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Abstract: We analytically study the long time and large space asymptotics of a new
broad class of solutions of the KdV equation introduced by Dyachenko, Zakharov, and
Zakharov. These solutions are characterized by a Riemann–Hilbert problem which we
show arises as the limit N → +∞ of a gas of N -solitons.We show that this gas of solitons
in the limit N → ∞ is slowly approaching a cnoidal wave solution for x → −∞ up
to terms of order O(1/x), while approaching zero exponentially fast for x → +∞. We
establish an asymptotic description of the gas of solitons for large times that is valid
over the entire spatial domain, in terms of Jacobi elliptic functions.
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1. Introduction

This paper concerns the concept of a gas of solitons for the Korteweg–de Vries (KdV)
equation,

ut − 6uux + uxxx = 0 . (1.1)

It iswell known that this nonlinear partial differential equation is integrable, arising as the
compatibility condition of a Lax pair of linear differential operators. The compatibility
condition can be presented as the existence of a simultaneous solution to the pair of
equations

−ψxx + uψ = Eψ , (1.2)

ψt − 4ψxxx + 6uψx + 3uxψ = 0 , (1.3)

where E is the spectral parameter and ψ = ψ(x, t). The Lax pair formulation yields
a complete solution procedure for the initial value problem for (1.1) via the inverse
scattering transform in the case of rapidly decaying or step-like initial data, and has led
to a large and ever-growing collection of results concerning the analysis of the initial
value problem in many different asymptotic regimes, including the behaviour in the
small dispersion limit, as well as a complete description of the long-time behaviour for
fairly general decaying or step-like initial conditions. In the case of periodic boundary
conditions, there have been many works that are aimed at understanding the behaviour
of solutions as well as the geometry of the space of solutions. These works have all been
driven by the physical origins of the KdV equation as a basic model for one-dimensional
wave motion of the interface between air and water, and in particular the discovery of the
soliton. The soliton is a rapidly decreasing travelling wave solution of the KdV equation,
namely a solution of the form u(x, t) = f (x − vt) and takes the form

u(x, t) = −2η2 sech2
(

2η(x − 4η2t − x0)
)

(1.4)

where E = −η2 is the energy parameter of Schrödinger equation in the Lax pair (1.2).
The periodic travelling wave that can be obtained by direct integration of the KdV
equation takes the form

u(x, t) = β1 +β2 −β3 −2(β1 −β3)dn
2(
√

β1 − β3(x +2(β1 +β2 +β3)t + x0)|m) (1.5)

where dn(z|m) is the Jacobi elliptic function ofmodulusm2 = β2−β3
β1−β3

and β1 > β2 > β3.
In both formulas x0 is an arbitrary phase. Let us introduce the ϑ function

ϑ3(z; τ) =
∑

n∈Z
e2π i nz+πn2iτ , z ∈ C , Im τ > 0.
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Using the standard relation between Jacobi elliptic functions and ϑ-function (see eg.
[Law89] pg. 45 exercise 16 and 3.5.5) we re-write (1.5) as

u(x, t) = ū − 2
∂2

∂x2
logϑ3

(√
β1 − β3

2K (m)
[x + 2t (β1 + β2 + β3) + x0] − 1

2
; τ̂

)

ū = β1 + β2 − β3 − 2(β1 − β3)
E(m)

K (m)

(1.6)

with K (m) = ∫ π/2
0

dϑ√
1−m2 sin2 ϑ

and E(m) = ∫ π/2
0 dϑ

√

1 − m2 sin2 ϑ , the complete

elliptic integrals of the first and second kind respectively, τ̂ = i K ′(m)/K (m) and
K ′(m) = K (

√
1 − m2). We observe that ū is the average value of u(x, t) over an

oscillation. The above formula coincides with the genus-one case of the more general
Its-Matveev and Dubrovin-Novikov formula [Its75,Dub74] for finite-gap solutions of
KdV.

With the above potential (1.5), the Schrödinger Eq. (1.2) coincides with the Lamé
equation and the stability zones (or Bloch spectrum) of the potential are [β3, β2] ∪
[β1,+∞).

Of the highest importance for applications to the theory of water waves was the
discovery of families of explicit more complex solutions, such as N -soliton solutions
when the Schrödinger equation in (1.2) has N simple eigenvalues, or a N -gap solution
when there are N + 1 disjoint stability zones of the corresponding Schrödinger equation
or solutions that connect to Painlevé transcendents.

Since the early days of integrable nonlinear PDEs, researchers have considered the
notion of a soliton gas (see [Zak09], and references contained therein). The quest is for an
understanding of the properties of an interacting ensemble ofmany solitons, ultimately in
the presence of randomness. However, even in the absence of randomness, the dynamics
of a large collection of solitons is only understood with mathematical precision in a few
specific settings (the small-dispersion limit of the KdV equation, as considered in the
works of Lax and Levermore [LL83a,LL83b,LL83c], could be interpreted as a highly
concentrated soliton gas, with a smooth and rapidly decaying function being represented
as an infinite accumulation of solitons).

Within integrable turbulence, the interest is in the computation of statistical quan-
tities describing the evolution of random configurations of solitons. In [DP14,SP16]
the authors used computational methods to approximate such statistical quantities via
the Monte-Carlo method, and presented a formal derivation of evolution equations for
the first four statistical moments of the solution. In another direction [Zak71,EK05]
the interest is in computing a kinetic equation describing the evolution of the spectral
distribution functions. This has been extended to similar formal considerations based
on properties of fundamental solutions in the periodic setting, as opposed to solitonic
gasses [ET20,El16,EKPZ11].

1.1. The soliton gas. Towards the goal of discovering new, broad families of solutions
to integrable nonlinear PDEs, the “dressing method" as developed by Zakharov and
Manakov [ZM85] has yielded some interesting new results in [DZZ16]. In that paper, the
authors show how the dressing method can be used to produce a new family of solutions
they refer to as “primitive potentials" which, although not random, can be naturally
interpreted as a soliton gas. Cutting to the chase, the authors derive a Riemann–Hilbert
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problem which seeks a vector � = [

�1 �2
]T satisfying a normalization condition at

∞, and the jump relations

�+(iλ) = J (λ)�−(iλ) , �+(−iλ) = J T (λ)�−(−iλ) , λ ∈ (η1, η2) (1.7)

where the jump matrix J (λ) is given by

J (λ) = 1

1 + r1(λ)r2(λ)

[

1 − r1(λ)r2(λ) 2ir1(λ)e−2λx

2ir2(λ)e2λx 1 − r1(λ)r2(λ)

]

. (1.8)

The parameters η1 and η2 are taken to be real with 0 < η1 < η2, and the intervals
(iη1, iη2) and (−iη2,−iη1) are oriented downwards.

The reflection coefficients r1(λ) = r1(λ; t) and r2(λ) = r2(λ; t) evolve in time
according to

r1(λ; t) = r1(λ; 0)e(8λ3−12λ)t , r2(λ; t) = r2(λ; 0)e−(8λ3−12λ)t . (1.9)

The authors consider a number of different settings, and use a combination of analytical
and computational methods to provide a description of the solutions of the KdV equation
determined by this Riemann–Hilbert problem. In the case that r2 ≡ 0, the potential is
exponentially decaying as x → +∞. But the behavior as x grows in the other direction
(as well as the the asymptotic behavior for |x | large in the case that both reflection
coefficients are nontrivial) was mentioned as a challenging problem for both analysis
and computation.

The configuration of solitons considered in [DZZ16] is somewhat different than the
solitonic gas configurations considered in [DP14,SP16], where they considered a large
number of solitons that were spaced quite far apart from each other at t = 0. In other
words, they considered a dilute gas of solitons that had enough space between them to
evolve as isolated solitons until they interact, usually in a pair-wise fashion. In contrast,
the soliton gas considered in [DZZ16] (and considered here as well) is a configuration
that cannot be viewed as a collection of isolated solitons. Indeed, as we show, they are
overlapping to the extent that, at t = 0 the potential approaches zero exponentially fast
as x → +∞, while for x → −∞ the potential approaches the cnoidal wave solution
of KdV very slowly—the error decays with a rate of O( 1x ). Because of these different
behaviors, these potentials represent a new large class of potentials which have not been
previously considered in the literature. This model is substantially different from the
model of infinite solitons considered in [Boy84,Zai83] where an infinite number of
equally spaced and identical solitons can be identified with the cnoidal wave solution of
KdV.

1.2. Statement of the results. In Sect. 2 we consider a sequence of Riemann–Hilbert
problems, indexed by N , for a pure N -soliton solution, with spectrum confined to the
intervals (−iη2,−iη1) ∪ (iη1, iη2) for some η2 > η1 > 0 and show that for this
sequence, as N → +∞, the solution of the Riemann–Hilbert problem converges to the
solution of the Riemann–Hilbert problem studied in [DZZ16], for the case r2(λ) ≡ 0.

Remark. Since the Riemann–Hilbert problem emerges in a limit, the existence and
uniqueness of a solution is not a-priori known. For completeness, we provide a proof of
existence which is valid for all x and t in the Appendix.
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In Sect. 3 (Theorem 3.6) we establish that the potential u(x, 0) determined by this
Riemann–Hilbert problem coincides with the periodic travelling wave as x → −∞:

u(x, 0) = η22 − η21 − 2η22 dn
2 (η2(x + φ) + K (m) | m ) +O

(

x−1
)

. (1.10)

The function dn (z | m ) is the Jacobi elliptic function of modulus m = η1/η2. It is peri-
odic with period 2K (m), and satisfies dn (0 | m ) = 1 and dn (K (m) | m ) = √

1 − m2.
The expression (1.10) for the elliptic solution of KdV coincides with the travelling wave
solution (1.5) in the introduction by identifying β1 = 0, β2 = −η21 and β3 = −η22.

The function (1.10) is periodic in x with period 2K (m)/η2.The minimum amplitude
of the oscillations is −η22 − η21 and the maximum amplitude is η21 − η22 so that the
amplitude of the oscillations is 2η21. The average value of u(x) over an oscillation can
be obtained from (1.6).

The phase φ in formula (1.10) depends on the coefficient r1(λ) that characterizes the
continuum limit of the norming constants of the soliton gas and it is equal to

φ =
∫ η2

η1

log 2r1(iζ )
√

(ζ 2 − η21)(ζ
2 − η22)

dζ

π i
∈ R . (1.11)

Remark 1.1. The potential u(x, 0) is a step-like finite gap potential. The slow decay
rate as x → −∞ implies that such potential does not fall in the class considered in
[BdMET08]. When η1 = 0 the potential u(x, 0) = −η22 +O (x−1

)

as x → −∞. Such
a potential is a step-like potential with zero reflection coefficient on the real axis. It is
not included in the class of potentials studied in [EGKT13,CK85] because of the low
decaying condition at x → −∞. Potentials with a low decay rate have appeared when
studying roguewaves of infinite order of the focusing nonlinear SchrödingerEq. [BM19],
see also [BLM20].

Finally in Sects. 4–6 we provide a global long-time asymptotic description of the
solution u(x, t) to the KdV equation with this initial data u(x, 0). The asymptotic be-
haviour depends on the quantity ξ = x/4t . There are three main regions: (1) a constant
region; (2) a region where the solution is approximated by a periodic traveling wave with
constant coefficients specified by the spectral data; and (3) a region where the solution
is approximated by a periodic travelling wave with modulated coefficients (see Fig. 1).
More precisely:

(1) for fixed ξ > η22, there is a positive constant C = C(ξ) so that

u(x, t) = O
(

e−Ct
)

.

(2) For ξ < ξcrit we have

u(x, t) = η22 − η21 − 2η22 dn
2
(

η2(x − 2(η21 + η22)t + φ) + K (m) | m
)

+O
(

t−1
)

,

(1.12)
with m = η1/η2 and φ as in (1.11). The critical value ξcrit is obtained from the
equation

ξcrit = η22

2
W (m) , W (m) = 1 + m2 + 2

m2(1 − m2)

1 − m2 − E(m)
K (m)

, m = η1

η2
. (1.13)
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Fig. 1. Soliton gas behaviour at t = 10 with endpoints η1 = 0.5 and η2 = 1.5 and reflection coefficient
r1(λ) ≡ 1.

(3) For ξcrit < ξ < η22 we have that

u(x, t) = η22 − α2 − 2η22 dn
2
(

η2(x − 2(α2 + η22)t + ˜φ) + K (mα) | mα

)

+O
(

t−1
)

,

(1.14)
where dn (z | mα ) is the Jacobi elliptic function of modulus mα = α/η2,

˜φ =
∫ η2

α

log 2r1(iζ )
√

(ζ 2 − α2)(ζ 2 − η22)

dζ

π i
∈ R

and the coefficient α = α(ξ) is determined from the Whitham modulation equation
[Whi74]

ξ = x

4t
= η22

2
W (mα) , (1.15)

where W (m) has been defined in (1.13).

The Eq. (1.15) was used by Gurevich and Pitaevskii [GP73] to describe the modulation
of the travellingwave that is formed in the solution of theKdV equationwith a step initial
data u(x, 0) = −η22 for x < 0 and u(x, 0) = 0 for x > 0. Such a modulated travelling
wave is also called a dispersive shockwave. The rigorous analysis of the dispersive shock
wave emerging from step-like initial data problem was obtained via inverse scattering
in [Hru76] and more recently via Riemann–Hilbert methods in [EGKT13].

2. Soliton Gas as Limit of N Solitons as N → +∞
The Riemann–Hilbert problem for a pure N -soliton solution (see for example [GT09])
is described as follows: find a 2-dimensional row vector M such that
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(i) M(λ) is meromorphic in C, with simple poles at {λ j }N
j=1 in iR+, and at the corre-

sponding conjugate points {λ j }N
j=1 in iR−;

(ii) M satisfies the residue conditions

res
λ=λ j

M(λ) = lim
λ→λ j

M(λ)

⎡

⎣

0 0
c j e2iλ j x

N
0

⎤

⎦ , res
λ=λ j

M(λ) = lim
λ→λ j

M(λ)

⎡

⎣
0

−c j e−2iλ j x

N
0 0

⎤

⎦ ,

(2.1)

where c j ∈ iR+;

(iii) M(λ) = [

1 1
]

+O
(

1

λ

)

as λ → ∞,

(iv) M satisfies the symmetry

M(−λ) = M(λ)

[

0 1
1 0

]

.

The solution of the above Riemann–Hilbert problem is determined from the relation

M(λ) =
⎛

⎝1 +
N
∑

j=1

eiλ j xα j

λ − λ j
, 1 −

N
∑

j=1

eiλ j xα j

λ + λ j

⎞

⎠ , (2.2)

where the constants α j are uniquely determined by the residue conditions (2.1). The
N -soliton potential u(x) is determined from M via

u(x) = 2
d

dx

(

lim
λ→∞

λ

i
(M1(λ) − 1)

)

, (2.3)

where M1(λ) is the first entry of the vector M(λ). In particular, for a one-soliton potential,
namely N = 1, one recovers the expression (1.4) where the shift x0 is given by

x0 = 1

4η1
log

c1
2iη1

∈ R.

We are interested in the limit as N → +∞, under the additional assumptions:

(i) Thepoles
{

λ
(N )
j

}N

j=1
are sampled fromadensity function�(λ) so that

∫ −iλ j
η1

�(η)dη =
j/N , for j = 1, . . . , N .

(ii) The coefficients {c j }N
j=1 are purely imaginary (in fact c j ∈ iR+) and are assumed

to be discretizations of a given function:

c j = i(η2 − η1)r1(λ j )

π
j = 1, . . . , N . (2.4)

where r1(λ) is an analytic function forλnear the intervals (iη1, iη2) and (−iη2,−iη1),
with the symmetry r1(λ) = r1(λ), and is further assumed to be a real valued positive
and non-vanishing function of λ for λ ∈ [iη1, iη2].
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In the regime x → +∞, it is easy to notice that all residue conditions (2.1) contain
only exponentially small terms and therefore, by a small norm argument, the potential
is exponentially small.

On the other hand, for x → −∞ all of those terms are exponentially large. To
show that the solution is also exponentially small in this latter case, one may reverse the
triangularity of the residue conditions, by defining

A(λ) = M(λ)

N
∏

j=1

(

λ − λ j

λ − λ j

)σ3

. (2.5)

Now the residue conditions are

res
λ=λ j

A(λ) = lim
λ→λ j

A(λ)

⎡

⎢

⎣

0
N

c j
e−2iλ j x (λ j − λ j )

2
∏

k 	= j

(

λ j − λk

λ j − λk

)2

0 0

⎤

⎥

⎦
(2.6)

res
λ=λ j

A(λ) = lim
λ→λ j

A(λ)

⎡

⎢

⎣

0 0

−N

c j
e2iλ j x (λ j − λ j )

2
∏

k 	= j

(

λ j − λk

λ j − λk

)2

0

⎤

⎥

⎦
(2.7)

while the potential u(x) is still extracted from A via the same calculation:

u(x) = 2
d

dx

(

lim
λ→∞

λ

i
(A1(λ) − 1)

)

.

The quantity e−2iλ j x now decays exponentially as x → −∞, and this implies (again
by a standard small-norm argument) exponential decay of the potential u(x) for x →
−∞. On the other hand, the product term is exponentially large in N . One may show
that there is C > 0 so that

∣

∣

∣

∣

∣

∣

N

c j
(λ j − λ j )

∏

k 	= j

(

λ j − λk

λ j − λk

)2
∣

∣

∣

∣

∣

∣

< DeC N for all j = 1, . . . , N . (2.8)

Therefore this exponential decay does not set in until x is rather large. Indeed, in
order for the residue conditions to all be exponentially small, it must be that x 
 −C N .
In other words, the N -soliton solution that we are considering has very broad support,
and in the large-N limit, it is not exponentially decaying for x → −∞. To be more
precise, the above computations can be used to show the following lemma.

Lemma 2.1. For any 0 < k̃ < η1/2, there exists a constant C̃ so that if x < −C̃ N , then

|u(x)| < e−k̃|x | . (2.9)

In other words, for x < −C̃ N , the potential u(x) is exponentially decreasing.
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Theproof of this lemma is straightforward: under the hypotheses of the lemma, all residue
conditions are exponentially small. One may replace the residue conditions with jumps

across small circles encircling the poles, and the jumps are all of the form I +O
(

e−k̃|x |
)

,

so small norm existence theory applies.
We will show here how to derive the Riemann–Hilbert problem for a soliton gas with

one reflection coefficient r1 (as described in [DZZ16]) from a meromorphic Riemann–
Hilbert problem for N solitons in the limit as N → +∞. First, we remove the poles by
defining

Z(λ) = M(λ)

⎡

⎢

⎣

1 0

− 1

N

N
∑

j=1

c j e2iλx

λ − λ j
1

⎤

⎥

⎦
(2.10)

within a closed curve γ+ encircling the poles counterclockwise in the upper half plane
C+, and

Z(λ) = M(λ)

⎡

⎢

⎣

1
1

N

N
∑

k=1

c j e−2iλx

λ − λ j

0 1

⎤

⎥

⎦
(2.11)

within a closed curve γ− surrounding the poles clockwise in the lower half plane C−.
Outside these two sets, we take Z(λ) = M(λ).

Then the jumps are

Z+(λ) = Z−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

1 0

− 1

N

N
∑

j=1

c j e2iλx

λ − λ j
1

⎤

⎥

⎥

⎦

λ ∈ γ+

⎡

⎢

⎣

1 − 1

N

N
∑

k=1

c j e−2iλx

λ − λ j

0 1

⎤

⎥

⎦
λ ∈ γ−

(2.12)

where, for λ ∈ γ+ or γ−, the boundary values Z+(λ) are taken from the left side of the
contour as one traverses it according to its orientation, and the boundary values Z−(λ)

are taken from the right. The quantity Z(λ) is normalized so that Z(λ) = [

1 1
]

+O (λ−1
)

as λ → ∞.
We assume now that in the limit as the number of poles goes to infinity, the poles

are distributed according to some distribution �(λ) with density compactly supported in
(iη1, iη2) (and extended by symmetry on the corresponding interval in the lower half
plane).

For the sake of simplicity, we can assume that the N poles are equally spaced along
(iη1, iη2) with distance between two poles equal to |�λ| = η2−η1

N and with (atomic)
density:

�N (λ) = 1

Z N

N
∑

j=1

c jδλ j (λ) λ ∈ (iη1, iη2) , (2.13)

for some normalization constant Z N .
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Remark 2.2. In the case where the poles are distributed according to a more general
measure �(λ), the steps to follow are very similar. The entries of the jump matrices will
carry the density function along, which can be eventually incorporated in the definition
of the reflection coefficient r1(λ).

As the number of poles increases within the support of the measure, the following
result holds.

Proposition 2.3. For any open set K+ containing the interval [iη1, iη2], and any open
set K− containing the interval [−iη2,−iη1], the following limit holds uniformly for all
λ ∈ C\K+:

lim
N→+∞

1

N

N
∑

j=1

c j

λ − λ j
=
∫ iη2

iη1

2ir1(ζ )

λ − ζ

dζ

2π i
, (2.14)

and the following limit holds uniformly for all λ ∈ C\K−:

lim
N→+∞

1

N

N
∑

j=1

c j

λ − λ j
=
∫ −iη1

−iη2

2ir1(ζ )

λ − ζ

dζ

2π i
, (2.15)

where r1(λ) is an analytic function for λ near the intervals (iη1, iη2) and (−iη2,−iη1),
and it is assumed to be a positive real-valued and non-vanishing function of λ for
λ ∈ [iη1, iη2].
Proof. Using (2.4), the expressions in the jumps can be rewritten as

1

N

N
∑

j=1

c j

λ − λ j
= 1

N

N
∑

j=1

1

λ − λ j

(η2 − η1)ir1(λ j )

π
= 1

2π i

N
∑

j=1

2ir1(λ j )

λ − λ j
�λ .

(2.16)

The convergence follows from the convergence of the Riemann sum to the Riemann–
Stieltjes integral for x ∈ K any compact subset of R. Positivity of r1(λ) follows from
the fact that c j ∈ iR+. ��

Thanks to the proposition above and a small norm argument, we arrive at a limiting
Riemann–Hilbert problem (which we still call Z with abuse of notation)

Z+(λ) = Z−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

1 0

e2iλx
∫ iη2

iη1

2ir1(ζ )

ζ − λ

dζ

2π i
1

⎤

⎦ λ ∈ γ+

⎡

⎣

1 e−2iλx
∫ −iη1

−iη2

2ir1(ζ )

ζ − λ

dζ

2π i
0 1

⎤

⎦ λ ∈ γ−

(2.17)

Z(λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ . (2.18)

At this point it is important to point out to the reader that the contour (iη1, iη2) and
(−iη2,−iη1) are both oriented upwards.
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Next, we define

X (λ) = Z(λ)

⎡

⎣

1 0

−e2iλx
∫ iη2

iη1

2ir1(ζ )

ζ − λ

dζ

2π i
1

⎤

⎦ (2.19)

within the loop γ+, and

X (λ) = Z(λ)

⎡

⎣

1 e−2iλx
∫ −iη1

−iη2

2ir1(ζ )

ζ − λ

dζ

2π i
0 1

⎤

⎦ (2.20)

within the loop γ−. Outside these two curves, we define X (λ) = Z(λ).
The jumps across the curves are no longer present, but there are jumps across

(iη1, iη2) and (−iη2,−iη1) because the integrals have jumps across those intervals.
Using the Sokhotski-Plemelj formula, we arrive at a Riemann–Hilbert problem for X :

X+(λ) = X−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
−2ir1(λ)e2iλx 1

]

λ ∈ (iη1, iη2)

[

1 2ir1(λ)e−2iλx

0 1

]

λ ∈ (−iη2,−iη1)

(2.21)

X (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ , (2.22)

X (−λ) = X (λ)

[

0 1
1 0

]

. (2.23)

This Riemann–Hilbert problem is equivalent to the one described in [DZZ16] with
r2(λ) = 0, up to a transposition (X is a row vector here, while the solution of the
Riemann–Hilbert problem in [DZZ16] is a column vector) and using the symmetry that
r1(λ) = r1(λ) for λ ∈ (−iη1,−iη2). We note that there is a sign discrepancy between
this Riemann–Hilbert problem and the one appearing in [DZZ16], which is resolved by
a careful interpretation of the sign conventions therein.

Since this Riemann–Hilbert problem has been derived through a limiting process,
it is not at all clear that it actually possesses a solution. Although this will eventually
follow for large x from the asymptotic analysis presented herein, we present a self-
contained proof of existence and uniqueness in Appendix A of this paper. In fact in the
appendix we establish the existence of a matrix-valued solution Y. Equipped with that,
it is straightforward to prove the following lemma.

Lemma 2.4. Let B be an arbitrary positive number. For all x such that |x | < B, the
quantity Z defined in (2.10)–(2.11) satisfying the jump relation (2.12) converges as
N → ∞ to the solution of the Riemann–Hilbert problem (2.17)–(2.18), and the N-
soliton potential u(x) converges to the potential determined by the solution to the soliton
gas Riemann-Hilbert problem (2.21)–(2.23).

Note: A similar limiting procedure introduced in this section has already appeared in the
literature when studying the focusing nonlinear Schrödinger equation [BLM20,BB19].
In those papers the limiting procedure N → ∞ refers to the order of a soliton or a
breather of the nonlinear Schrödinger equation. From a different point of view, our
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limiting procedure can be understood as replacing the reflection coefficient with its
semiclassical limit, see for example [TVZ04,LL83a].

In what follows we have already taken the N → ∞ limit, and we are considering the
behavior for x (and later x and t) large for this soliton gas Riemann–Hilbert problem.

3. Behaviour of the Potential u(x, 0) as x → −∞
We consider a soliton gas Riemann–Hilbert problem as in (2.21)–(2.22) with 0 < η1 <

η2, and reflection coefficient r1(λ) defined on (iη1, iη2) such that it has an analytic
extension to a neighbourhood of this interval. Furthermore, we assume that r1(−λ) =
r1(λ) on the imaginary axis. We set �1 = (η1, η2) and �2 = (−η2,−η1). The vector
valued function X that will determine the KdV potential u(x) is the solution to the
following Riemann–Hilbert problem:

X (λ) is analytic for λ ∈ C\ {i�1 ∪ i�2}

X+(iλ) = X−(iλ)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
−2ir1(iλ)e−2λx 1

]

λ ∈ �1

[

1 2ir1(iλ)e2λx

0 1

]

λ ∈ �2

X (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ . (3.1)

As explained in [DZZ16], we can recover the potential u(x) of the Schrödinger
operator via the formula

u(x) = 2
d

dx

[

lim
λ→∞

λ

i
(X1(λ; x) − 1)

]

, (3.2)

where X1(λ; x) is the first component of the solution vector X .
We first perform a rotation of the problem in order to place the jumps on the real line.

By setting

Y (λ) = X (iλ) , r(λ) = 2r1(iλ) , (3.3)

the Riemann–Hilbert problem for Y reads as follows:

Y+(λ) = Y−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
−ir(λ)e−2λx 1

]

λ ∈ �1

[

1 ir(λ)e2λx

0 1

]

λ ∈ �2

(3.4)

Y (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ (3.5)

Y (−λ) = Y (λ)

[

0 1
1 0

]

. (3.6)
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Fig. 2. Riemann–Hilbert problem for Y

The contours �1 and �2 are shown in Fig. 2. We can recover u(x) from

u(x) = 2
d

dx

[

lim
λ→∞ λ(Y1(λ; x) − 1)

]

. (3.7)

3.1. Large x asymptotic. Introduce the following new vector function

T (λ) = Y (λ)exg(λ)σ3 f (λ)σ3

where g(λ) and f (λ) are scalar functions to be determined below. We require that

• g(λ) is analytic in C\[−η2, η2] and
g+(λ) + g−(λ) = 2λ λ ∈ �1 ∪ �2 (3.8)

g+(λ) − g−(λ) = � λ ∈ [−η1, η1] (3.9)

g(λ) = O
(

1

λ

)

λ → ∞ , (3.10)

where � is a constant independent of x , still to be determined, and
• f (λ) is analytic in C\[−η2, η2] and

f (λ) = 1 +O
(

1

λ

)

as λ → ∞. (3.11)

In order to solve the scalar Riemann–Hilbert problem (3.8)–(3.10) for g we observe
that

g′
+(λ) + g′−(λ) = 2 λ ∈ �1 ∪ �2 (3.12)

g′
+(λ) − g′−(λ) = 0 λ ∈ [−η1, η1] (3.13)

g′(λ) = O
(

1

λ2

)

λ → ∞ . (3.14)

From the above, we can write g′(λ) as

g′(λ) = 1 − λ2 + κ

R(λ)
, (3.15)

where

R(λ) =
√

(λ2 − η21)(λ
2 − η22) , (3.16)
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is real and positive on (η2,+∞) with branch cuts on the contours �1 and �2 and κ is a
constant to be determined. By integration we obtain

g(λ) = λ −
∫ λ

η2

ζ 2 + κ

R(ζ )
dζ . (3.17)

Condition (3.8) implies that

∫ η1

−η1

ζ 2 + κ

R(ζ )
dζ = 0

and condition (3.9) implies that

� = 2
∫ η2

η1

ζ 2 + κ

R+(ζ )
dζ .

This gives

� = 2π i
∫ η1
−η1

dζ
R(ζ )

= − iπη2

K (m)
∈ iR− , m = η1

η2
, (3.18)

where K (m) = ∫
π
2
0

dϑ√
1−m2 sin ϑ

is the complete elliptic integral of the first kind with
modulus m = η1/η2 and

κ = −
∫ η1

−η1

ζ 2�

R(ζ )

dζ

2π i
= η22

(

E(m)

K (m)
− 1

)

∈ R− , (3.19)

where E(m) = ∫
π
2
0

√
1 − m2 sin ϑ dϑ is the complete elliptic integral of the second

kind.
The Riemann–Hilbert problem for T (λ) is

T+(λ) = T−(λ)VT (λ) (3.20)

VT (λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎣

ex(g+(λ)−g−(λ))
f+(λ)

f−(λ)
0

−ir(λ) f+(λ) f−(λ) e−x(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦
λ ∈ �1

⎡

⎢

⎣

ex(g+(λ)−g−(λ))
f+(λ)

f−(λ)

ir(λ)

f+(λ) f−(λ)

0 e−x(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦
λ ∈ �2

⎡

⎢

⎣

ex� f+(λ)

f−(λ)
0

0 e−x� f−(λ)

f+(λ)

⎤

⎥

⎦
λ ∈ [−η1, η1]

(3.21)

T (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ . (3.22)
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In order to solve the Riemann–Hilbert problem for T (λ)we wish to obtain a constant
jump matrix JT . For this purpose we make the following ansatz on the function f

f+(λ) f−(λ) = 1

r(λ)
λ ∈ �1 (3.23)

f+(λ) f−(λ) = r(λ) λ ∈ �2 (3.24)

f+(λ)

f−(λ)
= e� λ ∈ [−η1, η1] (3.25)

f (λ) = 1 +O
(

1

λ

)

λ → ∞ . (3.26)

It is easy to check that the function f (λ) is given by

f (λ) = exp

⎧

⎨

⎩

R(λ)

2π i

⎡

⎣

∫

�1

log 1
r(ζ )

R+(ζ )(ζ − λ)
dζ +

∫

�2

log r(ζ )

R+(ζ )(ζ − λ)
dζ +

∫ η1

−η1

�

R(ζ )(ζ − λ)
dζ

⎤

⎦

⎫

⎬

⎭

.

(3.27)
The inclusion of the constant jump (3.25) allows us to satisfy (3.26) by taking

� =
[∫

�1

log r(ζ )

R+(ζ )
dζ −

∫

�2

log r(ζ )

R+(ζ )
dζ

] [∫ η1

−η1

dζ

R(ζ )

]−1

= − η2

K (m)

∫ η2

η1

log r(ζ )

R+(ζ )
dζ , (3.28)

where in the last equality in (3.28) we use the fact that r(−λ) = r(λ). We remind the
reader that we are assuming the function r to be real, positive, and non-vanishing on �1
and �2. The positivity of r(λ) guarantees that � is pure imaginary.

3.2. Opening lenses. We start by defining the analytic continuation r̂(λ) of the function
r(λ) off the interval (−η2,−η1) ∪ (η1, η2) with the requirement that

r̂±(λ) = ±r(λ) , λ ∈ (−η2,−η1) ∪ (η1, η2) . (3.29)

We can factor the jump matrix JT on �1 as follows
⎡

⎢

⎣

ex(g+(λ)−g−(λ))
f+(λ)

f−(λ)
0

−i e−x(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦

=
⎡

⎣

1 − iex(g+(λ)−g−(λ))

r̂−(λ) f 2−(λ)
0 1

⎤

⎦

[

0 −i
−i 0

]

⎡

⎣

1
ie−x(g+(λ)−g−(λ))

r̂+(λ) f 2+ (λ)
0 1

⎤

⎦

and on �2 as
⎡

⎢

⎣

ex(g+(λ)−g−(λ))
f+(λ)

f−(λ)
i

0 e−x(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦

=
⎡

⎣

1 0

i
f 2−(λ)

r̂−(λ)
e−x(g+(λ)−g−(λ)) 1

⎤

⎦

[

0 i
i 0

]

⎡

⎣

1 0

−i
f 2+ (λ)

r̂+(λ)
ex(g+(λ)−g−(λ)) 1

⎤

⎦ .
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We can now proceed with “opening lenses". We define a new vector function S as
follows

S(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T (λ)

⎡

⎣

1
−i

r̂(λ) f 2(λ)
e−2x(g(λ)−λ)

0 1

⎤

⎦ in the upper lens, above �1

T (λ)

⎡

⎣

1
−i

r̂(λ) f 2(λ)
e−2x(g(λ)−λ)

0 1

⎤

⎦ in the lower lens, below �1

T (λ)

⎡

⎣

1 0

i
f 2(λ)

r̂(λ)
e2x(g(λ)−λ) 1

⎤

⎦ in the upper lens, above �2

T (λ)

⎡

⎣

1 0

i
f 2(λ)

r̂(λ)
e2x(g(λ)−λ) 1

⎤

⎦ in the lower lens, below �2

T (λ) outside the lenses .

(3.30)

The vector S(λ) satisfies

S+(λ) = S−(λ)VS(λ),

S(λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ .
(3.31)

where the matrix VS for the jumps of S(λ) is depicted in Fig. 3. In order to proceed we
need the following lemma

Lemma 3.1. The following inequalities are satisfied

Re (g(λ) − λ) < 0 , λ ∈ C1\{η1, η2} (3.32)

Re (g(λ) − λ) > 0 , λ ∈ C2\{−η1,−η2} , (3.33)

where C1 and C2 are the contours defining the lenses as shown in Fig. 3.

Proof. Given λ = x + iy, we write g+(λ) − λ = u(x, y) + iv(x, y). From the formula
(3.17) for g, it follows that g+(λ) − λ is purely imaginary on �1 ∪ �2; furthermore, for
λ ∈ �1

vx = Im
(

g′
+(λ) − 1

) = λ2 + κ

|R+(λ)| = �

|R+(λ)|
∫ η1

−η1

λ2 − ζ 2

R(ζ )

dζ

2π i
> 0 . (3.34)

Using the Cauchy–Riemann equation it follows that uy = −vx < 0 for λ ∈ �1 and thus
Re (g(λ) − λ) < 0 for λ above �1 and λ ∈ C1. Repeating the same reasoning for the
function g−(λ) − λ we obtain that Re (g(λ) − λ) < 0 for λ below �1 and λ ∈ C1. In a
similar way the inequality (3.33) can be obtained.
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Fig. 3. Riemann–Hilbert problem for S(λ) defined in (3.30). Opening lenses: the entries in gray in the jump
matrices on the contours C1 and C2 are exponentially small in the regime as x → −∞

Lemma 3.1 guarantees that the off-diagonal entries of the jump matrices along the
upper and lower lenses are exponentially small in the regime as x → −∞, therefore those
jump matrices are asymptotically close to the identity outside small neighbourhoods of
±η1 and ±η2. We are left with the model problem

S∞
+ (λ) = S∞− (λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

ex�+� 0
0 e−x�−�

]

λ ∈ [−η1, η1]
[

0 −i
−i 0

]

λ ∈ �1

[

0 i
i 0

]

λ ∈ �2

(3.35)

S∞(λ) = [

1 1
]

+O
(

1

λ

)

, λ → ∞ . (3.36)

The Riemann–Hilbert problem for S∞ has previously appeared in the study of long time
asymptotics for KdV with step-like initial data [EGKT13]. Below we follow the lines
of [EGKT13] to obtain the solution.

3.3. The outer parametrix S∞ . To solve theRiemann–Hilbert problem (3.35) and (3.36)
we introduce a two-sheeted Riemann surfaceX of genus 1 associated to the multivalued
function R(λ), namely

X =
{

(λ, η) ∈ C
2 | η2 = R2(λ) = (λ2 − η21)(λ

2 − η22)
}

.

The first sheet of the surface is identified with the sheet where R(λ) is real and positive
for λ ∈ (η2,+∞). We introduce a canonical homology basis with the B cycle encircling
�1 clockwise on the first sheet and the A cycle going from �2 to �1 on the first sheet
and coming back to �2 on the second sheet. The points at infinity on the surface are
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denoted by ∞± where ∞+ is on the first sheet and ∞− on the second sheet of X. See
Fig. 4. We introduce the holomorphic differential

ω = �

R(λ)

dλ

4π i
(3.37)

so that
∮

A
ω = 1 .

We also have

τ =
∮

B
ω = i

2

K (
√
1 − m2)

K (m)
, m = η1

η2
.

Next, we introduce the Jacobi elliptic function

ϑ3(z; τ) =
∑

n∈Z
e2π i nz+πn2iτ , z ∈ C , (3.38)

which is an even function of z and satisfies the periodicity conditions

ϑ3(z + h + kτ ; τ) = e−π ik2τ−2π ikzϑ3(z; τ) , h, k ∈ Z . (3.39)

We also recall that the Jacobi elliptic function with half-period ratio τ vanishes on the
half period τ

2 + 1
2 . Finally, we define the integral

w(λ) =
∫ λ

η2

ω (3.40)

and we observe that

w(+∞) = −1

4
, w+(η1) = −τ

2
, w+(−η1) = −τ

2
− 1

2
, (3.41)

and

w(−λ) = −w(λ) − 1/2 for λ ∈ C \ R . (3.42)

We introduce the following functions

ψ1(λ) = ϑ3
(

2w(λ) + x�+�
2π i − 1

2 ; 2τ
)

ϑ3
(

2w(λ) − 1
2 ; 2τ

)

ϑ3(0; 2τ)

ϑ3(
x�+�
2π i ; 2τ)

,

ψ2(λ) = ϑ3
(−2w(λ) + x�+�

2π i − 1
2 ; 2τ

)

ϑ3
(−2w(λ) − 1

2 ; 2τ
)

ϑ3(0; 2τ)

ϑ3(
x�+�
2π i ; 2τ)

,

and we observe that
{

ϑ3
(±2w+(η1) − 1

2 ; 2τ
) = ϑ3

(∓τ − 1
2 ; 2τ

) = 0,
ϑ3
(±2w+(−η1) − 1

2 ; 2τ
) = ϑ3

(∓τ∓1 − 1
2 ; 2τ

) = 0.
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It follows that the functions ψ1 and ψ2 are analytic except at λ = ±η1 where they
admit, at most, square root singularities. Furthermore, the following jump relations are
satisfied:

w+(λ) − w−(λ) = 0 λ ∈ [η2,+∞) (3.43)

w+(λ) + w−(λ) = 0, λ ∈ �1 (3.44)

w+(λ) − w−(λ) = −τ, λ ∈ (−η1, η1) (3.45)

w+(λ) + w−(λ) = −1, λ ∈ �2 . (3.46)

Therefore for λ ∈ �1 ∪ �2 we have

ψ1+(λ) = ψ2−(λ) , ψ2+(λ) = ψ1−(λ) , (3.47)

while for λ ∈ (−η1, η1)

ψ1+(λ) = ψ1−(λ)ex�+� , ψ2+(λ) = ψ2−(λ)e−x�−� . (3.48)

Next we introduce the quantity

γ (λ) =
(

λ2 − η21

λ2 − η22

) 1
4

,

analytic in C \ (�1 ∪ �2) and normalized such that γ (λ) → 1 as λ → ∞. Then,

γ+(λ) = −iγ−(λ) , for λ ∈ �1 and γ+(λ) = iγ−(λ) , for ∈ �2 . (3.49)

We are now ready to construct the solution of the Riemann–Hilbert problem (3.35)–
(3.36).

Theorem 3.2. The vector S∞(λ) given by

S∞(λ) = γ (λ)
ϑ3(0; 2τ)

ϑ3

(

x�+�
2π i ; 2τ

)

⎡

⎣

ϑ3

(

2w(λ) + x�+�
2π i − 1

2 ; 2τ
)

ϑ3

(

2w(λ) − 1
2 ; 2τ

)

ϑ3

(

−2w(λ) + x�+�
2π i − 1

2 ; 2τ
)

ϑ3

(

−2w(λ) − 1
2 ; 2τ

)

⎤

⎦

(3.50)
solves the Riemann–Hilbert problem (3.35).

Proof. We observe that S∞(λ) has at most fourth root singularities at the branch points
and it is bounded everywhere else on the complex plane. Because of (3.39) and (3.41)
we have S∞(∞) = [

1 1
]

, namely the condition (3.36) is satisfied. Combining (3.47),
(3.48) and (3.49), we conclude that the jump conditions (3.35) are satisfied.

This vector solution provides the asymptotic behaviour of the solution S to Riemann–
Hilbert problem depicted in Fig. 3, for all λ bounded away from the endpoints. However,
in order to prove this, we need to construct a matrix solution to this Riemann–Hilbert
problem, which we call P∞(λ). The matrix solution we construct has a pole at λ = 0,
however this pole does not affect the vector behaviour of our local and outer parametrices.

This will be accomplished in the next two subsections, by creating a second, inde-
pendent vector solution.
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Fig. 4. Construction of the genus-1 Riemann surface X and its basis of cycles

3.4. The outer matrix parametrix P∞. Consider the 1-form dp(λ) = (1− g′(λ)) dλ =
λ2 + κ

R(λ)
dλ and the Abelian integral

p(λ) =
∫ λ

η2

dp, (3.51)

which satisfies the relations

p+(λ) + p−(λ) = 0 λ ∈ �1 ∪ �2 , (3.52)

p+(λ) − p−(λ) = −� λ ∈ (−η1, η1) , (3.53)

and for λ ∈ C \ R,
p(−λ) = −p(λ) . (3.54)

Then the vector function

� := [

ϕ1 ϕ2
] = [

S∞
1 S∞

2

]

exp(λ)σ3 (3.55)

solves a Riemann–Hilbert problem with constant jumps (independent from x).
Indeed on �1 ∪ �2 we have

�+(λ) = [

S∞
1+ S∞

2+

]

exp+(λ)σ3 = [

S∞
1− S∞

2−
]

[

0 ∓i
∓i 0

]

exp+(λ)σ3

= �−(λ)e−xp−(λ)σ3

[

0 ∓i
∓i 0

]

exp+(λ)σ3

= �−(λ)

[

0 ∓i
∓i 0

]

,

where the ∓ signs correspond to �1 and �2 respectively, and the last identity has been
obtained using (3.52). On (−η1, η1) we have

�+(λ) = [

S∞
1+ S∞

2+

]

exp+(λ)σ3 = [

S∞
1− S∞

2−
]

e(x�+�)σ3exp+(λ)σ3
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= �−(λ)e−xp−(λ)σ3e(x�+�)σ3exp+(λ)σ3

= �−(λ)e�σ3 ,

where the last identity has been obtained from (3.53). Therefore, the x derivative of �

in (3.55), namely

�x (λ) = [

ϕ1x ϕ2x
] = [

S∞
1x S∞

2x

]

exp(λ)σ3 +
[

p(λ)S∞
1 −p(λ)S∞

2

]

exp(λ)σ3 ,

has the same jumps on (−η2, η2) as�(λ). For this reasonwe consider thematrix function
[Min] (see also [CG09])

�(λ) : =
[

ϕ1(λ) ϕ2(λ)

ϕ1x (λ) ϕ2x (λ)

]

(3.56)

=
[

S∞
1 (λ) S∞

2 (λ)

p(λ)S∞
1 (λ) + S∞

1x (λ) −p(λ)S∞
2 (λ) + S∞

2x (λ)

]

exp(λ)σ3 (3.57)

= 1

2

[

1 1
λ −λ

]

⎡

⎢

⎢

⎣

(1 + p(λ)
λ

)S∞
1 +

1

λ
S∞
1x (1 − p(λ)

λ
)S∞

2 +
1

λ
S∞
2x

(1 − p(λ)
λ

)S∞
1 − 1

λ
S∞
1x (1 + p(λ)

λ
)S∞

2 − 1

λ
S∞
2x

⎤

⎥

⎥

⎦

exp(λ)σ3 ,

(3.58)

where the last expression is an algebraic manipulation that can be verified by performing

the matrix multiplication. It follows that for λ 	= 0, the matrix function

[

1 1
λ −λ

]−1

�(λ)

has the same jumps as the vector �(λ) on the interval (−η2, η2) and the matrix function
[

1 1
λ −λ

]−1

�(λ)e−xp(λ)σ3 has the same jumps as the vector S∞ defined in (3.50). For

this reason we take as a matrix solution for the exterior parametrix

P∞(λ) = 1

2

⎡

⎢

⎢

⎣

(1 + p(λ)
λ

)S∞
1 +

1

λ
S∞
1x (1 − p(λ)

λ
)S∞

2 +
1

λ
S∞
2x

(1 − p(λ)
λ

)S∞
1 − 1

λ
S∞
1x (1 + p(λ)

λ
)S∞

2 − 1

λ
S∞
2x

⎤

⎥

⎥

⎦

. (3.59)

It satisfies the following Riemann–Hilbert problem:

P∞(λ) is analytic for λ ∈ C\[−η2, η2] with a singularity at λ = 0, (3.60)

P∞
+ (λ) = P∞− (λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

ex�+� 0
0 e−x�−�

]

λ ∈ [−η1, η1]
[

0 −i
−i 0

]

λ ∈ �1

[

0 i
i 0

]

λ ∈ �2,

(3.61)

P∞(λ) =
[

1 0
0 1

]

+O
(

1

λ

)

, λ → ∞ . (3.62)
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Despite the singularity of the matrix P∞(λ) at λ = 0, its determinant is equal to one.
Before proving this fact we first make a slight change of notation that will be relevant
in the next sections. We observe that the x-derivative of S∞

1 and S∞
2 can be written in

the form

S∞
1x (λ) = γ (λ)

ϑ3(0; 2τ)

ϑ3
(

2w(λ) − 1
2 ; 2τ

)

�

2π i

d

dz

[

ϑ3
(

z + 2w(λ) + x�+�
2π i − 1

2 ; 2τ
)

ϑ3
(

z + x�+�
2π i ; 2τ)

]

∣

∣

∣

∣

z=0

and similarly for S∞
2 (λ). Since in the next sections we will use similar formulas where

the quantity� is replaced by �̃ that is dependent on x and t , it is important to distinguish
the operation of derivative with respect to x from the operation on the right hand side of
the above expression. For this reason we introduce the notation

∇�S∞
1 (λ) := γ (λ)

ϑ3(0; 2τ)

ϑ3
(

2w(λ) − 1
2 ; 2τ

)

�

2π i

d

dz

[

ϑ3
(

z + 2w(λ) + x�+�
2π i − 1

2 ; 2τ
)

ϑ3
(

z + x�+�
2π i ; 2τ)

]

∣

∣

∣

∣

z=0

and similarly for S∞
2 (λ). Clearly, when � is x-independent then ∇�S∞(λ) ≡ Sx (λ).

Therefore the exterior parametrix P∞ in (3.59) will be written in the form

P∞(λ) = 1

2

⎡

⎢

⎢

⎣

(1 + p(λ)
λ

)S∞
1 (λ) +

1

λ
∇�S∞

1 (λ) (1 − p(λ)
λ

)S∞
2 (λ) +

1

λ
∇�S∞

2 (λ)

(1 − p(λ)
λ

)S∞
1 (λ) − 1

λ
∇�S∞

1 (λ) (1 + p(λ)
λ

)S∞
2 (λ) − 1

λ
∇�S∞

2 (λ)

⎤

⎥

⎥

⎦

.

(3.63)

Lemma 3.3. We have
det P∞(λ) ≡ 1 . (3.64)

Proof. We observe that

det P∞(λ) = − 1

2λ

(

− 2p(λ)S∞
2 (λ)S∞

1 (λ) + S∞
1 (λ)∇�S∞

2 (λ) − ∇�S∞
1 (λ)S∞

2 (λ)
)

(3.65)
does not have any jumps on the complex plane and therefore it is ameromorphic function
on the complex plane. Considering the behaviour near λ = η2, we have

S∞
1 (λ) = 1

(λ − η2)
1
4

(

∞
∑

k=0

γk(λ − η2)
k)

⎛

⎝

∞
∑

j=0

S(1)
j (λ − η2)

j +
√

λ − η2

∞
∑

j=0

S(2)
j (λ − η2)

j

⎞

⎠

where γk are the coefficients of the Puiseux expansion of γ (λ) and S(1)
j and S(2)

j are the
coefficients of the Puiseux expansion of the ϑ3 function terms of S∞

1 (λ) near λ = η2;

in particular, γ0 	= 0 and S(1,2)
0 	= 0. In a similar way we obtain

S∞
2 (λ) = 1

(λ − η2)
1
4

(

∞
∑

k=0

γk(λ − η2)
k)

⎛

⎝

∞
∑

j=0

S(1)
j (λ − η2)

j −√

λ − η2

∞
∑

j=0

S(2)
j (λ − η2)

j

⎞

⎠

and

p(λ) = 2
√

λ − η2

∞
∑

k=0

ck(λ − η2)
k .
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Plugging the above three expansions into (3.65) it is straightforward to check that
det P∞(λ) has a Taylor expansion at the point λ = η2. It can be checked similarly
that det P∞(λ) has a Taylor expansion at λ = ±η1 and λ = −η2. Regarding the point
λ = 0, we consider the Abelian integral p(λ) defined in (3.51) and denote by p±(λ) the
boundary values of p(λ) on the real axis. We have

p±(0) =
∫ 0

η2

dp±(ξ) =
∫ η1

η2

dp±(ξ) +
∫ 0

η1

dp(ξ) = ∓�

2
, (3.66)

where, in the last relation we use the identity

0 =
∫ η1

−η1

dp(ξ) =
∫ 0

−η1

dp(ξ) +
∫ η1

0
dp(ξ) =

∫ 0

η1

dp(−ξ) +
∫ η1

0
dp(ξ) = 2

∫ η1

0
dp(ξ).

In this last line we do not use dp±(λ) because the function R(λ) is analytic off the
contours�1 and�2 and the same property holds for dp. Using the periodicity properties
of the Jacobi elliptic function

ϑ3(z + h + kτ ; τ) = e−π ik2τ−2π ikzϑ3(z; τ) , h, k ∈ Z ,

we have

S∞± (0) = γ (0)
ϑ3(0; 2τ)

ϑ3 (±τ ; 2τ)

ϑ3
(±τ + x�+�

2π i ; 2τ)

ϑ3(
x�+�
2π i ; 2τ)

[

e±(x�+�) 1
]

(3.67)

and

∇�S∞± (0) = �

2π i
S∞± (0) ∂z

[

log
ϑ3
(

z ± τ + x�+�
2π i ; 2τ)

ϑ3
(

z + x�+�
2π i ; 2τ)

]∣

∣

∣

∣

∣

z=0

+
[±�S∞

1±(0) 0
]

.

(3.68)
We conclude that

(

− 2p(λ)S∞
2 (λ)S∞

1 (λ) + S∞
1 (λ)∇�S∞

2 (λ) − ∇�S∞
1 (λ)S∞

2 (λ)
)

±
= ±�S∞

2±(0)S∞
1±(0)

+ S∞
1±(0)

�

2π i
S∞
2±(0) ∂z

[

log
ϑ3
(

z ± τ + x�+�
2π i ; 2τ)

ϑ3
(

z + x�+�
2π i ; 2τ)

]∣

∣

∣

∣

∣

z=0

− �

2π i
S∞
1±(0)S∞

2±(0) ∂z

[

log
ϑ3
(

z ± τ + x�+�
2π i ; 2τ)

ϑ3
(

z + x�+�
2π i ; 2τ)

]∣

∣

∣

∣

∣

z=0

∓�S∞
1±(0)S∞

2±(0) + O(λ) = O(λ)

as λ → 0. Therefore

det P∞(λ) = − 1

2λ

(

− 2p(λ)S∞
2 (λ)S∞

1 (λ) + S∞
1 (λ)∇�S∞

2 (λ) − ∇�S∞
1 (λ)S∞

2 (λ)
)

is a holomorphic function of λ near λ = 0. Since

det P∞(λ) = 1 + O(λ−1), as λ → ∞,

it follows by Liouville’s theorem that

det P∞(λ) ≡ 1 .
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Remark: The reader may verify using the definition (3.63), along with the symmetry
relations (3.42) and (3.54), that P∞ satisfies the symmetry

P∞(−λ) =
[

0 1
1 0

]

P∞(λ)

[

0 1
1 0

]

. (3.69)

3.5. The local parametrix P±η j at the endpoints. Thanks toLemma3.1, the off-diagonal
entries of the jump matrices for S exponentially vanish as x → −∞ along the upper
and lower lenses, while near the endpoints the g function has a square-root-vanishing
behaviour

g+(λ) − g−(λ) = O
(

√

λ∓η2

)

as λ → ±η2 , (3.70)

and

g+(λ) − g−(λ) − � = O
(

√

λ∓η1

)

as λ → ±η1 . (3.71)

Additionally, the original solution Y of the Riemann–Hilbert problem (3.4)–(3.6) has a
logarithmic singularity in those points. Therefore, the jump matrices for S are bounded
in a neighbourhood of those points (but they are not close to the identity).

On the other hand, the outer parametrix P∞ is a good approximation of the solution
S to the Riemann–Hilbert problem away from the endpoints λ = ±η2,±η1, where P∞
exhibits a fourth-root singularity. So, we need to introduce four local parametrices P±η j

( j = 1, 2) in a suitable neighbourhood of each endpoint.

3.5.1. Local parametrix near λ = η2. We show here the construction of a (matrix) local
parametrix Pη2 around λ = η2.

Performing the same calculations as in [KMAV04, Section 6], we will construct a
local parametrix Pη2 with the help of modified Bessel functions. We fix a small disc
B(η2)

ρ = {λ ∈ C | |λ − η2| < ρ } centered at η2 of radius ρ, and we define the (local)
conformal map

ζ = 1

4
[x (g(λ) − λ)]2 , λ ∈ B(η2)

ρ . (3.72)

To define the local parametrix Pη2 in B(η2)
ρ , we consider

P(λ) = S(λ)

(

eiπ/4

√±r̂ f

)σ3

λ ∈ B(η2)
ρ ∩ C±,

and then, using the inverse of the transformation ζ(λ), we define

P(1)(ζ ) = P(λ(ζ ))e−2ζ
1
2 σ3

[

0 1
1 0

]

, ζ ∈ C ,

with branch cut (−∞, 0]. By construction, P(1) satisfies a Riemann–Hilbert problem
with jumps

P(1)
+ (ζ ) = P(1)

− (ζ )

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
1 1

]

on {upper and lower lenses} ∩ B(η2)
ρ

[

0 1
−1 0

]

on (−∞, 0] ∩ B(η2)
ρ .

(3.73)
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We introduce now the model parametrix �Bes(ζ ) as in [KMAV04, formulæ (6.16)–
(6.20)]). The Riemann–Hilbert problem for �Bes is the following:

(a) �Bes is analytic for ζ ∈ C\�� , where �� is the union of the three contours �± =
{

arg ζ = ± 2π
3

}

and �0 = {arg ζ = π};
(b) �Bes satisfies the following jump relations

�Bes +(ζ ) = �Bes−(ζ )

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
1 1

]

on �+ ∪ �−
[

0 1
−1 0

]

on �0,

(3.74)

(c) as ζ → 0

�Bes(ζ ) =
[O (ln |ζ |) O (ln |ζ |)
O (ln |ζ |) O (ln |ζ |)

]

. (3.75)

The solution is the following

�Bes(ζ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

I0(2ζ
1
2 )

i

π
K0(2ζ

1
2 )

2π iζ
1
2 I ′

0(2ζ
1
2 ) −2ζ

1
2 K0(2ζ

1
2 )

⎤

⎦ | arg ζ | < 2π
3

⎡

⎣

1

2
H (1)
0 (2(−ζ )

1
2 )

1

2
H (2)
0 (2(−ζ )

1
2 )

πζ
1
2

[

H (1)
0 (2(−ζ )

1
2 )
]′

πζ
1
2

[

H (2)
0 (2(−ζ )

1
2 )
]′

⎤

⎦

2π
3 < | arg ζ | < π

⎡

⎣

1

2
H (2)
0 (2(−ζ )

1
2 ) −1

2
H (1)
0 (2(−ζ )

1
2 )

−πζ
1
2

[

H (2)
0 (2(−ζ )

1
2 )
]′

πζ
1
2

[

H (1)
0 (2(−ζ )

1
2 )
]′

⎤

⎦ −π < | arg ζ | < − 2π
3

(3.76)

with asymptotic behaviour at infinity

�Bes(ζ ) =
(

2πζ
1
2

)− 1
2 σ3 1√

2

[

1 i
i 1

]

(

I +O
(

1

ζ
1
2

))

e2ζ
1
2 σ3 (3.77)

uniformly as ζ → ∞ everywhere in the complex plane aside from the jumps.
In the above formulæ I0(ζ ), K0(ζ ) are the modified Bessel functions of first and

second kind, respectively, and H ( j)(ζ ) the Hankel functions.
In conclusion, the local parametrix around the endpoint λ = η2 is

Pη2(λ) = A(λ)�Bes(ζ(λ))

[

0 1
1 0

]

e2ζ(λ)
1
2 σ3

(

eiπ/4
√±r̂(λ) f (λ)

)−σ3

λ ∈ B(η2)
ρ ∩ C± ,

(3.78)

where A is a prefactor that is determined by imposing that

Pη2(λ)
(

P∞(λ)
)−1 = I +O

(

|x |−1
)

as x → −∞, for λ ∈ ∂ B(η2)
ρ \�� .
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(3.79)

Therefore, we set

A(λ) = P∞(λ)

(

eiπ/4
√±r̂(λ) f (λ)

)σ3
1√
2

[−i 1
1 −i

]

(

2πζ
1
2

) 1
2 σ3

λ ∈ B(η2)
ρ ∩ C± .

(3.80)

By construction, A is well-defined and analytic in a neighbourhood of η2, minus the cut
(−∞, η2]; additionally, it is easy to see that A is invertible (det A(λ) ≡ 1).

Lemma 3.4. A(λ) is analytic everywhere in the neighbourhood B(η2)
ρ of η2.

Proof. To prove the statement, one needs to check that A has no jumps across the interval
�1∩ B(η2)

ρ and that it has at most a removable singularity at λ = η2. Starting from (3.80)

we observe from (3.23) and (3.29) that for λ ∈ �1,
√

r̂(λ) f+(λ) =
(

√−r̂(λ) f−(λ)
)−1

.

Using this and the jump (3.61) of P∞ on �1 we have

A+(λ) = P∞− (λ)

[

0 −i
−i 0

]

(

eiπ/4
√

r̂−(λ) f−(λ)

)−σ3

iσ3
1√
2

[−i 1
1 −i

]

iσ3
(

2πζ
1
2−
) 1

2 σ3

= P∞− (λ)

(

eiπ/4
√

r̂−(λ) f−(λ)

)σ3 [
0 −i
−i 0

]

iσ3
1√
2

[−i 1
1 −i

]

iσ3
(

2πζ
1
2−
) 1

2 σ3

= P∞− (λ)

(

eiπ/4
√

r̂−(λ) f−(λ)

)σ3
1√
2

[−i 1
1 −i

](

2πζ
1
2−
) 1

2 σ3

= A−(λ)

Next, we notice that ζ(λ) has a simple zero at η2 by construction, thus ζ(λ)
1
4σ3 has at

most a fourth-root singularity at the point λ = η2. Also the outer parametrix P∞(λ) has
at most a fourth-root singularity near η2 and consequently all the entries of A(λ) have
at most a square root singularity at λ = η2.

On the other hand A(λ) is analytic in B(η2)
ρ \{η2}, therefore the point λ = η2 is a

removable singularity and A(λ) is indeed analytic everywhere in B(η2)
ρ .

3.5.2. Local parametrix near other branch points. The construction of the parametrix
in a vicinity B(η1)

ρ of η1 is quite similar, and has also been carried out in [KMAV04,
Section 6], so we will not present the formula here.

For the parametrices near −η2 and −η1, it will prove convenient to construct them
explicitly via the underlying λ �→ −λ symmetry, as follows:

P−η2 :=
[

0 1
1 0

]

Pη2(−λ)

[

0 1
1 0

]

, (3.81)

P−η1 :=
[

0 1
1 0

]

Pη1(−λ)

[

0 1
1 0

]

. (3.82)

First, the reader may verify that, if Pη j satisfies the appropriate jump relationships
along the contours within the disc centered at η j , then P−η j satisfies the appropriate
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Fig. 5. The Riemann–Hilbert problem for the remainder E

jump relationships along the contours within the disc (of the same radius) centered at
−η j . Along the way, the following symmetry relations are needed (and are easy to
establish) for λ ∈ C\(−η2, η2),

r̂(−λ) = r̂(λ), (3.83)

f 2(−λ) = f −2(λ), (3.84)

g(−λ) = −g(λ) . (3.85)

Moreover, since Pη j has been constructed to satisfy

Pη j (λ)P∞(λ)−1 = I +O
(

1

x

)

as x → −∞,

for λ on the boundary of B
(η j )
ρ (the small disc of radius ρ centered at η j ), it follows that

P−η j satisfies

P−η j (λ)P∞(λ)−1 = I +O
(

1

x

)

as x → −∞,

for λ on the boundary of an analogous small disc B
(−η j )
ρ centered at −η j .

3.6. Small norm argument and determination of u(x, 0) for large negative x. Define
the error vector

E(λ) = S(λ) (P(λ))−1 . (3.86)

where the global parametrix P(λ) is defined by

P(λ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P∞(λ) λ ∈ C\ ∪ j=1,2 B
(±η j )
ρ

Pη2(λ) λ ∈ B(η2)
ρ

Pη1(λ) λ ∈ B(η1)
ρ

P−η1(λ) λ ∈ B(−η1)
ρ

P−η2(λ) λ ∈ B(−η2)
ρ .

(3.87)

Then across any contour where either S is non-analytic or any boundary in the defi-
nition of P the matrix E has a jump given by

E+(λ) = E−(λ)VE (λ) (3.88)
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with

VE (λ) = (E−(λ))−1 E+(λ) = P−(λ) (S−(λ))−1 S+(λ) (P+(λ))−1

= P−(λ)VS(λ) (VP (λ))−1 (P−(λ))−1 (3.89)

where the jumpmatrix VS is as defined in Fig. 3, VP is the jump of P , and both jumps are
understood to be the identity matrix anywhere S or P is analytic respectively. Observe

that both within the discs B
(±η j )
ρ , and across any component of (−η2, η2) outside the

discs B
(±η j )
ρ , j = 1, 2, the quantities VS and VP coincide, and hence E has no jump

across those contours. Across the lens boundaries (outside the discs) we have VP = I ,
and hence

VE (λ) = (

P∞(λ)
)

VS(λ)
(

P∞(λ)
)−1 = (

I +O (e−cx)) , λ ∈ C j , j = 1, 2, (3.90)

while across the circles centered at ±η j (which we have chosen to orient counter-
clockwise), we have

VE (λ) = (

P∞(λ)
)−1

P±η j (λ) =
(

I +O
(

x−1
))

, λ ∈ ∂ B
(±η j )
ρ , j = 1, 2. (3.91)

Finally, since P = P∞(λ) near λ = 0 and P∞(λ) is singular there, we need to check
the behaviour of E at λ = 0.

Lemma 3.5. The error vector E defined by (3.86)–(3.87) is regular at λ = 0.

Proof. Nearλ = 0,E(λ) = S(λ) (P∞(λ))−1.Wehave S(λ) = Y (λ)exg(λ)σ3 f (λ)σ3 with
the functions g(λ) and f (λ) defined in (3.17) and (3.27) respectively and where Y (λ)

is the solution of the Riemann–Hilbert problem defined by (3.4)-(3.6) whose existence
is established in the Appendix. We need to prove that

Y (λ)exg(λ)σ3 f (λ)σ3(P∞(λ))−1

is regular at λ = 0 where Y (λ) satisfies the symmetry (3.6) so that Y1(0) = Y2(0). We
observe that g(λ) = λ − p(λ) so that by (3.66)

g±(0) = ±�

2
.

We conclude that

exg±(λ)σ3 = e± x�
2 σ3(1 + O(λ)) as λ → 0.

In a similar way it can be proved that that f±(λ) = e± �
2 (1 + O(λ)) as λ → 0. Using

the above expansion we have that as λ → 0+

Y+(λ)exg+(λ)σ3 f+(λ)σ3(P∞
+ (λ))−1 = −Y1(0)

2λ

[

e
x�+�

2 e− x�+�
2

]

×
([

p+(0)S∞
2+(0) − ∇�S∞

2+(0) p+(0)S∞
2+(0) − ∇�S∞

2+(0)
p+(0)S∞

1+(0) + ∇�S∞
1+(0) p+(0)S∞

1+(0) + ∇�S∞
1+(0)

]

+ O(λ)

)

.

(3.92)

Using the relations (3.67) and (3.68) we obtain

Y+(λ)exg+(λ)σ3 f+(λ)σ3(P∞
+ (λ))−1 = O(1), as λ → 0+.

In a similar way it can be verified the regular behaviour at 0− which concludes the proof
of the lemma.
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Let �E be the system of contours shown in Fig. 5. The above arguments show that
the error vector E satisfies the following Riemann–Hilbert problem

E+(λ) = E−(λ)VE (λ) λ ∈ �E

and as λ → ∞
E(λ) = [

1 1
]

+O
(

λ−1
)

. (3.93)

where the jump matrix VE satisfies

VE (λ) =
{

I +O (e−c|x |) λ ∈ C j , j = 1, 2,

I +O (|x |−1
)

λ ∈ ∂ B
±η j
ρ , j = 1, 2.

(3.94)

Therefore, by a standard small norm argument (see, for example [Its11, Section
5.1.3]) there exists a unique solution E , which possesses an asymptotic expansion for
large negative x and large λ of the form:

E(λ) = [

1 1
]

+
E1(x)

xλ
+O

(

1

λ2

)

, (3.95)

where E1(x) possesses bounded derivatives in x .
We note in passing that the construction of a matrix-valued global approximation is

very useful, in that we arrive directly at a small-norm Riemann–Hilbert problem.
We also notice that the solution E which we have constructed obeys the symmetry

E(−λ) = E(λ)

[

0 1
1 0

]

. (3.96)

Indeed, the jump matrices VE for E all satisfy the symmetry

VE (−λ) =
[

0 1
1 0

]

VE (λ)

[

0 1
1 0

]

(3.97)

where VE is given in (3.90) and (3.91). Properly, to see this, one must ensure that the
contours for the Riemann–Hilbert problem for E are symmetric with respect to the
mapping λ �→ −λ, and then verify that VE satisfies (3.97). We have already specified in
Sect. 3.5.2 that the circular contours should possess this symmetry, and it is clear that
the lens boundaries may be chosen to satisfy this symmetry.

The verification of (3.97) for λ in any of the four circles follows from the definitions
(3.81) and (3.82). The verification of (3.97) for λ in any of the lens boundaries follows by
inspection of the jump matrices for S (only those defined on the lens boundaries) as de-
scribed in Fig. 3, and using (3.69). The fact that (3.97) implies (3.96) is a straighforward
exercise from the theory of Riemann–Hilbert problems.

Because E is analytic in a vicinity of λ = 0, the symmetry relation (3.96) implies
that E(λ) has the expansion

E(λ) = ĉ0
[

1 1
]

+ λĉ1
[

1 −1
]

, for λ near 0, (3.98)

for some constants ĉ0 and ĉ1.



762 M. Girotti

Taking into account all the transformations we performed, we are now able to ex-
plicitly solve the original Riemann–Hilbert problem Y in the large negative x regime:

Y (λ) = T (λ)e−xg(λ)σ3 f (λ)−σ3 = S(λ)e−xg(λ)σ3 f (λ)−σ3

= E(λ)P(λ)e−xg(λ)σ3 f (λ)−σ3 =
(

[

1 1
]

+
E1(x)

xλ
+O

(

1

λ2

))

P(λ)e−xg(λ)σ3 f (λ)−σ3 ,

(3.99)
where P(λ) is the global parametrix defined by (3.87).

In particular, for λ near 0, E(λ)P(λ) appearing in (3.99) is actually E(λ)P∞(λ). The
reader will recall that P∞ has a pole at λ = 0 (see (3.63)). However, because of the
behavior of E(λ) for λ near 0 shown in (3.98), the product E(λ)P∞(λ) has no pole at
λ = 0.

We recall that the potential u(x) can be calculated from the solution Y (λ) as

u(x) = 2
d

dx

[

lim
λ→∞ λ(Y1(λ; x) − 1)

]

, (3.100)

where Y1(λ; x) is the first entry of the vector Y .

Theorem 3.6. In the regime x → −∞, the potential u(x) has the following asymptotic
behaviour

u(x) = η22 − η21 − 2η22
E(m)

K (m)
− 2

∂2

∂x2
logϑ3

(

η2

2K (m)
(x + φ); 2τ

)

+O
(

|x |−1
)

(3.101)

where E(m) and K (m) are the complete elliptic integrals of the first and second kind
respectively with modulus m = η1/η2, φ is given by

φ =
∫ η2

η1

log r(ζ )

R+(ζ )

dζ

π i
∈ R (3.102)

and 2τ = i K (m′)
K (m)

, m′ = √
1 − m2. The formula (3.101) can be written in the equivalent

form

u(x) = η22 − η21 − 2η22 dn
2 (η2(x + φ) + K (m) | m ) +O

(

|x |−1
)

(3.103)

where dn (z | m ) is the Jacobi elliptic function of modulus m.

Proof. We are interested in the first entry of the vector Y (λ) (for λ large), and we have,
from (3.99),

Y (λ) =
(

[

1 1
]

+
E1(x)

xλ
+O

(

1

λ2

))

P∞(λ)e−xg(λ)σ3 f (λ)−σ3

=
(

S∞(λ) +
E1(x)

xλ
+O

(

1

λ2

))

e−xg(λ)σ3 f (λ)−σ3 .

Hence

Y1(λ) =
[

S∞
1 (λ) +

(E1)1 (x)

xλ
+O

(

1

λ2

)]

e−xg(λ)

f (λ)
. (3.104)
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From the expression (3.17) for the g function, we have

e−xg(λ) = 1 − x

λ

[

η21 + η22

2
+ η22

(

E(m)

K (m)
− 1

)

]

+O
(

1

λ2

)

. (3.105)

From the formula of f (λ) in (3.27) we have

f (λ) = 1 +
f1
λ

+O
(

1

λ2

)

,

where f1 is independent of x . Starting from the vector S∞(λ) in (3.50) we observe that
γ (λ) = 1 +O (λ−2

)

, using (3.37) and (3.40) we have

2w(λ) = −1

2
− 1

λ

�

2π i
+O

(

1

λ2

)

,
�

2π i
= − η2

2K (m)

so expanding (3.50) gives

S∞
1 (λ) = 1 − 1

λ

�

2π i

[

ϑ ′
3

( x�+�
2π i ; 2τ)

ϑ3
( x�+�

2π i ; 2τ) − ϑ ′
3(0; 2τ)

ϑ3(0; 2τ)

]

+

(

1

λ2

)

= 1 − 1

λ

∂

∂x
logϑ3

(

x� + �

2π i
; 2τ

)

+O
(

1

λ2

)

,

where we have used the property that ϑ ′
3(0; 2τ) = 0 because ϑ3(z; 2τ) is an even

function of z. Therefore

Y1(λ) = 1 +
1

λ

(

f1 − x

[

η21 + η22

2
+ η22

(

E(m)

K (m)
− 1

)

]

− ∂

∂x
logϑ3

(

x� + �

2π i
; 2τ

)

+
(E1(x))1

x

)

+O
(

1

λ2

)

.

From the above expansions, using (3.100), and the explicit expression of � in (3.28),
we obtain the expression of u(x) in (3.101). In order to obtain the expression (3.103)
we need the following identity (see e.g. [Law89] pg. 45 exercise 16 and 3.5.5)

1

4K 2(m)

d2

dz2
logϑ3(z; 2τ) = − E(m)

K (m)
+ dn2 (2K (m)z + K (m) | m ) , (3.106)

where dn (z | m ) is the Jacobi elliptic function of modulus m and period 2K (m) and we
recall that 2τ = i K (m′)/K (m). Then we can write

∂2

∂x2
logϑ3

(

x� + �

2π i
; 2τ

)

= −η22
E(m)

K (m)
+ η22 dn

2 (η2(x + φ) + K (m) | m ) ,

so that the expression for u(x) in (3.101) can be written in the form (3.103).
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4. Behaviour of the Potential u(x, t) as t → +∞
Letting the potential u(x, t) evolve in time according to the KdV equation, the reflection
coefficient evolves as r(λ; t) = r(λ)e−8λ3t . This will lead to the study of a Riemann–
Hilbert problem Y for the soliton gas described as follows

Y+(λ) = Y−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0

−ir(λ)e8λt
(

λ2− x
4t

)

1

]

λ ∈ �1

[

1 ir(λ)e−8λt
(

λ2− x
4t

)

0 1

]

λ ∈ �2

(4.1)

Y (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ . (4.2)

Weare interested in the asymptotic behaviour ofY (λ) in the long-time regime (t → +∞).
The phase appearing in the exponents in the jump matrix shows different sign de-

pending on the value of the quantity

ξ = x

4t
∈ R . (4.3)

It is clear that in the case ξ > η22, the phases in the jumps are exponentially decaying in
the regime t → +∞, therefore by a straightforward small norm argument we conclude

Y (λ) = [

1 1
]

+O
(

e−8η1(ξ2−η22)t
)

as t → +∞ with ξ2 > η22, (4.4)

and the potential u(x, t) becomes trivial.
The more interesting case ξ ≤ η22 will be studied below. It will become clear that

we will observe the presence of a critical value ξcrit at which a phase transition occurs
when passing from ξ > ξcrit (the “super-critical" case) to ξ ≤ ξcrit (the “sub-critical"
case). In the first case the asymptotic description gives an asymptotic solution that is a
modulated travelling wave (the wave parameters are changing slowly in time), while in
the sub-critical case, the asymptotic solution is a travelling wave.

5. Super-Critical Case: The α-Dependency

We first consider the case

ξcrit < ξ < η22 (5.1)

where the value of ξcrit ∈ R will be defined in (5.18).
In order to study the Riemann–Hilbert problem for Y in this setting we need to split

the contours in the following way: let α ∈ (η1, η2) and define the sub intervals

�1,α = (α, η2) ⊆ �1 and �2,α = (−η2,−α) ⊆ �2 . (5.2)

The value of α will be determined in Eq. (5.16) as a function of ξ .
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We introduce again scalar functions g(λ) and f (λ) (in a slight abuse of notation, we
are using the same letter g and f to denote these functions, though properly we should
probably use gα and fα). We make the first transformation Y (λ) �→ T (λ) given by

T (λ) = Y (λ)etg(λ)σ3 f (λ)σ3 (5.3)

such that

g+(λ) + g−(λ) + 8λ3 − 8ξλ = 0 λ ∈ �1,α ∪ �2,α (5.4)

g+(λ) − g−(λ) = ˜� λ ∈ [−α, α] (5.5)

g(λ) = O
(

1

λ

)

λ → ∞ . (5.6)

We further require that g(λ) − 4λ3 + 4ξλ − ˜� behaves as (λ∓α)
3
2 near λ = ±α. In

addition, there are two types of inequalities that must be satisfied by this function in
order to have a successful Riemann–Hilbert analysis. First we will need inequalities
satisfied on the complement (relative to �1 ∪ �2) of the sets �1,α and �2,α:

Re
[

g+(λ) + g−(λ) + 8λ3 − 8ξλ
]

< 0 λ ∈ (η1, α) (5.7)

Re
[

g+(λ) + g−(λ) + 8λ3 − 8ξλ
]

> 0 λ ∈ (−α,−η1) . (5.8)

Second, we will require monotonicity properties on �1 and �2:

−i(g+(λ) − g−(λ)) is purely real and monotonically decreasing on (α, η2) (5.9)

−i(g+(λ) − g−(λ)) is purely real and monotonically increasing on (−η2,−α) .

(5.10)

It is well-known that there is a unique function g satisfying all these properties, which
we will define explicitly here (we will actually define g′, which of course determines g).
We define

g′(λ) = −12λ2 + 4ξ + 12
Q2(λ)

Rα(λ)
− 4ξ

Q1(λ)

Rα(λ)
, (5.11)

where

Rα(λ) =
√

(λ2 − α2)(λ2 − η22) (5.12)

is taken to be analytic inC\ {�1,α ∪ �2,α
}

and real and positive on (η2,+∞); moreover,
let

Q1(λ) = λ2 + c1 , and Q2(λ) = λ4 − 1

2
λ2(α2 + η22) + c2 . (5.13)

The constants c1 and c2 are chosen so that
∫ α

−α

Q2(ζ )

Rα+(ζ )
dζ = 0 ,

∫ α

−α

Q1(ζ )

Rα+(ζ )
dζ = 0 . (5.14)

Explicitly, we find

c1 = −η22 + η22
E(mα)

K (mα)
, c2 = 1

3
α2η22 +

1

6
(η22 + α2)c1 , mα = α

η2
, (5.15)
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where K (mα) and E(mα) are, respectively, the complete elliptic integrals of the first
and second kind.

The parameter α is determined by requiring that the function g(λ) − 4λ3 + 4ξλ −˜�

has a zero at λ = ±α, which yields the equation

ξ = 3
Q2(±α)

Q1(±α)
= 1

2
(α2 + η22) +

α2(α2 − η22)

α2 − η22 + η22
E(mα)
K (mα)

, (5.16)

and this determines the constant α implicitly as a function of ξ .
Before continuing our analysis we want to comment on Eq. (5.16). We can rewrite it

in the form

ξ = x

4t
= η22

2
W (mα) , W (mα) =

[

1 + m2
α + 2

m2
α(1 − m2

α)

1 − m2
α − E(mα)

K (mα)

]

. (5.17)

This relation describes themodulation of the parameter α as a function of ξ . The quantity
η22W (mα) was derived by Whitham in his modulation theory of the traveling wave
solution of the KdV equation [Whi74]. In the general theory there are three parameters
involved, while in our case, two parameters are fixed, one being zero and the other one η2.
This specific case gives a self-similar solution to the Whitham equations. This solution
was derived and used by Gurevich–Pitaevskii [GP73] to describe the modulation of the
travelling wave that is formed in the solution of the KdV equation with step initial data
u(x) = −η22 for x < 0 and u(x) = 0 for x > 0 and was called a dispersive shock
wave in analogy with the shock wave that is formed in the solution of the Hopf equation
ut + 6uux = 0 for step initial data.

Using the expansion of the elliptic functions one has

E(mα)

K (mα)
= 1 − 1

2
m2

α +O(m4
α) , as mα → 0 and

E(mα)

K (mα)
� 2

log(8/(1 − mα))
, as mα → 1 ,

so that

lim
α→0

3Q2(α)

Q1(α)
= −3η22

2
, and lim

α→η2

3Q2(α)

Q1(α)
= η22 .

TheWhitham equations are strictly hyperbolic ([Lev88]), so that
∂

∂α
W (mα) > 0 for

0 < α < η2. Hence by the implicit function theorem, the equation (5.17) defines α as a
monotone increasing function of ξ for ξ ∈ [ξcrit, η22] where ξcrit is given by

ξcrit = 3Q2(η1)

Q1(η1)
= 1

2
(η21 + η22) +

η21(η
2
1 − η22)

η21 − η22 + η22
E(m)
K (m)

, m = η1

η2
. (5.18)

Then, clearly ξcrit > − 3η22
2 .

From g′(λ), we also have a representation of g(λ):

g(λ) = −4λ3 + 4ξλ + 12
∫ λ

η2

Q2(ζ )

Rα(ζ )
dζ − 4ξ

∫ λ

η2

Q1(ζ )

Rα(ζ )
dζ . (5.19)
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Fig. 6. Construction of the genus-1 Riemann surface Xα and its basis of cycles

This, together with (5.5), yields the formula

˜� = 24
∫ α

η2

Q2(ζ )

Rα+(ζ )
dζ − 8ξ

∫ α

η2

Q1(ζ )

Rα+(ζ )
dζ . (5.20)

For future use we will need the x derivatives of tg(λ) and t˜�. Before calculating
them, let us observe that

˜� = 24
∫ α

η2

Q2(ζ ) − Q2(α)

Rα+(ζ )
dζ − 8ξ

∫ α

η2

Q1(ζ ) − Q1(α)

Rα+(ζ )
dζ ,

which gives, using the Riemann bilinear relations (see e.g. [Spr57]),

˜� = 2π i
4ξ − 2(α2 + η22)
∫ α

−α
dζ

Rα(ζ )

= 2π iη2
α2 + η22 − 2ξ

K (mα)
∈ iR , mα = α

η2
. (5.21)

Lemma 5.1. The following identities are satisfied

∂

∂x
tg′(λ) = 1 − Q1(λ)

Rα(λ)
, (5.22)

∂

∂x
t˜� = − π iη2

K (mα)
. (5.23)

Proof. We observe that g′(λ)dλ defined in (5.11) is a meromorphic one-form on the
Riemann surface Xα defined as

Xα =
{

(η, λ) ∈ C
2 | η2 = R2

α(λ) = (λ2 − α2)(λ2 − η22)
}

.

We define a homology basis on Xα in the following way: the B cycle encircles the cut
[α, η2] clockwise and the A cycle starts on the cut [−η2,−α] on the upper semi-plane,
goes to the cut [α, η2] and then goes back to [−η2,−α] on the second sheet of Xα . See
Fig. 6. Then we have

∮

A
g′(ζ ) dζ = 0 ,

∮

B
g′(ζ ) dζ = −˜� . (5.24)
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Regarding the first relation in (5.22) we have

∂

∂x
tg′(λ)dλ = ∂

∂x

[

−12tλ2dλ + xdλ + 12t
Q2(λ)

Rα(λ)
dλ − x

Q1(λ)

Rα(λ)
dλ

]

(5.25)

= dλ − Q1(λ)

Rα(λ)
dλ +

∂

∂α

[

12t
Q2(λ)

Rα(λ)
dλ − x

Q1(λ)

Rα(λ)
dλ

]

∂α

∂x
(5.26)

= dλ − Q1(λ)

Rα(λ)
dλ , (5.27)

because the term
∂

∂α

[

12t
Q2(λ)

Rα(λ)
dλ − x

Q1(λ)

Rα(λ)
dλ

]

vanishes since it is a holomorphic

one-form (no singularity at ±α or infinity) which is normalized to zero on the A cycle
because of (5.24); therefore it is identically zero [Kri88] (see also [Gra02,GT02]). An
alternative proof is to calculate the derivative and use the explicit formulæof the constants
c1 and c2 in (5.15). We conclude that

∂

∂x
e−tg(λ) = −1

λ

[

α2 + η22

2
+ η22

(

E(mα)

K (mα)
− 1

)

]

+O
(

1

λ2

)

.

Regarding the relation (5.23), by (5.22) and (5.24) we have

∂

∂x
(t˜�) = − ∂

∂x

∮

B
tg′(λ) dλ = −

∮

B

∂

∂x
(tg′(λ) dλ) = − π iη2

K (mα)
.

As we did in Sect. 3, we choose the function f to simplify the jumps on �1,α and �2,α
via

f+(λ) f−(λ) = 1

r(λ)
λ ∈ �1,α (5.28)

f+(λ) f−(λ) = r(λ) λ ∈ �2,α (5.29)

f+(λ)

f−(λ)
= e

˜� λ ∈ [−α, α] (5.30)

f (λ) = 1 +O
(

1

λ

)

λ → ∞ . (5.31)

It is easy to check that the function f (λ) is given by

f (λ) = exp

{

Rα(λ)

2π i

[

∫

�1,α

log 1
r(ζ )

Rα+(ζ )(ζ − λ)
dζ +

∫

�2,α

log r(ζ )

Rα+(ζ )(ζ − λ)
dζ

+
∫ α

−α

˜�

Rα(ζ )(ζ − λ)
dζ

]}

, (5.32)

where the constraint (5.31) determines ˜� as

˜� =
[

∫

�1,α

log r(ζ )

Rα+(ζ )
dζ −

∫

�2,α

log r(ζ )

Rα+(ζ )
dζ

]

[∫ α

−α

dζ

Rα(ζ )

]−1

= 2

[

∫

�1,α

log r(ζ )

Rα+(ζ )
dζ

]

[∫ α

−α

dζ

Rα(ζ )

]−1

, (5.33)
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where in the last relation in (5.33) we have used the fact that r(−λ) = r(λ).
As a consequence, T satisfies the following Riemann–Hilbert problem:

T+(λ) = T−(λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

et(g+(λ)−g−(λ)) f+(λ)
f−(λ)

0

−i e−t(g+(λ)−g−(λ)) f−(λ)
f+(λ)

]

λ ∈ �1,α

[

et(g+(λ)−g−(λ)) f+(λ)
f−(λ)

i

0 e−t(g+(λ)−g−(λ)) f−(λ)
f+(λ)

]

λ ∈ �2,α

[

e˜�t+˜� 0

−ir(λ) f+(λ) f−(λ)et
(

g+(λ)+g−(λ)+8λ3−8ξλ
)

e−˜�t−˜�

]

λ ∈ [η1, α]
[

e˜�t+˜� e−t
(

g+(λ)+g−(λ)+8λ3−8ξλ
)

ir(λ)
f+(λ) f−(λ)

0 e−˜�t−˜�

]

λ ∈ [−α,−η1]
[

e˜�t+˜� 0

0 e−˜�t−˜�

]

λ ∈ [−η1, η1]
(5.34)

T (λ) = [

1 1
]

+O
(

1

λ

)

λ → ∞ . (5.35)

5.1. Opening lenses. It is useful to provide representations of the entries appearing in
the jump matrix for T (λ) in either �1,α or �2,α , that clearly demonstrate their analytic
continuation off these intervals, as was done in Sect. 3. The following formulæ are valid
on both intervals:

g+(λ) − g−(λ) = 2g+(λ) + 8λ3 − 8ξλ , (5.36)

g+(λ) − g−(λ) = −
(

2g−(λ) + 8λ3 − 8ξλ
)

. (5.37)

The following formulæ are valid on �1,α:

f+(λ)

f−(λ)
= − 1

f 2−(λ)r̂−(λ)
and

f−(λ)

f+(λ)
= 1

f 2+ (λ)r̂+(λ)
. (5.38)

And the following ones are valid on �2,α:

f−(λ)

f+(λ)
= − f 2−(λ)

r̂−(λ)
and

f+(λ)

f−(λ)
= f 2+ (λ)

r̂+(λ)
. (5.39)

As it was done in Sect. 3, we can factor the jump matrix on �1,α as follows
⎡

⎢

⎣

et(g+(λ)−g−(λ))
f+(λ)

f−(λ)
0

−i e−t(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦

=
⎡

⎣

1 − ie−t
(

2g−(λ)+8λ3−8ξλ
)

)

f 2−(λ)r̂−(λ)
0 1

⎤

⎦

[

0 −i
−i 0

]

⎡

⎣

1
ie−t

(

2g+(λ)+8λ3−8ξλ
)

r̂+(λ) f 2+ (λ)
0 1

⎤

⎦
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Fig. 7. Opening lenses: the gray entries in the jumps represent exponentially small quantities in the limit
t → +∞. The contours C1 and C2 are the lens boundaries

and on �2,α as

⎡

⎢

⎣

et(g+(λ)−g−(λ))
f+(λ)

f−(λ)
i

0 e−t(g+(λ)−g−(λ))
f−(λ)

f+(λ)

⎤

⎥

⎦

=
⎡

⎣

1 0

i
f 2−(λ)

r̂−(λ)
et
(

2g−(λ)+8λ3−8ξλ
)

) 1

⎤

⎦

[

0 i
i 0

]

⎡

⎣

1 0

−i
f 2+ (λ)

r̂+(λ)
et
(

2g+(λ)+8λ3−8ξλ
)

1

⎤

⎦ .

These factorizations motivate us to open lenses C j around each � j,α , j = 1, 2. We
use these lenses to define the transformation

S(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T (z)

[

1 −i
r̂(λ) f 2(λ)

e−2t (g(λ)+λ3−4ξλ)

0 1

]

inside the lens C1

T (z)

[

1 0
i f 2(λ)

r̂(λ)
e2t (g(λ)+λ3−4ξλ) 1

]

inside the lens C2
T (z) elsewhere

(5.40)

The lens contours and the resulting jump relations for S(z) are shown in Fig. 7.

Lemma 5.2. The following inequalities are satisfied:

Re
[

2g(λ) + 8λ3 − 8ξλ
]

> 0 for λ ∈ C1\{α, η2} , (5.41)

Re
[

2g(λ) + 8λ3 − 8ξλ
]

< 0 for λ ∈ C2\{−η2,−α} , (5.42)

Re
[

g+(λ) + g−(λ) + 8λ3 − 8ξλ
]

< 0 for λ ∈ [η1, α) , (5.43)

Re
[

g+(λ) + g−(λ) + 8λ3 − 8ξλ
]

> 0 for λ ∈ (−α,−η1] . (5.44)
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Proof. Using (5.16) the function g′(λ) in (5.11) can be written in the form

g′(λ) = −12λ2 + 4ξ + 12
Q2(λ) − Q2(α)

Rα(λ)
− 4ξ

Q1(λ) − Q1(α)

Rα(λ)
,

so that we have

g′
+(λ) − g′−(λ) = −i24

√
λ2 − α2

√

η22 − λ2

[

λ2 −
(

η22 − α2

2
+

ξ

3

)]

(5.45)

and from (5.14) we deduce that the quadratic polynomial has one root ρ+ in the interval
[0, α] which is positive for λ > α. Therefore, for λ ∈ �1,α

Im
[

g′
+(λ) − g′−(λ)

] = −24

√
λ2 − α2

√

η22 − λ2

[

λ2 −
(

η22 − α2

2
+

ξ

3

)]

< 0 . (5.46)

From the formula (5.19) for g we also have that for λ ∈ [η1, α]

g+(λ) + g−(λ) + 8λ3 − 8ξλ = −24
∫ α

λ

√

α2 − ζ 2
√

η22 − ζ 2

[

ζ 2 −
(

η22 − α2

2
+

ξ

3

)]

dζ .

(5.47)

Setting

hα,ξ (ζ ) =
√

α2 − ζ 2
√

η22 − ζ 2

[

ζ 2 −
(

η22 − α2

2
+

ξ

3

)]

, (5.48)

we need to show that the function

Hα,ξ (λ) =
∫ α

λ

−hα,ξ (ζ ) < 0 for λ ∈ [η1, α] . (5.49)

It is easy to check that Hα,ξ (α) = 0 and Hα,ξ (0) = 0 (see (5.14)). Next, H ′
α,ξ (λ) =

hα,ξ (λ) is negative on [0, ρ+] and positive on [ρ+, α]. This implies that indeed the
inequality (5.49) is satisfied on [η1, α].

Because of Lemma 5.2, letting t → +∞, the jump matrices (as depicted in Fig. 7)
will converge to constant jumps exponentially fast outside neighbourhoods of ±α and
±η2. We then obtain the following model Riemann–Hilbert problem for ˜S∞:

˜S∞
+ (λ) = ˜S∞− (λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

et˜�+˜� 0

0 e−t˜�−˜�

]

λ ∈ [−α, α]
[

0 −i
−i 0

]

λ ∈ �1,α

[

0 i
i 0

]

λ ∈ �2,α

(5.50)

˜S∞(λ) = [

1 1
]

+O
(

1

λ

)

, λ → ∞ . (5.51)
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5.2. The outer parametrix ˜P∞. Along the same lines as we did in Sect. 3, we construct
a (matrix) model problem whose solution will yield a solution of the above (vector)
Riemann–Hilbert problem. Since the solution of this model problem will be invertible,
one is able to arrive at a small-norm Riemann–Hilbert problem for the error in the large-
time regime, more directly than if one considers only vector Riemann–Hilbert problems.

We therefore seek a matrix valued function ˜P∞ that is analytic in C\(−η2, η2) and
satisfies the following Riemann–Hilbert problem

˜P∞
+ (λ) = ˜P∞− (λ)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

et˜�+˜� 0

0 e−t˜�−˜�

]

λ ∈ [−α, α]
[

0 −i
−i 0

]

λ ∈ �1,α

[

0 i
i 0

]

λ ∈ �2,α

(5.52)

˜P∞(λ) =
[

1 0
0 1

]

+O
(

1

λ

)

, λ → ∞ . (5.53)

In order to get the solution of the above Riemann-Hilbert problem, let us introduce in
analogy to Sect. 3.4 the vector

˜S∞(λ) = γ (λ)
ϑ3(0; 2τ)

ϑ3

(

t˜�+˜�
2π i ; 2τ

)

⎡

⎣

ϑ3

(

2w̃(λ) + t˜�+˜�
2π i − 1

2 ; 2τ
)

ϑ3
(

2w̃(λ) − 1
2 ; 2τ)

ϑ3

(

−2w̃(λ) + t˜�+˜�
2π i − 1

2 ; 2τ
)

ϑ3
(−2w̃(λ) − 1

2 ; 2τ)
⎤

⎦ ,

(5.54)
with w̃(λ) defined as

w̃(λ) =
∫ λ

η2

�α

Rα(λ)

dλ

4π i
(5.55)

where �α = − π iη2
K (mα)

. Further from (5.21) we have

˜� = 2π iη2
α2 + η22

K (mα)
+ 4ξ�α

and

pα(λ) =
∫ λ

η2

Q1(ζ )

Rα(ζ )
dζ, �α = −2pα+(α)

where Q1 has been defined in (5.13). We note that for λ ∈ (−α, α), we have

pα+(λ) − pα−(λ) = −�α . (5.56)

Then the solution ˜P∞(λ) to the Riemann-Hilbert problem (5.52) and (5.53) is given
explicitly by

˜P∞(λ) = 1

2

⎡

⎢

⎣

(1 + pα(λ)
λ

)˜S∞
1 (λ) +

1

λ
∇�α

˜S∞
1 (λ) (1 − pα(λ)

λ
)˜S∞

2 (λ) +
1

λ
∇�α

˜S∞
2 (λ)

(1 − pα(λ)
λ

)˜S∞
1 (λ) − 1

λ
∇�α

˜S∞
1 (λ) (1 + pα(λ)

λ
)˜S∞

2 (λ) − 1

λ
∇�α

˜S∞
2 (λ)

⎤

⎥

⎦
,

(5.57)
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where ˜S∞
1 and ˜S∞

2 are the entries of the row vector ˜S∞ defined in (5.54), and

∇�α
˜S∞
1 (λ) := γ (λ)

ϑ3(0; 2τ)

ϑ3

(

2w̃(λ) − 1
2 ; 2τ

)

�α

2π i

d

dz

⎡

⎣

ϑ3

(

z + 2w̃(λ) + t˜�+˜�
2π i − 1

2 ; 2τ
)

ϑ3

(

z + t˜�+˜�
2π i ; 2τ

)

⎤

⎦

∣

∣

∣

∣

z=0
,

∇�α
˜S∞
2 (λ) := γ (λ)

ϑ3(0; 2τ)

ϑ3

(

−2w̃(λ) − 1
2 ; 2τ

)

�α

2π i

d

dz

⎡

⎣

ϑ3

(

z − 2w̃(λ) + t˜�+˜�
2π i − 1

2 ; 2τ
)

ϑ3

(

z + t˜�+˜�
2π i ; 2τ

)

⎤

⎦

∣

∣

∣

∣

z=0
.

The above construction has been obtained by modifying the construction of P∞ in
(3.63), in such a way that ˜P∞(λ) solves the Riemann–Hilbert problem (5.52)–(5.53),

with det˜P∞(λ) = 1, and ˜P∞(−λ) =
[

0 1
1 0

]

˜P∞(λ)

[

0 1
1 0

]

.

5.3. The local parametrix P±α . We will construct now a (matrix) local parametrix
around the points λ = ±α. The construction of the local parametrices near λ = ±η2 is
the same one as in Sect. 3.5.

We focus again on a small but fixed neighbourhood B(−α)
ρ = {λ ∈ C | |λ + α| < ρ }

of the endpoint λ = −α. We define the conformal map

ζ =
(

3

4

) 2
3
[

t
∫ λ

−α

g′
+(s) − g′−(s)ds

]
2
3

=
⎡

⎢

⎣
18t

∫ λ

−α

⎛

⎝

√
α2 − s2

√

η22 − s2

⎞

⎠

+

(

s2 − η22 − α2

2
− ξ

3

)

ds

⎤

⎥

⎦

2
3

(5.58)

locally in B(−α)
ρ .

To define the local parametrix P−α in B(−α)
ρ , we consider

P(λ) = S(λ)e
π i
4 σ3

(
√±r̂(λ)

f (λ)

)σ3

e∓ 1
2 (˜�t+˜�)σ3 , λ ∈ B(−α)

ρ ∩ C±,

and then, using the inverse of the transformation ζ(λ), we define

P(1)(ζ ) = P(λ(ζ ))e− 2
3 ζ

3
2 σ3 , ζ ∈ C

with branch cut (−∞, 0]. By construction, P(1) satisfies a Riemann–Hilbert problem
with jumps in a neighbourhood of ζ = 0 as shown in Fig. 8.

We introduce the (local) Airy parametrix (see [Dei99,DKM+99]): let �Ai(ζ ) be the
solution to the following Riemann–Hilbert problem

(a) �Ai is analytic for ζ ∈ C\�� , where the contours �� are defined as �± =
{

arg ζ = ± 2π
3

}

, �0,− = {arg ζ = π} and �0,+ = {arg ζ = 0};
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Fig. 8. The contour setting under the conformal map ζ in a neighbourhood of 0

(b) � satisfies the following jump relations

�Ai +(ζ ) = �Ai−(ζ )

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

1 0
1 1

]

on �+ and �−
[

0 1
−1 0

]

on �0,−
[

1 1
0 1

]

on �0,+ ;

(5.59)

(c) as ζ → ∞

�Ai(ζ ) = ζ− 1
4σ3

1√
2

[

1 i
i 1

]

(

I +O
(

1

ζ
3
2

))

e− 2
3 ζ

3
2 σ3 , (5.60)

(d) �Ai remains bounded as ζ → 0, ζ ∈ C\�� .

The solution to this Riemann–Hilbert problem is constructed with the help of Airy

functions. Setting ω = e
2π i
3 , we have

�Ai(ζ ) = √
2π

[

Ai(ζ ) −ω2Ai(ω2ζ )

−iAi′(ζ ) iωAi′(ω2ζ )

]

for 0 < arg ζ <
2π

3
(5.61)

�Ai(ζ ) = √
2π

[−ωAi(ωζ ) −ω2Ai(ω2ζ )

iω2Ai′(ζ ) iωAi′(ω2ζ )

]

for
2π

3
< arg ζ < π (5.62)

�Ai(ζ ) = √
2π

[−ω2Ai(ω2ζ ) ωAi(ωζ )

iωAi′(ω2ζ ) −iω2Ai′(ζ )

]

for − π < arg ζ < −2π

3
(5.63)

�Ai(ζ ) = √
2π

[

Ai(ζ ) ωAi(ωζ )

−iAi′(ζ ) −iω2Ai′(ζ )

]

for − 2π

3
< arg ζ < 0 , (5.64)
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where Ai(ζ ) is the Airy function.
In conclusion, our local parametrix is then defined as

P−α(ζ(λ)) = A(λ)�Ai(ζ(λ))e
2
3 ζ

3
2 σ3e± 1

2 (˜�t+˜�)

(

f (λ)
√±r̂(λ)

)σ3

e− π i
4 σ3 , λ ∈ B(−α)

ρ ∩ C± ,

(5.65)

where A is an analytic prefactor whose expression is determined by imposing that

P−α(λ)
(

˜P∞(λ)
)−1 = I +O

(

t−1
)

as t → +∞ , for λ ∈ ∂ B(−α)
ρ \�� . (5.66)

In light of this asymptotic behaviour we set

A(λ) = ˜P∞(λ)e∓ 1
2 (˜�t+˜�)σ3e

π i
4 σ3

(
√±r̂(λ)

f (λ)

)σ3
1√
2

[

1 −i
−i 1

]

ζ(λ)
1
4 σ3 , for λ ∈ B(−α)

ρ ∩ C± .

(5.67)

By construction, A is defined and analytic in a neighbourhood of −α, minus the cuts
(−∞,−α] ∪ [−α,+∞); moreover, A is invertible (det A(λ) ≡ 1).

Lemma 5.3. A(λ) is analytic in an open neighbourhood of −α.

Proof. The proof entails verifying that A has no jumps across the interval (−α−ρ,−α+
ρ) and that it has at most a removable singularity at λ = −α. We leave the verification
that A+(λ) = A−(λ) across the interval (−α − ρ,−α + ρ) to the reader, using the jump
relations satisfied by ˜P∞ and the above definitions.

The conformal map ζ(λ) has a simple zero at λ = −α (by construction), therefore

ζ(λ)− 1
4σ3 has at most a fourth-root singularity at−α. Similarly, ˜P∞(λ) has a fourth-root

singularity at −α, as well; therefore, all the entries of A(λ) have at most a square-root
singularity at λ = −α, and A(λ) is analytic in B(−α)

ρ \{−α}. The point λ = −α is a

removable singularity. This implies that A(λ) is indeed analytic everywhere in B(−α)
ρ .

The construction of the local parametrix for λ near α is obtained from the parametrix
near −α as follows. We fix a disk of the same radius as the radius of the disk used for
the parametrix near −α, and within that disk, define

Pα :=
[

0 1
1 0

]

P−α(−λ)

[

0 1
1 0

]

. (5.68)

Remark. We note that, as with the analysis presented for t = 0 and x → −∞, we
may choose the contours so that they are preserved under the transformation λ �→ −λ.
Moreover, the construction of ˜P∞ continues to enjoy the symmetry relation

˜P∞(−λ) =
[

0 1
1 0

]

˜P∞(λ)

[

0 1
1 0

]

. (5.69)
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5.4. Small norm argument and determination of u(x, t) as t → +∞. As before, we
define a global (matrix) parametrix P replacing each model Pξ in (3.87) with ˜Pξ , ξ =
∞,±α,±η2. Then we define the following “remainder” Riemann–Hilbert problem:

E(λ) = S(λ)P(λ)−1 . (5.70)

For some c > 0, the vector E satisfies

E+(λ) =
{E−(λ)

(

I +O (e−ct)) on the upper and lower lenses, outside the discs

E−(λ)
(

I +O
(

t−1
))

on the circles around the endpoints
(5.71)

and

E(λ) = [

1 1
]

+O
(

1

λ

)

as λ → ∞ . (5.72)

Furthermore, as in Sect. 3.6, the solution E(λ) is analytic in a neighborhood of λ = 0.
Moreover, the jumps VE for E satisfy the symmetry

VE (−λ) =
[

0 1
1 0

]

VE (λ)

[

0 1
1 0

]

. (5.73)

Therefore, by a small norm argument (see [Its11, Section 5.1.3]), we learn that there
is a unique E solving the Riemann–Hilbert problem, and (as in Sect. 3.6), the solution
satisfies the symmetry relation

E(−λ) = E(λ)

[

0 1
1 0

]

, (5.74)

and has a complete asymptotic expansion, satisfying

E(λ) = [

1 1
]

+
E1(x, t)

λt
+O

(

1

λ2

)

, (5.75)

where E1(x, t) and its derivatives are bounded.
Unraveling the transformations, we can again get back to the potential. Our original

Riemann–Hilbert problem, for the unknown Y , satisfies

Y (λ) = T (λ)e−tg(λ)σ3 f (λ)−σ3 = S(λ)e−tg(λ)σ3 f (λ)−σ3

=
(

[

1 1
]

+
E1(x, t)

λt
+O

(

1

λ2

))

P(λ)e−tg(λ)σ3 f (λ)−σ3 .

In particular we are interested in the vector Y (λ) for large λ

Y (λ) =
(

[

1 1
]

+
E1(x, t)

λt
+O

(

1

λ2

))

˜P∞(λ)e−tg(λ)σ3 f (λ)−σ3

=
(

˜S∞(λ) +
E1(x, t)

λt
+O

(

1

λ2

))

e−tg(λ)σ3 f (λ)−σ3,

so that

Y1(λ) =
[

˜S∞
1 (λ) +

E1(x, t)

λt
+O

(

1

λ2

)]

e−tg(λ) f (λ)−1, (5.76)
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where ˜S∞
1 refers to the the first row vector solution ˜S∞ (5.54). Since

u(x, t) = 2
d

dx

[

lim
λ→∞ λ(Y1(λ; x, t) − 1)

]

, (5.77)

we have the following theorem.

Theorem 5.4. Given ξ = x
4t , in the region ξcrit < ξ < η22 the solution of the KdV

equation in the large time limit is

u(x, t) = η22 − α2 − 2η22
E(mα)

K (mα)
− 2

∂2

∂x2
logϑ3

(

η2

2K (mα)
(x − 2(α2 + η22)t + ˜φ); 2τα

)

+O(t−1)

(5.78)
where E(mα) and K (mα) are the complete elliptic integrals of first and second kind

respectively, with modulus mα = α
η2

; 2τα = i
K (m′

α)

K (mα)
, with m′

α = √

1 − m2
α ,

˜φ =
∫ η2

α

log r(ζ )

Rα+(ζ )

dζ

π i
∈ R

and the parameter α = α(ξ) is determined from the equation

ξ = η22

2

[

1 + m2
α + 2

m2
α(1 − m2

α)

1 − m2
α − E(mα)

K (mα)

]

.

The error term O(t−1) is uniform for t sufficiently large.
Alternatively,

u(x, t) = η22 − α2 − 2η22 dn
2
(

η2(x − 2(α2 + η22)t + ˜φ) + K (mα) | mα

)

+O
(

t−1
)

(5.79)
where dn (z | m ) is the Jacobi elliptic function.

Proof. Starting from (5.76) we expand each term of Y1(λ) in a neighbourhood of infinity.
Regarding f (λ) defined in (5.32) we have

f (λ) = 1 +
f1(α, η2)

λ
+O

(

1

λ2

)

,

where

f1(α, η2) =
[∫ η2

α

ζ 2 log r(ζ )

Rα(ζ )

dζ

π i
− ˜�

∫ α

−α

ζ 2

Rα(ζ )

dζ

2π i

]

.

Regarding e−tg(λ) we are interested in the x derivative of this expression. Using (5.22)
we have

∂

∂x
e−tg(λ) = −1

λ

[

α2 + η22

2
+ η22

(

E(mα)

K (mα)
− 1

)

]

+O
(

1

λ2

)

.

Regarding ˜S∞
1 (λ), we have

˜S∞
1 (λ) = 1 +

1

λ

[

(

logϑ3

(

t˜� + ˜�

2π i
; 2τ

))′
− ϑ ′

3(0)

ϑ3(0)

]

η2

2K (mα)
+O

(

1

λ2

)

,
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where ′ stands for the derivative with respect to the argument of the ϑ-function. By
(5.23) we have

∂

∂x
˜S∞
1 (λ) = 1

λ

[

logϑ3

(

t˜� + ˜�

2π i
; 2τ

)]′′
η2

2K (mα)

(

− η2

2K (mα)
+

∂

∂x

˜�

2π i

)

+O
(

1

λ2

)

,

where ′′ stands for second derivative with respect to the argument of the ϑ-function.
Taking into account that � = �(α(ξ), η2) and therefore the quantity ∂

∂x �(α(ξ), η2) =
O(t−1) by (5.16), we can write the above expression in the form

∂

∂x
˜S∞
1 (λ) = −1

λ

[

∂

∂x2
logϑ3

(

t˜� + ˜�

2π i
; 2τ

)

+O(
1

t
)

]

+O
(

1

λ2

)

.

Gathering the above expansions, using the fact that E1(x, t) and its derivatives are
bounded, and using the explicit expression of ˜� and ˜� in (5.21) and (5.33) respectively,
we obtain (5.78). Also in this case, using the same calculations as in Theorem 3.6 we
can reduce the expression of u(x, t) to the form (5.79).

The equivalence of formulas (5.78) and (5.79) is slightlymore delicate than in the case
of Theorem 3.6. It follows from (3.106) and the relation (5.23), that is a particular case
of the more general relations obtained in [Kri88] in the context of Whitham modulation
theory.

The equivalence of the formulas (5.78) and (5.79) is a well known fact in the theory
of dispersive shock waves for the KdV equation where modulated travelling waves are
developed (see e.g. the review [Gra12]). Such equivalence is valid for any solution of
Whitham’smodulation equations. For the particular solution of theWhithammodulation
equations appearing in the long time asymptotic analysis of KdV this equivalence was
obtained in [G.16].

6. Sub-Critical Case

As the parameter ξ < η22 decreases, we proved that there is a critical value ξcrit (see
Sect. 5, equation (5.18)) such that

α(ξcrit) = η1 . (6.1)

For ξ < ξcrit , we define

g′(λ) = −12λ2 + 4ξ + 12
Q2(λ)

R(λ)
− 4ξ

Q1(λ)

R(λ)
(6.2)

where R is defined in (3.16), specifically R(λ) =
√

(λ2 − η21)(λ
2 − η22), and

Q1(λ) = λ2 + c1 , Q2(λ) = λ4 − 1

2
λ2(η21 + η22) + c2 , (6.3)

with the constants c1 and c2 chosen so that
∫ η1

0

Q2(ζ )

R+(ζ )
dζ = 0 ,

∫ η1

0

Q1(ζ )

R+(ζ )
dζ = 0 . (6.4)
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Integration yields

g(λ) = −4λ3 + 4ξλ +
∫ λ

η1

12Q2(ζ ) − 4ξ Q1(ζ )

R(ζ )
dζ . (6.5)

By construction, g satisfies the following constraints:

g+(λ) + g−(λ) + 8λ3 − 8ξλ = 0 λ ∈ �1 ∪ �2 (6.6)

g+(λ) − g−(λ) = � λ ∈ [−η1, η1] (6.7)

g(λ) = O
(

1

λ

)

λ → ∞ . (6.8)

with

� = 2π iη2
2ξ − (η21 + η22)

K (m)
∈ iR . (6.9)

Remark 6.1. The reader may verify that for ξ = ξcrit the above function g(λ; η1, η2) in
(6.2) agrees with the function g(λ;α = η1, η2) in (5.19).

In order to show that the usual contour deformations can be carried out, as they were
in Sects. 3 and 5, we need to verify that the quantity Re

[

2g(λ) + 8λ3 − 8ξ2λ
]

is positive
on the contour C1, and negative on the contour C2, where these contours are as shown in
Fig. 3.

To accomplish this, we consider the quadratic polynomial

q(r; ξ) = 12

(

r2 − 1

2
r(η21 + η22) + c2

)

− 4ξ(r + c1) , (6.10)

with r ∈ [0, η21]. A quick inspection shows that q(η21; ξcrit) = 0 and q(0; ξcrit) > 0, and
moreover, for all ξ ∈ R

∂q

∂ξ
(0; ξ) > 0 and

∂q

∂ξ
(η21; ξ) < 0 ; (6.11)

therefore, 0 = q(η21; ξcrit) < q(η21; ξ) for all ξ < ξcrit. So, for all ξ < ξcrit, there are two
roots of q(r; ξ) within (0, η21), and the polynomial is strictly positive on [η21, η22].

This in turn implies, using arguments nearly identical to those used to prove Lemma
5.2, that

Re
[

2g(λ) + 8λ3 − 8ξ2λ
]

> 0 for λ ∈ C1\{η1, η2} , (6.12)

Re
[

2g(λ) + 8λ3 − 8ξ2λ
]

< 0 for λ ∈ C2\{−η1,−η2} . (6.13)

The use of this function, and the sequence of steps in the Riemann–Hilbert analysis
which have been carried out for t = 0 in Sect. 3, may be applied directly to the present
situation, andwe use the same outermodel P∞(λ) (cf. (3.63)) aswas used in Sect. 3, with
x� replaced by t�, with � as defined by (6.9), along with the same local parametrices
near each of the endpoints ±η1,±η2. Therefore we arrive at the following result.
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Theorem 6.2. In the regime t → +∞, ξ < ξcrit, the potential u(x, t) has the following
asymptotic expansion

u(x, t) = η22 − η21 − 2η22 dn
2
(

η2(x − 2(η21 + η22)t + φ) + K (m) | m
)

+O
(

t−1
)

,

(6.14)

where m = η1/η2, and

φ =
∫ η2

η1

log r(ζ )

R+(ζ )

dζ

π i
. (6.15)

7. Conclusions

In this paper we have considered the Riemann–Hilbert problem of [DZZ16] in the case of
one non-trivial reflection coefficient.We have shown how this Riemann–Hilbert problem
describes a soliton gas as the limit of a finite N -soliton configuration as N tends to +∞.
Then we established rigorous asymptotics of the KdV potential in several different
regimes. First, for the initial configuration, we studied the challenging behaviour as
x → −∞, and obtained a universal asymptotic description in terms of the periodic
travelling wave solution of KdV. Then, we provided a complete analysis of the long-
time behavior of the solution of the KdV equation determined by the Riemann–Hilbert
problem of [DZZ16]. For large t , there are three fundamental spatial domains, in which
the solution u(x, t) displays different asymptotic behaviours depending on the value
of the parameter ξ = x/(4t): for ξ > η22 the solution decays exponentially, while for
ξ < ξcri t the solution is described by the periodic travelling wave solution of KdV with
fixed parameters; between, for ξ ∈ (ξcrit, η

2
2) these two extreme asymptotic states are

connected by a periodic travellingwave solution ofKdVwith slowly varying parameters.
Several challenges remain, like the asymptotic analysis when there are two nontrivial

reflection coefficients or the case where the spectral parameters of the soliton gas accu-
mulates in disconnected components of the imaginary axis. Beyond these, it is enticing
to consider the interaction of one large soliton with this gas like in [CDE16] or the
interaction between two such soliton gases.
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A. Existence of Solution to the Soliton gas Riemann–Hilbert Problem

We will provide a proof of existence and uniqueness for the Riemann–Hilbert problem

Y (λ) is analytic for λ ∈ C\ {�1 ∪ �2}

Y+(λ) = Y−(λ)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

1 0
−ir(λ; x, t) 1

]

λ ∈ �1

[

1 ir(λ; x, t)
0 1

]

λ ∈ �2

(A.1)

Y (λ) = [

a b
]

+O
(

1

λ

)

λ → ∞ (A.2)

Y (−λ) = Y (λ)

[

0 b
aa

b 0

]

, (A.3)

with parameters a > 0 and b > 0, and with the contours shown in Fig. 2, and
r(λ; x, t) = r(λ)e8λt

(

λ2− x
4t

)

, and where we as usual seek a solution with at worst loga-
rithmic singularities at the endpoints ±η j .
To establish that there is a solution to the Riemann–Hilbert problem (A.1)–(A.3), we
seek y1 with the following representation:

y1 = a +
1

2π i

∫ η2

η1

√
r(s; x, t) f (s)

s − λ
ds. (A.4)

This is consistent with the jump relations in (A.1), in which the first entry is analytic
across (−η2,−η1), with a jump across (η1, η2). Plugging (A.4) into the jump relation
across (η1, η2), we find

f (λ) +
b

a

√
r(λ; x, t)

2π

∫ η2

η1

√
r(s; x, t) f (s)

s + λ
ds = −ib

√

r(λ; x, t) . (A.5)

The reader may verify that this integral equation appears (after some manipulation) in
both entries of the jump relationships.
Now the integral operator appearing on the left hand side of (A.5) is compact (since it
can obviously be approximated by a sequence of finite dimensional operators) and hence
the index is zero. It is also positive definite, which shows that this integral equation is
uniquely invertible.
To see that the integral operator is positive definite,we follow the classic [KM56, Formula
2.9], starting with the simple identity

1

s + λ
=
∫ 0

−∞
e(s+λ)zdz . (A.6)

We have
∫ η2

η1

√

r(λ; x, t) f (λ)

∫ η2

η1

√
r(s; x, t) f (s)

s + λ
dsdλ

=
∫ 0

−∞

∫ η2

η1

∫ η2

η1

√

r(λ; x, t) f (λ)
√

r(s; x, t) f (s)e(s+λ)zdsdλdz
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=
∫ 0

−∞

∣

∣

∣

∣

∫ η2

η1

√

r(s; x, t) f (s)eszds

∣

∣

∣

∣

2

dz > 0 , (A.7)

provided f is not identically equal to 0.
Regarding uniqueness, if Ỹ is a solution to the Riemann–Hilbert problem (A.1)–(A.3),
then setting f̃ (s) = −i

√
r(s; x, t)Ỹ2(s) for s ∈ (η1, η2), one verifies that f̃ must satisfy

the integral equation (A.5), which obviously possesses a unique solution.
Returning to the Riemann–Hilbert problem (A.1)–(A.3), if we take (a, b) = (1, 1) we
have established the existence and uniqueness of the solution to the soliton gas Riemann–
Hilbert problem. But more importantly, if we separately consider (a, b) = (1, 2), we
find a second independent solution of the Riemann–Hilbert problem, which combined
yields a 2 × 2 matrix solution to the following Riemann–Hilbert problem:

Y(λ) is analytic for λ ∈ C\ {�1 ∪ �2}

Y+(λ) = Y−(λ)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

1 0
−ir(λ; x, t) 1

]

λ ∈ �1

[

1 ir(λ; x, t)
0 1

]

λ ∈ �2

(A.8)

Y(λ) =
[

1 1
1 2

]

+O
(

1

λ

)

λ → ∞ . (A.9)

This solution is invertible for all λ ∈ C since detY ≡ 1.
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