
© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

www.computer.org/software

Rigorous Component-Based System Design
Using the BIP Framework

Anandu Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz,

Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis

Vol. 28, No. 3

May/June 2011

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E MAY/JUNE 2011 | IEEE SOFTWARE 41

SYSTEM DESIGN DIFFERS radically

from pure software design in that it

must account not only for functional

requirements but also for extrafunc-

tional requirements regarding the use

of execution platform resources, such

as time, memory, and energy. Meet-

ing extrafunctional requirements is

essential in embedded system design

and requires evaluation of how design

choices affect overall system behavior.

It also implies a deep understanding of

how the application software interacts

with the underlying execution plat-

form. Yet system designers currently

lack rigorous techniques for deriving

global models of a given system from

models of its application software and

execution platform.

We de�ne a rigorous design �ow

as one that guarantees essential sys-

tem properties. Most existing design

�ows that aspire to this goal privilege a

unique programming model and asso-

ciate it with a compilation chain that’s

adapted for a given execution model.

For example, synchronous system de-

sign relies on synchronous program-

ming models and usually targets hard-

ware or sequential implementations on

single processors.1 Alternatively, real-

time programming, based on sched-

uling theory for periodic tasks, tar-

gets dedicated real-time multitasking

platforms.2

At the Verimag Laboratory, we’ve

been developing the behavior, interac-

tion, priority (BIP) component frame-

work to support a rigorous system de-

sign �ow. The BIP framework is

•	 model-based, describing all soft-

ware and systems according to a

single semantic model. This main-

tains the �ow’s overall coherency

by guaranteeing that a description

at step n+1 meets essential proper-

ties of a description at step n.

•	 component-based, providing a

family of operators for building

composite components from sim-

pler components. This overcomes

the poor expressiveness of theoreti-

cal frameworks based on a single

operator, such as the product of au-

tomata or a function call.

•	 tractable, guaranteeing correctness

Rigorous
Component-Based
System Design
Using the BIP
Framework
Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz,

Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis,

Verimag Laboratory

// An autonomous robot case study illustrates the use

of the behavior, interaction, priority (BIP) component

framework as a unifying semantic model to ensure

correctness of essential system design properties. //

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

42 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

by construction and thereby avoid-

ing monolithic a posteriori veri�ca-

tion as much as possible.

BIP supports the construction of

composite, hierarchically structured

components from atomic components

characterized by their behavior and

interfaces. It lets developers compose

components by layered application of

interactions and priorities. This en-

ables an expressiveness unmatched

by any other existing formalism (see

the related work sidebar).3 Architec-

ture is a first-class concept in BIP,

with well-defined semantics that

system designers can analyze and

transform.

In this article, we present the BIP

component framework, highlight-

ing its design �ow and the main steps

for deriving correct implementations

from a given application’s software

and a target platform. Case study re-

sults from a BIP implementation of the

Dala autonomous robot demonstrate

its effectiveness.

The BIP Component
Framework
The BIP framework uses connectors to

specify possible interactions between

components and priorities to select

among possible interactions. Interac-

tions express synchronization con-

straints between the composed com-

ponents’ activities, and priorities �lter

possible interactions to steer system

evolution toward meeting performance

requirements. The combination of in-

teractions and priorities is the source

of BIP’s expressive power. It de�nes a

clean, abstract concept of architecture

separate from behavior.

Atomic	 components are �nite-state

automata or Petri nets extended with

data and ports. Ports are action names

that can be associated with data and

used for interactions with other compo-

nents. States denote control locations

where components wait for interac-

tions. A transition is an execution step,

labeled by a port, from one control lo-

cation to another. Each transition has

an associated guard and action—re-

spectively, a Boolean condition and a

function de�ned on local data. In BIP,

complex data and their transformations

are written in C/C++.

A transition can be executed if its

guard evaluates to true and some inter-

action involving its port is enabled. The

execution is an atomic sequence of two

microsteps: �rst, execution of the in-

teraction involving the port, which is a

synchronization between several com-

ponents with possible data exchange,

followed by execution of the action as-

sociated with the transition.

Example 1: Atomic Components

The right side of Figure 1 shows two

atomic components, Service-Controller and

Activity, for the Dala robot controller.

Activity wraps the long-time computa-

tion of some speci�c application func-

tion. Service-Controller provides execution

control (triggering, canceling, error

control, and so on) over the associ-

ated Activity component. For simplici-

ty’s sake, the �gure presents only the

skeleton control behavior (ports and

RELATED WORK
IN COMPONENT FRAMEWORKS
BIP differs signi�cantly from existing component frameworks for

software engineering. These often use multithreaded program-

ming and point-to-point interaction mechanisms, such as function

calls, for coordination between components. In contrast, BIP ex-

ecutes atomic components concurrently and coordinates them in

terms of high-level mechanisms such as protocols and scheduling

policies.

Because BIP focuses on the organization of computation

between components, it can be viewed as an architecture

description language (ADL). Like other existing ADLs, such as

Acme (www.cs.cmu.edu/~acme)1 and Darwin,2 BIP uses the

connector concept to express coordination between components.

Nonetheless, connectors in BIP are stateless. The architecture,

consisting of connectors and priorities, is clearly distinguished

from behavior.

Another signi�cant difference from other frameworks

is that BIP is intended for system modeling. It directly

encompasses timing and resource management. Other system

modeling formalisms either seek generality to the detriment of

rigorousness, such as (Systems Modeling Language (SySML)3

and (Architecture Analysis and Design Language (AADL; http://

standards.sae.org/as5506a),4 or limit their scope to speci�c

computation models, such as Ptolemy.5

References
 1. D. Garlan, R. Monroe, and D. Wile, “Acme: An Architecture Description

Interchange Language, Proc. 1997 Conf. Centre for Advanced Studies on

Collaborative Research (CASCON 97), IBM Press, 1997, pp. 169–183.

 2. J. Magee and J. Kramer, “Dynamic Structure in Software Architectures,”

Proc. 4th ACM SIGSOFT Symp. Foundations of Software Eng. (SIGSOFT

96), ACM Press, 1996, pp. 3–14.

 3. OMG Systems Modeling Language SysML (OMG SysML), v. 1.2, Object

Management Group, 2010; www.omg.org/spec/SysML/1.2.

 4. P.H. Feiler, B. Lewis, and S. Vestal, “The SAE Architecture Analysis and

Design Language (AADL): A Standard for Engineering Performance Critical

Systems,” IEEE Conf. Computer Aided Control Systems Design (CACSD

06), IEEE Press, 2006, pp. 1206–1211.

 5. J. Eker et al., “Taming Heterogeneity: The Ptolemy Approach,” Proc. IEEE,

vol. 91, no. 1, 2003, pp. 127–144.

 MAY/JUNE 2011 | IEEE SOFTWARE 43

transitions) and omits the data and

associated code. For example, Activity
is initialized (start transition) and then

executes its associated functions (exec,
internal_exec transitions). The execution

might � nish normally (� nish transition),

fail (fail transition) or be interrupted

(inter transition).

Composite	components are de� ned

by assembling constituent components

(atomic or composite) using connec-

tors. Connectors de� ne relationships

between ports of interacting compo-

nents. They represent sets of interac-

tions—that is, nonempty sets of ports

that must be jointly executed. Within

a connector, an interaction can occur

in two situations: when all involved

ports are ready to participate (strong

synchronization) or when a port trig-

gers the interaction without waiting

for other ports (broadcast).

The valid interactions within con-

nectors are formally de� ned by al-

gebraic expressions on ports using a

binary fusion operator and a unary

typing operator.4 Typing associates

connector ends (ports or connectors)

to synchronization types: trigger (ac-

tive port, initiates broadcast) or syn-

chron (passive port). Moreover, every

connector interaction is associated

with a guard and a data transfer func-

tion. An interaction can be executed

only when its guard is true. Its execu-

tion consists of transferring the data

and then, notifying the components in-

volved in the interaction.

Finally, the priorities for choos-

ing between simultaneously enabled

interactions within a BIP component

are de� ned as rules, each consisting

of a pair of interactions associated

with a condition. When the condi-

tion holds and both interactions of the

corresponding pair are enabled, only

the one with higher-priority can be

executed.

Example 2: Composite Components

The Service component on the left side

of Figure 1 is a composite of Activity

and Service-Controller through connec-

tors that enforce strong synchroniza-

tions of several actions (for example,

start, exec, finish, fail). The connectors al-

low the Service-Controller to initiate and

follow the computation performed

within Activity. The composite com-

ponent is equipped with priorities to

privilege the execution of a fail inter-

action—that is, error handling—over

finish and exec interactions, which cor-

respond to normal behavior.

The example also illustrates the

encapsulation principle used in BIP.

Service is further composed with the

Service-Proxy component by using the

ports available on the Service interface,

which are explicitly redirected either

to subcomponent ports or to inner

connectors. The trigger-request connec-

tor between Service-Proxy and Service il-

lustrates a broadcast initiated by the

trigger port. A trigger action is either

executed alone or synchronized with

request actions when they’re enabled.

A concrete modeling language

Ether

Start

Control

Exec

Abort

Report

getStatus

getStatus

getStatus

abort

error

fail finish

inter

getStatus

send_final_report

getStatus

abort
control

startabort

internal_start

start

codel_is_executed

inter
internal_inter

codel_is_executed

exec

internal_exec

finish

fail

codel_is_executed

internal_finish

internal_fail

send_final_reportcodel_is_executed

interinter

exec

getStatus

start startexec

failfail

Service

finishsend_final_report

abort getStatusService controller codel_is_executed Activity

codel_is_executed

exec send_final_reportfinish

exec, finish < fail

codel_is_executedgetStatusabort

request
request

request

get_reportabort_conflict

check_req

get_report

get_report

get_report

abort_conflict

reject

read_req trigger

Service proxy

trigger

get_report

no_req

send_final_report

reject

check_req

no_req

read_req

Ether
Start

Exec

Abort

Istart

Sleep

Run

Inter

End

iEnd

iFail

Fail

Read

Idle

Check

Abort

FIGURE 1. BIP component schematic. The Service composite component on the left, for a Dala robot service, consists of two atomic

components: Service Controller and Activity.

44 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

supports the BIP framework. The BIP

language leverages C++-style variables

and data-type declarations, expres-

sions, and statements. It also provides

additional structural syntactic con-

structs for de� ning component be-

havior and describing connectors and

priorities. Moreover, it provides con-

structs for handling parametric and hi-

erarchical descriptions and for express-

ing timing constraints associated with

behavior.

The BIP Design Flow
Figure 2 illustrates a rigorous system

design � ow that uses BIP as a unifying

semantic model to ensure consistency

between the different design steps.

The design � ow involves four dis-

tinct steps that translate the applica-

tion software into a BIP model and

progressively derive an implementa-

tion by applying source-to-source

transformations:

	 1. Translating	the	application	software	
into	 a	 BIP	 model. The translation

focuses on the de� nition of adequate

interfaces. It encapsulates and reuses

the application software’s data struc-

tures and functions.

 2. Integrating	architectural	 constraints	
in	 the	 application	 software	 model.
The integration derives a system

model in BIP from a model of the

hardware target platform and a

mapping.

 3. Translating	 interactions	 and	 pri-
orities	of the system model in terms

of protocols using send/receive

primitives.

 4. Generating	deployable	C	code	from

which an implementation can be

obtained.

The transformations are “correct by

construction” because the obtained BIP

models are observationally equivalent

to the original model. In particular,

they preserve the application software’s

safety properties. Furthermore, we de-

veloped D-Finder, a veri� cation tool

that checks essential safety properties

of the application software.

Figure 3 shows an extensible toolset

that supports the entire BIP design

� ow, including D-Finder.

Translating Application Software into BIP

The � rst step in the design � ow con-

sists of generating a BIP model for the

application software. We have devel-

oped a general method for generating

BIP models from languages with well-

de� ned operational semantics. It in-

volves the following steps for a given

application software written in a lan-

guage L:

	 1. Translating	the	source	language	L’s	
atomic	 components	 into BIP com-

ponents. The translation focuses

on the de� nition of adequate inter-

faces. It encapsulates and reuses the

application software’s data struc-

tures and functions.

	 2. Translating	the	coordination	mecha-
nisms between	application	software	
components	 into the target BIP

model’s connectors and priorities.

	 3. Generating	 a	 BIP	 component	 that	
models	 L’s	 operational	 seman-
tics. This component plays the role

of an engine coordinating the ex-

ecution of the application software

components.

We developed BIP model genera-

tors for several programming models

used by embedded system develop-

ers (the source-to-source transformers

in Figure 3). The generated models

preserve the structure of the initial

Mapping

Deployable code

Translation

Performance
analysis

D−Finder

Hardware execution platform

Integration of
architectural constraints

Application software

System model in BIP

Code generation

software model in BIP

Application

Integration of
communication protocols

Distributed system model in S/R−BIP

FIGURE 2. BIP design fl ow. An implementation—that is, deployable code—is generated

from the application software, a model of the hardware platform, and a mapping.

 MAY/JUNE 2011 | IEEE SOFTWARE 45

programs, their size is linear with re-

spect to the initial program size, and

they’re easy for the system developers

to understand.

Using D-Finder

for Compositional Veri� cation

D-Finder bases its compositional ver-

i� cation method on computing in-

variants.5 It computes increasingly

stronger invariants for composite

components as conjunctions of atomic

components’ local invariants and in-

teraction invariants that characterize

the composition glue. Static analysis of

atomic components generates the lo-

cal component invariants. Interaction

invariants are generated from abstrac-

tions of the composite component to

be veri� ed.

We recently improved this method

to take advantage of the incremen-

tal system design process, which pro-

ceeds by adding new interactions to a

component under construction. Each

time a new interaction is added, it’s

possible to verify whether the result-

ing component violates a given prop-

erty and so discover design errors as

they appear. The incremental veri� -

cation technique6 uses suf� cient con-

ditions to ensure the preservation of

invariants when new interactions are

added during the component construc-

tion process. If these conditions aren’t

satis� ed, D-Finder generates new in-

variants by reusing invariants of the

constituent components. Reusing in-

variants considerably reduces the veri-

� cation effort.

The D-Finder tool implements the

compositional veri� cation techniques

for checking the deadlock-freedom of

systems described in BIP.7 Experimen-

tal results on classical benchmarks

show that D-Finder can run exponen-

tially faster than existing monolithic

veri� cation tools, such as NuSMV.

Generating Implementations

The BIP toolset offers several compila-

tion chains, targeting different execu-

tion platforms. To implement BIP on

single-core platforms requires using

engines—that is, dedicated middle-

ware for execution of the C++ code au-

togenerated from BIP descriptions. BIP

currently provides two engines: one

for real-time single-thread and one

for multithread execution. For multi-

thread execution, each atomic compo-

nent is assigned to a thread, with the

engine itself being a thread. Commu-

nication occurs only between atomic

components and the engine—never

directly between different atomic

components.

To generate distributed implemen-

tations from BIP models, we trans-

form them into send/receive (S/R)-BIP

models,8 a subclass of models in which

protocols using S/R primitives replace

multiparty interactions. From S/R-BIP

models and a mapping of atomic com-

ponents into a platform’s processing

elements, we generate ef� cient C/C++

or message passing interface (MPI)

code.

We use the following sequence of

correct-by-construction transforma-

tions, which preserve observational

equivalence.8 First, given a user-

de� ned partition of a BIP system mod-

el’s interactions, we break the atomi-

city of its transitions by separating the

interaction from the computation. We

then replace multiparty interactions

with protocols that use S/R primitives.

Moreover, we structure the target S/R-

BIP model in three layers:

• The component	 layer consists of

the original model’s atomic compo-

nents in which each port involved

in strong interactions is replaced by

a pair of corresponding S/R ports.

• The interaction	protocol	layer con-

sists of a set of components, each of

which manages a class of the par-

C++ generator

(engine-based)

BIP executable

BIP engine runtime

Platform

D-Finder

Validation

nesC DOL Simulink

Source-to-source transformers

C Lustre

Distributed platform

Transformers

BIP executable BIP executable BIP executable

Communications primitives (Send/Receive)

BIP

BIP language

Language

factory

Code generation and runtimes

Parser

Distributed BIP

generator

C/C++C/C++

C/C++

C/C++

S/R BIP model

BIP modelBIP metamodel

BIP compiler

FIGURE 3. BIP toolset. The tools include translators from various programming models,

verifi cation tools, source-to-source transformers, and C/C++ code generators for BIP models.

46 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

tition’s interactions. The protocol

detects whether interactions are

enabled and executes them after

resolving con� icts either locally or

with assistance from the third layer.

• The confl	ict	 resolution	 protocol	
layer consists of distributed algo-

rithms for resolving con� icts as

requested by the interaction pro-

tocol layer. The con� ict resolution

protocol, which basically solves a

committee coordination problem,

uses either a fully centralized, to-

ken-ring, or dining philosophers

algorithm.9,10

In the second step, we use the three-

layer S/R-BIP model and a mapping of

its atomic components on processors

to generate either an MPI program or

a set of plain C/C++ programs that use

TCP/IP communication. This process

statically composes atomic components

running on the same processor to ob-

tain a single observationally equivalent

component, and reduce coordination

overhead at runtime.

Case Study:
Dala Robot Controller
We used BIP to develop a new version

of the functional layer of the Dala ro-

bot controller from an existing version

developed using the GeNoM frame-

work.11 We presented preliminary

results of this work elsewhere,12 in-

cluding the complete modeling of the

functional layer, its functional veri� -

cation, and the synthesis of a correct-

by-construction software controller.

Here, we brie� y introduce the model

and summarize our latest results on the

veri� cation of deadlock-freedom.

Functional layer design in BIP in-

volves three steps:

 1. Hierarchical	 decomposition	 into	
components. A tree structure rep-

resents the overall architecture with

its root corresponding to the func-

tional layer and its leaves to atomic

components. The grammar in Fig-

ure 4 shows how to obtain the de-

signed system as the incremental

composition of components.

 2. Description	 of	 each	 atomic	 com	-
ponent’s	 behavior. In addition

to component abstractions, such

as those we described for the

Service-Controller and Activity compo-

nents (see Figure 1), the functional

layer includes Poster components to

store and communicate data as-

sociated with different modules;

Timer components that trigger peri-

odic, time-dependent computations;

Scheduler-Activity and Execution-Controller
components to control execution

control at the module level.

 3. Description	 of	 composite	 compo-
nents. Atomic components are com-

posed using only interactions and

priorities because BIP is expressive

enough to describe any kind of co-

ordination solely through architec-

tural constraints.

The entire functional layer

contains eight distinct modules. Their

functionalities are

• collecting data from the laser sen-

sors (LaserRF),
• generating an obstacle map (Aspect),
• navigating using the near diagram

approach (NDD),

• managing the low-level robot wheel

controller (R� ex),

• emulating the communication with

an orbiter (Antenna),
• providing power and energy for the

robot (Battery),
• heating the robot in a low-tempera-

ture environment (Heating), and

• controlling the movement of two

cameras (Platine).

Table 1 presents characteristics of

the software componentized in BIP.

For example, the NDD module uses 117

connectors to interconnect 27 atomic

components comprising 152 control lo-

cations. This module consists of 5,343

lines of BIP code and calls external

functions totalizing 51,653 lines of

C/C++ code. In total, the functional

layer modules use 268 atomic compo-

nents and 1,141 connectors. The whole

model has 37,294 lines of BIP code and

calls more than 279,818 lines of exter-

nal C/C++ code.

We used D-Finder to formally ver-

ify the functional layer’s BIP model

for deadlock-freedom and other safety

properties, such as data freshness. We

have the capability to check safety and

deadlock freedom properties for all

the modules. We successively detected

(and corrected) two deadlocks, one in

Antenna and the other in NDD. We also

successfully veri� ed deadlock free-

dom for composition of three modules

(LaserRF, Aspect, and NDD), and data fresh-

ness between two modules (Aspect and

NDD). Table 1 includes veri� cation times

for checking deadlock freedom of indi-

vidual modules as well as other charac-

teristics such as the number of atomic

components, control locations, lines of

BIP code, and lines of C/C++ code.

We also used the BIP model to syn-

thesize the execution controller that en-

codes and enforces safety properties,

thereby facilitating the development of

safe, dependable robotic architectures.

The initial version of this software used

a centralized, hand-written, request-

and-report checker (R2C) to ensure the

proper execution of services and to en-

Functional	Layer ::= (Module)+
Module ::= (Service)+ . (Execution-Task) . (Poster)+
Service ::= (Service-Controller) . (Activity)
Execution-Task ::= (Timer) . (Scheduler-Activity) . (Execution-Controller)

FIGURE 4. Hierarchical decomposition of Functional Layer into components.

 MAY/JUNE 2011 | IEEE SOFTWARE 47

force the safety constraints on module

interactions. The BIP model inherently

enforced these constraints by connec-

tors and priorities.

As an example, consider a require-

ment for the robot to navigate using the

NDD module’s GoTo service only if services

Init, SetParams, and SetSpeed have already

executed successfully. BIP enforces this

requirement by adding a connector be-

tween the GoTo service’s request port and

the other ports’ getStatus ports. The status
values guard and may prevent the trig-

gering of the GoTo service.

Finally, we ran experiments on the

code generated automatically from the

Dala rover’s BIP model, using fault in-

jections to demonstrate that the BIP

engine successfully stops the robot from

reaching undesired or unsafe states.

B
IP’s rigorous semantics and

expressive power are unique

among component frame-

works and associated system design

�ows. In contrast to other formalisms,

BIP’s mathematical foundation on a

minimal concept set and structuring

principles doesn’t hamper its effec-

tive use for modeling complex real-life

systems. In contrast to less expressive

frameworks, it models various syn-

chronization types in a natural and di-

rect manner. BIP directly encompasses

multiparty interaction between compo-

nents, avoiding the complexities nec-

essary in frameworks supporting only

point-to-point interactions. In contrast

to object-oriented software, BIP mod-

els are easy to understand and analyze

as compositions of integrated features.

Furthermore, their explicit use of au-

tomata in behavior ensures module ro-

bustness by enforcing the right execu-

tion order of functions independently

of their use context.

Progressively re�ning the applica-

tion software model by applying cor-

rectness-preserving source-to-source

transformations takes hardware archi-

tecture constraints into account as well

as coordination mechanisms between

processors in a distributed implemen-

tation. Essential properties are veri�ed

as early as possible in the design �ow

in an incremental, compositional veri-

�cation process that avoids complex-

ity limitations. When the validity of a

property is established for a model, the

property holds for all the models ob-

tained by transformation. Transforma-

tion complexity is linear with the size

of the transformed models.

As a unifying modeling framework,

BIP can maintain a design �ow’s over-

all coherency by comparing different

architectural solutions and their prop-

erties. This differs signi�cantly from

approaches that decouple code genera-

tion and deployment from validation

and use many different, semantically

unrelated formalisms for program-

ming, hardware description, and

simulation.

Acknowledgments
The research leading to these results received
funding from the European Community’s
Seventh Framework Programme under grant
agreement 248776 and from the Artemis
Joint Undertaking grant agreement 2009-1-
100230.

References
 1. N. Halbwachs, Synchronous	Programming	of	

Reactive	Systems, Kluwer Academic Publish-
ers, 1993.

 2. A. Burns and A. Welling, Real-Time	Systems	
and	Programming	Languages, 3rd ed.,
Addison-Wesley, 2001.

 3. S. Bliudze and J. Sifakis, “A Notion of Glue
Expressiveness for Component-Based Sys-
tems,” Proc.	19th	Int’l	Conf.	Concurrency	
Theory (CONCUR 08), LNCS 5201, Springer,
pp. 508–522.

 4. S. Bliudze and J. Sifakis, “Causal Semantics
for the Algebra of Connectors,” Formal	Meth-
ods	in	System	Design, vol. 36, no. 2, 2010, pp.
167–194.

 5. S. Bensalem et al., “Compositional Veri�ca-
tion for Component-Based Systems and Ap-
plication,” Proc.	6th	Int’l	Symp.	Automated	
Technology	for	Verification	and	Analysis
(ATVA 08), LNCS 5311, Springer, 2008, pp.
64–79.

 6. S. Bensalem et al., “Incremental Component-

T
A

B
L
E

 1 Deadlock-freedom-checking results for Dala robot controller modules.

Module

Atomic

components

Control

locations Connectors BIP LoC C/C++ LoC

Estimated state

space size

Veri�cation

time (minutes)

LaserRF 43 213 202 5,343 51,653 220 × 329 × 34 1:22

Aspect 29 160 117 3,029 30,204 217 × 323 0:39

NDD 27 152 117 4,013 32,600 222 × 314 × 5 8:16

R�ex 56 308 227 8,244 57,442 234 × 335 × 1045 9:39

Antenna 20 97 73 1,645 16,501 212 × 39 × 13 0:14

Battery 30 176 138 3,898 21,527 222 × 317 × 5 0:26

Heating 26 149 116 2,453 18,380 217 × 314 × 145 0:17

Platine 37 174 151 8,669 51,511 219 × 322 × 35 0:59

48 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: SOFTWARE COMPONENTS: BEYOND PROGRAMMING

Based Construction and Veri� cation Using
Invariants,” Proc.	Formal	Methods	on	Com-
puter-Aided	Design (FMCAD 10), Formal
Methods in Computer-Aided Design, 2010,
pp. 257–266; http://fmcad10.iaik.tugraz.at/
Papers/FMCAD10.pdf.

 7. S. Bensalem et al., “D-Finder: A Tool for
Compositional Deadlock Detection and
Veri� cation,” Proc.	21st	Int’l	Conf.	Computer	
Aided	Verifi	cation (CAV 09), LNCS 5643,
Springer, 2009, pp. 614–619.

 8. B. Bonakdarpour et al., “From High-Level
Component-Based Models to Distributed
Implementations,” Proc.	10th	Int’l	Conf.	
Embedded	Software (EmSoft 10), ACM Press,
2010, pp. 209–281.

 9. K.M. Chandy and J. Misra, Parallel	Program	
Design:	A	Foundation, Addison-Wesley Long-
man, 1988.

 10. R. Bagrodia, “Process Synchronization:
Design and Performance Evaluation of Distrib-
uted Algorithms,” IEEE	Trans.	Software	Eng.,
vol. 15, no. 9, 1989, pp. 1053–1065.

 11. S. Fleury, M. Herrb, and R. Chatila, “GenoM:
A Tool for the Speci� cation and the Implemen-
tation of Operating Modules in a Distributed
Robot Architecture,” Proc.	1997	IEEE/RSJ	
Int’l	Conf.	Intelligent	Robots	and	Systems
(IROS 97), IEEE Press, 1997, pp. 842–848.

 12. A. Basu et al., “Incremental Component-Based
Construction and Veri� cation of a Robotic
System,” Proc.	18th	European	Conf.	Artifi	cial	
Intelligence (ECAI 08), IOS Press, 2008, pp.
631–635.

ANANDA BASU is a postdoctoral researcher at the Verimag Labora-

tory. His research focuses on system-level modeling and performance

analysis of mixed software-hardware systems and deriving their

implementations on target hardware platforms. His interests include

component-based modeling of embedded systems, in particular model-

ing and simulation frameworks for complex and heterogeneous sys-

tems. Basu has a PhD in computer science from the University Joseph

Fourier, Grenoble. Contact him at ananda.basu@imag.fr.

SADDEK BENSALEM is a professor at the University of Joseph Fou-

rier. His research focus is modeling and validation of real-time systems,

including component-based modeling, veri� cation, and synthesis of

distributed systems. Bensalem has a PhD in computer science from INP

Grenoble (Institut National Polytechnique de Grenoble). Contact him at

saddek.bensalem@imag.fr.

MARIUS BOZGA is a research engineer at CNRS (Centre National de

la Recherche Scienti� que) and a member of the Verimag Laboratory.

His research interests focus on component-based design for distributed

real-time systems and include formal models for components, model-

based design and implementation, and automatic validation methods

and tools. Bozga has a PhD in computer science from the University of

Grenoble. Contact him at marius.bozga@imag.fr.

JACQUES COMBAZ is a research engineer at CNRS (Centre National

de la Recherche Scienti� que) and a member of the Verimag Laboratory.

His research interests include the design of adaptive applications and

real-time systems. He developed the real-time engine for BIP programs.

Combaz has a PhD in mathematics and computer science from the

University of Grenoble. Contact him at jacques.combaz@imag.fr.

MOHAMAD JABER is a postdoctoral researcher at the Verimag Labo-

ratory. His research focuses on component-based design and imple-

mentation. Jaber has a PhD in computer science from the University of

Grenoble. Contact him at mohamad.jaber@imag.fr.

THANH HUNG NGUYEN is a postdoctoral researcher at the Verimag

Laboratory. His research interests are in the modeling and veri� cation

of component-based systems. Nguyen has a PhD in computer science

from the University of Grenoble. Contact him at thanh-hung.nguyen@

imag.fr.

JOSEPH SIFAKIS is a CNRS researcher and founder of the Verimag

Laboratory. His research includes pioneering work on theoretical and

practical aspects of concurrent systems speci� cation and veri� cation.

His current interests include component-based design, modeling, and

analysis of real-time systems with a focus on correct-by-construction

techniques. Sifakis has a PhD in computer science from the University

of Grenoble. In 2007, he shared the Turing Award with Ed Clarke and

Allen Emerson for their contribution to model checking. Contact him at

joseph.sifakis@imag.fr.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

The magazine of computational
tools and methods.

MEMBERS $49

STUDENTS $25

www.computer.org/cise

http://cise.aip.org

CiSE addresses large

computational problems

by sharing

 ›› effi cient algorithms

 ›› system software

 ›› computer architecture

	coversheet
	s3boz.pdf

