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SYSTEM DESIGN DIFFERS radically 

from pure software design in that it 

must account not only for functional 

requirements but also for extrafunc-

tional requirements regarding the use 

of execution platform resources, such 

as time, memory, and energy. Meet-

ing extrafunctional requirements is 

essential in embedded system design 

and requires evaluation of how design 

choices affect overall system behavior. 

It also implies a deep understanding of 

how the application software interacts 

with the underlying execution plat-

form. Yet system designers currently 

lack rigorous techniques for deriving 

global models of a given system from 

models of its application software and 

execution platform.

We de�ne a rigorous design �ow 

as one that guarantees essential sys-

tem properties. Most existing design 

�ows that aspire to this goal privilege a 

unique programming model and asso-

ciate it with a compilation chain that’s 

adapted for a given execution model. 

For example, synchronous system de-

sign relies on synchronous program-

ming models and usually targets hard-

ware or sequential implementations on 

single processors.1 Alternatively, real-

time programming, based on sched-

uling theory for periodic tasks, tar-

gets dedicated real-time multitasking 

platforms.2

At the Verimag Laboratory, we’ve 

been developing the behavior, interac-

tion, priority (BIP) component frame-

work to support a rigorous system de-

sign �ow. The BIP framework is

•	 model-based, describing all soft-

ware and systems according to a 

single semantic model. This main-

tains the �ow’s overall coherency 

by guaranteeing that a description 

at step n+1 meets essential proper-

ties of a description at step n.

•	 component-based, providing a 

family of operators for building 

composite components from sim-

pler components. This overcomes 

the poor expressiveness of theoreti-

cal frameworks based on a single 

operator, such as the product of au-

tomata or a function call.

•	 tractable, guaranteeing correctness 
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by construction and thereby avoid-

ing monolithic a posteriori veri�ca-

tion as much as possible.

BIP supports the construction of 

composite, hierarchically structured 

components from atomic components 

characterized by their behavior and 

interfaces. It lets developers compose 

components by layered application of 

interactions and priorities. This en-

ables an expressiveness unmatched 

by any other existing formalism (see 

the related work sidebar).3 Architec-

ture is a first-class concept in BIP, 

with well-defined semantics that 

system designers can analyze and 

transform. 

In this article, we present the BIP 

component framework, highlight-

ing its design �ow and the main steps 

for deriving correct implementations 

from a given application’s software 

and a target platform. Case study re-

sults from a BIP implementation of the 

Dala autonomous robot demonstrate 

its effectiveness.

The BIP Component 
Framework
The BIP framework uses connectors to 

specify possible interactions between 

components and priorities to select 

among possible interactions. Interac-

tions express synchronization con-

straints between the composed com-

ponents’ activities, and priorities �lter 

possible interactions to steer system 

evolution toward meeting performance 

requirements. The combination of in-

teractions and priorities is the source 

of BIP’s expressive power. It de�nes a 

clean, abstract concept of architecture 

separate from behavior.

Atomic	 components are �nite-state 

automata or Petri nets extended with 

data and ports. Ports are action names 

that can be associated with data and 

used for interactions with other compo-

nents. States denote control locations 

where components wait for interac-

tions. A transition is an execution step, 

labeled by a port, from one control lo-

cation to another. Each transition has 

an associated guard and action—re-

spectively, a Boolean condition and a 

function de�ned on local data. In BIP, 

complex data and their transformations 

are written in C/C++.

A transition can be executed if its 

guard evaluates to true and some inter-

action involving its port is enabled. The 

execution is an atomic sequence of two 

microsteps: �rst, execution of the in-

teraction involving the port, which is a 

synchronization between several com-

ponents with possible data exchange, 

followed by execution of the action as-

sociated with the transition.

Example 1: Atomic Components

The right side of Figure 1 shows two 

atomic components, Service-Controller and 

Activity, for the Dala robot controller. 

Activity wraps the long-time computa-

tion of some speci�c application func-

tion. Service-Controller provides execution 

control (triggering, canceling, error 

control, and so on) over the associ-

ated Activity component. For simplici-

ty’s sake, the �gure presents only the 

skeleton control behavior (ports and 

RELATED WORK  
IN COMPONENT FRAMEWORKS
BIP differs signi�cantly from existing component frameworks for 

software engineering. These often use multithreaded program-

ming and point-to-point interaction mechanisms, such as function 

calls, for coordination between components. In contrast, BIP ex-

ecutes atomic components concurrently and coordinates them in 

terms of high-level mechanisms such as protocols and scheduling 

policies. 

Because BIP focuses on the organization of computation 

between components, it can be viewed as an architecture 

description language (ADL). Like other existing ADLs, such as 

Acme (www.cs.cmu.edu/~acme)1 and Darwin,2 BIP uses the 

connector concept to express coordination between components. 

Nonetheless, connectors in BIP are stateless. The architecture, 

consisting of connectors and priorities, is clearly distinguished 

from behavior.

Another signi�cant difference from other frameworks 

is that BIP is intended for system modeling. It directly 

encompasses timing and resource management. Other system 

modeling formalisms either seek generality to the detriment of 

rigorousness, such as (Systems Modeling Language (SySML)3 

and (Architecture Analysis and Design Language (AADL; http://

standards.sae.org/as5506a),4 or limit their scope to speci�c 

computation models, such as Ptolemy.5
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transitions) and omits the data and 

associated code. For example, Activity 
is initialized (start transition) and then 

executes its associated functions (exec, 
internal_exec transitions). The execution 

might � nish normally (� nish transition), 

fail (fail transition) or be interrupted 

(inter transition).

Composite	components are de� ned 

by assembling constituent components 

(atomic or composite) using connec-

tors. Connectors de� ne relationships 

between ports of interacting compo-

nents. They represent sets of interac-

tions—that is, nonempty sets of ports 

that must be jointly executed. Within 

a connector, an interaction can occur 

in two situations: when all involved 

ports are ready to participate (strong 

synchronization) or when a port trig-

gers the interaction without waiting 

for other ports (broadcast). 

The valid interactions within con-

nectors are formally de� ned by al-

gebraic expressions on ports using a 

binary fusion operator and a unary 

typing operator.4 Typing associates 

connector ends (ports or connectors) 

to synchronization types: trigger (ac-

tive port, initiates broadcast) or syn-

chron (passive port). Moreover, every 

connector interaction is associated 

with a guard and a data transfer func-

tion. An interaction can be executed 

only when its guard is true. Its execu-

tion consists of transferring the data 

and then, notifying the components in-

volved in the interaction.

Finally, the priorities for choos-

ing between simultaneously enabled 

interactions within a BIP component 

are de� ned as rules, each consisting 

of a pair of interactions associated 

with a condition. When the condi-

tion holds and both interactions of the 

corresponding pair are enabled, only 

the one with higher-priority can be 

executed.

Example 2: Composite Components

The Service component on the left side 

of Figure 1 is a composite of Activity 

and Service-Controller through connec-

tors that enforce strong synchroniza-

tions of several actions (for example, 

start, exec, finish, fail). The connectors al-

low the Service-Controller to initiate and 

follow the computation performed 

within Activity. The composite com-

ponent is equipped with priorities to 

privilege the execution of a fail inter-

action—that is, error handling—over 

finish and exec interactions, which cor-

respond to normal behavior. 

The example also illustrates the 

encapsulation principle used in BIP. 

Service is further composed with the  

Service-Proxy component by using the 

ports available on the Service interface, 

which are explicitly redirected either 

to subcomponent ports or to inner 

connectors. The trigger-request connec-

tor between Service-Proxy and Service il-

lustrates a broadcast initiated by the 

trigger port. A trigger action is either 

executed alone or synchronized with 

request actions when they’re enabled.

A concrete modeling language 
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supports the BIP framework. The BIP 

language leverages C++-style variables 

and data-type declarations, expres-

sions, and statements. It also provides 

additional structural syntactic con-

structs for de� ning component be-

havior and describing connectors and 

priorities. Moreover, it provides con-

structs for handling parametric and hi-

erarchical descriptions and for express-

ing timing constraints associated with 

behavior. 

The BIP Design Flow
Figure 2 illustrates a rigorous system 

design � ow that uses BIP as a unifying 

semantic model to ensure consistency 

between the different design steps. 

The design � ow involves four dis-

tinct steps that translate the applica-

tion software into a BIP model and 

progressively derive an implementa-

tion by applying source-to-source 

transformations:

	 1. Translating	the	application	software	
into	 a	 BIP	 model. The translation 

focuses on the de� nition of adequate 

interfaces. It encapsulates and reuses 

the application software’s data struc-

tures and functions.

 2. Integrating	architectural	 constraints	
in	 the	 application	 software	 model. 
The integration derives a system 

model in BIP from a model of the 

hardware target platform and a 

mapping.

 3. Translating	 interactions	 and	 pri-
orities	of the system model in terms 

of protocols using send/receive 

primitives.

 4. Generating	deployable	C	code	from 

which an implementation can be 

obtained.

The transformations are “correct by 

construction” because the obtained BIP 

models are observationally equivalent 

to the original model. In particular, 

they preserve the application software’s 

safety properties. Furthermore, we de-

veloped D-Finder, a veri� cation tool 

that checks essential safety properties 

of the application software. 

Figure 3 shows an extensible toolset 

that supports the entire BIP design 

� ow, including D-Finder.

Translating Application Software into BIP

The � rst step in the design � ow con-

sists of generating a BIP model for the 

application software. We have devel-

oped a general method for generating 

BIP models from languages with well-

de� ned operational semantics. It in-

volves the following steps for a given 

application software written in a lan-

guage L:

	 1. Translating	the	source	language	L’s	
atomic	 components	 into BIP com-

ponents. The translation focuses 

on the de� nition of adequate inter-

faces. It encapsulates and reuses the 

application software’s data struc-

tures and functions.

	 2. Translating	the	coordination	mecha-
nisms between	application	software	
components	 into the target BIP 

model’s connectors and priorities.

	 3. Generating	 a	 BIP	 component	 that	
models	 L’s	 operational	 seman-
tics. This component plays the role 

of an engine coordinating the ex-

ecution of the application software 

components.

We developed BIP model genera-

tors for several programming models 

used by embedded system develop-

ers (the source-to-source transformers 

in Figure 3). The generated models 

preserve the structure of the initial 

Mapping

Deployable code

Translation

Performance
analysis

D−Finder

Hardware execution platform

Integration of
architectural constraints

Application software

System model in BIP

Code generation

software model in BIP

Application

Integration of
communication protocols

Distributed system model in S/R−BIP

FIGURE 2. BIP design fl ow. An implementation—that is, deployable code—is generated 

from the application software, a model of the hardware platform, and a mapping.
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programs, their size is linear with re-

spect to the initial program size, and 

they’re easy for the system developers 

to understand.

Using D-Finder 

for Compositional Veri� cation

D-Finder bases its compositional ver-

i� cation method on computing in-

variants.5 It computes increasingly 

stronger invariants for composite 

components as conjunctions of atomic 

components’ local invariants and in-

teraction invariants that characterize 

the composition glue. Static analysis of 

atomic components generates the lo-

cal component invariants. Interaction 

invariants are generated from abstrac-

tions of the composite component to 

be veri� ed.

We recently improved this method 

to take advantage of the incremen-

tal system design process, which pro-

ceeds by adding new interactions to a 

component under construction. Each 

time a new interaction is added, it’s 

possible to verify whether the result-

ing component violates a given prop-

erty and so discover design errors as 

they appear. The incremental veri� -

cation technique6 uses suf� cient con-

ditions to ensure the preservation of 

invariants when new interactions are 

added during the component construc-

tion process. If these conditions aren’t 

satis� ed, D-Finder generates new in-

variants by reusing invariants of the 

constituent components. Reusing in-

variants considerably reduces the veri-

� cation effort.

The D-Finder tool implements the 

compositional veri� cation techniques 

for checking the deadlock-freedom of 

systems described in BIP.7 Experimen-

tal results on classical benchmarks 

show that D-Finder can run exponen-

tially faster than existing monolithic 

veri� cation tools, such as NuSMV.

Generating Implementations

The BIP toolset offers several compila-

tion chains, targeting different execu-

tion platforms. To implement BIP on 

single-core platforms requires using 

engines—that is, dedicated middle-

ware for execution of the C++ code au-

togenerated from BIP descriptions. BIP 

currently provides two engines: one 

for real-time single-thread and one 

for multithread execution. For multi-

thread execution, each atomic compo-

nent is assigned to a thread, with the 

engine itself being a thread. Commu-

nication occurs only between atomic 

components and the engine—never 

directly between different atomic 

components.

To generate distributed implemen-

tations from BIP models, we trans-

form them into send/receive (S/R)-BIP 

models,8 a subclass of models in which 

protocols using S/R primitives replace 

multiparty interactions. From S/R-BIP 

models and a mapping of atomic com-

ponents into a platform’s processing 

elements, we generate ef� cient C/C++ 

or message passing interface (MPI) 

code. 

We use the following sequence of 

correct-by-construction transforma-

tions, which preserve observational 

equivalence.8 First, given a user-

de� ned partition of a BIP system mod-

el’s interactions, we break the atomi-

city of its transitions by separating the 

interaction from the computation. We 

then replace multiparty interactions 

with protocols that use S/R primitives. 

Moreover, we structure the target S/R-

BIP model in three layers:

• The component	 layer consists of 

the original model’s atomic compo-

nents in which each port involved 

in strong interactions is replaced by 

a pair of corresponding S/R ports.

• The interaction	protocol	layer con-

sists of a set of components, each of 

which manages a class of the par-
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FIGURE 3. BIP toolset. The tools include translators from various programming models, 

verifi cation tools, source-to-source transformers, and C/C++ code generators for BIP models.
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tition’s interactions. The protocol 

detects whether interactions are 

enabled and executes them after 

resolving con� icts either locally or 

with assistance from the third layer.

• The confl	ict	 resolution	 protocol	
layer consists of distributed algo-

rithms for resolving con� icts as 

requested by the interaction pro-

tocol layer. The con� ict resolution 

protocol, which basically solves a 

committee coordination problem, 

uses either a fully centralized, to-

ken-ring, or dining philosophers 

algorithm.9,10

In the second step, we use the three-

layer S/R-BIP model and a mapping of 

its atomic components on processors 

to generate either an MPI program or 

a set of plain C/C++ programs that use 

TCP/IP communication. This process 

statically composes atomic components 

running on the same processor to ob-

tain a single observationally equivalent 

component, and reduce coordination 

overhead at runtime.

Case Study: 
Dala Robot Controller
We used BIP to develop a new version 

of the functional layer of the Dala ro-

bot controller from an existing version 

developed using the GeNoM frame-

work.11 We presented preliminary 

results of this work elsewhere,12 in-

cluding the complete modeling of the 

functional layer, its functional veri� -

cation, and the synthesis of a correct-

by-construction software controller. 

Here, we brie� y introduce the model 

and summarize our latest results on the 

veri� cation of deadlock-freedom.

Functional layer design in BIP in-

volves three steps:

 1. Hierarchical	 decomposition	 into	
components. A tree structure rep-

resents the overall architecture with 

its root corresponding to the func-

tional layer and its leaves to atomic 

components. The grammar in Fig-

ure 4 shows how to obtain the de-

signed system as the incremental 

composition of components.

 2. Description	 of	 each	 atomic	 com	-
ponent’s	 behavior. In addition 

to component abstractions, such 

as those we described for the 

Service-Controller and Activity compo-

nents (see Figure 1), the functional 

layer includes Poster components to 

store and communicate data as-

sociated with different modules; 

Timer components that trigger peri-

odic, time-dependent computations; 

Scheduler-Activity and Execution-Controller 
components to control execution 

control at the module level.

 3. Description	 of	 composite	 compo-
nents. Atomic components are com-

posed using only interactions and 

priorities because BIP is expressive 

enough to describe any kind of co-

ordination solely through architec-

tural constraints.

The entire functional layer 

contains eight distinct modules. Their 

functionalities are

• collecting data from the laser sen-

sors (LaserRF), 
• generating an obstacle map (Aspect),
• navigating using the near diagram 

approach (NDD),

• managing the low-level robot wheel 

controller (R� ex),

• emulating the communication with 

an orbiter (Antenna),
• providing power and energy for the 

robot (Battery),
• heating the robot in a low-tempera-

ture environment (Heating), and 

• controlling the movement of two 

cameras (Platine).

Table 1 presents characteristics of 

the software componentized in BIP. 

For example, the NDD module uses 117 

connectors to interconnect 27 atomic 

components comprising 152 control lo-

cations. This module consists of 5,343 

lines of BIP code and calls external 

functions totalizing 51,653 lines of 

C/C++ code. In total, the functional 

layer modules use 268 atomic compo-

nents and 1,141 connectors. The whole 

model has 37,294 lines of BIP code and 

calls more than 279,818 lines of exter-

nal C/C++ code.

We used D-Finder to formally ver-

ify the functional layer’s BIP model 

for deadlock-freedom and other safety 

properties, such as data freshness. We 

have the capability to check safety and 

deadlock freedom properties for all 

the modules. We successively detected 

(and corrected) two deadlocks, one in 

Antenna and the other in NDD. We also 

successfully veri� ed deadlock free-

dom for composition of three modules 

(LaserRF, Aspect, and NDD), and data fresh-

ness between two modules (Aspect and 

NDD). Table 1 includes veri� cation times 

for checking deadlock freedom of indi-

vidual modules as well as other charac-

teristics such as the number of atomic 

components, control locations, lines of 

BIP code, and lines of C/C++ code.

We also used the BIP model to syn-

thesize the execution controller that en-

codes and enforces safety properties, 

thereby facilitating the development of 

safe, dependable robotic architectures. 

The initial version of this software used 

a centralized, hand-written, request-

and-report checker (R2C) to ensure the 

proper execution of services and to en-

Functional	Layer ::= (Module)+
Module ::= (Service)+ . (Execution-Task) . (Poster)+
Service ::= (Service-Controller) . (Activity)
Execution-Task ::= (Timer) . (Scheduler-Activity) . (Execution-Controller)

FIGURE 4. Hierarchical decomposition of Functional Layer into components.
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force the safety constraints on module 

interactions. The BIP model inherently 

enforced these constraints by connec-

tors and priorities.

As an example, consider a require-

ment for the robot to navigate using the 

NDD module’s GoTo service only if services 

Init, SetParams, and SetSpeed have already 

executed successfully. BIP enforces this 

requirement by adding a connector be-

tween the GoTo service’s request port and 

the other ports’ getStatus ports. The status 
values guard and may prevent the trig-

gering of the GoTo service.

Finally, we ran experiments on the 

code generated automatically from the 

Dala rover’s BIP model, using fault in-

jections to demonstrate that the BIP  

engine successfully stops the robot from 

reaching undesired or unsafe states.

B
IP’s rigorous semantics and 

expressive power are unique 

among component frame-

works and associated system design 

�ows. In contrast to other formalisms, 

BIP’s mathematical foundation on a 

minimal concept set and structuring 

principles doesn’t hamper its effec-

tive use for modeling complex real-life 

systems. In contrast to less expressive 

frameworks, it models various syn-

chronization types in a natural and di-

rect manner. BIP directly encompasses 

multiparty interaction between compo-

nents, avoiding the complexities nec-

essary in frameworks supporting only 

point-to-point interactions. In contrast 

to object-oriented software, BIP mod-

els are easy to understand and analyze 

as compositions of integrated features. 

Furthermore, their explicit use of au-

tomata in behavior ensures module ro-

bustness by enforcing the right execu-

tion order of functions independently 

of their use context.

Progressively re�ning the applica-

tion software model by applying cor-

rectness-preserving source-to-source 

transformations takes hardware archi-

tecture constraints into account as well 

as coordination mechanisms between 

processors in a distributed implemen-

tation. Essential properties are veri�ed 

as early as possible in the design �ow 

in an incremental, compositional veri-

�cation process that avoids complex-

ity limitations. When the validity of a 

property is established for a model, the 

property holds for all the models ob-

tained by transformation. Transforma-

tion complexity is linear with the size 

of the transformed models.

As a unifying modeling framework, 

BIP can maintain a design �ow’s over-

all coherency by comparing different 

architectural solutions and their prop-

erties. This differs signi�cantly from 

approaches that decouple code genera-

tion and deployment from validation 

and use many different, semantically 

unrelated formalisms for program-

ming, hardware description, and  

simulation.  
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