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Nodal kinetic equations for coupled reactors,namely multi-point reactor kinetics equations 

whose dependent variables are the fission sources of each reactor are derived rigorously,using 

kinetics parameters with the explicit dependence on a perturbation,from the time dependent 

multi-group diffusion equation.Exact expressions for the coupling coefficients,neutron life 

time and the change of the coupling coefficients due to the perturbation are given.Since the 

present equations are exact independent of the strength of the coupling,these equations can 

be used for any reactor by dividing a core into appropriate subregions.Some analytical ex-

pressions of the coupling coefficients,neutron life time and other kinetics parameters are given 

for some simple geometries.
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I.INTRODUCTION 

There are many works on coupled reac-
tors(1)~(6),however,they are treated with 
some approximations.Recently,it was shown 
that nodal static and kinetics equations for 
coupled reactors whose dependent variables 
are fission neutron sources could be derived 
rigorously from the multi-group diffusion(7) 
or transport equations(8) without any approxi-
mation.

In the present work, nodal kinetics equa-
tions for coupled reactors,namely multi-point 
reactor kinetics equations whose dependent 
variables are fission source of each region 
are derived rigorously for perturbed system,
and the exact expressions for the change of 
the coupling coefficients due to the pertur-

bation are given explicitly like in the usual 
exact perturbation theory(9).In the previous 
work(7)(8),the Green's function for the per-
turbed system is used to bring the final 
equations to be the same form as those given 

by Avery(1).In the former formulation,there

is no explicit dependence of the kinetics 

parameters on the perturbation,since it is 
absorbed in the change of the Green's func-

tion.In the present formulation,the Green's 

function for the unperturbed system is used,

and the change of the kinetics parameters is 

expressed explicitly in terms of the change 

of the cross sections.

In case of a large core where the coupling 

between distant regions in a core is weak,

there may arise a flux tilt,or the flux dis-

tribution may change globally,even if control 

rods are moved locally(10)(11).In the present 

method,the coupling coefficients between any 

region can be calculated exactly by dividing 

a core into appropriate subregions, and we 

can know the relation of the fiux tilt and the 

strength of the coupling between regions,

which may help the physical understanding 

of large reactors.

If we treat the whole system as one re-

gion,the multi-point reactor kinetics equations 
are reduced to the point-reactor kinetics equa-
* Yoshida-hon-machi ,Sakyo-ku,Kyoto 606~01,

14



Vol.29,No .2 (Feb.1992) 111

tions.The difference of the present kinetics 
equations from the usual point-reactor kinetics 
equations is in that the dependent variables 
in the present method have the physical 
meaning of the fission source and the number 

of delayed neutron precursors,whereas in 
the usual method(12)(13),a dependent variable 
is the amplitude function for the flux whose 

physical meaning depends on the choice of 
the weighting function,and it can not be 

the fission source for any choice of the 
weighting function(8).

In Chap.II are derived multi-point reactor 
kinetics equations for a perturbed system and 
the expressions for the changes of the coupling 
coefficients due to the perturbation.In Chap.
III are derived the coupling coefficients and 
other kinetics parameters explicitly for some 
simple geometries, and a short discussion is 

given in Chap.IV.
Although the formulations are given here 

for the case of the multi-group diffusion 
equation,the application of the present method 
to the multi-group transport equation is 
straightforward simply by replacing the dif-
fusion operator by the transport operator.

II.KINETICS EQUATIONS FOR 

PERTURBED SYSTEM 

For simplicity,we use the boundary con-
dition of the zero flux at the outermost 
boundary S of the whole system V,namely 

(1) 

where pg(g) is the total flux of g-th group.
We assume that the following steady state 

multi-group diffusion equation for an unper-
turbed system of coupled reactors has a non-
zero solution with a criticality factor k0 ;

(2) 

where the operators A and B are defined by 

(3) 

(4)

where Dg is the diffusion coefficient,Srg the 
removal cross section,nSfg the fission cross 
section multiplied by the number of fission 
neutrons,Xg the average fission neutron spec-
trum for the prompt and delayed neutrons 
of the g-th group as given by Eq.(33) later 
and .Ss(g<-g") the scattering cross section 
from the g"-th group to the g-th group.In 
Eq.(4),the fission operator F is defined by 

(5) 

Using the adjoint operator A+ of the op-
erator A of Eq.(3), 

(6) 

we define an importance function Gm(g,g) by 

(7) 

where dm(g) is defined by 

(8) 

Here,the notation Vm denotes the m-th region 
of the reactor,and it is assumed that the 
region Vm is chosen such that there is a non-
zero fission cross section in the region.This 
importance function must satisfy the follow-
ing boundary condition ;

(9) 

in order to make the boundary term vanish 
which appears in the partial integration of 

the differential operator term of Eq.(7).
The Green's function defined by 

(10) 

with the boundary condition of Eq.(1),has 
the relation with the importance function as 

(11) 

Now,we assume that a perturbation of 
changing cross sections is introduced in the 
reactor described by Eq.(2),and the opera-
tors A, B and F are changed to A',B' and 
F' by dA,dB and dF,respectively,namely 

A'=A+dA,B'=B+dB,F'=F+dF.(12)
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With this perturbation, the system deviates 

from the critical state,and we assume that 

the flux changes according to the following 

time dependent multi-group diffusion equation 

with delayed neutrons,

the time dependent coupling coefficients for 

prompt and delayed neutrons by

Here BP is the fission operator for prompt 

neutrons defined by

and Ci(r,t),li and cdig are the density of 
the delayed neutron precursor,its decay con-
stant,and the energy spectrum of delayed 
neutrons,of i-th delayed neutron group,re-
spectively ;girisya cpg is the prompt fission neutron 
spectrum,vg the mean neutron velocity of 

g-th group and b the delayed neutron frac-
tion.The delayed neutron precursor density 
satisfies the following equation

The respectively time constant and delayed 

neutron fractions are defined by

where pi is the fraction of the i-th delayed 
neutron group, and the sum of bi is equal 
to b.

respectively.

We define also the direct changes of coupling 

coefficients due to the perturbation of dA and 

dF by

We define the time dependent fission source 

with the perturbed fission operator by

where N is the number of reactors or regions 

in a reactor,and
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For example,the time constant of Eq.(20) 

becomes

The Sm(t) and Cim(t) are the fission neutrons 

produced in a unit time and the delayed neu-
tron precursor in the region Vm,respectively. 

Integrating Eq.(15) over Vm and using the 
notation of Eqs.(25),we obtain the equation 
for the precursor of the delayed neutrons;

Substituting Eqs.(28) into Eqs.(13) and (15),
we obtain equations for pog(g) and Cio(g). 

We define the coupling coefficient kmn by

The cg in Eq.(32) is the average fission spec-
trum for the prompt and delayed neutrons 
used in Eq.(4),namely

Equations (24) and (26) are the rigorous nodal 

kinetics equations for coupled reactors or 

multi-point reactor kinetics equations.

If the perturbations dA and dB are inde-

pendent of time,the time dependence of the 

parameters defined by Eqs.(18)~(23) can be 
eliminated as follows.Assuming that the flux 

and precursor density have the form 

pg(g,t)=pgo(g)eot 

Ci(g,t)=Cio(g)eot,(28) 

the nodal flux and precursor of Eqs.(25) can 

be written in the form

Using the coupling coefficient of Eq.(32),Eq.

(30) can be rewritten

where bimn is the effective delayed neutron 

fraction of the i-th group,

bimn=bimkdimn¥(35) 

The condition that the determinant of the 

coefficients matrix of Eq.(34) vanishes gives 

the equation which determines the discrete 

values of co, namely

Substituting these into Eq.(26) to obtain Cim,,
and then into Eq.(24),we obtain a system of 
homogeneous linear equations for Smo,

Here kpmn,kdmn,etc.are time independent 
kinetics parameters defined by Eqs.(18),(19) 
etc.where pg(g,t) and Ci(g,t) are replaced 

by pog(g) and Cio(g) of Eqs.(28),respectively.

The solution of the flux and precursor density 

is expressed as the sum of exponential func-

tions of the form of Eqs.(29) for all these 

roots of Eq.(36).

In the case of only one region,the multi-

point reactor kinetics equations of Eqs.(24) 
and (26) for N=1 are reduced to the point-

reactor kinetics equations as
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III. SOME EXAMPLES FOR 

SIMPLE GEOMETRIES 

Let us derive the coupling coefficients and 
kinetics parameters for some simple geometries 
explicitly,which will help the physical under-
standing of the coupled reactors and the 
structure of the present theory.We can also 
confirm that the results are consistent with 

the solution obtained directly from the diffu-
sion equation of Eq.(2) or Eqs.(13) and (15).

1.Single Core Reactor 
Now,we consider the kinetics parameters 

of Eq.(37) for the simple case explicitly,the 
case of one group and one-dimensional slab 

geometry.We assume that a homogeneous 
reactor is placed at -a/2<=x<=a/2,and the 
flux vanishes at x=+-a/2.A perturbation is 
assumed to be uniform in the reactor,namely,

dA=DSa=constant and dB=DnSf=constant 

in the reactor,where Sa is the absorption 
cross section.With this perturbation,the 
diffusion equation of Eq.(13) becomes

Using the time independent reactivity of the 

same form of Eq.(39),we obtain a reactivity 

equation for the point-reactor from Eq.(41) as 

Equations(40)and(42)have the similar forms 

as the usual point reactor kinetics equations 

and the usual reactivity equation(9),respec-

tively,however there is a difference in the 

definition of kinetics parameters.Further,

the dependent variables S1(t) and S1o have 

the physical meaning of the number of the 

fission neutrons in the present method,

whereas in the usual point reactor kinetics 

equations,S1(t) corresponds to the number of 

neutrons,when the weighting function is 

chosen to be constant(13).The present equa-

tions hold exactly for any geometry independ-

ent of the strength of the perturbation.

We assume that the reactor is just critical 
before the perturbation,and the flux and 

precursor density are in the fundamental mode 
of spatial distribution.Since cross sections 

change uniformly,the flux and precursor den-
sity remain the same fundamental mode also 
after the perturbation,and they can be writ-
ten in the form
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G(x;x') for x>=x' is obtained by exchanging 
x and x' in Eq.(45).Using Eq.(45),the im-
portance function of Eq.(11) for N=1 becomes

where koo is the infinite multiplication factor 

defined by koo=nSf/Sa.
Substituting the flux and importance func-

tion of Eqs.(44) and (46) into Eqs.(18)~(23),
we obtain the kinetics parameters

For this simple case,we can show easily 
that the kinetics equation of Eq.(37) with 

parameters of Eqs.(47)~(52) agree with the 
diffusion Eq.(43).Namely,substituting Eqs.

(44) into Eq.(43),Eq.(43) becomes

where ‚Œoo is the neutron life time in the in-

finite system and leff the effective neutron 

life time in the finite and unperturbed system 

defined by

The changes of coupling coefficients due to 

the perturbation are

which can be shown to be identical with Eq.

(37) with parameters of Eqs.(47)~(52).
It seems strange at the first glance that 

the neutron life time given by Eq.(48) is 

independent of the perturbed cross section of 

DSa.The reason is seen in Eq. (55) which 

is derived directly from the diffusion equation 

that the coefficient of the differential term of 

the left hand side of Eq.(55) which corre-

sponds to the neutron life time does not 

include DSa.In the previous formulations(7),

the perturbation is included in the importance 

function,and the equation corresponds to Eq.

19—
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The coupling coefficients k21=k12 and k11=k22,

because the reactor is symmetric with respect 

to x=0.
Since the reactor is assumed to be critical 

without perturbation,DkF1=DkA11=o=0,and 

Eq.(36) for N=2 becomes

where L'2=D/(Sa+DSa),which is obtained 

by replacing Sa by Sa'=Sa+DSa and divid-

ing Eq.(53) by Sa'(1+L'2B2).Thus the neu-

tron life time of the previous definition 

changes as a function of DSa.Since no 

approximation is made to derive both kinetics 

equations,the definition of the other kinetics 

parameters is different such that the result-

ing kinetics equations are consistent.The 

present definition may be convenient for the 

practical application,since the life time for 

the unperturbed system can be used for the 

perturbation of DSf=0.

2.Two Region Treatment of a Core 

Next,as a simple case of tight coupling,

we consider the previous bare homogeneous 

core with two regions by dividing it at the 

center of the core.The diffusion equation 

for this geometry is also Eq.(43).For sim-

plicity,we consider here only the unperturbed 

system.We call the region -a/2 <=‚˜<=0 as 

the region V1,and 0<=‚˜<=a/2 as the region V2.

The coupling coefficients of Eq.(18) can be 

calculated using Eq.(11) and Green's function 

of Eq.(45) as

From Eq.(58) with the coupling coefficients 

of Eqs.(57),we obtain the criticality factor 

for the whole system of the unperturbed 

system,

which agree with the criticality factor derived 
directly from Eq.(43) without perturbation,
which is equal to k11 of Eq.(47).

If the size of the reactor a is much larger 
than the diffusion length,namely ka=a/ L>3,
the coupling coefficient of Eq.(57a) becomes

with ko=1 and B=p/a.Namely,the strength 
of the coupling between the two parts of the 

bare homogeneous reactor becomes weak pro-

portionally with the inverse of the thickness 
a of the core.

3.Two Cores System 
We consider here the system where two 

separate cores of the infinite slab are in an 
infinite moderator.In order to obtain simple 
analytical expressions,the thickness T of the 

slab is assumed to be very thin and its ab-
sorption and fission cross sections of the core 
can be expressed by the d-function.Namely,
we assume that the very thin cores are at 
x=-d/2 and x=d/2 with the distance d,and 
the unperturbed system of Eq.(2) is expressed 
by the following one group diffusion equation:
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where the suffixes c and r denote the core 
and reflector,respectively.The boundary 
condition for the flux is that p(x)->0 for 
x->+-oo.We use the index m=1 for the 
core at x=-d/2 and m=2 for the core at 

x=d/2.
Analytical solution of Eq.(61) can be easily 

obtained.The solution for -d/2<=x<=d/2 has 
the form with an arbitrary constant A,

p(x)=A cosh kx,-d/2<=x<=d/2,

K2=Sar/D,(62) 

since the system is symmetric at x=0.The 
flux for x<=—d/2 or d/2<=x satisfying the 
boundary condition at x= +-oo has a form

since the flux of Eq.(63) must be continuous 
with that of Eq.(62) at x=+-d/2.Integrating 

Eq.(61) from x=d/2-0 to x=d/2+0,we ob-
tain the discontinuity condition for the current 
that the flux must satisfy at x=d/2,

Substituting Eqs.(62) and (63) into Eq.(64),
we obtain

which gives the criticality factor for the un-

perturbed system,

In the case that there is only one core at 

x=d/2,the flux is

Substituting this flux into the discontinuity 

condition of the current of Eq.(64),we obtain 

the criticality factor ko for the case of single 

core,

This criticality factor can be also obtained 
from the diffusion equation for the system in 
which the core of the finite thickness of T 
is in an infinite moderator by assuming that 
the diffusion coefficient of the core is very 
large,which means that the flux distribution 
in the core is flat.We can see that the 

criticality factor of Eq.(66) for the two cores 
tends to that of Eq.(69) for the single core 
as the distance d tends to infinity as expected.

Now,we derive the kinetics parameters 
for the coupled reactor of Eq.(61).Equation 

(7) for the importance function of m=2 is

Integrating Eq.(70) from x=d/2-0 to x= 

d/2+0 and from x=-d/2-0 to x=—d/2+0,

we obtain the conditions for G2(x),

G2(x) must be continuous at x=-d/2 and 
x=d/2,namely

The solution of Eq.(70) can be written in the 

form

21—
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with appropriate constants A,C,E and F.

Substituting Eq.(74) into Eqs.(71)~(73),we 

obtain the constants of Eq.(74),

The coupling coefficient of Eq.(18) in a 

core of the unperturbed system is

and the coupling coefficient between two 

cores is

which are independent of the flux p(x),be-
cause the width of the core is very thin and 
the flux distribution in a core is constant.

Since the system is symmetric,k11=k22 and 
ki2=k21.The coupling coefficient k12 of Eq.

(77) which represents the number of the 
fission neutrons produced in the core V1 by 
the neutrons produced in the core V2 de-
creases by the factor exp(-kd),when kd is 
large,which seems reasonable,because the 

neutrons produced in the core V2 decreases 
as exp(-kx) as seen in Eq.(68).

In order to exist a non-zero solution for 
Eq.(34) of N=2,Eq.(58) for the present 
system must hold.Using the coefficients of 
Eqs.(76) and (77) in Eq.(58),we obtain the 

criticality factor for the unperturbed system,

which is the same as Eq.(66) derived directly 
from the diffusion equation.This confirms 
that the coupling coefficients of Eqs.(76) and 

(77) are exact and consistent with the original 
diffusion equation of Eq.(61).

The criticality factor of the core V2 alone 
of the previous homogeneous reactor of Sec.
III-2 is k0=koo/(1+4L2B2) with the buckling 

B2=(p/a)2 for the whole reactor used in Eq .

(57b),when the core V2 is isolated from the 
core V1,which is much different from the 
criticality factor k22 of Eq.(57b).On the 
other hand,the coupling coefficient k22 of Eq.

(76) is nearly the same as the criticality fac-
tor k0 of Eq.(69) for the isolated single core, 
when 3<kd.This is because the flux distri-
bution in the region V2 of the homogeneous 
reactor joined to the region V1 in Sec.
of Eq.(57b) is largely different from that in 
which the region V2 is isolated,and the leak-

age probability and hence the fission probabil-
ity in the region V2 by the neutrons born in 
the region V2 changes largely.

The time constant l2 for the steady state 
of two slab cores of Eq.(61) is obtained using 
the importance function of Eq.(74) and the 
flux of Eqs (62),(63) regarding as po(x) for 

w=0 as

where lc=1/(Sacv) is the neutron life time in 
the infinite core.Since the system is sym-
metric,l1=l2.As the distance d between the 
cores tends to infinity,this life time approaches 
as

which is the life time of the system of the 

single core at x=d/2.These neutron life
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times depend on the diffusion parameters of 

the moderator.
If a perturbation of dA=DSaTd(x-d/2) 

and dB=DnSfTd(x-d/2) is applied only to 
the core V2,the coupling coefficients of Eqs.

(22) and (23) due to this perturbation are

Clearly,DkA21=DkF1=0,and the coupling co-

efficients of Eqs.(71) and (72) do not change 

by this perturbation.

The time constant for the perturbed sys-

tem can be calculated by Eq.(31) using the 

flux for the perturbed system.If the pertur-

bation is small,the time constant for the 

unperturbed system given by Eq.(79) may be 

a good approximation for the perturbed sys-

tem.

I V.DISCUSSIONS

As an example to use Eq.(34),we consider 

the flux tilt,namely the global change of the 

spatial flux distribution,which may happen 

even when a small perturbation is introduced 

locally.We consider a whole reactor by 

dividing it into appropriate two regions V2 

and V2 and assume that a perturbation is 

introduced only in the region V2.The whole 

reactor is assumed to be critical with ko=1 

before the perturbation,and we consider the 

asymptotic time region after the perturbation.

Neglecting the delayed neutrons,Eq.(34) for

From Eq.(84b),the ratio of the fission source 

S2o in the region V2 to S1o of the region V1 is

Before the perturbation is introduced,DkF2= 

DkA22=o=0,and in the case k12=k21,this 

becomes

From this,it is seen that the fission source 
S2o is larger than S1o,if the criticality factor 
of the region V2,k22 is larger than k11 and 

S2o=S1o,if k22=k11.
If the perturbation is small,the change of 

the coupling coefficients k21,k22 and the term 
ol2 in Eq.(85) will be small compared to the 

terms DkF2 and DkA22 which vary directly 
to the change of the cross sections.There-
fore,the change of the denominator of Eq.

(85) will cause a large change of the ratio of 
the fission source of Eq.(85) from the value 
of Eq.(86),when the coupling coefficient k21 
is small.This is because the influence of 
the population of neutrons in the region V2 
to the region V1 is small,if the coupling co-
efficient k21 is small.Therefore,the coupling 
coefficient k21 between two regions gives the 
indication whether the flux tilt will become 
large or small.

If we do not mind the complexity of mani-

pulations of equations,we can calculate the 
coupling coefficient and other kinetic param-
eters analytically for more realistic models. 
If we use the numerical solutions for the flux 

by solving multi-group diffusion or transport 
equations in multi-dimensions,we can obtain 
all parameters with reasonable accuracy,that 
will help to make physical understanding of 
coupled reactors or loosely coupled large re-
actors.
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