplicity n − m).

Case 1. 2 ≤ m ≤ n − 2.
By Proposition 2.1, we have M is isometric to the Riemannian product Sm(a) ×

Sn−m(
√

1 − a2). From (2.7), we can get

Raa = (n − 1) + (m − 1)λ2 + (n − m)λµ = (m − 1)(1 + λ2) ≥ 0,

Rαα = (n − 1) + mλµ + (n − m − 1)µ2 = (n − m − 1)µ2 ≥ 0.
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Hence the Riemannian product Sm(a) × Sn−m(
√

1 − a2) (2 ≤ m ≤ n − 2, 0 < a < 1)
has nonnegative Ricci curvature.

Case 2. m = n − 1.
From (2.9), we have

1 + λµ = 1 + n(r − 1)
2

− n − 2
2

λ2. (3.3)

Since M has nonnegative Ricci curvature, by using (2.7), we obtain

Rαα = (n − 1)(1 + λµ) ≥ 0, (3.4)

that is

1 + λµ ≥ 0. (3.5)

Combining (3.5) with (3.3), we see that

n − 2
2

[λ2 − (r − 1)] ≤ r,

and it follows that

n − 2
2

1
wn

− r ≤ 0. (3.6)

From (2.10), we know that

d2w

ds2
= w

{
(n − 2)

2
1
wn

− r
}

.

A direct calculation then gives

d2w

ds2
≤ 0. (3.7)

Thus dw
ds is a monotonic function of s ∈ (−∞,+∞). Therefore, w(s) must be

monotonic when s tends to infinity.
We see from (3.1) that the positive function w(s) is bounded. Since w(s) is bounded

and is monotonic when s tends to infinity, we find that both lims→−∞ w(s) and
lims→+∞ w(s) exist and then we have

lim
s→−∞

dw(s)
ds

= lim
s→+∞

dw(s)
ds

= 0. (3.8)

By the monotonicity of dw
ds , we see that dw

ds ≡ 0 and w(s) is a constant. Then, according
to Lemma 3.1, it is easily seen that M is isometric to the Riemannian product

S1(
√

nr+2−n
nr ) × Sn−1(

√
n−2
nr ). This completes the proof of our Theorem 1.3. �

Proof of Theorem 1.4. Combining (3.3) with λµ ≤ −1, we deduce that

n − 2
2

[λ2 − (r − 1)] ≥ r,
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and it follows that

n − 2
2

1
wn

− r ≥ 0. (3.9)

From (2.10) and (3.9), we have

d2w

ds2
≥ 0. (3.10)

We see from (3.1) that the positive function w(s) is bounded. Combining d2w
ds2 ≤ 0

with the boundedness of w(s) , we see that w(s) is a constant. Then, according to Lem-

ma 3.1, it is easily seen that M is isometric to the Riemannian product S1(
√

nr+2−n
nr ) ×

Sn−1(
√

n−2
nr ). From this we complete the proof of our Theorem 1.4. �
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