
Rigorous Estimation of Floating-Point Round-off Errors

with Symbolic Taylor Expansions

Alexey Solovyev, Charles Jacobsen,

Zvonimir Rakamarić, Ganesh Gopalakrishnan

UUCS-15-001

School of Computing

University of Utah

Salt Lake City, UT 84112 USA

April 6, 2015

Abstract

Rigorous estimation of maximum floating-point round-off errors is an important capability

central to many formal verification tools. Unfortunately, available techniques for this task

often provide overestimates. Also, there are no available rigorous approaches that handle

transcendental functions. We have developed a new approach called Symbolic Taylor Ex-

pansions that avoids this difficulty, and implemented a new tool called FPTaylor embodying

this approach. Key to our approach is the use of rigorous global optimization, instead of

the more familiar interval arithmetic, affine arithmetic, and/or SMT solvers. In addition to

providing far tighter upper bounds of round-off error in a vast majority of cases, FPTaylor

also emits analysis certificates in the form of HOL Light proofs. We release FPTaylor along

with our benchmarks for evaluation.



Rigorous Estimation of Floating-Point Round-off

Errors with Symbolic Taylor Expansions

Alexey Solovyev, Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan

School of Computing, University of Utah,
Salt Lake City, UT 84112, USA

{monad,charlesj,zvonimir,ganesh}@cs.utah.edu

Abstract. Rigorous estimation of maximum floating-point round-off er-
rors is an important capability central to many formal verification tools.
Unfortunately, available techniques for this task often provide overesti-
mates. Also, there are no available rigorous approaches that handle tran-
scendental functions. We have developed a new approach called Symbolic

Taylor Expansions that avoids this difficulty, and implemented a new tool
called FPTaylor embodying this approach. Key to our approach is the
use of rigorous global optimization, instead of the more familiar interval
arithmetic, affine arithmetic, and/or SMT solvers. In addition to pro-
viding far tighter upper bounds of round-off error in a vast majority of
cases, FPTaylor also emits analysis certificates in the form of HOL Light
proofs. We release FPTaylor along with our benchmarks for evaluation.

Keywords: floating-point, round-off error analysis, global optimization

1 Introduction

Many algorithms are conceived (and even formally verified) in real numbers, but
ultimately deployed using floating-point numbers. Unfortunately, the finitary na-
ture of floating-point, along with its uneven distribution of representable num-
bers introduces round-off errors, as well as does not preserve many familiar laws
(e.g., associativity of +) [22]. This mismatch often necessitates re-verification
using tools that precisely compute round-off error bounds (e.g., as illustrated
in [21]). While SMT solvers can be used for small problems [52, 24], the need
to scale necessitates the use of various abstract interpretation methods [11], the
most popular choices being interval [41] or affine arithmetic [54]. However, these
tools very often generate pessimistic error bounds, especially when nonlinear
functions are involved. No tool that is currently maintained rigorously handles
transcendental functions that arise in problems such as the safe separation of
aircraft [20].

The final publication was accepted to FM 2015 and is available at link.springer.
com



2

Key to Our Approach. In a nutshell, the aforesaid difficulties arise because
of a tool’s attempt to abstract the “difficult” (nonlinear or transcendental) func-
tions. Our new approach called Symbolic Taylor Expansions (realized in a tool
FPTaylor) side-steps these issues entirely as follows. (1) We view round-off er-
rors as “noise,” and compute Taylor expansions in a symbolic form. (2) In these
symbolic Taylor forms, all difficult functional expressions appear as symbolic
coefficients; they do not need to be abstracted. (3) We then apply a rigorous
global maximization method that has no trouble handling the difficult functions
and can be executed sufficiently fast thanks to the ability to trade off accuracy
for performance.

Let us illustrate these ideas using a simple example. First, we define absolute
round-off error as errabs = |ṽ−v|, where ṽ is the result of floating-point compu-
tations and v is the result of corresponding exact mathematical computations.
Now, consider the estimation of worst case absolute round-off error in t/(t+ 1)
computed with floating-point arithmetic where t ∈ [0, 999] is a floating-point
number. (Our goal here is to demonstrate basic ideas of our method; pertinent
background is in Sect. 3.) Let ⊘ and ⊕ denote floating-point operations corre-
sponding to / and +.

Suppose interval abstraction were used to analyze this example. The round-
off error of t⊕ 1 can be estimated by 512ǫ where ǫ is the machine epsilon (which
bounds the maximum relative error of basic floating-point operations such as
⊕ and ⊘) and the number 512 = 29 is the largest power of 2 which is less
than 1000 = 999 + 1. Interval abstraction replaces the expression d = t ⊕ 1
with the abstract pair ([1, 1000], 512ǫ) where the first component is the interval
of all possible values of d and 512ǫ is the associated round-off error. Now we
need to calculate the round-off error of t ⊘ d. It can be shown that one of the
primary sources of errors in this expression is attributable to the propagation
of error in t ⊕ 1 into the division operator. The propagated error is computed
by multiplying the error in t⊕ 1 by t

d2 .
1 At this point, interval abstraction does

not yield a satisfactory result since it computes t
d2 by setting the numerator t to

999 and the denominator d to 1. Therefore, the total error bound is computed
as 999× 512ǫ ≈ 512000ǫ.

The main weakness of the interval abstraction is that it does not preserve
variable relationships (e.g., the two t’s may be independently set to 999 and 0).
In the example above, the abstract representation of d was too coarse to yield a
good final error bound (we suffer from eager composition of abstractions). While
affine arithmetic is more precise since it remembers linear dependencies between
variables, it still does not handle our example well as it contains division, a
nonlinear operator (for which affine arithmetic is known to be a poor fit).

A better approach is to model the error at each subexpression position and
globally solve for maximal error—as opposed to merging the worst-cases of local
abstractions, as happens in the interval abstraction usage above. Following this

1 Ignoring the round-off division error, one can view t⊘ d as t/(dexact + δ) where δ is
the round-off error in d. Apply Taylor approximation which yields as the first two
terms (t/dexact)− (t/(d2exact))δ.



3

approach, a simple way to get a much better error estimate is the following.
Consider a simple model for floating-point arithmetic. Write t⊕1 = (t+1)(1+ǫ1)
and t ⊘ (t ⊕ 1) = (t/(t ⊕ 1))(1 + ǫ2) with |ǫ1| ≤ ǫ and |ǫ2| ≤ ǫ. Now, compute
the first order Taylor approximation of our expression with respect to ǫ1 and
ǫ2 by taking ǫ1 and ǫ2 as the perturbations around t, and computing partial
derivatives with respect to them (see (4) and (5) for a recap):

t⊘ (t⊕ 1) =
t(1 + ǫ2)

(t+ 1)(1 + ǫ1)
=

t

t+ 1
− t

t+ 1
ǫ1 +

t

t+ 1
ǫ2 +O(ǫ2) .

(Here t ∈ [0, 999] is fixed and hence we do not divide by zero.) It is important
to keep all coefficients in the above Taylor expansion as symbolic expressions
depending on the input variable t. The difference between t/(t+1) and t⊘(t⊕1)
can be easily estimated (we ignore the term O(ǫ2) in this motivating example
but later in Sect. 4 we demonstrate how rigorous upper bounds are derived for
all error terms):

∣

∣

∣− t

t+ 1
ǫ1 +

t

t+ 1
ǫ2

∣

∣

∣ ≤
∣

∣

∣

t

t+ 1

∣

∣

∣|ǫ1|+
∣

∣

∣

t

t+ 1

∣

∣

∣|ǫ2| ≤ 2
∣

∣

∣

t

t+ 1

∣

∣

∣ǫ .

The only remaining task now is finding a bound for the expression t/(t+ 1) for
all t ∈ [0, 999]. Simple interval computations as above yield t/(t + 1) ∈ [0, 999].
The error can now be estimated by 1998ǫ, which is already a much better bound
than before. We go even further and apply a global optimization procedure to
maximize t/(t+ 1) and compute an even better bound, i.e., t/(t+ 1) ≤ 1 for all
t ∈ [0, 999]. Thus, the error is bounded by 2ǫ.

Our combination of Taylor expansion with symbolic coefficients and global
optimization yields an error bound which is 512000/2 = 256000 times better than
a näıve error estimation technique implemented in many other tools for floating-
point analysis. Our approach never had to examine the inner details of / and + in
our example (these could well be replaced by “difficult” functions; our technique
would work the same way). The same cannot be said of SMT or interval/affine
arithmetic. The key enabler is that most rigorous global optimizers deal with a
very large class of functions smoothly.

Our Key Contributions:

• We describe all the details of our global optimization approach, as there seems
to be a lack of awareness (even misinformation) among some researchers.
• We release an open source version of our tool FPTaylor.2 FPTaylor handles
all basic floating-point operations and all the binary floating-point formats de-
fined in IEEE 754. It is the only tool we know providing guaranteed bounds
for transcendental expressions. It handles uncertainties in input variables, sup-
ports estimation of relative and absolute round-off errors, provides a rigorous
treatment of subnormal numbers, and handles mixed precision.
• For the same problem complexity (i.e., number of input variables and expres-
sion size), FPTaylor obtains tighter bounds than state-of-the-art tools in most

2 Available at https://github.com/soarlab/FPTaylor



4

1: double t← [0, 999]
2: double r ← t/(t+ 1)
3: compute error: r

(a) Microbenchmark 1

1: double x← [1.001, 2.0]
2: double y ← [1.001, 2.0]
3: double t← x× y
4: double r ← (t− 1)/(t× t− 1)
5: compute error: r

(b) Microbenchmark 2

Fig. 1: Microbenchmarks

Table 1: Comparison of round-off error estimation tools

Feature Gappa Fluctuat Rosa FPTaylor

Basic FP operations/formats X X X X

Transcendental functions X

Relative error X X X

Uncertainties in inputs X X X X

Mixed precision X X X

cases, while incurring comparable runtimes. We also empirically verify that our
overapproximations are within a factor of 3.5 of the corresponding underapprox-
imations computed using a recent tool [7].
• FPTaylor has a mode in which it produces HOL Light proof scripts. This facil-
ity actually helped us find a bug in our initial tool version. It therefore promises
to offer a similar safeguard for its future users.

2 Preliminary Comparison

We compare several existing popular tools for estimating round-off error with
FPTaylor on microbenchmarks from Fig. 1. (These early overviews are provided
to help better understand this problem domain.) Gappa [15] is a verification as-
sistant based on interval arithmetic. Fluctuat [16] (commercial tool with a free
academic version) statically analyzes C programs involving floating-point com-
putations using abstract domains based on affine arithmetic [23]. Part of the
Leon verification framework, Rosa [14] can compile programs with real numeri-
cal types into executable code where real types are replaced with floating-point
types of sufficient precision to guarantee given error bounds. It combines affine
arithmetic with SMT solvers to estimate floating-point errors. Z3 [42] and Math-
SAT 5 [8] are SMT solvers which support floating-point theory. In Table 1, we
compare relevant features of FPTaylor with these tools (SMT solvers are not
included in this table).

In our experiments involving SMT solvers, instead of comparing real mathe-
matical and floating-point results, we compared low-precision and high-precision



5

Table 2: Experimental results for microbenchmarks (timeout is set to 30 minutes;
entries in bold font represent the best results)

Microbenchmark 1 Microbenchmark 2

Tool Range Error Time Range Error Time

FPTaylor [0, 1.0] 1.663e-16 1.2 s [0.2, 0.5] 1.532e-14 1.4 s

Gappa [0, 999] 5.695e-14 0.01 s [0.0, 748.9] 1.044e-10 0.01 s

Gappa (hints) [0, 1.0] 1.663e-16 1.4 s [0.003, 66.02] 6.935e-14 3.2 s

Fluctuat [0, 996] 5.667e-11 0.01 s [0.0, 748.9] 1.162e-09 0.01 s

Fluctuat (div.) [0, 1.0] 1.664e-16 28.5 s [0.009, 26.08] 1.861e-12 20.0 s

Rosa [0, 1.9] 2.217e-10 6.4 s [0.2, 0.5] 2.636e-09 2.7 s

Z3 [0, 1.0] Timeout − [0.2, 0.5] Timeout −
MathSAT 5 [0, 1.0] Timeout − [0.2, 0.5] Timeout −

floating-point computations, mainly because current SMT solvers do not (as far
as we know) support mixed real and floating-point reasoning. Moreover, SMT
solvers were used to verify given error bounds since they cannot find the best
error bounds directly. (In principle, a binary search technique can be used with
an SMT solver for finding optimal error bounds [14].)

Table 2 reports the ranges of expression values obtained under the tool-
specific abstraction (e.g., Gappa’s abstraction estimates t/(t + 1) to be within
[0,999]), estimated absolute errors, and time for each experiment. We also ran
Gappa and Fluctuat with user-provided hints for subdividing the range of the
input variables and for simplifying mathematical expressions. We used the fol-
lowing versions of tools: Gappa 1.1.2, Fluctuat 3.1071, Rosa from May 2014, Z3
4.3.2, and MathSAT5 5.2.11.

FPTaylor outperformed the other tools on Microbenchmark 2. Only Gappa
and Fluctuat with manually provided subdivision hints were able to get the same
results as FPTaylor for Microbenchmark 1. The range computation demonstrates
a fundamental problem of interval arithmetic: it does not preserve dependencies
between variables and thus significantly overapproximates results. Support of
floating-point arithmetic in SMT solvers is still preliminary: they timed out on
error estimation benchmarks (at 30 minutes timeout).

Rosa returned good range values since it uses an SMT solver internally for
deriving tight ranges of all intermediate computations. Nevertheless, Rosa did
not yield very good error estimation results for our nonlinear microbenchmarks
since it represents rounding errors with affine forms—known for not handling
nonlinear operators well.

3 Background

Floating-point Arithmetic. The IEEE 754 standard [28] concisely formalized
in (e.g.) [22] defines a binary floating-point number as a triple of sign (0 or 1),



6

significand, and exponent, i.e., (sgn, sig, exp), with numerical value (−1)sgn ×
sig × 2exp. The standard defines three general binary formats with sizes of 32,
64, and 128 bits, varying in constraints on the sizes of sig and exp. The standard
also defines special values such as infinities and NaN (not a number). We do not
distinguish these values in our work and report them as potential errors.

Rounding plays a central role in defining the semantics of floating-point arith-
metic. Denote the set of floating-point numbers (in some fixed format) as F. A
rounding operator rnd : R → F is a function which takes a real number and
returns a floating-point number which is closest to the input real number and
has some special properties defined by the rounding operator. Common rounding
operators are rounding to nearest (ties to even), toward zero, and toward ±∞.
A simple model of rounding is given by the following formula [22]

rnd(x) = x(1 + e) + d (1)

where |e| ≤ ǫ, |d| ≤ δ, and e × d = 0. If x is a symbolic expression, then
exact numerical values of e and d are not explicitly defined in most cases.
(Values of e and d may be known in some cases; for instance, if we know
that x is a sufficiently small integer then rnd(x) = x and thus e = d = 0.)

Table 3: Rounding to nearest
operator parameters

Precision (bits) ǫ δ

single (32) 2−24 2−150

double (64) 2−53 2−1075

quad. (128) 2−113 2−16495

The parameter ǫ specifies the maximal relative
error introduced by the given rounding oper-
ator. The parameter δ gives the maximal ab-
solute error for numbers which are very close
to zero (relative error estimation does not work
for these small numbers called subnormals). Ta-
ble 3 shows values of ǫ and δ for the rounding to
nearest operator of different floating-point for-
mats. Parameters for other rounding operators
can be obtained from Table 3 by multiplying all
entries by 2, and (1) does not distinguish between rounding operators toward
zero and infinities.

The standard precisely defines the behavior of several basic floating-point
arithmetic operations. Suppose op : Rk → R is an operation. Let opfp be the cor-
responding floating-point operation. Then the operation opfp is exactly rounded
if the following equation holds for all floating-point values x1, . . . , xk:

opfp(x1, . . . , xk) = rnd
(

op(x1, . . . , xk)
)

. (2)

The following operations must be exactly rounded according to the standard:
+,−,×, /,

√
, fma. (Here, fma(a, b, c) is a ternary fused multiply-add operation

that computes a× b+ c with a single rounding.)
Combining (1) and (2), we get a simple model of floating-point arithmetic

which is valid in the absence of overflows and invalid operations:

opfp(x1, . . . , xk) = op(x1, . . . , xk)(1 + e) + d . (3)

There are some special cases where the model given by (3) can be improved. For
instance, if op is − or + then d = 0 [22]. Also, if op is × and one of the arguments



7

is a nonnegative power of two then e = d = 0. These and several other special
cases are implemented in FPTaylor to improve the quality of the error analysis.

Equation (3) can be used even with operations that are not exactly rounded.
For example, most implementations of floating-point transcendental functions
are not exactly rounded but they yield results which are very close to exactly
rounded results [25]. The technique introduced by Bingham et al. [3] can verify
relative error bounds of hardware implementations of transcendental functions.
So we can still use (3) to model transcendental functions but we need to increase
values of ǫ and δ appropriately. There exist software libraries that exactly com-
pute rounded values of transcendental functions [12, 17]. For such libraries, (3)
can be applied without any changes.

Taylor Expansion. A Taylor expansion is a well-known formula for approxi-
mating an arbitrary sufficiently smooth function with a polynomial expression.
In this work, we use the first order Taylor approximation with the second or-
der error term. Higher order Taylor approximations are possible but they lead
to complex expressions for second and higher order derivatives and do not give
much better approximation results [44]. Suppose f(x1, . . . , xk) is a twice continu-
ously differentiable multivariate function on an open convex domainD ⊂ R

k. For
any fixed point a ∈ D (we use bold symbols to represent vectors) the following
formula holds (for example, see Theorem 3.3.1 in [39])

f(x) = f(a) +

k
∑

i=1

∂f

∂xi
(a)(xi − ai) +

1

2

k
∑

i,j=1

∂2f

∂xi∂xj
(p)(xi − ai)(xj − aj) . (4)

Here, p ∈ D is a point which depends on x and a.
Later we will consider functions with arguments x and e defined by f(x, e) =

f(x1, . . . , xn, e1, . . . , ek). We will derive Taylor expansions of these functions with
respect to variables e1, . . . , ek:

f(x, e) = f(x,a) +

k
∑

i=1

∂f

∂ei
(x,a)(ei − ai) +R2(x, e) . (5)

In this expansion, variables x1, . . . , xn appear in coefficients ∂f
∂ei

thereby produc-
ing Taylor expansions with symbolic coefficients.

4 Symbolic Taylor Expansions

Given a function f : Rn → R, the goal of the Symbolic Taylor Expansions ap-
proach is to estimate the round-off error when f is realized in floating-point. We
assume that the arguments of the function belong to a bounded domain I, i.e.,
x ∈ I. The domain I can be quite arbitrary. The only requirement is that it is
bounded and the function f is twice differentiable in some open neighborhood
of I. In FPTaylor, the domain I is defined with inequalities over input variables.
In the benchmarks presented later, we have ai ≤ xi ≤ bi for all i = 1, . . . , n. In
this case, I = [a1, b1]× . . .× [an, bn] is a product of intervals.



8

Let fp(f) : Rn → F be a function derived from f where all operations, vari-
ables, and constants are replaced with the corresponding floating-point opera-
tions, variables, and constants. Our goal is to compute the following round-off
error:

errfp(f, I) = max
x∈I

|fp(f)(x)− f(x)| . (6)

The optimization problem (6) is computationally hard and not supported by
most classical optimization methods as it involves a highly irregular and dis-
continuous function fp(f). The most common way of overcoming such difficul-
ties is to consider abstract models of floating-point arithmetic that approximate
floating-point results with real numbers. Section 3 presented the following model
of floating-point arithmetic (see (3)):

opfp(x1, . . . , xn) = op(x1, . . . , xn)(1 + e) + d .

Values of e and d depend on the rounding mode and the operation itself. Special
care must be taken in case of exceptions (overflows or invalid operations). Our
tool can detect and report such exceptions.

First, we replace all floating-point operations in the function fp(f) with the
right hand side of (3). Constants and variables also need to be replaced with
rounded values, unless they can be exactly represented with floating-point num-
bers. We get a new function f̃(x, e,d) which has all the original arguments
x = (x1, . . . , xn) ∈ I, but also the additional arguments e = (e1, . . . , ek) and
d = (d1, . . . , dk) where k is the number of potentially inexact floating-point op-
erations (plus constants and variables) in fp(f). Note that f̃(x,0,0) = f(x).
Also, f̃(x, e,d) = fp(f)(x) for some choice of e and d. Now, the difficult opti-
mization problem (6) can be replaced with the following simpler optimization
problem that overapproximates it:

erroverapprox(f̃ , I) = max
x∈I,|ei|≤ǫ,|di|≤δ

|f̃(x, e,d)− f(x)| . (7)

Note that for any I, errfp(f, I) ≤ erroverapprox(f̃ , I). However, even this opti-
mization problem is still hard because we have 2k new variables ei and di for
(inexact) floating-point operations in fp(f). We further simplify the optimization
problem using Taylor expansion.

We know that |ei| ≤ ǫ, |di| ≤ δ, and ǫ, δ are small. Define y1 = e1, . . . , yk =
ek, yk+1 = d1, . . . , y2k = dk. Consider the Taylor formula with the second order
error term (5) of f̃(x, e,d) with respect to e1, . . . , ek, d1, . . . , dk.

f̃(x, e,d) = f̃(x,0,0) +

k
∑

i=1

∂f̃

∂ei
(x,0,0)ei +R2(x, e,d) (8)

with

R2(x, e,d) =
1

2

2k
∑

i,j=1

∂2f̃

∂yi∂yj
(x,p)yiyj +

k
∑

i=1

∂f̃

∂di
(x,0,0)di



9

for some p ∈ R
2k such that |pi| ≤ ǫ for i = 1, . . . , k and |pi| ≤ δ for i =

k + 1, . . . , 2k. Note that we added first order terms ∂f̃
∂di

(x,0,0)di to the error

term R2 because δ = O(ǫ2) (see Table 3; in fact, δ is much smaller than ǫ2).
We have f̃(x,0,0) = f(x) and hence the error (7) can be estimated as follows:

erroverapprox(f̃ , I) ≤ max
x∈I,|ei|≤ǫ

∣

∣

∣

k
∑

i=1

∂f̃

∂ei
(x,0,0)ei

∣

∣

∣+M2 (9)

where M2 is an upper bound for the error term R2(x, e,d). In our work, we use
simple methods to estimate the value ofM2, such as interval arithmetic or several
iterations of a global optimization algorithm. We always derive a rigorous bound
of R2(x, e,d) and this bound is small in general since it contains an ǫ2 factor.
Large values of M2 may indicate serious stability problems—for instance, the
denominator of some expression is very close to zero. Our tool issues a warning
if the computed value of M2 is large.

Next, we note that in (9) the maximized expression depends on ei linearly and
it achieves its maximum value when ei = ±ǫ. Therefore, the expression attains
its maximum when the sign of ei is the same as the sign of the corresponding
partial derivative, and we transform the maximized expression into the sum of
absolute values of partial derivatives. Finally, we get the following optimization
problem:

errfp(f, I) ≤ erroverapprox(f̃ , I) ≤ M2 + ǫmax
x∈I

k
∑

i=1

∣

∣

∣

∂f̃

∂ei
(x,0,0)

∣

∣

∣
. (10)

The solution of our original, almost intractable problem (i.e., estimation of the
floating-point error errfp(f, I)) is reduced to the following two much simpler sub-
problems: (i) compute all expressions and constants involved in the optimization
problem (10) (see Appendix A for details), and (ii) solve the optimization prob-
lem (10).

4.1 Solving Optimization Problems

We compute error bounds using rigorous global optimization techniques [45].
In general, it is not possible to find an exact optimal value of a given real-
valued function. The main property of rigorous global optimization methods
is that they always return a rigorous bound for a given optimization problem
(some conditions on the optimized function are necessary such as continuity or
differentiability). These methods can also balance between accuracy and perfor-
mance. They can either return an estimation of the optimal value with the given
tolerance or return a rigorous upper bound after a specific amount of time (iter-
ations). It is also important that we are optimizing real-valued expressions, not
floating-point ones. A particular global optimizer can work with floating-point
numbers internally but it must return a rigorous result. For instance, the optimal
maximal floating-point value of the function f(x) = 0.3 is the smallest floating-
point number r which is greater than 0.3. It is known that global optimization is



10

a hard problem. But note that abstraction techniques based on interval or affine
arithmetic can be considered as primitive (and generally inaccurate) global op-
timization methods. FPTaylor can use any existing global optimization method
to derive rigorous bounds of error expressions, and hence it is possible to run it
with an inaccurate but fast global optimization technique if necessary.

The optimization problem (10) depends only on input variables of the func-
tion f , but it also contains a sum of absolute values of functions. Hence, it is not
trivial—some global optimization solvers may not accept absolute values since
they are not smooth functions. In addition, even if a solver accepts absolute
values, they make the optimization problem considerably harder.

There is a näıve approach to simplify and solve this optimization problem.

Find minimum (yi) and maximum (zi) values for each term si(x) =
∂f̃
∂ei

(x,0,0)
separately and then compute

max
x∈I

k
∑

i=1

|si(x)| ≤
k
∑

i=1

max
x∈I

|si(x)| =
k
∑

i=1

max{−yi, zi} . (11)

This result can be inaccurate, but in many cases it is close to the optimal result
as our experimental results demonstrate (see Sect. 5.2).

We also apply global optimization to compute a range of the expression for
which we estimate the round-off error (i.e., the range of the function f). By
combining this range information with the bound of the absolute round-off error
computed from (10), we can get a rigorous estimation of the range of fp(f). The
range of fp(f) is useful for verification of program assertions and proving the
absence of floating-point exceptions such as overflows or divisions by zero.

4.2 Improved Rounding Model

The rounding model described by (1) and (3) is imprecise. For example, if we
round a real number x ∈ [8, 16] then (1) yields rnd(x) = x+ xe with |e| ≤ ǫ. A
more precise bound for the same e would be rnd(x) = x+8e. This more precise
rounding model follows from the fact that floating-point numbers have the same
distance between each other in the interval

[

2n, 2n+1
]

for integer n.
We define p2(x) = maxn∈Z{2n | 2n < x} and rewrite (1) and (3) as

rnd(x) = x+ p2(x)e+ d,

opfp(x1, . . . , xk) = op(x1, . . . , xk) + p2
(

op(x1, . . . , xk)
)

e+ d .
(12)

The function p2 is piecewise constant. The improved model yields optimization
problems with discontinuous functions p2. These problems are harder than opti-
mization problems for the original rounding model and can be solved with branch
and bound algorithms based on rigorous interval arithmetic (see Sect. 5.2).

4.3 Formal Verification of FPTaylor Results in HOL Light

We formalized error estimation with the simplified optimization problem (11)
in HOL Light [27]. In our formalization we do not prove that the implementa-
tion of FPTaylor satisfies a given specification. Instead, we formalized theorems



11

necessary for validating results produced by FPTaylor. The validity of results is
checked against specifications of floating-point rounding operations given by (1)
and (12). We chose HOL Light as the tool for our formalization because it is
the only proof assistant for which there exists a tool for formal verification of
nonlinear inequalities (including inequalities with transcendental functions) [53].
Verification of nonlinear inequalities is necessary since the validity of results of
global optimization procedures can be proved with nonlinear inequalities.

The validation of FPTaylor results is done as follows. First, FPTaylor is
executed on a given problem with a special proof saving flag turned on. In this
way, FPTaylor computes the round-off errors and produces a proof certificate
and saves it in a file. Then a special procedure is executed in HOL Light which
reads the produced proof certificate and formally verifies that all steps in this
certificate are correct. The final theorem has the following form (for an error
bound e computed by FPTaylor):

⊢ ∀x ∈ I, |fp(f)(x)− f(x)| ≤ e .

Here, the function fp(f) is a function where a rounding operator is applied to
all operations, variables, and constants. As mentioned above, in our current
formalization we define such a rounding operator as any operator satisfying (1)
and (12). We also implemented a comprehensive formalization of floating-point
arithmetic in HOL Light (our floating-point formalization is available in the HOL
Light distribution). Combining this formalization with theorems produced from
FPTaylor certificates, we can get theorems about floating-point computations
which do not explicitly contain references to rounding models (1) and (12).

The formalization of FPTaylor helped us to find a subtle bug in our im-
plementation. We use an external tool for algebraic simplifications of internal
expressions in FPTaylor (see Sect. 5.1 for more details). All expressions are
passed as strings to this tool. Constants in FPTaylor are represented with ra-
tional numbers and they are printed as fractions. We forgot to put parentheses
around these fractions and in some rare cases it resulted in wrong expressions
passed to and from the simplification tool. For instance, if c = 111/100 and
we had the expression 1/c then it would be given to the simplification tool as
1/111/100. We discovered this associativity-related bug when formal validation
failed on one of our test examples.

All limitations of our current formalization are limitations of the tool for
verification of nonlinear inequalities in HOL Light. In order to get a verification
of all features of FPTaylor, it is necessary to be able to verify nonlinear inequal-
ities containing absolute values and the discontinuous function p2(x) defined in
Sect. 4.2. We are working on improvements of the inequality verification tool
which will include these functions. Nevertheless, we already can automatically
verify interesting results which are much better than results produced by Gappa,
another tool which can produce formal proofs in the Coq proof assistant [9].



12

5 Implementation and Evaluation

5.1 Implementation

We implemented a prototype tool called FPTaylor for estimating round-off er-
rors in floating-point computations based on our method described in Sect. 4.
The tool implements several additional features we did not describe, such as
estimation of relative errors and support for transcendental functions and mixed
precision floating-point computations.

1: Variables

2: float64 x in [1.001, 2.0],

3: float64 y in [1.001, 2.0];

4: Definitions

5: t rnd64= x * y;

6: // Constraints

7: // x + y <= 2;

8: Expressions

9: r rnd64= (t-1)/(t*t-1);

Fig. 2: FPTaylor input file example

FPTaylor is implemented in OCaml
and uses several third-party tools and li-
braries. An interval arithmetic library [1]
is used for rigorous estimations of
floating-point constants and second order
error terms in Taylor expansions. Inter-
nally, FPTaylor implements a very sim-
ple branch and bound global optimiza-
tion technique based on interval arith-
metic. The main advantage of this simple
optimization method is that it can work
even with discontinuous functions which
are required by the improved rounding
model described in Sect. 4.2. Our current implementation of the branch and
bound method supports only simple interval constraints for input domain spec-
ification. FPTaylor also works with several external global optimization tools
and libraries, such as NLopt optimization library [29] that implements various
global optimization algorithms. Algorithms in NLopt are not rigorous and may
produce incorrect results, but they are fast and can be used for obtaining solid
preliminary results before applying slower rigorous optimization techniques. Z3
SMT solver [42] can also be used as an optimization backend by employing a
simple binary search algorithm similar to the one described in related work [14].
Z3-based optimization supports any inequality constraints but it does not work
with transcendental or discontinuous functions. We also plan to support other
free global optimization tools and libraries in FPTaylor such as ICOS [31], Glob-
Sol [30], and OpenOpt [46]. We rely on Maxima computer algebra system [37]
for performing symbolic simplifications. Using Maxima is optional but it can
significantly improve performance of optimization tools by simplifying symbolic
expressions beforehand.

As input FPTaylor takes a text file describing floating-point computations,
and prints out the computed floating-point error bounds as output. Figure 2
demonstrates an example FPTaylor input file. Each input file contains several
sections which define variables, constraints (in Fig. 2 constraints are not used
and commented out), and expressions. FPTaylor analyses all expressions in an
input file. All operations are assumed to be over real numbers. Floating-point
arithmetic is modeled with rounding operators and with initial types of variables.
The operator rnd64= in the example means that the rounding operator rnd64



13

is applied to all operations, variables, and constants on the right hand side (this
notation is borrowed from Gappa [15]). See the FPTaylor user manual distributed
with the tool for all usage details.

5.2 Experimental Results

We compared FPTaylor with Gappa (version 1.1.2) [15], the Rosa real compiler
(version from May 2014) [14], and Fluctuat (version 3.1071) [16] (see Sect. 6 for
more information on these tools). We tested our tool on all benchmarks from the
Rosa paper [14] and on three simple benchmarks with transcendental functions.3

We also tried SMT tools which support floating-point reasoning [8, 42] but they
were not able to produce any results even on simple examples in a reasonable
time (we ran them with a 30-minute timeout).

Table 4 presents our experimental results. In the table, column FPTaylor(a)
shows results computed using the simplified optimization problem (11), column
FPTaylor(b) using the full optimization problem (10) and the improved rounding
model (12). Columns Gappa (hints) and Fluctuat (subdivisions) present results
of Gappa and Fluctuat with manually provided subdivision hints. More precisely,
in these experiments Gappa and Fluctuat were instructed to subdivide intervals
of input variables into a given number of smaller pieces. The main drawback
of these manually provided hints is that it is not always clear which variable
intervals should be subdivided and how many pieces are required. It is very easy
to make Gappa and Fluctuat very slow by subdividing intervals into too many
pieces (even 100 pieces are enough in some cases).

Benchmarks sine, sqroot, and sineOrder3 are different polynomial approxi-
mations of sine and square root. Benchmarks carbonGas, rigidBody1, rigidBody2,
doppler1, doppler2, and doppler3 are nonlinear expressions used in physics.
Benchmarks verhulst and predatorPrey are from biological modeling. Bench-
marks turbine1, turbine2, turbine3, and jetEngine are from control theory. Bench-
mark logExp is from Gappa++ paper [33] and it estimates the error in log(1 +
exp(x)) for x ∈ [−8, 8]. Benchmarks sphere and azimuth are taken from NASA
World Wind Java SDK [56], which is a popular open-source 3D interactive world
viewer with many users ranging from US Army and Air Force to European Space
Agency. An example application that leverages World Wind is a critical com-
ponent of the Next Generation Air Transportation System (NextGen) called
AutoResolver, whose task is to provide separation assurance for airplanes [20].

Table 5 contains additional information about benchmarks. Columns Vars,
Ops, and Trans show the number of variables, the total number of floating-point
operations, and the total number of transcendental operations in each bench-
mark. The column FPTaylor(b) repeats results of FPTaylor from Table 4. The
column s3fp shows lower bounds of errors estimated with the underapproxima-
tion tool s3fp [7]. The column Ratio gives ratios of overapproximations computed
with FPTaylor(b) and underapproximations computed with s3fp.

3 Our benchmarks are available at https://github.com/soarlab/FPTaylor



14

Table 4: Experimental results for absolute round-off error bounds (bold font

marks the best results for each benchmark; italic font marks pessimistic results)

Benchmark Gappa Gappa
(hints)

Fluctuat Fluctuat
(subdiv.)

Rosa FPT.(a) FPT.(b)

Univariate polynomial approximations

sine 1.46 5.17e-09 7.97e-16 6.86e-16 9.56e-16 6.71e-16 4.43e-16
sqroot 5.71e-16 5.37e-16 6.84e-16 6.84e-16 8.41e-16 7.87e-16 5.78e-16
sineOrder3 8.89e-16 6.50e-16 1.16e-15 1.03e-15 1.11e-15 9.96e-16 7.95e-16

Rational functions with 1, 2, and 3 variables

carbonGas 2.62e-08 6.00e-09 4.52e-08 8.88e-09 4.64e-08 1.25e-08 9.99e-09
verhulst 5.41e-16 2.84e-16 5.52e-16 4.78e-16 6.82e-16 3.50e-16 2.50e-16
predPrey 2.44e-16 1.66e-16 2.50e-16 2.35e-16 2.94e-16 1.87e-16 1.59e-16
rigidBody1 3.22e-13 2.95e-13 3.22e-13 3.22e-13 5.08e-13 3.87e-13 2.95e-13
rigidBody2 3.65e-11 3.61e-11 3.65e-11 3.65e-11 6.48e-11 5.24e-11 3.61e-11
doppler1 2.03e-13 1.61e-13 3.91e-13 1.40e-13 4.92e-13 1.57e-13 1.35e-13
doppler2 3.92e-13 2.86e-13 9.76e-13 2.59e-13 1.29e-12 2.87e-13 2.44e-13
doppler3 1.08e-13 8.70e-14 1.57e-13 7.63e-14 2.03e-13 8.16e-14 6.97e-14
turbine1 9.51e-14 2.63e-14 9.21e-14 8.31e-14 1.25e-13 2.50e-14 1.86e-14
turbine2 1.38e-13 3.54e-14 1.30e-13 1.10e-13 1.76e-13 3.34e-14 2.15e-14
turbine3 39.91 0.35 6.99e-14 5.94e-14 8.50e-14 1.80e-14 1.07e-14
jetEngine 8.24e+06 4426.37 4.08e-08 1.82e-11 1.62e-08 1.49e-11 1.03e-11

Transcendental functions with 1 and 4 variables

logExp − − − − − 1.71e-15 1.53e-15
sphere − − − − − 1.29e-14 8.08e-15
azimuth − − − − − 1.41e-14 8.78e-15

For all these benchmarks, input values are assumed to be real numbers,
which is how Rosa treats input values, and hence we always need to consider
uncertainties in inputs. All results are given for double precision floating-point
numbers and we ran Gappa, Fluctuat, and Rosa with standard settings. We used
a simple branch and bound optimization method in FPTaylor since it works
better than a Z3-based optimization on most benchmarks. For transcendental
functions, we used increased values of ǫ and δ: ǫ = 1.5 ·2−53 and δ = 1.5 ·2−1075.

Gappa with user provided hints computed best results in 5 out of 15 bench-
marks (we do not count last 3 benchmarks with transcendental functions). FP-
Taylor computed best results in 12 benchmarks.4 Gappa without hints was able
to find a better result than FPTaylor only in the sqroot benchmark. On the

4 While the absolute error changing from (e.g.) 10−8 to 10−10 does not appear to be
significant, it is a significant two-order of magnitude difference; for instance, imagine
these differences accumulating over 104 iterations in a loop.



15

Table 5: Additional benchmark information

Benchmark Vars Ops Trans FPTaylor(b) s3fp Ratio

Univariate polynomial approximations

sine 1 18 0 4.43e-16 2.85e-16 1.6
sqroot 1 14 0 5.78e-16 4.57e-16 1.3
sineOrder3 1 5 0 7.95e-16 3.84e-16 2.1

Rational functions with 1, 2, and 3 variables

carbonGas 1 11 0 9.99e-09 4.11e-09 2.4
verhulst 1 4 0 2.50e-16 2.40e-16 1.1
predPrey 1 7 0 1.59e-16 1.47e-16 1.1
rigidBody1 3 7 0 2.95e-13 2.47e-13 1.2
rigidBody2 3 14 0 3.61e-11 2.88e-11 1.3
doppler1 3 8 0 1.35e-13 8.01e-14 1.7
doppler2 3 8 0 2.44e-13 1.54e-13 1.6
doppler3 3 8 0 6.97e-14 4.54e-14 1.5
turbine1 3 14 0 1.86e-14 1.01e-14 1.8
turbine2 3 10 0 2.15e-14 1.20e-14 1.8
turbine3 3 14 0 1.07e-14 5.04e-15 2.1
jetEngine 2 48 0 1.03e-11 6.37e-12 1.6

Transcendental functions with 1 and 4 variables

logExp 1 3 2 1.53e-15 1.19e-15 1.3
sphere 4 5 2 8.08e-15 5.05e-15 1.6
azimuth 4 14 7 8.78e-15 2.53e-15 3.5

other hand, in several benchmarks (sine, jetEngine, and turbine3 ), Gappa (even
with hints) computed very pessimistic results. Rosa consistently computed de-
cent error bounds, with one exception being jetEngine. FPTaylor outperformed
Rosa on all benchmarks even with the simplified rounding model and optimiza-
tion problem. Fluctuat results without subdivisions are similar to Rosa’s results.
Fluctuat results with subdivisions are good but they were obtained with carefully
chosen subdivisions. FPTaylor with the improved rounding model outperformed
Fluctuat with subdivisions on all but one benchmark (carbonGas). Only FPTay-
lor and Fluctuat with subdivisions found good error bounds for the jetEngine
benchmark.

FPTaylor yields best results with the full optimization problem (10) and with
the improved rounding model (12). But these results are at most 2 times better
(and even less in most cases) than results computed with the simple rounding
model (3) and the simplified optimization problem (11). The main advantage of
the simplified optimization problem is that it can be applied to more complex
problems. Finally, we compared results of FPTaylor with lower bounds of errors



16

estimated with a state-of-the-art underapproximation tool s3fp [7]. All FPTay-
lor results are only 1.1–2.4 times worse than the estimated lower bounds for
polynomial and rational benchmarks and 1.3–3.5 times worse for transcendental
tests.

Table 6: Performance results on
an Intel Core i7 2.8GHz machine
(in seconds)

Tool jetEng. Total

Gappa 0.02 0.38
Gappa(hints) 21.47 80.27
Fluctuat 0.01 0.75
Fluct.(div.) 23.00 228.36
Rosa 129.63 205.14
FPTaylor(a) 14.73 86.92
FPTaylor(b) 16.63 102.23

Table 6 compares performance results
of different tools on first 15 benchmarks
(the results for the jetEngine benchmark
and the total time for all 15 benchmarks
are shown; FPTaylor takes about 33 sec-
onds on three transcendental benchmarks).
Gappa and Fluctuat (without hints and sub-
divisions) are considerably faster than both
Rosa and FPTaylor. But Gappa often fails
on nonlinear examples as Table 4 demon-
strated. Fluctuat without subdivisions is
also not as good as FPTaylor. All other tools
(including FPTaylor) have roughly the same
performance. Rosa is slower than FPTaylor
because it relies on an inefficient optimization algorithm implemented with Z3.

We also formally verified all results in the column FPTaylor(a) of Table 4.
For all these results, corresponding HOL Light theorems were automatically
produced using our formalization of FPTaylor described in Sect. 4.3. The total
verification time of all results without the azimuth benchmark was 48 minutes
on an Intel Core i7 2.8GHz machine. Verification of the azimuth benchmark
took 261 minutes. Such performance figures match up with the state of the art,
considering that even results pertaining to basic arithmetic operations must be
formally derived from primitive definitions.

6 Related Work

Taylor Series. Method based on Taylor series have a rich history in floating-
point reasoning, including algorithms for constructing symbolic Taylor series
expansions for round-off errors [40, 55, 19, 43], and stability analysis. These works
do not cover round-off error estimation. Our key innovations include computation
of the second order error term in Taylor expansions and global optimization of
symbolic first order terms. Taylor expansions are also used to strictly enclose
values of floating-point computations [51]. Note that in this case round-off errors
are not computed directly and cannot be extracted from computed enclosures
without large overestimations.

Abstract Interpretation. Abstract interpretation [11] is widely used for anal-
ysis of floating-point computations. Abstract domains for floating-point values
include intervals [41], affine forms [54], and general polyhedra [6]. There exist dif-
ferent tools based on these abstract domains. Gappa [15] is a tool for checking
different aspects of floating-point programs, and is used in the Frama-C veri-
fier [18]. Gappa works with interval abstractions of floating-point numbers and



17

applies rewriting rules for improving computed results. Gappa++ [33] is an im-
provement of Gappa that extends it with affine arithmetic [54]. It also provides
definitions and rules for some transcendental functions. Gappa++ is currently
not supported and does not run on modern operating systems. SmartFloat [13]
is a Scala library which provides an interface for computing with floating-point
numbers and for tracking accumulated round-off. It uses affine arithmetic for
measuring errors. Fluctuat [16] is a tool for static analysis of floating-point
programs written in C. Internally, Fluctuat uses a floating-point abstract do-
main based on affine arithmetic [23]. Astrée [10] is another static analysis tool
which can compute ranges of floating-point expressions and detect floating-point
exceptions. A general abstract domain for floating-point computations is de-
scribed in [34]. Based on this work, a tool called RangeLab is implemented [36]
and a technique for improving accuracy of floating-point computations is pre-
sented [35]. Ponsini et al. [49] propose constraint solving techniques for improving
the precision of floating-point abstractions. Our results show that interval ab-
stractions and affine arithmetic can yield pessimistic error bounds for nonlinear
computations.

The work closest to ours is Rosa [14] in which they combine affine arithmetic
and an optimization method based on an SMT solver for estimating round-off
errors. Their tool Rosa keeps the result of a computation in a symbolic form
and uses an SMT solver for finding accurate bounds of computed expressions.
The main difference from our work is representation of round-off errors with
numerical (not symbolic) affine forms in Rosa. For nonlinear arithmetic, this
representation leads to overapproximation of error, as it loses vital dependency
information between the error terms. Our method keeps track of these depen-
dencies by maintaining symbolic representation of all first order error terms in
the corresponding Taylor series expansion. Another difference is our usage of rig-
orous global optimization which is more efficient than using SMT-based binary
search for optimization.

SMT.While abstract interpretation techniques are not designed to prove general
bit-precise results, the use of bit-blasting combined with SMT solving is pursued
by [5]. Recently, a preliminary standard for floating-point arithmetic in SMT
solvers was developed [52]. Z3 [42] and MathSAT 5 [8] SMT solvers partially
support this standard. There exist several other tools which use SMT solvers for
reasoning about floating-point numbers. FPhile [47] verifies stability properties
of simple floating-point programs. It translates a program into an SMT formula
encoding low- and high-precision versions, and containing an assertion that the
two are close enough. FPhile uses Z3 as its backend SMT solver. Leeser et al. [32]
translate a given floating-point formula into a corresponding formula for real
numbers with appropriately defined rounding operators. Ariadne [2] relies on
SMT solving for detecting floating-point exceptions. Haller et al. [24] lift the
conflict analysis algorithm of SMT solvers to abstract domains to improve their
efficacy of floating-point reasoning.

In general, the lack of scalability of SMT solvers used by themselves has been
observed in other works [14]. Since existing SMT solvers do not directly support



18

mixed real/floating-point reasoning, one must often resort to non-standard ap-
proaches for encoding properties of round-off errors in computations (e.g., using
low- and high-precision versions of the same computation).

Proof Assistants. An ultimate way to verify floating-point programs is to
give a formal proof of their correctness. To achieve this goal, there exist several
formalizations of the floating-point standard in proof assistants [38, 26]. Boldo et
al. [4] formalized a non-trivial floating-point program for solving a wave equation.
This work partially relies on Gappa, which can also produce formal certificates
for verifying floating-point properties in the Coq proof assistant [9].

7 Conclusions and Future Work

We presented a new method to estimate round-off errors of floating-point com-
putations called Symbolic Taylor Expansions. We support our work through
rigorous formal proofs, and also present a tool FPTaylor that implements our
method. FPTaylor is the only tool we know that rigorously handles transcenden-
tal functions. It achieves tight overapproximation estimates of errors—especially
for nonlinear expressions.

FPTaylor is not designed to be a tool for complete analysis of floating-point
programs. It cannot handle conditionals and loops directly; instead, it can be
used as an external decision procedure for program verification tools such as [18,
50]. Conditional expressions can be verified in FPTaylor in the same way as it
is done in Rosa [14] (see Appendix B for details).

In addition to experimenting with more examples, a promising application
of FPTaylor is in error analysis of algorithms that can benefit from reduced or
mixed precision computations. Another potential application of FPTaylor is its
integration with a recently released tool Herbie [48] which improves the accuracy
of numerical programs. Herbie relies on testing for round-off error estimations.
FPTaylor can provide strong guarantees for results produced by Herbie.

We also plan to improve the performance of FPTaylor by parallelizing its
global optimization algorithms, thus paving the way to analyze larger problems.

Ideas presented in this paper can be directly incorporated into existing tools.
For instance, an implementation similar to Gappa++ [33] can be achieved by
incorporating our error estimation method inside Gappa [15]; the Rosa com-
piler [14] can be easily extended with our technique.

Acknowledgments. We would like to thank Nelson Beebe, Wei-Fan Chiang,
John Harrison, and Madan Musuvathi for their feedback and encouragement.
This work is supported in part by NSF CCF 1421726.

References

1. Alliot, J.M., Durand, N., Gianazza, D., Gotteland, J.B.: Implementing an interval
computation library for OCaml on x86/amd64 architectures (short paper). In:
ICFP 2012. ACM (2012)



19

2. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic Detection of Floating-point Excep-
tions. In: POPL 2013. pp. 549–560. POPL ’13, ACM, New York, NY, USA (2013)

3. Bingham, J., Leslie-Hurd, J.: Verifying Relative Error Bounds Using Symbolic
Simulation. In: Biere, A., Bloem, R. (eds.) CAV 2014, LNCS, vol. 8559, pp. 277–
292. Springer International Publishing (2014)

4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Pro-
gram. Journal of Automated Reasoning 50(4), 423–456 (2013)

5. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD 2009. pp. 69–76 (2009)

6. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: Ramalingam, G. (ed.) APLAS 2008, LNCS, vol. 5356, pp. 3–18. Springer
Berlin Heidelberg (2008)

7. Chiang, W.F., Gopalakrishnan, G., Rakamarić, Z., Solovyev, A.: Efficient Search
for Inputs Causing High Floating-point Errors. In: PPoPP 2014. pp. 43–52. PPoPP
’14, ACM, New York, NY, USA (2014)

8. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107 (2013)

9. The Coq Proof Assistant. http://coq.inria.fr/
10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The ASTRÉE Analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer Berlin Heidelberg (2005)

11. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
1977. pp. 238–252. POPL ’77, ACM, New York, NY, USA (1977)

12. Daramy, C., Defour, D., de Dinechin, F., Muller, J.M.: CR-LIBM: a correctly
rounded elementary function library. Proc. SPIE 5205, 458–464 (2003)

13. Darulova, E., Kuncak, V.: Trustworthy Numerical Computation in Scala. In: OOP-
SLA 2011. pp. 325–344. OOPSLA ’11, ACM, New York, NY, USA (2011)

14. Darulova, E., Kuncak, V.: Sound Compilation of Reals. In: POPL 2014. pp. 235–
248. POPL ’14, ACM, New York, NY, USA (2014)

15. Daumas, M., Melquiond, G.: Certification of Bounds on Expressions Involving
Rounded Operators. ACM Trans. Math. Softw. 37(1), 2:1–2:20 (2010)

16. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: To-
wards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009, LNCS, vol. 5825, pp.
53–69. Springer Berlin Heidelberg (2009)

17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
Multiple-precision Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Softw. 33(2) (2007)

18. Frama-C Software Analyzers. http://frama-c.com/
19. Gáti, A.: Miller Analyzer for Matlab: A Matlab Package for Automatic Roundoff

Analysis. Computing and Informatics 31(4), 713– (2012)
20. Giannakopoulou, D., Howar, F., Isberner, M., Lauderdale, T., Rakamarić, Z., Ra-

man, V.: Taming Test Inputs for Separation Assurance. In: ASE 2014. pp. 373–384.
ASE ’14, ACM, New York, NY, USA (2014)

21. Goodloe, A., Muñoz, C., Kirchner, F., Correnson, L.: Verification of Numerical
Programs: From Real Numbers to Floating Point Numbers. In: Brat, G., Rungta,
N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer, Moffett
Field, CA (2013)



20

22. Goualard, F.: How Do You Compute the Midpoint of an Interval? ACM Trans.
Math. Softw. 40(2), 11:1–11:25 (2014)

23. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Jhala, R., Schmidt, D. (eds.) VMCAI 2011, LNCS, vol. 6538, pp. 232–247. Springer
Berlin Heidelberg (2011)

24. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD 2012. pp. 131–140 (2012)

25. Harrison, J.: Formal Verification of Floating Point Trigonometric Functions. In:
Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000, LNCS, vol. 1954, pp. 254–270.
Springer Berlin Heidelberg (2000)

26. Harrison, J.: Floating-Point Verification Using Theorem Proving. In: Bernardo,
M., Cimatti, A. (eds.) SFM 2006, LNCS, vol. 3965, pp. 211–242. Springer Berlin
Heidelberg (2006)

27. Harrison, J.: HOL Light: An Overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009, LNCS, vol. 5674, pp. 60–66. Springer Berlin
Heidelberg (2009)

28. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008 pp. 1–70 (2008)
29. Johnson, S.G.: The NLopt nonlinear-optimization package. http://ab-initio.

mit.edu/nlopt

30. Kearfott, R.B.: GlobSol User Guide. Optimization Methods Software 24(4-5), 687–
708 (2009)

31. Lebbah, Y.: ICOS: A Branch and Bound Based Solver for Rigorous Global Opti-
mization. Optimization Methods Software 24(4-5), 709–726 (2009)

32. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: Effective
floating-point reasoning via exact arithmetic. In: DATE 2014. pp. 1–4 (2014)

33. Linderman, M.D., Ho, M., Dill, D.L., Meng, T.H., Nolan, G.P.: Towards Program
Optimization Through Automated Analysis of Numerical Precision. In: CGO 2010.
pp. 230–237. CGO ’10, ACM, New York, NY, USA (2010)

34. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
Higher-Order and Symbolic Computation 19(1), 7–30 (2006)

35. Martel, M.: Program Transformation for Numerical Precision. In: PEPM 2009. pp.
101–110. PEPM ’09, ACM, New York, NY, USA (2009)

36. Martel, M.: RangeLab: A Static-Analyzer to Bound the Accuracy of Finite-
Precision Computations. In: SYNASC 2011. pp. 118–122. SYNASC ’11, IEEE
Computer Society, Washington, DC, USA (2011)

37. Maxima: Maxima, a Computer Algebra System. Version 5.30.0 (2013), http://
maxima.sourceforge.net/

38. Melquiond, G.: Floating-point arithmetic in the Coq system. Information and Com-
putation 216(0), 14–23 (2012)

39. Mikusinski, P., Taylor, M.: An Introduction to Multivariable Analysis from Vector
to Manifold. Birkhäuser Boston (2002)

40. Miller, W.: Software for Roundoff Analysis. ACM Trans. Math. Softw. 1(2), 108–
128 (1975)

41. Moore, R.: Interval analysis. Prentice-Hall series in automatic computation,
Prentice-Hall (1966)

42. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.,
Rehof, J. (eds.) TACAS 2008, LNCS, vol. 4963, pp. 337–340. Springer Berlin Hei-
delberg (2008)

43. Mutrie, M.P.W., Bartels, R.H., Char, B.W.: An Approach for Floating-point Error
Analysis Using Computer Algebra. In: ISSAC 1992. pp. 284–293. ISSAC ’92, ACM,
New York, NY, USA (1992)



21

44. Neumaier, A.: Taylor Forms - Use and Limits. Reliable Computing 2003, 9–43
(2002)

45. Neumaier, A.: Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica 13, 271–369 (2004)

46. OpenOpt: universal numerical optimization package. http://openopt.org
47. Paganelli, G., Ahrendt, W.: Verifying (In-)Stability in Floating-Point Programs by

Increasing Precision, Using SMT Solving. In: SYNASC 2013. pp. 209–216 (2013)
48. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Im-

proving Accuracy for Floating Point Expressions. In: PLDI 2015. PLDI ’15, ACM
(2015)

49. Ponsini, O., Michel, C., Rueher, M.: Verifying floating-point programs with con-
straint programming and abstract interpretation techniques. Automated Software
Engineering pp. 1–27 (2014)

50. Rakamarić, Z., Emmi, M.: SMACK: Decoupling Source Language Details from
Verifier Implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014, LNCS, vol.
8559, pp. 106–113. Springer International Publishing (2014)

51. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic:
proof that arithmetic operations are validated in COSY. The Journal of Logic and
Algebraic Programming 64(1), 135–154 (2005)

52. Rümmer, P., Wahl, T.: An SMT-LIB Theory of Binary Floating-Point Arithmetic.
In: SMT Workshop 2010 (2010)

53. Solovyev, A., Hales, T.: Formal verification of nonlinear inequalities with taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013,
LNCS, vol. 7871, pp. 383–397. Springer Berlin Heidelberg (2013)

54. Stolfi, J., de Figueiredo, L.: An Introduction to Affine Arithmetic. TEMA Tend.
Mat. Apl. Comput. 4(3), 297–312 (2003)

55. Stoutemyer, D.R.: Automatic Error Analysis Using Computer Algebraic Manipu-
lation. ACM Trans. Math. Softw. 3(1), 26–43 (1977)

56. NASA World Wind Java SDK. http://worldwind.arc.nasa.gov/java/



22

A Formal Derivation of Taylor Forms

Definitions. We want to estimate the round-off error in computation of a func-
tion f : Rn → R on a domain I ⊂ R

n. The round-off error at a point x ∈ I is
defined as the difference fp(f)(x)−f(x) and fp(f) is the function f where all op-
erations (resp., constants, variable) are replaced with floating-point operations
(resp., constants, variables). Inductive rules which define fp(f) are the following:

fp(x) = x, x is a floating-point variable or constant

fp(x) = rnd(x), x is a real variable or constant

fp
(

op(f1, . . . , fr)
)

= rnd
(

op(fp(f1), . . . , fp(fr))
)

,

where op is +,−,×, /,
√
, fma

(13)

The definition of fp(sin(f)) and other transcendental functions is implementation
dependent and it is not defined by the IEEE 754 standard. Nevertheless, it is
possible to consider the same approximation model of fp(sin(f)) as (3) with
slightly larger bounds for e and d.

Use (1) to construct a function f̃(x, e,d) from fp(f). The function f̃ approx-
imates fp(f) in the following precise sense:

∀x ∈ I, ∃e ∈ Dǫ,d ∈ Dδ, fp(f)(x) = f̃(x, e,d) , (14)

where ǫ and δ are upper bounds of the corresponding error terms in the model (1).
Here, Dα = {y | |yi| ≤ α}, i.e., e ∈ Dǫ means |ei| ≤ ǫ for all i; likewise, d ∈ Dδ

means |dj | ≤ δ for all j.
We start by describing the main data structure on which our derivation rules

operate. We have the following Taylor expansion of f̃(x, e,d):

f̃(x, e,d) = f(x) +

k
∑

i=1

si(x)ei +R2(x, e,d) . (15)

Here we denote si =
∂f̃
∂ei

. We also include the effect of subnormal computations
captured by d in the second order error term. We can include all variables dj
in R2(x, e,d) since δ = O(ǫ2) (in fact, δ is much smaller than ǫ2). Rules for
computing a rigorous upper bound of R2(x, e,d) are presented later.

Formula (15) is inconvenient from the point of view of Taylor expansion
derivation as it differentiates between first and second order error terms. Let
M2 ∈ R be such that |R2(x, e,d)| ≤ M2 for all x ∈ I, e ∈ Dǫ, and d ∈ Dδ.
Define sk+1(x) =

M2

ǫ . Then the following formula holds:

∀x ∈ I, e ∈ Dǫ,d ∈ Dδ, ∃ek+1, |ek+1| ≤ ǫ ∧R2(x, e,d) = sk+1(x)ek+1 . (16)

This formula follows from the simple fact that
∣

∣

∣

R2(x,e,d)
sk+1(x)

∣

∣

∣ ≤ M2

sk+1(x)
= ǫ. Next,

we substitute (15) into (14), find ek+1 from (16), and replace R2(x, e,d) with



23

sk+1(x)ek+1. We get the following identity:

∀x ∈ I, ∃e1, . . . , ek+1, |ei| ≤ ǫ ∧ fp(f)(x) = f(x) +

k+1
∑

i=1

si(x)ei . (17)

The identity (17) does not include variables d. The effect of these variables is
accounted for in the expression sk+1(x)ek+1.

We introduce the following data structure and notation. Let 〈f, s〉 be a pair
of a symbolic expression f (we do not distinguish between a function f and its
symbolic expression) and a list s = [s1; . . . ; sr] of symbolic expressions si. We
call the pair 〈f, s〉 a Taylor form. We also use capital letters to denote Taylor
forms, e.g., F = 〈f, s〉. For any function h(x), we write h ∼ 〈f, s〉 if and only if

∀x ∈ I, ∃e ∈ Dǫ, h(x) = f(x) +

r
∑

i=1

si(x)ei . (18)

If h ∼ 〈f, s〉 we say that 〈f, s〉 corresponds to h. We are interested in Taylor forms
〈f, s〉 corresponding to fp(f). Note that the expression on the right hand side
of (18) is similar to an affine form where all coefficients are symbolic expressions
and the noise symbols ei are restricted to the interval [−ǫ, ǫ].

Rules. Our goal is to derive a Taylor form F corresponding to fp(f) from the
symbolic expression of fp(f). This derivation is done by induction on the struc-
ture of fp(f). Figure 3 shows main derivation rules of Taylor forms. In this figure,
the operation @ concatenates two lists and [] denotes the empty list. The no-
tation [−tj ]j means [−t1; . . . ;−tr] where r is the length of the corresponding
list.

Consider a simple example illustrating these rules. Let f(x) = 0.1 × x and
x ∈ [1, 3]. From (13) we get fp(f)(x) = rnd

(

rnd(0.1) × rnd(x)
)

. (Note that x is
a real variable so it must be rounded.) Take the rules CONSTRND and VARRND

and apply them to corresponding subexpressions of fp(f):

CONSTRND

(

rnd(0.1)
)

= 〈0.1, [ferr(0.1)]〉 = 〈0.1, [0.1]〉 ,

VARRND

(

rnd(x)
)

= 〈x, [ferr(x)]〉 = 〈x, [x]〉 .

Here, the function ferr : R → R estimates the relative rounding error of a given
value. We used the simplest definition of this function: ferr(c) = c. But it is also
possible to define ferr in a more precise way and get better error bounds for
constants and variables. The rule CONSTRND (resp., VARRND) may yield better
results than application of rules CONST (resp., VAR) and RND in sequence. Now,
we apply the rule MUL to the Taylor forms of rnd(0.1) and rnd(x):

MUL
(

〈0.1, [0.1]〉 , 〈x, [x]〉
)

= 〈0.1x, [0.1× x] @ [x× 0.1] @ [ǫM2]〉 ,

where M2 ≥ maxx∈[1,3]|x × 0.1|. This upper bound can be computed with a
simple method like interval arithmetic (it is multiplied by a small number ǫ



24

CONST
c

〈c, []〉 CONSTRND

rnd(c)

〈c, [ferr(c)]〉

VAR
x

〈x, []〉 VARRND

rnd(x)

〈x, [ferr(x)]〉

RND
〈f, s〉

〈

f, [f ] @ s @ [ǫM2 +
δ
ǫ
]
〉

, where M2 ≥ max
x∈I

(
∑

i |si(x)|
)

ADD
〈f, s〉 , 〈g, t〉
〈f + g, s @ t〉 SUB

〈f, s〉 , 〈g, t〉
〈f − g, s @ [−tj ]j〉

MUL
〈f, s〉 , 〈g, t〉

〈f × g, [f × tj ]j @ [g × si]i @ [ǫM2]〉 , where M2 ≥ max
x∈I

(

∑

i,j

|tj(x)si(x)|
)

INV
〈f, s〉

〈

1
f
, [− si

f2 ]i @ [ǫM2]
〉

, where M2 ≥ max
x∈I,|ei|≤ǫ

(

∑

i,j

∣

∣

∣

si(x)sj(x)

(f(x)+
∑

k
sk(x)ek)

3

∣

∣

∣

)

SQRT
〈f, s〉

〈√
f, [ si

2
√
f
]i @ [ǫM2]

〉

, where M2 ≥ max
x∈I,|ei|≤ǫ

(

1
8

∑

i,j

∣

∣

∣

si(x)sj(x)

(f(x)+
∑

k
sk(x)ek)

3/2

∣

∣

∣

)

SIN
〈f, s〉

〈sin f, [si cos f ]i @ [ǫM2]〉 , where M2 ≥ max
x∈I,|ei|≤ǫ

(

1
2

∑

i,j

∣

∣

∣
sin(f(x) +

∑

k

sk(x)ek)si(x)sj(x)
∣

∣

∣

)

Fig. 3: Derivation rules of Taylor forms



25

in the resulting form and hence the value of M2 may be conservative). In our
example, we take M2 = 1 and get

F = MUL
(

〈0.1, [0.1]〉 , 〈x, [x]〉
)

= 〈0.1x, [0.1x; 0.1x; ǫ]〉 .

Finally, we apply the rule RND to F :

G = RND
(

〈0.1x, [0.1x; 0.1x; ǫ]〉
)

=
〈

0.1x, [0.1x] @ [0.1x; 0.1x; ǫ] @ [ǫM2 +
δ
ǫ ]
〉

,

where M2 ≥ maxx∈[1,3](|0.1x|+ |0.1x|+ |ǫ|). Again, the upper bound M2 can be
computed with a simple method. We take M2 = 1 and get the final Taylor form
corresponding to our example:

G =
〈

0.1x, [0.1x; 0.1x; 0.1x; ǫ; ǫ+ δ
ǫ ]
〉

.

The main property of rules in Fig. 3 is given by the following theorem.

Theorem 1. Suppose RULE is one of the derivation rules in Fig. 3 with k ar-
guments and op is the corresponding mathematical operation. Let F1, . . . , Fk be
Taylor forms such that h1 ∼ F1, . . . , hk ∼ Fk for some functions h1, . . . , hk.
Then we have

op(h1, . . . , hk) ∼ RULE(F1, . . . , Fk) .

Proof. We give a proof for the multiplication rule MUL. Proofs for other rules
can be found at the end of this appendix.

Suppose that h1 ∼ 〈f, s〉 and h2 ∼ 〈g, t〉. Fix x ∈ I, then by (18) we have

h1(x) = f(x) +
t
∑

i=1

si(x)ei, for some e1, . . . , et, |ei| ≤ ǫ ,

h2(x) = g(x) +

r
∑

j=1

tj(x)vj , for some v1, . . . , vr, |vj | ≤ ǫ .

Compute the product of h1(x) and h2(x):

h1(x)h2(x) =
(

f(x) +

t
∑

i=1

si(x)ei
)(

g(x) +

r
∑

j=1

tj(x)vj
)

= f(x)g(x) +

r
∑

j=1

f(x)tj(x)vj +

t
∑

i=1

g(x)si(x)ei +R2(x) ,

where R2(x) =
∑t,r

i=1,j=1 si(x)tj(x)eivj . Find a constant M2 such that M2 ≥
maxx∈I

(

∑t,r
i=1,j=1|si(x)tj(x)|

)

. We have M2ǫ
2 ≥ |R2(x)| for all x ∈ I. Hence,

for any x we can find w = w(x), |w| ≤ ǫ, such that R2(x) = ǫM2w. Therefore

h1(x)h2(x) = f(x)g(x) +

r
∑

j=1

f(x)tj +

t
∑

i=1

g(x)si + (ǫM2)w .



26

This equation holds for any x ∈ I. Compare the right hand side of this equation
with the definition of the rule MUL and we get h1h2 ∼ MUL

(

〈f, s〉 , 〈g, t〉
)

.

The next theorem summarizes the main result of this section.

Theorem 2. For any input function fp(f), the Taylor form constructed with
the rules described in Fig. 3 corresponds to the function fp(f). That is, if the
constructed Taylor form is 〈f, s〉 then fp(f) ∼ 〈f, s〉 and the property (18) holds.

Proof. We present a sketch of the proof. The proof is by induction on the sym-
bolic expression fp(f). The base case corresponds to Taylor forms of constants
and variables which are derived with rules CONST and VAR. These rules pro-
duce correct Taylor forms. The proof can be found at the end of this appendix.
The induction step follows from the identity (here, we give a proof for the multi-
plication; all other operations are analogous): fp(f × g) = rnd(fp(f) × fp(g)).
Suppose that fp(f) ∼ 〈f, s〉 = F and fp(g) ∼ 〈g, t〉 = G. Theorem 1 im-
plies h = fp(f) × fp(g) ∼ MUL

(

F,G
)

= H and rnd(h) ∼ RND
(

H
)

. Therefore

fp(f × g) ∼ RND
(

MUL
(

F,G
))

and the result follows by induction.

Implementation Details. In our presentation above, the definitions of Taylor
forms and derivation rules are simplified. Taylor forms which we use in the im-
plementation of our method keep track of error variables ei explicitly in order
to account for possible cancellations. Consider a simple example of comput-
ing a Taylor form of fp(f) where f(x, y) = xy − xy with x, y ∈ [0, 1] ∩ F. It
is obvious that fp(f)(x, y) = 0 for all x and y. On the other hand, we have
fp(f)(x, y) = rnd

(

rnd(xy) − rnd(xy)
)

and if we compute its Taylor form with
rules from Figure 3, we get an error which is of order of magnitude of ǫ. The
problem in this example is that the rounding error introduced by floating-point
computation of xy should always be the same. Our simplified Taylor forms do
not explicitly include error terms ei, which we address with the following easy
modification. Let a pair 〈f, [sieai ]i〉 be a Taylor form where f, si are symbolic
expressions and eai are symbolic variables. Values of indices ai can be the same
for different values of i (e.g., we can have a3 = a1 = 1). With this new definition
of the Taylor form, the only significant change must be done in the rounding rule
RND. This rule creates the following list of error terms: [f ] @ s @ [ǫM2+

δ
ǫ ]. This

list needs to be replaced with the list [feaf
] @ s @ [(ǫM2 +

δ
ǫ )ea]. Here, ea is a

fresh symbolic variable and the index af corresponds to the symbolic expression
f ; af should be the same whenever the same expression is rounded.

Explicit error terms also provide the mixed precision support in FPTaylor. It
is done by attaching different bounds (values of ǫ and δ) to different error terms.

We implemented several other improvements of the derivation rules for ob-
taining better error bounds: (1) Whenever we multiply an expression by a power
of 2, we do not need to round the result; (2) If we divide by a power of 2, we only
need to consider potential subnormal errors (given by the term δ

ǫ ); (3) There are
no subnormal errors for rounding after addition or subtraction (i.e., we do not
need to add the term δ

ǫ in the RND rule).



27

Proofs for Rules. We prove the property

f1 ∼ F1, . . . , fk ∼ Fk =⇒ op(f1, . . . , fk) ∼ RULE
(

F1, . . . , Fk

)

.

for rules defined in Figure 3.

CONST. Let c ∈ R be a constant. Then the corresponding Taylor form is 〈c, []〉.
The proof of the fact that c ∼ 〈c, []〉 is trivial. We have another rule for constants.
If the symbolic expression of fp(f) contains the term rnd(c) (that is, c cannot
be exactly represented with a floating-point number), then the rule CONSTRND

is applied and the form 〈c, [ferr(c)]〉 is derived. There are different ways to define
the function ferr(c). The simplest definition is ferr(c) = c. In this case, the fact
rnd(c) ∼ 〈c, [c]〉 follows from (1): rnd(c) = c(1 + e) = c + ce with |e| ≤ ǫ. (We
need to make an additional assumption that rnd(c) is not in the subnormal
range of floating-point numbers, i.e., d = 0 in (1); it is usually the case, but
if it is a subnormal number then we still can construct a correct Taylor form
as 〈c, [δ/ǫ]〉.) It is possible to construct a more precise Taylor form of c when
rnd(c) 6= c. We can always compute a precise value ferr(c) = (rnd(c)− c)/ǫ and
the corresponding Taylor form.

VAR. The rules for variables are analogous to rules for constants.

RND. Given a Taylor form 〈f, s〉, the rounding rule RND returns another Taylor
form which corresponds to a rounding operator applied to the expression defined
by 〈f, s〉. We need to prove that h ∼ 〈f, s〉 implies rnd(h) ∼ RND

(

〈f, s〉
)

(here,
rnd(h) is a function defined by rnd(h)(x) = rnd(h(x))). Fix x. The assumption
h ∼ 〈f, s〉 means that we can find e1, . . . , ek with |ei| ≤ ǫ such that h(x) =

f(x) +
∑k

i=1 si(x)ei (see (18)). Equation (1) allows us to find ek+1 and d with
|ek+1| ≤ ǫ, |d| ≤ δ such that

rnd(h(x)) =

(

f(x) +

k
∑

i=1

si(x)ei

)

(1 + ek+1) + d

= f(x) +

k
∑

i=1

si(x)ei + f(x)ek+1 +

(

d+ ek+1

k
∑

i=1

si(x)ei

)

.

Define sk+1 = f and find M2 such that M2 ≥ maxx∈I

(

∑k
i=1|si(x)|

)

. Define

sk+2 = ǫM2 + δ
ǫ . We get d + ek+1

∑k
i=1 si(x)ei = sk+2ek+2 for some ek+2.

Moreover, it is not difficult to see that |ek+2| ≤ ǫ. We can write

∃e1, . . . , ek, ek+1, ek+2, |ei| ≤ ǫ ∧ rnd(h(x)) = f(x) +

k+2
∑

i=1

si(x)ei .

Compare definitions of sk+1 and sk+2 with the result of the rule RND and con-
clude that rnd(h) ∼ RND

(

〈f, s〉
)

.

SUB (ADD). Consider the subtraction rule (the addition rule is analogous).
Suppose h1 ∼ 〈f, s〉 and h2 ∼ 〈g, t〉. Show that h1 − h2 ∼ SUB

(

〈f, s〉 , 〈g, t〉
)

. We



28

can find e1, . . . , ek and v1, . . . , vr, |ei| ≤ ǫ, |vj | ≤ ǫ, such that

h1(x)− h2(x) =
(

f(x) +

k
∑

i=1

si(x)ei
)

−
(

g(x) +

r
∑

j=1

tj(x)vj
)

= f(x)− g(x) +





k
∑

i=1

si(x)ei +

r
∑

j=1

(−tj(x))vj



 .

Hence the result follows.

MUL. This result is proved in Theorem 1.

INV. The proof of this rule follows from the following Taylor expansion:

1

f +
∑

k skek
=

1

f
−
∑

i

si
f2

ei +
∑

i,j

sisj
(f +

∑

k skθk)
3
eiej ,

where |θk| ≤ |ek| ≤ ǫ. Replace the last sum in this expansion with its upper
bound M2ǫ and we get the rule INV.

SQRT. The proof of this rule follows from the following Taylor expansion:

√

f +
∑

k

skek =
√

f +
∑

i

si

2
√
f
ei −

1

8

∑

i,j

sisj
(f +

∑

k skθk)
3/2

eiej ,

where |θk| ≤ |ek| ≤ ǫ. Replace the last sum in this expansion with its upper
bound M2ǫ and we get the rule SQRT

SIN. The proof of this rule follows from the following Taylor expansion:

sin(f +
∑

k

skek) = sin f +
∑

i

si cos(f)ei −
1

2

∑

i,j

sin(f +
∑

k

skθk)sisjeiej ,

where |θk| ≤ |ek| ≤ ǫ. Replace the last sum in this expansion with its upper
bound M2ǫ and we get the rule SIN.



29

Table 7: Round-off error estimation results for the example in Fig. 4

Fluctuat Fluctuat (subdiv.) Rosa FPTaylor

∞ ∞ 1.78e-11 5.72e-12

B Additional Tool Capabilities and Illustrations

FPTaylor is not a tool for general-purpose floating-point program analysis. It
cannot handle conditionals and loops directly, but can be used as an external
decision procedure for program verification tools (e.g., [18, 50]).

Conditional expressions can be verified in FPTaylor in the same way as it is
done in Rosa [14]. Consider a simple real-valued expression

f(x) = if c(x) < 0 then f1(x) else f2(x) .

The corresponding floating-point expression is the following

f̃(x) = if c̃(x) < 0 then f̃1(x) else f̃2(x)

where c̃(x) = c(x) + ec(x), f̃1(x) = f1(x) + e1(x), and f̃2(x) = f2(x) + e2(x).
Our goal is to compute a bound E of the error e(x) = f̃(x)− f(x).

First of all, we estimate the error ec(x). Suppose, it is bounded by a constant
Ec: |ec(x)| < Ec. Now we need to consider 4 cases: 2 cases when both f(x) and
f̃(x) take the same path, and 2 cases when they take different paths:
1. Find E1 such that c(x) < 0 =⇒ |f̃1(x)− f1(x)| ≤ E1.
2. Find E2 such that c(x) ≥ 0 =⇒ |f̃2(x)− f2(x)| ≤ E2.
3. Find E3 such that −Ec < c(x) < 0 =⇒ |f̃2(x)− f1(x)| ≤ E3.
4. Find E4 such that 0 ≤ c(x) < Ec =⇒ |f̃1(x)− f2(x)| ≤ E4.

Finally, we take E = max{E1, E2, E3, E4}. Problems 1–4 can be solved in
FPTaylor. Indeed, FPTaylor can handle additional constraints given in these
problems (c(x) < 0, etc.) and it can directly compute bounds of errors |f̃i(x)−
fi(x)|, i = 1, 2. The value of E3 can be determined from the following inequality

|f̃2(x)− f1(x)| ≤ |f2(x)− f1(x)|+ |f̃2(x)− f2(x)| .

We can find E4 in the same way.
The procedure described above is partially implemented in FPTaylor and we

already can handle some examples with conditionals in a semi-automatic way
(we need to prepare separate input files for each case described above).

Consider a simple example which demonstrates that automatic handling of
conditionals in FPTaylor is a promising research direction. Figure 4 presents
a simple Fluctuat [16] example with two floating-point variables a and b such
that a, b ∈ [0, 100]. We want to measure the round-off error in the result r. We
prepared corresponding input files for Rosa and FPTaylor. Table 7 shows results



30

int main(void)

{

double a, b;

double r;

a = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);

b = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);

if (b >= a) {

r = b / (b - a + 0.5);

}

else {

r = b / 0.5;

}

DSENSITIVITY(r);

return 0;

}

Fig. 4: A simple Fluctuat example with a conditional expression

obtained with Fluctuat (version 3.1071), Rosa (version from May 2014), and
FPTaylor on this simple example. We can see that Fluctuat (even with manual
subdivisions) failed to find any error bound in this example. Results of FPTaylor
are about 3 times better then Rosa’s results.


