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1. INTRODUCTION

A problem concerning circular cylindrical object scattering which has
been studied is the problem of determining the scattering and radia-
tion that occurs when a circular cylindrical dielectric system contains
a region whose permittivity is inhomogeneous and periodic in the phi
(ϕ ) azimuthal direction [1–3]. Elsherbeni and Hamid [1] study EM,
transverse magnetic (TM, electric field parallel to the cylinder axis)
scattering from the inhomogeneous radial dielectric shell permittivity
profile ε(ρ, ϕ) = εa(ρ0/ρ)2(η − δ cos(2ϕ)) where εa, ρ0, η , and δ
are constants defined in [1] and ρ and ϕ are cylindrical coordinates.
Mathieu functions are used to solve for the EM fields in the inhomoge-
neous shell region. The choice of ε(ρ, ϕ) used by [1–3] was necessary
in order that the Region 2 solution could be expressed in terms of
Mathieu functions. A limitation of the solution of [1–3] is the fact that
their solution doesn’t apply to an arbitrary ε(ϕ,ϕ) profile, but only
one to which a Mathieu function solution can be found.
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In a recent paper [4] the present author generalized the work of
[1–3] and presented an EM cylindrical solution algorithm to analyze
radiation and scattering from isotropic dielectric cylindrical systems
which have an arbitrary radial and azimuthal ε(ϕ,ϕ) profile rather
than the ε(ρ, ϕ) profile used by [1–3]. The solution algorithm in this
paper [4] was based on a recently developed EM planar diffraction
grating algorithm called Rigorous Coupled Wave Theory [5–7]. The
purpose of the present paper will be to further generalize the work
[1–4] and extend the RCWT cylindrical algorithm of [4] to handle
the analysis of anisotropic, inhomogeneous dielectric and permeable
material cylinders. Other research on uniform anisotropic cylinder
scattering may be found in [8, 9].

Specifically the algorithm of this paper will study the case when;
(1) the electric field is polarized parallel to the material cylindrical
axis (TM case), (2) the cylindrical scattering object has an arbitrary,
isotropic, inhomogeneous, dielectric permittivity profile ε(ρ, ϕ) , and
(3) the cylindrical scattering object has arbitrary, anisotropic inho-
mogeneous relative permeability tensor profiles µxx(x, y) , µxy(x, y) ,
µyx(x, y) , µyy(x, y) , ( µxz , µzx , µzy , and µyz are taken to be zero).
For the polarization of the present problem, the value of µzz is im-
material and therefore in this paper is not specified. Eqs (2, 3) of this
paper and [9, 10] express the tensor elements in cylindrical components.
The analysis of this paper also applies to the case when; (1) the mag-
netic field is polarized parallel to the cylindrical axis (TE case), (2) the
cylindrical scattering object has an arbitrary, isotropic, inhomogeneous
permeable profile µ(ρ, ϕ) , and (3) the cylindrical scattering object has
arbitrary, anisotropic inhomogeneous relative permittivity tensor pro-
files εxx(x, y) , εxy(x, y) , εyx(x, y) , and εyy(x, y) ( εxz , εzx , εzy , and
εyz , are taken to be zero). This follows since the TE and TM cases
just described are dual to one another.

The solution of this problem is of great interest in several areas of
EM research. In the area of cylindrical aperture antenna theory, ra-
dial and azimuthal dielectric loading in front of a cylindrical aperture
antenna can greatly alter, and therefore possibly enhance, the radia-
tion characteristics of cylindrical aperture antennas [1–3]. Other EM
applications include, (1) scattering from circular shaped, frequency-
selective surfaces, (2) scattering from cylindrical surfaces covered with
periodically spaced, inhomogeneous, anisotropic, radar absorbing ma-
terial (RAM), (3) scattering from irregular shaped, inhomogeneous
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mounting struts in an anechoic chamber, and (4) use as a cross check
of other numerical algorithms (FD-TD or FE) which study scattering
from inhomogeneous, anisotropic systems.

2. RIGOROUS COUPLED WAVE THEORY FORMULA-
TION

This paper is concerned with the problem of determining the EM fields
that arise when a plane wave and an off-center, interior line source
excite EM fields in a circular cylindrical dielectric, anisotropic, per-
meability system as shown in Figs. 1–3 by using the RCWT method.
The EM analysis will be carried out by; (1) solving Maxwell’s equation
in the interior and exterior regions of Figs. 1–3 in terms of cylindri-
cal Bessel functions, (2) solving Maxwell’s equation in the shell region
by using a multi-layer state variable approach, and (3) matching EM
boundary conditions at the interfaces. It is convenient to introduce
normalized coordinates. We let a = k0ã , b = k0b̃ , ρ = k0ρ̃ etc.
where unnormalized coordinates are in meters and k0 = 2π/λ is the
free space wavenumber (1/meters) and λ is the free space wavelength.

It is assumed that all fields and the medium are z -independent and
that the relative dielectric permittivity in an inhomogeneous region of
the material system is given by

ε(ρ, ϕ) =
∞∑

i=−∞
ε̆i(ρ)ejiϕ, 0 ≤ ϕ ≤ 2π (1)

where ε̆i(ρ) represent ϕ -exponential Fourier coefficients. The aniso-
tropic permeability tensor is assumed to be given in rectangular and
cylindrical coordinates by [9, 10]

µ =

 µxx µxy 0
µyx µyy 0
0 0 µzz

 , µ =

 µρρ µρϕ 0
µϕρ µϕϕ 0
0 0 µzz

 (2)

where

µρρ = µxxcos2(ϕ) + (µxy + µyx) sin(ϕ) cos(ϕ) + µyysin2(ϕ)

µρϕ = µxycos2(ϕ) + (−µxx + µyy) sin(ϕ) cos(ϕ)− µyxsin2(ϕ)

µϕρ = µyxcos2(ϕ) + (−µxx + µyy) sin(ϕ) cos(ϕ)− µxysin2(ϕ)

µϕϕ = µyycos2(ϕ) + (−µxy − µyx) sin(ϕ) cos(ϕ) + µxxsin2(ϕ)

(3)
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Figure 1. The geometry of uniform cylindrical shell system when a
plane wave is incident on the cylindrical system and when an electric
line source excites EM fields in the system is shown. The polarization
of the electric field of the plane wave is parallel to the cylinder axis.

The cylindrical permeability tensor components are assumed to be ex-
panded in the exponential Fourier series

µrs(ρ, ϕ) =
∞∑

i=−∞
µ̆rs(ρ)ejiϕ 0 ≤ ϕ ≤ 2π, (r, s) = (ρ, ϕ) (4)

where µ̆rs(ρ) represents ϕ -exponential Fourier coefficients.
The EM fields interior and exterior (Regions 1 and 3 of Figs. 1 and

2) when a line source (Region 1) and a plane wave (Region 3) excite
EM radiation in a cylindrical system are well known to be an infinite
expansion of the Fourier-Bessel functions H

(2)
n ejnϕ , Jnejnϕ , Ynejnϕ .

Reference [4] gives a complete listing of the Fourier-Bessel expansions
used subsequently in this paper.
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Figure 2. The geometry of an anisotropic, permeable, cylindrical half
shell is shown along with a plane wave (electric field polarized parallel
to the cylinder axis) and electric line source excitation.

In Region 2, the middle cylindrical dielectric region, we divide the
dielectric region into L thin shell layers of thickness d� , b−a =

∑L
�=1 d�

(� = 1 is adjacent to ρ = b and � = L is adjacent to ρ = a )
and solve Maxwell’s equations in cylindrical coordinates by a state
variable approach in each thin layer. The layers are assumed to be
thin enough in order that the ρ dependence of ε(ρ, ϕ) , µρρ(ρ, ϕ) ,
µρϕ(ρ, ϕ) , µϕρ(ρ, ϕ) and µϕϕ(ρ, ϕ) and the ρ scale factors may be
treated as a constant in each layer. Making the substitutions Sz = Ez ,
Uρ = η0Hρ , and Uϕ = η0ρHϕ where Ez , Hρ , and Hϕ represent the
electric and magnetic fields in the thin shell region and η0 = 377Ω is
the intrinsic impedance of free space, we find that Maxwell’s equations
in a cylindrical shell of radius ρ are given by

∂Sz
∂ϕ

= −jρµρρUρ − jµρϕUϕ (5)
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Figure 3. The geometry of an isotropic, dielectric, square cylinder
embedded in an anisotropic, permeable, cylindrical half shell is shown
along with an electric line source excitation.

∂Sz
∂ρ

= jµϕρUρ + j(µϕϕ/ρ)Uϕ (6)

∂Uϕ
∂ρ
− ∂Uρ

∂ϕ
= jρεSz (7)

To solve Eqs (5–7), we expand Sz(ρ, ϕ) , Uρ(ρ, ϕ) , Uϕ(ρ, ϕ) ,
ε(ρ, ϕ) , and µrs(ρ, ϕ) , (r, s) = (ρ, ϕ) in the Floquet harmonies:

Sz(ρ, ϕ) =
∞∑

i=−∞
szi(ρ)e

jiϕ, Uρ(ρ, ϕ) =
∞∑

i=−∞
uρi(ρ)e

jiϕ,

Uϕ(ρ, ϕ) =
∞∑

i=−∞
uϕi(ρ)e

jiϕ, ε(ρ, ϕ)Ez =
∞∑

i=−∞

[ ∞∑
i′=−∞

ε̆i−i′szi′

]
ejiϕ,

µrs(ρ, ϕ)F (ρ, ϕ) =
∞∑

i=−∞

[ ∞∑
i′=−∞

µ̆rsi−i′fi′

]
ejiϕ, (r, s) = (ρ, ϕ) (8)
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where F (ρ, ϕ) represents either Uρ(ρ, ϕ) or Uϕ(ρ, ϕ) in Eq (8) and
fi represents either uϕi or uρi . If these expansions are substituted
in Eqs (5–7), and after letting sz(ρ) = [szi(ρ)] , uρ(ρ) = [uρi(ρ)] , and
uϕ(ρ) = [uϕi(ρ)] be column matrices and ε(ρ) = [ε̆i−i′(ρ)] , µrs(ρ) =
[µ̆rsi−i′ (ρ)] , (r, s) = (ρ, ϕ) , K = [Kδi,i′ ] , K = 2π / Λϕ ( Λϕ is
the circular grating period and δi,i′ is the Kronecker delta) be square
matrices we find after manipulation

∂V

∂ρ
= AV , V =

[
sz
µϕ

]
, A =

[
A11 A12

A21 A22

]
(9)

where

A11 =
−j
ρ
µϕρ µρρ

−1K, A12 =
j

ρ
(−µϕρ µρρ−1µρϕ + µϕϕ),

A21 = j(−1
ρ
K µρρ

−1K + ρε), A22 =
−j
ρ
K µρρ

−1µρϕ.

In these equations uρ was eliminated by finding the matrix inverse of
µρρ , namely µρρ

−1 , and then carrying out appropriate matrix multi-

plications. If Eq (9) is truncated at order MT (i = −MT , . . . ,−1, 0, 1,
. . . ,MT ) , Eq (9) represents a NT = 2(2MT + 1) state variable equa-
tion (with matrix (A)

NT×NT ). The solution of this equation is given
by Vn(ρ) = Vne

−qnρ where qn and Vn are the nth eigenvalue and
eigenvector of the constant matrix A . The quantities A , Vn , and
qn satisfy AVn = qnVn . The general EM fields in the �th thin shell
region are given

Ez =
MT∑

i=−MT

NT∑
n=1

cnszine
qnρ, η0ρHϕ =

MT∑
i=−MT

NT∑
n=1

cnuϕine
qnρ, (10)

where Vn
t = [stzn, u

t
ϕn] with szn = [szin] and uϕn = [uϕin] and where

t represents matrix transpose.
Although a large matrix equation exists from which the overall solu-

tion of the problem may be obtained, a more efficient solution method
is to use a ladder approach [6] (that is successively relate unknown co-
efficients from one layer to the next) to express the cnL coefficients of
the Lth last layer in terms of the cn1 coefficients of the first layer, and
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then match boundary conditions at the ρ = a and ρ = b interfaces
to obtain the final unknowns of the system. From [4] we obtain the
following overall matrix equation

CL = F
L−1

(F
L−2

. . . (F
1
C1)) = M C1 (11)

cI0Ji(X1s) =
NT∑
n=1

cnLe
−qnLdL

[
−πJi(X1a)

2

]
{
ja
√
ε1
J ′i(X1a)
Ji(X1a)

szinL + µϕinL

} (12)

EI
i =

NT∑
n=1

cn1

[
πH

(2)
i (X3b)

2

] {
jb
√
ε3
H

(2)′

i (X3b)

H
(2)
i (X3b)

szin1 + µϕin1

}
, (13)

where i = −MT , . . . , 0, . . . ,MT , J ′(X) = dJ(X)/dX, etc., X1s =√
ε1ρs, X1a =

√
ε1a, X3b =

√
ε3b , EI

i = EI
0j
−i , EI

0 is the incident
plane wave amplitude, szin1, uϕin1, szinL , and uϕinL are eigenvector
components in the thin layers � = 1 and � = L respectively, and
CI0 = −ωµ0I/4 , where I is the line source excitation. (In [4] CI0 was
listed as CI0 = ωµ0I/4 . It should have been given as specified here.)
Eq (12) represent a set of 2MT +1 equations, Eq (13) represents a set
of 2MT + 1 equations, and the matrix equation Eq (11) represents a
set of NT = 2(2MT + 1) equations. Thus Eqs (11–13) represent a set
of 2NT = 4(2MT +1) equations to calculate the 2NT set of unknowns
represented C1 and CL . Once these quantities are known all other
unknown coefficients in the system may be found.

An important quantity to calculate is the normalized power of each
order. We consider the important cases when the power is either radi-
ated from the line source in Region 1 ( cI0 �= 0, EI

0 = 0 ) or the power
is scattered by a plane wave from Region 3 ( cI0 = 0, EI

0 �= 0 ). In the
case when cI0 �= 0, EI

0 = 0 , the normalized power in each order is given
[4] by PNi = PRADi /P INC where P INC is the incident power of the
line source and PRADi is the radiation at a radial distance ρ . For the
plane wave scattering case ( cI0 = 0, EI

0 �= 0 ), it is useful to calculate
the normalized scattered at ρ =∞ [4]

PScatNi (∞) = (PScati (∞)/λ)/SINC (14)

In Eq (14), SINC is the power per unit area (watts/meter2) of the
incident plane wave, and P scati is the scattered power per unit length
(watts/m) of the ith order.
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Figure 4. The normalized radiated power which results when a cen-
tered line source excites a uniform dielectric shell (see Fig. 1, ε1 = 1.5 ,
ε2 = 2.5 , ε3 = 1. , µ = 1 .) is shown when determined by RCWT and
when determined by a Bessel function matching solution.

3. NUMERICAL RESULTS

In this section we will study line source radiation and plane wave scat-
tering using the RCWT method for three different material system
examples.

The first example consists of studying line source radiation and
plane wave scattering from a uniform dielectric shell. In this exam-
ple all of space was taken to have a permeability µ = 1 . and the
permitivity in Regions 1, 2, 3 was taken to be respectively ε1 = 1.5 ,
ε2 = 2.5 , and ε3 = 1. . The inner radius was taken to be a = k0ã =
5. (ã = .795λ) and the outer shell radius was taken to range from
b = a = 5 . to b = 10 . Using a centered line source excitation only
(see Fig. 1), Fig. 4 shows a comparison of the normalized radiated
power, (all normalized power in this section are assumed normalized
either to the incident dipole or incident plane wave amplitude) as de-
termined by the RCWT method (using L = 10 layers, Mt = 1 ) and
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Figure 5. The total radiated power that results when a centered line
source radiates through an anisotropic, permeable half shell (see Fig. 2,
ε1 = 1.5 , ε3 = 1., ε′′2 = 1.75 , µ′′2 = 1.5, ε′2 = 3.25 , µxx = 1.5 ,
µxy = .3 , µyx = .3 , µyy = 1.7 , Mt = 10 , L = 10 layers) when the
inner radius is a = k0ã = 5 and when the outer radius is varied from
b = a = 5. to b = 10. is shown.

as determined by a Bessel function matching solution method (based
on matching Bessel function solutions in Regions 1, 2, 3) when the
outer radius was varied from b = a = 5 . to b = 10. . As can be seen
from Fig. 4, excellent agreement exists between the Bessel function
matching algorithm and the RCWT method.

Fig. 5 shows the total radiated power that results when a centered
line source radiates through an anisotropic, permeable half shell (see
Fig. 2, ε1 = 1.5 , ε3 = 1., ε′′2 = 1.75 , µ′2 = 1.5, ε′2 = 3.25 , µxx =
1.5 , µxy = .3 , µyx = .3 , µyy = 1.7 , Mt = 10 , L = 10 layers)
when the inner radius is a = k0ã = 5 and when the outer radius
is varied from b = a = 5 to b = 10 . As can be seen almost exact
conservation of power at the inner and outer radius is observed. At
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Figure 6. A comparison of the total plane wave power scattered by
the same uniform dielectric shell example as considered in Fig. 4 (see
Fig. 1, assume the centered line source not present) as determined by
the Bessel function matching solution (Mt = 15 ) and as determined
by the RCWT method (using L = 15 layers, Mt = 15 ) is shown.
Plane wave scattering from an anisotropic cylinder is also shown.

ρ = a (inner radius) no power was calculated to be diffracted into
higher orders. This is why the total power at ρ = a also equals the
i = 0 power at ρ = a . Also shown in Fig. 5 are the i = −1 , i = 0 ,
i = 1 orders radiated at ρ = b (outer radius) and the higher orders
i = −3, −2, 2, 3 . As b̃ is increased from b̃ = .8λ to b̃ = 1.6λ in
Fig. 5, one clearly observes that as the outer radius is increased, power
is depleted out of the i = 0 order and is diffracted into higher orders.
One also observes that unequal order power is radiated into the i = −1
and the i = 1 orders. This is to be expected and is a result of the
anisotopy of the permeable half shell.
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Figure 7. A three dimensional plot of the plane wave scattered order
power verses order i when i is varied from i = −15 to i = 15 and
verses the outer radius b̃ when b̃ is varied from b̃ = .8λ to b̃ = 1.6λ
is shown. Fig. 7 is part of the same numerical case as was studied in
Fig. 6.

Figs. 6–8 display scattering results when a plane wave is incident
on the cylindrical system. Fig. 6 (solid line and square) shows a com-
parison of the total plane wave power scattered by the same uniform
dielectric shell example as considered in Fig. 4 (see Fig. 1, assume the
centered line source not present) as determined by the Bessel func-
tion matching solution (square, Mt = 15 ) and as determined by the
RCWT method (solid line, using L = 15 layers, Mt = 15 ). As can
be seen from Fig. 6, excellent agreement was obtained between the two
methods. As can be seen from Fig. 6, the RCWT method was able
to accurately reproduce even the small resonance peaks that arise in
the scattering solution. Fig. 6 (solid line labeled RCWT (anisotropic,
half shell)) shows the total plane wave scattered power (as a function
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Figure 8. The scattered order power that occurs when a plane wave
impinges on a uniform dielectric shell (see FIg. 1, ε1 = 1.5 , ε2 = 2.5 ,
ε3 = 1. , µ = 1 .) rather than an anisotropic half shell is shown.

of the outer radius b̃ ) that results when a plane wave is incident on
an anisotropic, permeable cylindrical half shell (see Fig. 2, ε1 = 1.5 ,
ε3 = 1 ., ε′′2 = 1.75 , µ′′2 = 1.5, ε′2 = 3.25 , µxx = 1.5 , µxy = .3 ,
µyx = .3 , µyy = 1.7 , Mt = 15 , L = 15 layers). As can be seen
from Fig. 6, the presence of the anisotropic, half shell causes a signifi-
cantly different scattering profile than does the isotropic, uniform shell
cylinder.

Fig. 7 shows a three dimensional plot of the plane wave scattered
order power verses order i when i is varied from i = −15 to i = 15
and verses the outer radius b̃ when b̃ is varied from b̃ = .8λ to
b̃ = 1.6λ . Fig. 7 is part of the same numerical case as was studied in
Fig. 6. As can be seen from Fig. 7, one clearly observes asymmetry of
the order power as the size of the outer radius b̃ is increased. The sum
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Figure 9. The total radiated power (normalized to the dipole power of
the centered line source) when a line source radiates from an isotropic
square cylinder which is embedded in an anisotropic permeable half
shell (see Fig. 3, ε1 = 1.5 , ε3 = 1., ε′′2 = 3.5 , µ′′2 = 1., ε′2 = 3.25 ,
µxx = 1.5 , µxy = .3 , µyx = .3 , µyy = 1.7 , Mt = 20 , L = 25 layers).

of the plane wave order power at any given b̃ gives the total scattered
power which is displayed in Fig. 6. We again note that this total plane
wave scattered power obeys conservation of power as expected. Fig. 8
for comparison with Fig. 7, shows the scattered order power that occurs
when a plane wave impinges on a uniform dielectric shell ( ε1 = 1.5 ,
ε2 = 2.5 , ε3 = 1 ., µ = 1 .) rather than an anisotropic half shell.
The uniform dielectric shell has dielectric permittivity values which
are roughly the same size as the that of the anisotropic half shell. As
can be seen from Fig. 8, the three dimensional shape of the Fig. 8 plot
from the uniform shell is symmetric in the order parameter i and in
general has quite a different shape than that of the anisotropic half
shell in Fig. 7.
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Fig. 9 shows the total radiated power (normalized to the dipole
power of the centered line source) when a line source radiates from an
isotropic square cylinder which is embedded in an anisotropic perme-
able half shell (see Fig. 3, ε1 = 1.5 , ε3 = 1., ε′′2 = 3.5 , µ′′2 = 1., ε′2 =
3.25 , µxx = 1.5 , µxy = .3 , µyx = .3 , µyy = 1.7 , Mt = 20 , L = 25
layers). The radiated power was calculated at ρ = a ( ã = 1.λ ) which
is a circle enscribed in the square cylinder of Region 1 and was calcu-
lated at ρ = b ( b̃ = 2.5λ ) which is the outer radius of the anisotropic
half cylinder. The outer radius b̃ was varied from b̃ =

√
2ã = 1.414λ

to b̃ = 2.5λ . As can be seen from Fig. 9, extremely good power con-
servation was observed at ρ = a ( ã = 1λ ) and at ρ̃ = b̃ . Despite the
square shape of the cylinder, no power was observed to be diffracted
into higher orders at ρ = a ( ã = 1λ ). Also show in Fig. 9 are the
i = −1 , i = 0 , = 1 orders radiated at ρ = b (outer radius). As in
Fig. 7, one observes that power is depleted from the i = 0 order and
radiated into higher orders. Fig. 9 shows the increase in the i = −1
and i = 1 orders, for example, that occurs when b̃ is increased. One
also observes in Fig. 9 that the order power is radiated asymmetrically
into the i = −1 and i = 1 orders. As in Fig. 7 this is expected and is
due to the anisotropy of the permeable half shell.

Fig. 10 shows a plot (dotted line) of the relative dielectric permit-
tivity function ε(ρ, ϕ) when ρ̃ = 1.241λ for the square cylinder-
anisotropic, half shell case displayed in Fig. 3. The circular dashed
line of Fig. 3 represents the approximate placement of ρ̃ = 1.241λ pa-
rameter used to make the Fig. 10 ε(ρ, ϕ) plots. Also shown in Fig. 10
(solid line) is the Fourier series representation of the ε(ρ, ϕ) profile
when ρ̃ = 1.241λ and Mt = 20 . (Mt = 20 was used to make the
RCWT analysis of Fig. 9.). As can be seen from Fig. 9, enough Fourier
terms (−40 = −2Mt ≤ i ≤ 2Mt = 40 ) were used in order to correctly
model the inhomogeneous region as defined by the square cylinder.
(Note: The convolution matrix of Eq (8) requires 2Mt = 40 terms.)
Figs. 11–13 shows the relative permeability tensor profiles µρρ(ρ, ϕ) ,
µρϕ(ρ, ϕ) , µϕρ(ρ, ϕ) µϕϕ(ρ, ϕ) for the same case and parameters as
shown in Fig. 10. The numerical example of Fig. 9 was chosen such
that µρϕ(ρ, ϕ) = µϕρ(ρ, ϕ) .
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Figure 10. A plot (dotted line) of the relative dielectric permittivity
function ε(ρ, ϕ) when ρ̃ = 1.241λ for the square cylinder-anisotropic,
half shell case displayed in Fig. 3 is shown. The circular dashed line of
Fig. 3 represents the approximate placement of ρ̃ = 1.241λ parameter
used to make the Fig. 10 ε(ρ, ϕ) plots. Also shown in Fig. 10 (solid
line) is the Fourier series representation of the ε(ρ, ϕ) profile when
ρ̃ = 1.241λ and Mt = 20 . (Mt = 20 was used to make the RCWT
analysis of Fig. 9.).

4. SUMMARY

A state variable EM analysis technique called rigorous wave coupled
theory (RCWT) has been applied to determine radiation and scat-
tering that arises from circular cylindrical, anisotropic inhomogeneous
material systems. The work represents a generalization of the work
performed: (1) by Elsherbeni and Hamid [1, 2] and Elsherbeni and
Tew [3] who studied an inhomogeneous sinusoidal circular cylindrical
system whose EM field solutions were Mathieu functions, (2) by Wu
[9, 10] who considered scattering from homogeneous anisotropic dielec-
tric cylinders using a Bessel function approach, and (3) by Jarem [4]
who used the RCWT method to determine radiation and scattering
from isotropic, inhomogeneous dielectric systems. The RCWT state
matrix equations and the associated boundary matrix equations (de-
rived from a multi-layer ladder analysis) are presented and solved for
the first time for the cases when a plane wave (TM polarization, elec-
tric field parallel to the cylinder axis) or electric line source is incident
on a cylinder which possesses an inhomogeneous permitivitty profile
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Figure 11. Plots of the relative permeability function µρρ(ρ, ϕ) (exact
(dotted line) and Fourier series representation (solid line)) for the same
case as described in Fig. 10 are shown.

Figure 12. Plots of the relative permeability function µρϕ(ρ, ϕ) =
µϕρ(ρ, ϕ) (exact (dotted line) and Fourier series representation (solid
line)) for the same case as described in Fig. 10 are shown.
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Figure 13. Plots of the relative permeability function µϕϕ(ρ, ϕ) (ex-
act (dotted line) and Fourier series representation (solid line)) for the
same case as described in Fig. 10 are shown.

ε(ρ, ϕ) and possesses inhomogeneous, anisotropic permeability profiles
µρρ(ρ, ϕ) , µρϕ(ρ, ϕ) , µϕρ(ρ, ϕ) , and µϕϕ(ρ, ϕ) . As mentioned in the
Introduction the results of this paper also hold for the electromagnetic
case which is dual to the one which has been studied.

In general the RCWT algorithm presented herein can be modified
to study the cases when the inner region is a perfect conductor, when
the permittivity and permeability is anisotropic or bi-anisotropic, and
can be modified to study the cases when the incident polarization may
be both TE, TM, and oblique. The RCWT algorithm can also be
modified to study the scattering that occurs when a plane wave or line
source is obliquely incident on a crossed periodic cylinder, namely a
cylinder system which is periodic in both the phi (ϕ ) and longitudinal
z directions. This problem is analogous to planar crossed diffraction
grating analysis. The present author also believes that a multi-layer
RCWT version of the present algorithm as also mentioned in [4] will be
ideal for massively parallel computations (and have good load balance)
since one can perform the eigenanalysis of many cascaded cylindrical
thin layers in parallel. The present authors has applied the RCWT
method to study radiation and scattering from three dimensional in-
homogeneous objects, specifically an inhomogeneous spherical system
[11]. Future work by the author will concentrate on some of the just
mentioned topics.
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