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We derive rigorously the one-dimensional cubic nonlinear Schrödinger equation from
a many-body quantum dynamics. The interaction potential is rescaled through a weak-
coupling limit together with a short-range one. We start from a factorized initial state,
and prove propagation of chaos with the usual two-step procedure: in the former step,
convergence of the solution of the BBGKY hierarchy associated to the many-body
quantum system to a solution of the BBGKY hierarchy obtained from the cubic NLS
by factorization is proven; in the latter, we show the uniqueness for the solution of the
infinite BBGKY hierarchy.

KEY WORDS: quantum mechanics, nonlinear schrödinger, gross-pitaevskii, propa-
gation of chaos, BBGKY hierarchy

1. INTRODUCTION

Consider a system of N identical bosons in dimension one, interacting via a pair
potential U . According to the axioms of quantum mechanics, the time evolution of
the wave function �N (t ; X N ) of the system is ruled by a many-body Schrödinger
equation, which in suitable units reads

i∂t�N (t ; X N ) = −
N∑

j=1

∂2
x j

�N (t ; X N ) +
∑

1≤ j<k≤N

U (x j − xk)�N (t ; X N ). (1.1)
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where X N = (x1, . . . , xN ) ∈ R
N is the collection of the coordinates of the parti-

cles. We recall that �N (t) is an element of L2(RN ) and, due to the undistinguisha-
bility of particles, satisfies the symmetry property

�N (t ; xσ (1), . . . , xσ (N )) = �N (t ; x1, . . . xN ). (1.2)

for any permutation σ of the indices (1, . . . , N ).
In this note we show that if the number of particles goes to infinity then the

system can be described by the non linear one-particle equation

i∂tψ(t ; x) = −∂2
x ψ(t ; x) + α|ψ(t ; x)|2ψ(t ; x), (1.3)

provided that the initial data for Eq. (1.1) consist of a factorized state � I
N =

(ψ I )⊗N , and that the interaction potential is suitably rescaled. More specifically,
we require that the strength of the potential decreases like the inverse of the total
number of particles, as in the mean-field limit, and simultaneously its range shrinks
to zero, as in a short-range limit. The two procedures are combined together in the
following way:

U (x) = N γ−1V (N γ x) (1.4)

with 0 < γ < 1. Then in our model the short range limit is performed more slowly
than the mean-field one. The coefficient α appearing in (1.3) equals

∫
R

V (x)dx .
The mean-field (or weak coupling) scaling for quantum systems with in-

finitely many degrees of freedom was first recognized by Hepp(11) to result in
the Hartree equation. Afterwards, Ginibre and Velo(10) extended the analysis to
singular potentials.

In the formalism of the first quantization, the convergence was established
by Spohn, (14) and twenty years later (3) the problem was split in two different
issues: the question of the convergence of the hierarchy of marginals generated
by Eq. (1.1) to the one generated by Eq. (1.3), and the question of the uniqueness
of the solution of the latter. Following such strategy and developing a new idea
for the energy estimate, Erd s and Yau derived the Schrödinger-Poisson equation
as the mean-field limit for a system of bosons interacting through a Coulomb
potential. (9) The same result was reviewed in, (2) where the proof of the uniqueness
for the resulting hierarchy is obtained from a Nirenberg’s extension of the Cauchy-
Kowalewski theorem.

All the quoted results concern three-dimensional systems and end up in a
Hartree-like equation, namely an equation like (1.3) except that the nonlinearity
is given by (V � |ψ |2)ψ instead of |ψ |2ψ .

On the other hand, the local cubic nonlinearity arises in the Gross-Pitaevskii
limit for a gas of bosons in dimension three. The correct scaling was found by Lieb,
Seiringer and Yngvason (see Ref. 12 and references therein) in their investigation
on the structure of the ground state for a Bose-Einstein condensate.
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Afterwards, Erd s, Schlein and Yau(4,6) with Elgart analyzed the same prob-
lem in the time-dependent framework. In these two papers the first of the the
two-step strategy (i.e. convergence) was accomplished, while the problem of the
uniqueness for the solution of the infinite hierarchy was left untouched.

Another partial result towards the cubic local nonlinearity was obtained in
(Ref. 1) for a gas of one dimensional bosons interacting through a Dirac’s delta
potential, and still the problem of the uniqueness of the solution of the infinite
hierarchy was not solved.

Let us stress that, in spite of its simplicity, the one-dimensional case is
physically meaningful, since Eq. (1.3) is used to describe boson gas in elongated
traps and the so-called cigar-shaped Bose-Einstein condensates. (13) Of course, the
three-dimensional problem has a more general reach and is more difficult from the
technical point of view. Furthermore, we stress that the scaling we are considering
here is not the one-dimensional analogue of the one found by Lieb, Seiringer and
Yngvason, that requires γ = 1 and results in a nonlinearity which is still cubic but
whose strength is given by the scattering length of the unscaled potential.

During the final draft of this paper we were made aware of the fact that Erd s,
Schlein and Yau had achieved the proof of the uniqueness for the infinite hierarchy
in the three-dimensional setting, (5) and in the time between the submission of
our paper and the draft of the revised version, they completed the proof for the
three-dimensional case in the scaling of Lieb, Seiringer and Yngvason. (7,8)

Before stating the result, let us recall some standard definitions.
We make use of the shorthand notation

X j := (x1, . . . , x j ) ∈ R
j

X j
k := (x j , . . . , xk) ∈ R

k− j+1 (1.5)

A state of the system is represented by a square integrable function �N (t) satisfying
the normalization condition

∫

R

|�N (t ; X N )|2 d X N = 1 (1.6)

The same state can be equivalently denoted by the orthogonal projection ρN (t) on
the linear span of �N (t) as a subspace L2(RN ). The integral kernel of ρN (t) reads

ρN (t ; X N ; YN ) = �N (t ; X N )�N (t ; YN ) (1.7)

and its action on any 	 ∈ L2(RN ) is given by

(ρN (t)	)(X N ) =
∫

R
N
ρN (t ; X N ; YN )	(YN ) dYN (1.8)

Any set of n particles among the N in the system is described by the reduced
density matrix (sometimes called correlation function or marginal), namely the
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integral operator defined by the kernel

ρN ,n(t ; Xn; Yn) =
∫

R
N−n

ρN

(
t ; Xn, Zn+1

N ; Yn, Zn+1
N

)
d Zn+1

N . (1.9)

Due to (1.6), ρN ,n(t) is a positive operator whose trace equals one, i.e.

‖ρN ,n(t)‖L1(L2(Rn )) = 1 (1.10)

where we denoted by L1(L2(Rn)) the space of trace-class operators on L2(Rn).
Analogously, we denote by L2(L2(Rn)) the space of the Hibert-Schmidt operators
on L2(Rn). It is well known that L1(L2(Rn)) ⊂ L2(L2(Rn)) and

‖ρ(t)‖L2(L2(Rn )) ≤ ‖ρ(t)‖L1(L2(Rn )) (1.11)

for any ρ(t) ∈ L1(L2(Rn)).
As described in(9), one can define the so-called Sobolev spaces of density

matrices, denoted by Lm,p(L2(Rn)). Let Sj be the operator (I − ∂2
j )

1
2 . Then, ρ ∈

Lm,p(L2(Rn)) if

Trace
(∣∣Sm

1 . . . Sm
n ρ(t)Sm

1 . . . Sm
n

∣∣p) < ∞ (1.12)

and

‖ρ‖Lm,p(L2(Rn )) = [Trace
(∣∣Sm

1 . . . Sm
n ρSm

1 . . . Sm
n

∣∣p)] 1
p . (1.13)

In the following we mainly use the space L1,2(L2(Rn)). We recall here that the
norm in such space has a simple expression in terms of the integral kernel of ρ(t),
namely

‖ρ(t)‖2
L1,2(L2(Rn )) =

∫

R
2n

∣∣∣∣∣

[
n∏

j=1

(
1 − ∂2

x j

)1/2(
1 − ∂2

y j

)1/2

]
ρ(t ; Xn, Yn)

∣∣∣∣∣

2

d Xn dYn .

(1.14)
For the sake of simplicity we use the notation

En := L1,2(L2(Rn)). (1.15)

Introducing the Fourier representation

ρ(t ; Xn; Yn) = 1

(2π )n

∫

R
2n

ei Xn ·�n+iYn ·�n ρ̂N ,n(t ; �n; �n) d�n d�n (1.16)

with variables in the Fourier space denoted as follows

�n = (ξ1, . . . , ξn) ∈ R
n, �n = (λ1, . . . λn) ∈ R

n (1.17)

we can express the norm in En in (1.14) as

‖ρ(t)‖2
En

=
∫

R
2n
�(�n)2�(�n)2 |ρ̂(t ; �n; �n)|2 d�n d�n (1.18)
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where we defined the function

�(W ) =
k∏

j=1

(
1 + w2

j

) 1
2 (1.19)

for any W = (w1, . . . , wk) ∈ R
k .

Finally, we recall that, for the problem defined by (1.1) and (1.4), the integral
kernels of the reduced density matrices ρN ,n(t) solve the finite BBGKY hierarchy,
i.e.

i∂tρN ,n(t ; X N ; YN ) = −
n∑

j=1

(
∂2

x j
− ∂2

y j

)
ρN ,n(t ; Xn; Yn)

+ N γ−1
∑

1≤ j<k≤n

[V (N γ (x j − xk))

− V (N γ (y j − yk))]ρN ,n(t ; Xn; Yn) (1.20)

+ N − n

N 1−γ

n∑

j=1

∫

R

[V (N γ (x j − z))

− V (N γ (y j − z))]ρN ,n+1(t ; Xn, z; Yn, z) dz.

We write here for completeness the so-called infinite BBGKY hierarchy

i∂tρn(t ; Xn; Yn) = −
n∑

j=1

(
∂2

x j
− ∂2

y j

)
ρn(t ; Xn; Yn)

+α
∑

1≤i≤n

[ρn+1(t ; Xn, xi ; Yn, xi ) − ρn+1(t ; Xn, yi ; Yn, yi )].

(1.21)

where, as already mentioned,

α =
∫

R

V (x)dx . (1.22)

Our main result is the following.

Theorem 1.1. Consider the Cauchy problem (1.1), where the potential U is given
in (1.4) with V a non negative function in the Schwarz space S(R), and factorized
initial data

� I
N := (ψ I )⊗N . (1.23)
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Denoted by ρ I
N the orthogonal projection in L2(Rn) on the linear span of � I

N , and
by HN the N-particle Hamilton operator

HN := −
N∑

j=1

∂2
x j

+ N γ−1
∑

1≤ j<k≤N

V (N γ (x j − xk)) (1.24)

with 0 < γ < 1, we assume that for any n there exists N �(n) s.t. if N > N �(n)
then the following growth condition holds

(
� I

N , H n
N � I

N

) ≤ Mn N n (1.25)

for some M > 0.
Then, the n-particle reduced density matrix satisfies

ρN ,n −→ (ψ ⊗ ψ̄)⊗n, N −→ ∞ (1.26)

in the weak-� topology of the space L∞(R, En), where En has been defined in
(1.15).

The function ψ appearing in (1.26) satisfies Eq. (1.3) with initial data ψ I ,
and

α :=
∫

R

V (x) dx . (1.27)

The paper is organized as follows. In Sec. 2 we derive the two estimates needed
to prove the result. In Sec. 3 we prove the convergence, up to subsequences, of
any solution of (1.20) to a solution of (1.21). In Sec. 4 we prove uniqueness for
solutions of the infinite hierarchy and identify such solution with the marginals
generated by the solutions of Eq. (1.3). Finally, in Sec. 5 we prove the existence
of good factorized initial data, under the restrictive hypothesis γ < 1/2.

2. ESTIMATES

The first estimate is the one dimensional version of inequality (3.25) in
Ref. 4.

Proposition 2.1. Let V be a non negative function belonging to the Schwarz
space S(R), HN be defined like in (1.24), and ρ I

N be the initial density matrix of
the system, and assume that it satisfies the inequality (1.25) for some M ∈ R and,
eventually in N, for any n ≤ N. Then, for any M1 > M and any n ∈ N there exists
N̄ depending on n and M1 such that

‖ρN ,n(t)‖L1,1(L2(Rn )) := Trace

[(
n∏

j=1

Sj

)
ρN ,n(t)

(
n∏

j=1

Sj

)]
≤ Mn

1 (2.1)
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for any time t and N ≥ max(N̄ , N �(n)), where N �(n) has been defined in Theorem
1.1.

Proof. We refer the reader to the proof of Proposition 3.1. and Corollary 3.2. in
Ref. 4. Let us just explain why in this case we can prove estimate (2.1) for γ < 1
while in Ref. 4 the best one can get is γ < 3/5. The one dimensional setting differs
from the three dimensional one by the fact that the following inequality holds

〈V ′
12〉 ≤ ‖V ′‖L1(R)

2a

〈
S2

1

〉
(2.2)

where Vi j is the multiplication by a−1V (a−1(xi − x j )), and 〈A〉 denotes the mean
value of the observable A on some function belonging to the domain of S2

1 .
Therefore, inequality (3.23) in Ref. 4 is replaced by

2Re

〈
V12

n+1∏

j=1

S2
j

〉
≥ −‖V ′‖L1(R)

2a

(
2α1 + 2α−1

1 + α2 + α3
)
〈

n+1∏

j=1

S2
j

〉

−
(‖V ′‖L1(R)

2aα2
+ ‖V ′‖L∞(R)

a2α3

)〈
S4

1

n+1∏

j=2

S2
j

〉
. (2.3)

Analogously

2Re

〈
V1,n+2

n+1∏

j=1

S2
j

〉
≥ −‖V ′‖L1(R)

2a

(
α4 + α−1

4

)
〈

n+2∏

j=1

S2
j

〉
(2.4)

where all the positive coefficients a, α j ’s can be chosen arbitrarily. Recalling that
a = N−γ , and setting α1 = α2 = α4 = 1, and α3 = N γ , the following inequality
is proven (see formulas (3.22) and (3.24) in Ref. 4)

〈
(HN + N )

⎛

⎝
n+2∏

j=1

S2
j

⎞

⎠ (HN + N )

〉
≥ N 2 f (N , n)

〈
n+2∏

j=1

S2
j

〉
+Ng(N , n)

〈
S4

1

n+1∏

j=2

S2
j

〉

(2.5)

where

f (N , n) :=
(

1 − n

N

) [(
1 − n + 1

N

)
− ‖V ′‖L1(R)

4
n(n + 1)(5N γ−2 + N 2γ−2)

]

g(N , n) :=
(

1 − n

N

) [
(2n + 1) − (‖V ′‖L1(R) + 2‖V ′‖L∞(R))

n + 1

4
N γ−1

]
(2.6)
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Since for N → ∞ f (N , n) → 1 and g(N , n) → 2n + 1, then for any positive
C < 1 there exists N̄ such that N > N̄ implies

〈
(HN + N )

(
n+2∏

j=1

S2
j

)
(HN + N )

〉
≥ C2 N 2

〈
n+2∏

j=1

S2
j

〉
(2.7)

From inequality (2.7) one can prove by induction on n that, for any positive C < 1,
there exists Ñ depending on C and on n such that if N > Ñ then

〈(HN + N )n〉 ≥ Cn N n

〈
n∏

j=1

S2
j

〉
(2.8)

for any t . Following Corollary 3.2. in Ref. 4, one applies the conservation law of
〈(HN + N )n〉 to estimate (2.8) and the proof is complete. �

Remark 2.2. Since the space of trace class operators is embedded in the space of
the Hilbert-Schmidt operators one obviously has

‖ρN ,n(t)‖En ≤ Trace

⎡

⎣

⎛

⎝
n∏

j=1

Sj

⎞

⎠ ρN ,n(t)

⎛

⎝
n∏

j=1

Sj

⎞

⎠

⎤

⎦ ≤ Mn
1 (2.9)

for any time t and N ≥ max(N̄ , N �(n)).

Remark 2.3. For a factorized initial state, the condition (1.25) implies that ψ I is
a function in the Schwarz class. A costruction of a suitable ψ I is made in the
appendix, under the additional hypothesis γ < 1/2.

The second estimate we need concerns the norm of density matrices in the
space En .

Proposition 2.4. Given a density matrix ρ ∈ En+1, let ρ(Xn+1; Yn+1) be its
integral kernel and consider the function σ : R

2n → C defined by

σ (Xn; Yn) =
∫

R

U (x1 − z) ρ(Xn, z; Yn, z) dz. (2.10)

where U has a bounded Fourier transform Û . Then, the integral operator σ having
σ (Xn; Yn) as integral kernel belongs to En and

‖σ‖En ≤
√

32π‖Û‖L∞(R)‖ρ‖En+1 (2.11)

Proof. Let us define the function

� : R
2n+1 → C, �(Xn; Yn; z) := ρ(Xn, z; Yn, z). (2.12)
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By elementary computation one gets

σ̂ (�n; �n) =
∫

R

Û (k)�̂
(
ξ1 − k, �2

n; �n; k
)

dk (2.13)

where, according to notation (1.5), we wrote �2
n := (ξ2, . . . , ξn) ∈ R

n−1, and then

‖σ‖2
En

:=
∫

R
2n

�(�n)2�(�n)2 |σ̂ (�n; �n)|2 d�n d�n

=
∫

R
2n

�
(
�2

n

)2
�(�n)2

∣∣∣∣
∫

R

�(ξ1)Û (k)�̂
(
ξ1 − k, �2

n; �n; k
)

dk

∣∣∣∣
2

d�n d�n.

(2.14)

where the function � has been defined in (1.19). Since

�(ξ1) ≤
√

2[�(ξ1 − k) + �(k)] (2.15)

we obtain
∫

R
2n

�(�n)2�(�n)2 |σ̂ (�n; �n)|2 d�n d�n

≤ 4
∫

R
2n

�
(
�2

n

)2
�(�n)2

∣∣∣∣
∫

R

�(ξ1 − k)Û (k)�̂(ξ1 − k, �2
n; �n; k) dk

∣∣∣∣
2

d�n d�n

+ 4
∫

R
2n

�
(
�2

n

)2
�(�n)2

∣∣∣∣
∫

R

�(k)Û (k)�̂(ξ1 − k, �2
n; �n; k) dk

∣∣∣∣
2

d�n d�n

≤ 4
∫

R
2n

�
(
�2

n

)2
�(�n)2

∣∣∣∣∣

∫

R

�(ξ1 − k)�(k)
Û (k)

�(k)
�̂(ξ1−k, �2

n; �n; k)dk

∣∣∣∣∣

2

d�n d�n

+ 4
∫

R
2n
�
(
�2

n

)2
�(�n)2

∣∣∣∣∣

∫

R

�(ξ1−k)�(k)
Û (k)

�(ξ1−k)
�̂(ξ1−k, �2

n; �n; k)dk

∣∣∣∣∣

2

d�nd�n.

(2.16)

Applying the Cauchy-Schwarz inequality to both integrals we get
∫

R
2n

�(�n)2�(�n)2 |σ̂ (�n; �n)|2 d�n d�n

≤ 8π

∫

R
2n
�
(
�2

n

)2
�(�n)2

∫

R

�(ξ1−k)2�(k)|Û (k)�̂(ξ1−k, �2
n; �n; k)|2 dk d�n d�n

≤ 8π‖Û‖2
∞

∫

R
2n+1

�(ζ )2�(�n)2�(�n)2|�(�n; �n; ζ )|2d�nd�ndζ (2.17)
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We observe that

�(Xn; Yn; xn+1) =
∫

R

δ(xn+1 − yn+1) ρ(Xn+1; Yn+1) dyn+1

where δ is the Dirac’s measure and has a bounded Fourier transform δ̂ = (2π )−1/2.
Therefore,

∫

R
2n+1

�(ζ )2�(�n)2�(�n)2
∣∣∣�̂(�n; �n; ζ )

∣∣∣
2

d�n d�n dζ < ∞ (2.18)

and applying estimate (2.17) we conclude

‖σ‖2
En

≤ 32π‖Û‖2
L∞(R)‖ρ‖2

En+1
(2.19)

�

Remark 2.5. If U (x) = N γ−1V (N γ x), then

‖σ‖2
En

≤ 32π

N 2
‖V̂ ‖2

L∞(R)‖ρ‖2
En+1

. (2.20)

Furthermore, if V is integrable, then

‖σ‖2
En

≤ 16

N 2
‖V ‖2

L1(R)‖ρ‖2
En+1

. (2.21)

3. CONVERGENCE TO THE INFINITE BBGKY HIERARCHY

Following the strategy of Ref. 3 we prove convergence in some weak sense
of the solutions to the finite BBGKY hierarchy to solutions to the infinite one. The
first point is to construct a converging subsequence. We have in fact the following
proposition.

Proposition 3.1. There exists an increasing function φ : N
∗ → N

∗ such that for
any n ∈ N

∗, the sequence {ρφ(N ),n}N∈N
∗ converges in the space L∞(R, En) in the

sense of the weak-� topology.

The proof follows the one of Proposition 4.1. In Ref. 1, except for the
irrelevant fact that in our case the norm of ρN ,n is uniformly bounded with respect
to N only.

Remark 3.2. Such a convergence result holds in the space
∏∞

n=1 L∞(R, En) en-
dowed with the product topology. Due to estimate (2.9) on can establish conver-
gence in the sphere of the space L∞(R, En) with radius Mn

1 and centered at zero.
Therefore, for any limit point ρn(t), inequality (2.9) gives

‖ρn(t)‖En ≤ Mn
1 . (3.1)
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In the following theorem we prove the weak convergence of the finite BBGKY
hierarchy to the infinite one.

Theorem 3.3. Consider the Cauchy problem (1.1) where the potential U is given
in (1.4), V ∈ S(R), V ≥ 0, and the initial data � I

N ∈ H 1(RN ) satisfy the undis-
tinguishability assumption (1.2) and the normalization condition (1.6). Moreover,
denoted by ρ I

N the orthogonal projection in L2(RN ) on the linear span of � I
N , we

assume that the growth condition (1.25) is satisfied.
Let us assume that the n-particle marginal ρ I

N ,n, converges to an operator ρ I
n

for N → ∞ in the weak-� topology of the space En defined in (1.15).
Let �N ∈ C0(R; H 1(RN )) be the mild solution of the Cauchy problem (1.1),

(1.4), with initial data � I
N , ρN (t) the orthogonal projection in L2(Rn) on the space

spanned by �N (t), and ρN ,n(t) its n-particle marginal.
Then, any simultaneous limit point as N → ∞ of the family of partial traces

ρN ,n solves the infinite Schrödinger hierarchy (1.21) in the sense of distributions
D′(R2n+1).

Here, limit points are understood in the sense of the product topology on∏∞
n=1 L∞(R; En), each factor being equipped with the weak-� topology.

Proof. Let us consider a converging subsequence {ρN j ,n} j∈N of marginals. Here-
after we omit the indication of the variable j and simply write ρN ,n . Let ρn denote
the limit of ρN ,n as N goes to infinity, in the weak-� topology of L∞(R; En).

We show that the integral kernel ρn(t ; Xn; Yn) of the operator ρn satisfies the
infinite BBGKY hierarchy (1.21) in the sense of distributions D′(R2n+1).

It is easily seen that the weak-� convergence in L∞(R, En) implies the weak-�
convergence in L∞(R, L2(Rn)) and consequently the convergence in D′(R2n+1)
for the function ρ(t ; Xn; Yn). It follows that the l.h.s. and the laplacian term of
(1.20) converge to the corrisponding terms of (1.21).

We observe that ρN ,n(t) ∈ L∞(R2n). Indeed, by the ordinary inverse Fourier
transform formula (1.16) and using the Cauchy-Schwarz inequality one has

‖ρN ,n(t)‖L∞(R2n ) ≤
(π

2

)n
‖ρN ,n(t)‖En . (3.2)

Consider the second term in the r.h.s. of (1.20). It consists of a sum of n(n−1)
2

terms whose generic term, evaluated on a test function ϕ ∈ D(R2n+1), gives

N γ−1
∫

R
2n+1

V (N γ (x1 − x2))ρN ,n(t ; Xn; Yn)ϕ(t ; Xn; Yn) dt d Xn dYn

≤ N γ−1
(π

2

)n
|Supp(ϕ)|‖V ‖L∞(R)‖ρN ,n‖L∞(R,En )‖ϕ‖L∞(R2n+1) (3.3)
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where |Supp(ϕ)| denotes the Lebesgue measure of the support of ϕ. It appears
from (3.3) that the first sum in the r.h.s of (1.20) vanishes as N goes to infinity in
the sense of distributions.

It remains to prove that the last sum in the r.h.s. of (1.20) converges to the
corresponding term in the r.h.s. of (1.21). It suffices to prove the convergence for
one term of the sum, e.g.

∫

R
n+1

ϕ(t ; Xn; Yn)

[∫

R

dz N γ V (N γ (x1−z))ρN ,n+1(t ; Xn, z; Yn, z) dz

]
dt d Xn dYn

−→
∫

R
n+1

ϕ(t ; Xn; Yn)ρn+1(t ; Xn, x1; Yn, x1) (3.4)

First we prove that the r.h.s. in (3.4) can be written as follows

∫

R
n+1

ϕ(t ; Xn; Yn)

[∫

R

dz N γ V (N γ (x1−z)) ρN ,n+1(t ; Xn, z; Yn, z) dz

]
dt d Xn dYn

= 〈	N ,n+1, ρN ,n+1〉L1(R,E∗
n+1) (3.5)

where 	N ,n+1 ∈ L1(R, E∗
n+1) and 〈·, ·〉X denotes the duality product in the space

X . Let us write

〈	N ,n+1, ρN ,n+1〉L1(R,E∗
n+1) =

∫

R

〈	N ,n+1(t), ρN ,n+1(t)〉E∗
n+1

dt (3.6)

Our task is then to prove that 	N ,n+1(t) ∈ E∗
n+1 = L−1,2(L2(Rn+1)). By a standard

computation in the Fourier space one has

〈	N ,n+1(t), ρN ,n+1(t)〉E∗
n+1

= 1

(2π )n+ 1
2

∫

R
2n+2

ϕ̂
(
t ; −ξ1 − ξn+1 − λn+1,−�2

n; −�n

)

V̂

(
λn+1 − ξn+1

N γ

)
ρ̂N ,n+1(t ; �n+1; �n+1) d�n+1 d�n+1 (3.7)

Notice that the function

	̂N ,n+1(t ; �n+1; �n+1) = 1

(2π )n+ 1
2

ϕ̂(t ; −ξ1 − ξn+1 − λn+1,−�2
n; −�n)

× V̂

(
λn+1 − ξn+1

N γ

)
(3.8)



Rigorous Derivation of the Cubic NLS in Dimension One 1205

satisfies the inequality

∫

R
2n+2

∣∣∣	̂N ,n+1(t ; �n+1; �n+1)
∣∣∣
2

�(�n+1)2�(�n+1)2
d�n+1 d�n+1 ≤ 2π‖ϕ̂(t)‖2

L∞(R2n )
‖V̂ ‖2

L∞(R) < ∞
(3.9)

Therefore 	N ,n+1(t) belongs to E∗
n+1.

Moreover

‖	N ,n+1‖L1(R,E∗
n+1) =

∫

R

‖	N ,n+1(t)‖E∗
n+1

dt

≤
√

2πDiam(Supp[ϕ])‖ϕ̂‖L∞(R2n+1)‖V̂ ‖L∞(R) (3.10)

where Diam(Supp[ϕ]) is the diameter in R
2n+1 of the support of ϕ. We have then

proven that the l.h.s. of (3.4) can be interpreted as a duality product in L1(R, E∗
n+1).

Furthermore, it appears that, at any t , 	N ,n+1(t) converges strongly in E∗
n+1 to the

functional 	n+1(t) represented by the function 	n+1(t ; Xn+1; Yn+1) whose Fourier
transform reads

	̂n+1(t ; �n+1; �n+1) = 1

(2π )n+ 1
2

ϕ̂(t ; −ξ1 − ξn+1 − λn+1,−�2
n; −�n)V̂ (0)

(3.11)
Therefore, recalling that ρN ,n+1 converges weakly-� to ρn+1, we have that

〈	N ,n+1, ρN ,n+1〉L1(R,E∗
n+1) −→ 〈	n+1, ρn+1〉L1(R,E∗

n+1)

= V̂ (0)

(2π )n+ 1
2

∫

R
2n+2

ϕ̂
(
t ; −ξ1 − ξn+1 − λn+1,−�2

n; −�n

)

× ρ̂N ,n+1(t ; �n+1; �n+1) d�n+1 d�n+1 (3.12)

=
(∫

R

V (x) dx

)∫

R
2n

ϕ(t ; Xn; Yn)ρn+1(t ; Xn, x1; Yn, x1) d Xn, dYn

The argument can be repeated for each term of the last sum in the r.h.s. of (1.20),
and then the result is proven. �

4. UNIQUENESS AND SERIES REPRESENTATION

The proof of the uniqueness for the solution to the infinite BBGKY hierarchy
(1.21) is easily obtained using estimates (2.1) and (3.1). Due to the linearity of the
hierarchy it is sufficient to prove the following result.

Theorem 4.1. Let {θn(t)}n≥1 be a solution of (1.21) in some time interval [0, T ),
T > 0, such that θn(t) ∈ En for any n ≥ 1 and t ∈ [0, T ), θn(0) = 0, and ‖θn(t)‖ ≤
K n for some positive K . Then, θn(t) = 0.
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Proof. We consider the free propagator for density matrices Un(t), acting on
integral kernels as follows

[Un(t)θn](Xn; Yn) = 1

(4π t)n

∫

R
2n

ei |Xn−X ′
n |2−|Yn−Y ′

n |2
4t θn(X ′

n; Y ′
n) d X ′

n dY ′
n (4.1)

Let us exploit the “interaction representation,” namely define

un(t) := Un(−t)θn(t) (4.2)

Then, un(t) solves

i∂t un(t) = Un(−t)Ln,n+1Un+1(t)un+1(t) (4.3)

where the action of the operator Ln,n+1 is defined by

Ln,n+1vn+1(t) = α

n∑

i=1

[vn+1(t ; Xn, xi ; Yn, xi ) − vn+1(t ; Xn, yi ; Yn, yi )] (4.4)

Due to estimate (2.11) with U = δ, we obtain that Ln,n+1 is a bounded operator
mapping En+1 to En and

‖Ln,n+1‖L(En+1,En ) ≤ 8αn (4.5)

Furthermore, due to unitarity of Un in En , the growth condition assumed for θn(t)
remains valid also for un . Applying Theorem (3.1) in Ref. 2 we conclude the
proof. �

Corollary 4.2. The weak-� limit ρn of the sequence ρN ,n of reduced density
matrix associated to problem (1.1) provided with the scaling (1.4) equals

ρn(t) = ψ(t)⊗n ⊗ ψ(t)⊗n (4.6)

where ψ(t) solves Eq. (1.3) with α = ∫
R

V (x) dx.

Proof. By Theorem (3.3) we know that ρn solves hierarchy (1.21) in the sense of
distributions. Due to the form of equations in (1.21), ρn must belong to C1(R, En),
and since the weak-� limit has to be performed in the closed ball centered at the
origin of En with radius Mn

1 , we conclude that ρn fulfils the growth condition in
the hypothesis of Theorem (4.1) with K = M1. By direct inspection it is easily
seen that the density matrices in the r.h.s. of (4.6) solve the same hierarchy and
satisfy the growth condition. By Theorem (4.1), the result is proven. �

Remark 4.3. The unique solution of the infinite BBGKY hierarchy can be rep-
resented by its Duhamel series. This representation may be used also to show
uniqueness in a direct way, as done in Ref. 3, Sec. 5. More specifically, for the
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solution of (1.21) with initial data ρ I
n one has

ρn(t) = Un(t)ρ I
n +

m∑

k=1

(−i)k
∫

Sk (t)
dTk Un(t − t1)

× Ln,n+1Un+1(t1 − t2) . . . Ln+k−1,n+kUn+k(tk)ρ I
n+k + Rn,m(t) (4.7)

where dTk = dt1 . . . dtk , Sk(t) is the k-dimensional simplex of size t , namely

Sk(t) = {(s1, . . . , sk), 0 ≤ s1 ≤ · · · ≤ sk ≤ t} (4.8)

and the rest Rn,m(t) is given by

Rn,m(t) := (−i)m+1
∫

Sm+1(t)
dTm+1 Un(t − t1)Ln,n+1Un+1(t1 − t2) . . .

. . . Ln+m,n+m+1ρn+m+1(tn+m+1) (4.9)

Estimates (2.1) and (3.1) imply that the Duhamel formula (4.7) can be extended
to a converging series expansion. Indeed, notice that for the generic term of the
sum one has

∥∥∥∥
∫

Sk (t)
dTk Un(t − t1)Ln,n+1Un+1(t1 − t2) . . . Ln+k−1,n+kUn+k(tk)ρ I

n+k

∥∥∥∥
En

≤ (8αt)k

(
n − 1

k

)
‖ρ I

n+k‖En ≤ [8α(n + 1)t]k‖ρ I
n+k‖En (4.10)

Recalling that

‖ρ I
n+k‖En = ‖ψ I ‖2n+2k

H 1(R) (4.11)

we have that the Duhamel series converges for

t <
[
8α(n + 1)‖ψ I ‖2

H 1(R)

]−1
(4.12)

An analogous computation for the rest Rn,m(t), together with estimate (3.1) shows
that

‖Rn,m(t)‖En ≤ [8α(n + 1)t M1]m+1 Mn
1

n + 1
(4.13)

so the rest is vanishing for

t < T := (8α(n + 1)M1)−1 (4.14)

Remark 4.4. Since estimates (2.1) and (3.1) are uniform in time, the construction
by series of the unique solution of (1.21) can be iterated for any time.

From Theorems 3.3 and 4.1, the proof of Theorem 1.1 is complete.
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5. APPENDIX: THE INITIAL DATA IN THEOREM 1.1

In this appendix we show that the growth condition (1.25) can be fulfilled

by a pure factorized state, i.e. in the case ρ I
N = ψ⊗N ⊗ ψ

⊗N
. In fact, our proof

holds only in the case γ < 1/2 and we do not know whether for γ ≥ 1/2 there
actually are factorized initial data that satisfy (1.25). In the latter case, however,
it is possible to mimic the strategy set up by Erd s, Schlein and Yau for the
three-dimensional problem(7): first, approximate the factorized initial data with
a non factorized one, say �̃ I

N , that fulfils (1.25); then, apply Theorem (1.1) to
the problem (1.1) with initial data �̃ I

N . Finally, remove the approximation on
the initial data. This method works also for our problem with 0 < γ < 1. None
the less, we prefer to follow another line, close to the one used by Erd s and
Yau in the derivation of the Schrödinger-Poisson equation. (9) We have to proceed
more carefully, since in our model the range of the potential is shrinking as N
grows.

Lemma 5.1. Let i, j, k, l be distinct elements of {1, . . . , N }, with i < j , k < l.
Consider two integrable functions U, W : R → R and denote by Ui j and Wkl

the multiplication by N γ−1U (N γ (xi − x j )) and N γ−1W (N γ (xk − xl)). Then, the
following inequality holds in the sense of the operators in L2(R)

Ui j Wkl ≤ N−2‖U‖L1(R)‖W‖L1(R)S
2
λ S2

µ (5.1)

where λ is either i or j , and µ is either k or l.

Proof. Let ϕ be a smooth, compactly supported function from R
N to R. Then,

(ϕ, Ui j Wklϕ) =
∫

R
N
|ϕ(X N )|2 N 2γ−2U (N γ (xi − x j ))W (N γ (xk − xl)) d X N

= N 2γ−2
∫

R

dζi U (N γ ζi )
∫

R

dζk W (N γ ζk)

×
∫

R
N−2

d X̂ i,k
N

∣∣ϕ
(
X̂ i,k

N , ζi + x j , ζk + xl

)∣∣2 (5.2)

where we performed the changes of variables ζi = xi − x j , ζk = xk − xl , and
introduced the symbol X̂ i,k

N denoting the N − 2-dimensional vector that equals X N

without the components i th and kth. Moreover, with a slight abuse, we denoted
ϕ(X̂ i,k

N , ζi + x j , ζk + xl) the quantity ϕ(X N ) with the argument expressed in the
variables X̂ i,k

N , ζi , ζk . Then, integrating in ζi and ζk one easily obtains

(ϕ, Ui j Wklϕ) ≤ N−2‖U‖L1(R)‖W‖L1(R) sup
ζi ,ζk

∫

R
N−2

∣∣ϕ
(
X̂ i,k

N , ζi + x j , ζk + xl

)∣∣2d X̂ i,k
N
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≤ N−2‖U‖L1(R)‖W‖L1(R)

∫

R
2

dζi dζk

×
∣∣∣∣
∫

R
N−2

d X̂ i,k
N ∂ζi ∂ζk

∣∣ϕ
(
X̂ i,k

N , ζi + x j , ζk + xl

)∣∣2
∣∣∣∣ (5.3)

where for both variables ζi and ζk we exploited the estimate

‖ f ‖L∞(R) ≤ ‖ f ′‖L1(R) (5.4)

that holds for any absolute continuous function f vanishing at infinity. Letting the
moduli pass through the sign of integral, after a change of variable we obtain

(ϕ, Ui j Wklϕ) ≤ N−2‖U‖L1(R)‖W‖L1(R)

∫

R
N

∣∣∂xi ∂xk |ϕ|2∣∣ (X N ) d X N (5.5)

Applying Leibniz’s rule and Cauchy-Schwarz’s inequality we get

(ϕ, Ui j Wklϕ) ≤ 2N−2‖U‖L1(R)‖W‖L1(R)

× (‖∂xi ∂xk ϕ‖L2(RN )‖ϕ‖L2(RN ) + ‖∂xi ϕ‖L2(RN )‖∂xk ϕ‖L2(RN )

)

≤ N−2‖U‖L1(R)‖W‖L1(R)

(‖∂xi ∂xk ϕ‖2
L2(RN )

+‖ϕ‖2
L2(RN )

+‖∂xi ϕ‖2
L2(RN )

+‖∂xk ϕ‖2
L2(RN )

) = N−2‖U‖L1(R)‖W‖L1(R)

(
ϕ, S2

i , S2
k ϕ
)

(5.6)

Remarking that indices i and j , as well as k and l, are exchangeable, we complete
the proof. �

Lemma 5.2. Let i, j, k be distinct elements of {1, . . . , N }, with i < j , i < l.
Consider two integrable functions U, W : R → R and denote by Ui j and Wil

the multiplication by N γ−1U (N γ (xi − x j )) and N γ−1W (N γ (xi − xl)). Then, the
following inequality holds in the sense of the operators in L2(R)

Ui j Wil ≤ N−2‖U‖L1(R)‖W‖L1(R)S
2
j S2

l (5.7)

Proof. The proof of the preceding lemma can be replicated replacing i by j . �

Lemma 5.3. Let i, j belong to {1, . . . , N }, with i < j . Consider two inte-
grable functions U, W : R → R and denote by Ui j and Wi j the multiplication
by N γ−1U (N γ (xi − x j )) and N γ−1W (N γ (xi − x j )). Then, the following inequal-
ity holds in the sense of the operators in L2(R)

Ui j Wi j ≤ N 2γ−2‖U‖L∞(R)‖W‖L∞(R) (5.8)

Proof. The proof is trivial. �

Now we introduce the main technical lemmas.
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Lemma 5.4. Let γ be less than 1/2, denote by Vi j the multiplication by
N γ−1V (N γ (xi − x j )), and by � the laplacian with respect to the variables
{x1, . . . , xN }. Then, for any p ∈ N the following inequality holds in the sense
of the operators in L2(RN )

∑

i< j,k<l
#({i, j,k,l})=4

Vi j (−�)pVkl ≤ ‖V ‖2
L1(R)(−�)p(N − �)2 + 7p‖V ‖2

W p,1(R)

× (N−1 + N 2γ−1
)
(N − �)p+2 (5.9)

Proof. From now on we shall make use of the symbol Di = −i∂xi , and denote
by A� the adjoint in L2 of the operator A. Furthermore, A + h.c. will denote the
operator A + A�.
Applying Leibniz’s rule,

Vi j (−�)pVkl =
N∑

α1,...,αp=1

(
Dα1 . . . Dαp Vi j

)�
Dα1 . . . Dαp Vkl

=
p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

) q−qi −q j∑

qk=0

(
q − qi − q j

qk

)

×
∑

β1 ,...,βp−q
�=i, j,k,l

Dβ1 . . . Dβp−q

(
Dqi

i D
q j

j Dqk

k Dql

l Vi j

)�

×(Dqi

i D
q j

j Dqk

k Dql

l Vkl

)
Dβ1 . . . Dβp−q

=
∑

β1 ,...,βp
�=i, j,k,l

Dβ1 . . . Dβp Vi j Vkl Dβ1 . . . Dβp (5.10)

+
p∑

q=1

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

) q−qi −q j∑

qk=0

(
q − qi − q j

qk

)

×
qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qk∑

mk=0

(
qk

mk

)

×
ql∑

ml=0

(
ql

ml

)
imi −m j −mk+ml N γ (mi +m j +mk+ml )

×
∑

β1 ,...,βp−q
�=i, j,k,l

Dβ1 . . . Dβp−q Dqk

k Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V (mk+ml )
kl

× Dqk−mk

k Dql−ml

l Dqi

i D
q j

j Dβ1 . . . Dβp−q = (I ) + (I I )
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where we defined ql = q − qi − q j − qk and

V (w)
uv = N γ−1V (w)(N γ (xu − xv)) (5.11)

An estimate for the operator (I ) is obtained applying lemma (5.1) with U = W =
V . Indeed,

(I ) ≤ N−2‖V ‖2
L1(R)S

2
i S2

k (−�)p (5.12)

Summing all terms like (5.12) over all distinct pairs i < j and k < l, we obtain
the first term in the r.h.s. of (5.9).

Let us discuss the term (II) in (5.10).
Using the notation

A = im j −mi N γ (mi +m j )sgn
(

V
(mi +m j )

i j V (mk+ml )
kl

) ∣∣∣V (mi +m j )
i j V (mk+ml )

kl

∣∣∣
1/2

× Dqk

k Dql

l Dqi −mi

i D
q j −m j

j

B = iml−mk N γ (mk+ml )
∣∣∣V (mi +m j )

i j V (mk+ml )
kl

∣∣∣
1/2

Dqk−mk

k Dql−ml

l Dqi

i D
q j

j (5.13)

we notice that

imi −m j −mk+ml N γ (mi +m j +mk+ml ) Dqk

k Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V (mk+ml )
kl Dqk−mk

k

× Dql−ml

l Dqi

i D
q j

j + h.c.

= A� B + B� A ≤ A� A + B� B = N 2γ (mi +m j ) Dqk

k Dql

l Dqi −mi

i D
q j −m j

j

×
∣∣∣V (mi +m j )

i j V (mk+ml )
kl

∣∣∣ Dqk

k Dql

l Dqi −mi

i D
q j −m j

j

+ N 2γ (mk+ml ) Dqk−mk

k Dql−ml

l Dqi

i D
q j

j

∣∣∣V (mi +m j )
i j V (mk+ml )

kl

∣∣∣ Dqk−mk

k Dql−ml

l Dqi

i D
q j

j

(5.14)

Exploiting Lemma 5.1, with U = ∣∣V (mi +m j )
∣∣ and W = ∣∣V (mk+ml )

∣∣, we finally ob-
tain

imi −m j −mk+ml N γ (mi +m j +mk+ml ) Dqk

k Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V (mk+ml )
kl Dqk−mk

k

× Dql−ml

l Dqi

i D
q j

j + h.c. ≤ N 2γ (mi +m j )−2‖V (mi +m j )‖L1(R)‖V (mk+ml )‖L1(R)

× S2
λ S2

µ D2qk

k D2ql

l D2(qi −mi )
i D

2(q j −m j )
j + N 2γ (mk+ml )−2‖V (mi +m j )‖L1(R)

× ‖V (mk+ml )‖L1(R)S
2
λ S2

µ D2(qk−mk )
k D2(ql−ml )

l D2qi

i D
2q j

j (5.15)
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Then, by (5.10) one finally obtains

(I I ) + h.c.

≤
p∑

q=1

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

) q−qi −q j∑

qk=0

(
q − qi − q j

qk

)

×
qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qk∑

mk=0

(
qk

mk

) ql∑

ml=0

(
ql

ml

)
(−�)p−q

×
{

N 2γ (mi +m j )−2‖V (mi +m j )‖L1(R)‖V (mk+ml )‖L1(R)S
2
λ S2

µ D2qk

k D2ql

l D2(qi −mi )
i

× D
2(q j −m j )
j +N 2γ (mk+ml )−2‖V (mi +m j )‖L1(R)‖V (mk+ml )‖L1(R)S

2
λ S2

µ D2(qk−mk )
k

× D2(ql−ml )
l D2qi

i D
2q j

j

}
(5.16)

≤ ‖V ‖2
W p,1(R)

p∑

q=1

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

) q−qi −q j∑

qk=0

(
q − qi − q j

qk

)

×
qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qk∑

mk=0

(
qk

mk

) ql∑

ml=0

(
ql

ml

)
(−�)p−q

×
{

N 2γ (mi +m j )−2S2
λ S2

µ D2qk

k D2ql

l D2(qi −mi )
i D

2(q j −m j )
j

+N 2γ (mk+ml )−2S2
λ S2

µ D2(qk−mk )
k D2(ql−ml )

l D2qi

i D
2q j

j

}

= (I I I ) + (I V )

Let us consider (I I I ), namely the sums applied to the first term between graph
parentheses. First observe that the sums in mk and ml are trivial and result in
the factor 2q−qi −q j . Moreover, it is convenient to split (I I I ) in two further terms,
one referred to the case mi = m j = 0 and the other collecting the rest. In fact we
obtain

(I I I ) = N−2‖V ‖2
W p,1(R)

p∑

q=1

(
p
q

)
(−�)p−q

q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

)
2q−qi −q j

×
q−qi −q j∑

qk=0

(
q − qi − q j

qk

)
× S2

λ S2
µ D2qk

k D2ql

l D2qi

i D
2q j

j
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+ N−2‖V ‖2
W p,1(R)

p∑

q=1

(
p
q

)
(−�)p−q

q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

)
2q−qi −q j

×
q−qi −q j∑

qk=0

(
q − qi − q j

qk

) qi∑

mi =0

(
qi

mi

)

×
q j∑

m j =0

m j +mi >0

(
q j

m j

)
N 2γ (mi +m j )S2

λ S2
µ D2qk

k D2ql

l D2(qi −mi )
i D

2(q j −m j )
j

= (I I I − A)i jkl + (I I I − B)i jkl (5.17)

Concerning (I I I − A)i jkl , we notice that at least one among the numbers
qi , q j , qk, ql has to be non zero. Let us suppose that it is qi , then choose λ = j ,
and µ arbitrarily either k or l. Notice that

N−2
∑

i< j,k<l

S2
j S2

µ D2qk

k D2ql

l D2qi

i D
2q j

j ≤ N−1(−�)q (N − �)2 (5.18)

due to the fact that in the sum in the r.h.s. there are at least three distinct indices: i ,
j , and µ. Notice that the sum concerns the derivative indices only, not the powers.
Therefore, performing the sum over all pairs we finally obtain

∑

i< j,k<l

(I I I − A)i jkl ≤ N−1‖V ‖2
W p,1(R)(N − �)2(−�)p

×
p∑

q=1

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

)
4q−qi −q j

≤ 7p N−1‖V ‖2
W p,1(R)(N − �)p+2 (5.19)

Concerning the terms of the type (I I I − B)i jkl , we first observe that

N−2
∑

i< j,k<l

S2
λ S2

µ D2qk

k D2ql

l D2(qi −mi )
i D

2(q j −m j )
j ≤ (−�)q−mi −m j (N − �)2 (5.20)

Notice that such estimate is worse than (5.18): this is due to the fact that the four
indices qk , ql , qi − mi and q j − m j could vanish simultaneously, regardless of the
choice of λ and µ. Moreover, since mi + m j > 0, we have

N 2γ (mi +m j ) ≤ N 2γ−1 N mi +m j (5.21)

Therefore

∑

i< j,k<l

(I I I − B)i jkl ≤ N 2γ−1‖V ‖2
W p,1(R)(N − �)2

p∑

q=1

(
p
q

) q∑

qi =0

(
q
qi

)



1214 Adami, Golse and Teta

×
q−qi∑

q j =0

(
q − qi

q j

)
4q−qi −q j

qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

)
N mi +m j (−�)p−mi −m j

≤ 7p N 2γ−1‖V ‖2
W p,1(R)(N − �)p+2 (5.22)

From (5.22) and (5.19) we can conclude

(I I I ) ≤ 7p‖V ‖2
W p,1(R)

(
N 2γ−1 + N−1

)
(N − �)p+2 (5.23)

Remarking that an identical estimate holds for (I V ), and recalling estimate (5.12)
we obtain

∑

i< j,k<l
#({i, j,k,l})=4

(
Vi j (−�)pVkl + Vkl(−�)pVi j

) ≤ 2‖V ‖2
L1(R)(−�)p(N − �)2

+ 2 · 7p‖V ‖2
W p,1(R)

(
N−1 + N 2γ−1

)
(N − �)p+2 (5.24)

Observing that

∑

i< j,k<l
#({i, j,k,l})=4

Vi j (−�)pVkl = 1

2

∑

i< j,k<l
#({i, j,k,l})=4

(
Vi j (−�)pVkl + Vkl(−�)pVi j

)

(5.25)

we obtain inequality (5.9) and the proof is complete. �

Lemma 5.5. Let γ be less than 1/2, denote by Vuv the multiplication by
N γ−1V (N γ (xu − xv)), and by � the laplacian with respect to the variables
{x1, . . . , xN }. Then, for any p ∈ N the following inequality holds in the sense
of the operators in L2(RN )

∑

i< j,i<l
#({i, j,l})=3

Vi j (−�)pVil ≤ 5p N−1‖V ‖2
W p,1(R)(N − �)p+2 (5.26)

Proof. We follow the line of lemma 5.4.

Vi j (−�)pVil ≤
p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

)

×
qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qi∑

m ′
i =0

(
qi

m ′
i

) ql∑

ml=0

(
ql

ml

)
imi −m j −m ′

i +ml N γ (mi +m j +m ′
i +ml )
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×
∑

β1 ,...,βp−q
�=i, j,l

Dβ1 . . . Dβp−q Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +ml )
il D

qi −m ′
i

i Dql−ml

l

× D
q j

j Dβ1 . . . Dβp−q (5.27)

where we defined ql = q − qi − q j and

V (w)
uv = N γ−1V (w)(N γ (xu − xv)) (5.28)

Using the notation

A = im j −mi N γ (mi +m j )sgn
(

V
(mi +m j )

i j V
(m ′

i +ml )
il

) ∣∣∣V (mi +m j )
i j V

(m ′
i +ml )

il

∣∣∣
1/2

× Dql

l Dqi −mi

i D
q j −m j

j

B = iml−m ′
i N γ (m ′

i +ml )
∣∣∣V (mi +m j )

i j V
(m ′

i +ml )
il

∣∣∣
1/2

Dql−ml

l D
qi −m ′

i
i D

q j

j (5.29)

we notice that

imi −m j +ml−m ′
i N γ (mi +m ′

i +m j +ml ) Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +ml )
il Dql−ml

l D
qi −m ′

i
i

× D
q j

j + h.c. ≤ A� A + B� B = N 2γ (mi +m j ) Dql

l Dqi −mi

i D
q j −m j

j

×
∣∣∣V (mi +m j )

i j V
(m ′

i +ml )
il

∣∣∣ Dql

l Dqi −mi

i D
q j −m j

j + N 2γ (m ′
i +ml ) Dql−ml

l D
qi −m ′

i
i D

q j

j

×
∣∣∣V (mi +m j )

i j V
(m ′

i +ml )
il

∣∣∣ Dql−ml

l D
qi −m ′

i
i D

q j

j (5.30)

Exploiting Lemma 5.2, with U = ∣∣V (mi +m j )
∣∣ and W = ∣∣V (m ′

i +ml )
∣∣, we obtain

imi −m j +ml−m ′
i N γ (mi +m ′

i +m j +ml ) Dql

l Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +ml )
il Dql−ml

l D
qi −m ′

i
i

× D
q j

j + h.c. ≤ N 2γ (mi +m j )−2‖V (mi +m j )‖L1(R)‖V (m ′
i +ml )‖L1(R)

× S2
j S2

l D2ql

l D2(qi −mi )
i D

2(q j −m j )
j +N 2γ (m ′

i +ml )−2‖V (mi +m j )‖L1(R)‖V (m ′
i +ml )‖L1(R)

× S2
j S2

l D2(ql−ml )
l D

2(qi −m ′
i )

i D
2q j

j (5.31)

Then, by (5.27) one finally gets

Vi j (−�)pVil + h.c. ≤ ‖V ‖2
W p,1(R)

×
p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

) q−qi∑

q j =0

(
q − qi

q j

) qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qi∑

m ′
i =0

(
qi

m ′
i

)
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×
ql∑

ml=0

(
ql

ml

)
(−�)p−q {N 2γ (mi +m j )−2S2

j S2
l D2ql

l D2(qi −mi )
i D

2(q j −m j )
j

+ N 2γ (m ′
i +ml )−2S2

j S2
l D2(ql−ml )

l D
2(qi −m ′

i )
i D

2q j

j

}
(5.32)

Let us remark that

N−2
N∑

i, j,l=1

S2
j S2

l D2ql

l D2(qi −mi )
i D

2(q j −m j )
j ≤ N−1(N − �)2(−�)q−mi −m j (5.33)

Then an easy computation based on Newton binomial gives
∑

i< j,i<l
#({i, j,l})=3

(Vi j (−�)pVil + h.c.)

≤ 2N−1‖V ‖2
W p,1(R)(N − �)2

p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

)

×
q−qi∑

q j =0

(
q − qi

q j

)
2q−q j (−�)q−qi −q j (1 − �)qi +q j

≤ 2 · 5p N−1‖V ‖2
W p,1(R)(N − �)p+2 (5.34)

so the proof is complete. �

Lemma 5.6. Let γ be less than 1/2, denote by Vi j the multiplication by
N γ−1V (N γ (xi − x j )), and by � the laplacian with respect to the variables
{x1, . . . , xN }. Then, for any p ∈ N the following inequality holds in the sense
of the operators in L2(RN )

∑

i< j

Vi j (−�)pVi j ≤ 5p N 2γ−2‖V ‖2
W p,∞(R)(N − �)p+2 (5.35)

Proof. We follow the line of Lemma 5.4.

Vi j (−�)pVi j ≤
p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

) qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qi∑

m ′
i =0

(
qi

m ′
i

)

×
q j∑

m ′
j =0

(
q j

m ′
j

)
imi −m j +m ′

j −m ′
i N γ (mi +m j +m ′

i +m ′
j )
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×
∑

β1 ,...,βp−q
�=i, j

Dβ1 . . . Dβp−q Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +m ′
j )

i j D
qi −m ′

i
i

× D
q j −m ′

j

j Dβ1 . . . Dβp−q (5.36)

where we defined q j = q − qi and

V (w)
i j = N γ−1V (w)(N γ (xi − x j )) (5.37)

Using the notation

A = im j −mi N γ (mi +m j )sgn
(

V
(mi +m j )

i j V
(m ′

i +m ′
j )

i j

) ∣∣∣V (mi +m j )
i j V

(m ′
i +m ′

j )

i j

∣∣∣
1/2

× Dqi −mi

i D
q j −m j

j

B = im ′
j −m ′

i N γ (m ′
i +m ′

j )
∣∣∣V (mi +m j )

i j V
(m ′

i +m ′
j )

i j

∣∣∣
1/2

D
qi −m ′

i
i D

q j −m ′
j

j (5.38)

we notice that

imi −m j +m ′
j −m ′

i N γ (mi +m j +m ′
i +m ′

j ) Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +m ′
j )

i j D
qi −m ′

i
i D

q j −m ′
j

j

+ h.c. ≤ A� A + B� B

= N 2γ (mi +m j ) Dqi −mi

i D
q j −m j

j

∣∣∣V (mi +m j )
i j V

(m ′
i +m ′

j )

i j

∣∣∣ Dqi −mi

i D
q j −m j

j

+ N 2γ (m ′
i +m ′

j ) D
qi −m ′

i
i D

q j −m ′
j

j

∣∣∣V (mi +m j )
i j V

(m ′
i +m ′

j )

i j

∣∣∣ D
qi −m ′

i
i D

q j −m ′
j

j (5.39)

Exploiting Lemma 5.3, with U = ∣∣V (mi +m j )
∣∣ and W =

∣∣∣V (m ′
i +m ′

j )
∣∣∣, we obtain

imi −m j +m ′
j −m ′

i N γ (mi +m ′
i +m j +m ′

j ) Dqi −mi

i D
q j −m j

j V
(mi +m j )

i j V
(m ′

i +m ′
j )

i j D
qi −m ′

i
i

× D
q j −m ′

j

j + h.c. ≤ N 2γ (mi +m j +1)−2‖V (mi +m j )‖L∞(R)‖V (m ′
i +m ′

j )‖L∞(R)

× D2(qi −mi )
i D

2(q j −m j )
j + N 2γ (m ′

i +m ′
j +1)−2‖V (mi +m j )‖L∞(R)‖V (m ′

i +m ′
j )‖L∞(R)

× D
2(qi −m ′

i )
i D

2(q j −m ′
j )

j (5.40)

Then, by (5.36) one finally obtains

2 Vi j (−�)pVi j ≤ ‖V ‖2
W p,∞(R)

×
p∑

q=0

(
p
q

) q∑

qi =0

(
q
qi

) qi∑

mi =0

(
qi

mi

) q j∑

m j =0

(
q j

m j

) qi∑

m ′
i =0

(
qi

m ′
i

)
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×
q j∑

m ′
j =0

(
q j

m ′
j

)
(−�)p−q {N 2γ (mi +m j +1)−2 D2(qi −mi )

i D
2(q j −m j )
j

+ N 2γ (m ′
i +m ′

j +1)−2 D
2(qi −m ′

i )
i D

2(q j −m ′
j )

j

}
(5.41)

We remark that

N−2
N∑

i, j=1

D2(qi −mi )
i D

2(q j −m j )
j ≤ (−�)qi +q j −mi −m j (5.42)

Then, performing the sums in (5.41) according to Newton binomials, we obtain
∑

i< j

Vi j (−�)pVi j ≤ ‖V ‖2
W p,∞(R) N 2γ

(
4N 2γ − 5�

)p
(5.43)

so estimate (5.35) easily follows and the proof is complete. � We are now ready

to prove the following

Proposition 5.7. The following inequality holds in the sense of the operators in
L2(RN )

V(−�)p
V ≤ ‖V ‖2

L1(R)(−�)p(N − �)2 + [(7p + 4 · 5p)‖V ‖2
W p,1(R) N

−1

+ 7p‖V ‖2
W p,1(R) N

2γ−1 + 5p‖V ‖2
W ∞,1(R) N

2γ−2
]
(N − �)p+2

(5.44)

where

V =
∑

i< j

Vi j , Vi j = N γ−1V (N γ (xi − x j )) (5.45)

and γ < 1/2.

Proof. Denoting by # the cardinality of the set {i, j, k, l} one has
∑

i< j,k<l

Vi j (−�)pVkl =
∑

i< j,k<l
#=4

Vi j (−�)pVkl +
∑

i< j,k<l
#=3

Vi j (−�)pVkl +
∑

i< j,k<l
#=2

Vi j (−�)pVkl

=
∑

i< j,k<l
#=4

Vi j (−�)pVkl +
∑

i< j<l

Vi j (−�)pVil +
∑

i< j<l

Vi j (−�)pVjl

+
∑

i< j<l

Vjl(−�)pVi j +
∑

i<l< j

Vi j (−�)pVl j +
∑

i< j

Vi j (−�)pVi j (5.46)
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Since the terms with # = 3 can be estimated as in (5.26), the proposition is
proven. �

Now we introduce the approximation theorem for the many-body dynamics.

Theorem 5.8. For any n ∈ N there exists N �(n) such that for N > N �(n)

H n
N ≤ Cn(N − �)n (5.47)

with C independent of n.

Proof. The proof is done by a two-step induction. For n = 0 the proposition is
trivial with C ≥ 1. For n = 1 we have

(ϕ, HN ϕ) ≤ (ϕ,−�ϕ) + N−1‖V ‖L1(R)

∑

i≤ j

∫

R
N−1

d X̂ i
N sup

xi ∈R

|ϕ(X N )|2

≤ (ϕ,−�ϕ) + N−1‖V ‖L1(R)

∑

i≤ j

(
ϕ,
(
I − ∂2

xi

)
ϕ
)

≤ (‖V ‖L1(R3) + 1
)
(ϕ, (N − �)ϕ) (5.48)

Let us suppose that for some n there exists N �(n) such that H n ≤ Cn(N − �)n

for N > N �(n). Then

H n+2
N ≤ Cn HN (N − �)n HN ≤ 2Cn(N − �)n+2 + 2Cn

V(N − �)n
V (5.49)

Let us focus on the last term. Using the Newton expansion we find

V(N − �)n
V =

n∑

p=0

(
n
p

)
N n−p

V(−�)p
V (5.50)

and by inequality (5.44) we have

V(N − �)n
V ≤ ‖V ‖2

L1(R)(N − �)2
n∑

p=0

(
n
p

)
N n−p(−�)p

+ c(N , n)
n∑

p=0

(
n
p

)
(N − �)p+2 (5.51)

where we defined the quantity

c(N , n) := (7n + 4 · 5n)‖V ‖2
W n,1(R) N

−1 + 7n‖V ‖2
W n,1(R)

× N 2γ−1 + 5n‖V ‖W ∞,1(R) N
2γ−2 (5.52)
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Since c(N , n) vanishes as N → ∞, there exists N �(n + 2) such that

H n+2
N ≤ 2Cn(N − �)n+2 + 2Cn‖V ‖2

L1(R)(N − �)n+2 (5.53)

for any N > N �(n + 2). Then, for C ≥ √
2(1 + ‖V ‖L1(R)) the theorem is

proven. �

It is now clear how to construct the desired initial data: just take a factorized
state that realizes the growth condition with the free evolution. For instance,
� I

N = ψ⊗N with ψ̂ having compact support.
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