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Abstract—We propose a new approach to solve the problem of
the propagation of electromagnetic waves in unidimensional media
with an arbitrary variation of their dielectric permittivity. This
method is deduced from the Maxwell equations with a minimum of
approximations and allows a full vectorial description of both the
electric and magnetic fields through the direct calculation of their
Cartesian coordinates. The problem is then equivalent to the solution
of a pair of uncoupled ordinary differential equations. We use a
very intuitive, highly accurate, pseudospectral technique to solve these
equations. This pseudospectral method is based in a combination of
Fourier and polynomial expansions of the solution providing very good
precision and excellent stability with a relatively low computational
effort. We present a simple model of a photonic crystal as an example
of application of this technique to real electromagnetic problems.

1. INTRODUCTION

The study of media with an arbitrary variation of their dielectric
permittivity, such as photonic crystals and waveguides, is the subject
of intense research in recent years. Many theoretical and numerical
advances have been published in the last decade [1-17, 21]. From a
practical point of view, the full vectorial analysis of this problem is very
important in research areas such as Optical Communications, radio
propagation in the Ionosphere, scattering in stratified and artificial
materials, etc. [2, 17–19, 21–24].
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A complete study of media with a periodic variation of their
dielectric permittivity can be done using the formalism of the Floquet-
Bloch theory, which is formally equivalent to the expansion of the
solution in Fourier series [22]. Unfortunately, in some cases, this
method is slowly convergent and it is difficult to adapt it to more
general functional dependences of the dielectric permittivity with the
spatial coordinates. In such cases, finite differences or finite element
approaches are widely used. Powerful techniques exist to solve the
scattering problem, such as the Wave Approach for multilayered media
[11, 13 23]. In such theories the medium under study is described as a
convenient multilayer material with appropriate boundary conditions
between adjacent layers.

However, in spite of the good performance of present theories and
numerical techniques, it is difficult to find detailed full vectorial studies
of electromagnetic wave propagation in arbitrarily inhomogeneous
materials, even in relatively simple unidimensional cases. The
simulation of unidimensional structures is still very important because
many practical systems have symmetries with such property. Besides,
1D structures provide a quick and deep physical insight of the
problem and they provide excellent tests of the accuracy of new
solution techniques in higher dimensions. In this paper we propose
a new method of analysis of this problem directly derived from the
Maxwell equations with a minimum of approximations and hypothesis.
This method is similar to the full vectorial hybrid mode analysis in
waveguides [24] and allows a complete and accurate description of every
Cartesian component of both the electric and magnetic fields.

In our approach the problem is reduced to a pair of ordinary
differential equations for the z dependent part of the Ez and Hz

components of the electromagnetic field. These equations are then
solved by an efficient collocation technique based in a suitable
combination of Fourier and polynomial series. The combination of both
approximations provide improved convergence in this case with good
stability for initial value and boundary value problems. Collocation or
pseudospectral methods are conceptually simple, but quick, efficient
and memory saving, which is very important in real simulations,
because physical memory is generally a more limiting factor than
CPU speed [20, 25, 26]. This pseudospectral technique has a wide
applicability and is specially suited to the analysis of complex and
non-periodic dielectric profiles.

We consider a lineal, isotropic, unidimensional medium with
rectangular symmetry and an arbitrary dielectric permittivity ε(z).
Mathematically, the problem of propagation of the electromagnetic
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field in this medium is described by the Maxwell equations,

∇ ·D = ρ (1)
∇ ·B = 0 (2)

∇× E = −∂B

∂t
(3)

∇×H = J +
∂D

∂t
. (4)

In macroscopic media, the following constitutive relations are used,

D = εE (5)
J = σE (6)
B = µH (7)

where

ε = ε0εr (8)
µ = µ0µr (9)

We shall make the following assumptions to simplify the problem.

• The material in which the electromagnetic waves are propagating
is a perfect dielectric, so that ρ = 0 and J = 0.

• The medium is not magnetic, µ = µ0.
• The medium is isotropic.
• The medium is inhomogeneous only in the direction of the z

axis, ε(z) = ε0εr(z). We shall allow for any arbitrary functional
dependence of the dielectric permittivity with the z coordinate.

• The medium can be finite, semi-infinite or infinite and has a
rectangular symmetry, so that Cartesian coordinates can be used.

With such hypothesis, the Maxwell equations, (1), (2), (3) and (4), can
be rewritten as

ε0

[
εr(z)

∂Ex

∂x
+ εr(z)

∂Ey

∂y
+
∂ (εr(z)Ez)

∂z

]
= 0 (10)

µ0

(
∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z

)
= 0 (11)

∂Ez

∂y
− ∂Ey

∂z
= −µ0

∂Hx

∂t
(12)
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∂Ex

∂z
− ∂Ez

∂x
= −µ0

∂Hy

∂t
(13)

∂Ey

∂x
− ∂Ex

∂y
= −µ0

∂Hz

∂t
(14)

∂Hz

∂y
− ∂Hy

∂z
= ε0εr(z)

∂Ex

∂t
(15)

∂Hx

∂z
− ∂Hz

∂x
= ε0εr(z)

∂Ey

∂t
(16)

∂Hy

∂x
− ∂Hx

∂y
= ε0εr(z)

∂Ez

∂t
. (17)

These equations form a set of eight partial differential equations whose
unknowns are the six electric and magnetic field components, so we
have some freedom to solve the system. Among all the possibilities,
we shall choose the six equations which lead to the most simple and
straightforward solution of the problem.

2. METHOD OF CALCULATION

The equations from (10) to (17) are separable in Cartesian coordinates.
If εr is a constant, we know that the general solutions are plane waves,

E = E0 exp(ik · r − iωt). (18)

Using this result we shall separate the Maxwell equations using the
following antsatz,

Ex = Ex0 exp[i(kxx+ kyy)]E1(z)e−iωt (19)

Ey = Ey0 exp[i(kxx+ kyy)]E2(z)e−iωt (20)

Ez = Ez0 exp[i(kxx+ kyy)]E3(z)e−iωt (21)

Hx = Hx0 exp[i(kxx+ kyy)]H1(z)e−iωt (22)

Hy = Hy0 exp[i(kxx+ kyy)]H2(z)e−iωt (23)

Hz = Hz0 exp[i(kxx+ kyy)]H3(z)e−iωt. (24)

We shall solve the system formed by the equations (10), (11), (13),
(14), (16) and (17). These equations have derivatives with respect
to the x coordinate. Substituting equations from (19) to (24) in the
previous system we obtain a set of separated ordinary differential
equations. However, the new differential equations are coupled in
the E1(z), E2(z), E3(z), H1(z), H2(z) and H3(z) factors. Symmetry
considerations suggest to try the decoupling of these equations through
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the isolation of E3(z) and H3(z), calculating the other factors from
them.

The E1(z), H1(z), E2(z) and H2(z) factors are calculated
algebraically solving the system formed by the equations (10), (11),
(14) and (17), which do not have derivatives of Ez or Hz with respect
to x. The expressions for these factors with respect to E3(z) and H3(z)
are

E1(z) =
iE0zkxE3(z)

dεr(z)
dz +iE0zkxεr(z)

dE3(z)
dz −H0zkyµ0ωεr(z)H3(z)

E0x(k2
x + k2

y)εr(z)
(25)

H1(z) =
iH0zkx

dH3(z)
dz + E0zε0εr(z)kyωE3(z)
H0x(k2

x + k2
y)

(26)

E2(z) =
iE0zkyE3(z)

dεr(z)
dz +iE0zkyεr(z)

dE3(z)
dz −H0zkxµ0ωεr(z)H3(z)

E0y(k2
x + k2

y)εr(z)
(27)

H2(z) =
iH0zky

dH3(z)
dz − E0zε0εr(z)kxωE3(z)
H0y(k2

x + k2
y)

(28)

If we substitute the equations from (25) to (28) into the equations (13)
and (16), which have the derivatives ∂Ez

∂x and ∂Hz
∂x , we obtain a single

equation for E3(z),

d2E3(z)
dz2

+ a1(z)
dE3(z)
dz

+ a2(z)E3(z) = 0 (29)

where
a1(z) =

1
εr(z)

dεr(z)
dz

a2(z) =
1

εr(z)
d2εr(z)
dz2

− 1
ε2r(z)

(
dεr(z)
dz

)2

+ ε0εr(z)µ0ω
2 − (k2

x + k2
y)

and other single equation for H3(z),

d2H3(z)
dz2

+ c(z)H3(z) = 0 (30)

where
c(z) = ε0εr(z)µ0ω

2 − (k2
x + k2

y).

Now, we can write the system formed by the equations (29) and (30)
as an eigenvalue problem for and effective wavenumber k making the
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change, k2
x + k2

y = k2 − k2
z , where kz is a fixed constant and k is the

eigenvalue we want to calculate. In this form, the equations (29) and
(30) can be rewritten as

d2E3(z)
dz2

+A1(z)
dE3(z)
dz

+A2(z)E3(z) = k2E3(z) (31)

A1(z) =
1

εr(z)
dεr(z)
dz

A2(z) =
1

εr(z)
d2εr(z)
dz2

− 1
ε2r(z)

(
dεr(z)
dz

)2

+ ε0εr(z)µ0ω
2 + k2

z

d2H3(z)
dz2

+ C(z)H3(z) = k2H3(z) (32)

C(z) = ε0εr(z)µ0ω
2 + k2

z

which are the desired equations for electromagnetic wave propagation
in arbitrarily inhomogeneous 1D media.

3. SOLUTION OF THE PROPAGATION EQUATIONS

Equations (31) and (32) form a system of uncoupled ordinary
differential equations which can be solved by several numerical
techniques [25]. We shall study qualitatively these equations before
using more powerful numerical approaches.

In this full vectorial description, there are two different equations
for the electric and magnetic field components. This implies that, a
priori, the eigenvalues for the wavenumbers in the equations (31) and
(32) can be different. Actually, we can define only one eigenvalue for
the whole system, because of equations from (25) to (28). Then, it
would be more correct to write the equations (31) and (32) as

d2E3(z)
dz2

+A1(z)
dE3(z)
dz

+A2(z)E3(z) = k2
EE3(z) (33)

d2H3(z)
dz2

+ C(z)H3(z) = k2
HH3(z). (34)

The differential equation for E3(z) is notably more complex than
the analogous equation for H3(z). If the dielectric permittivity is
periodic, εr(z) = εr(z + a), which is often the case, we could calculate
the solutions using the Floquet-Bloch theory [21, 22]. However, the
convergence of this method would be slow in many cases and the
calculation of the other factors could be costly and unstable from a
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numerical point of view. In addition, in order to apply the Floquet-
Bloch technique to the equation (33) we have to transform it into
normal form,

d2E3(z)
dz2

+ A(z)E3(z) = 0. (35)

A suitable transformation for this is defined by

A(z) =
(
A2(z) − k2

E
)
− 1

4
A2

1(z) −
1
2
dA1(z)
dz

(36)

where the original solution has the form,

E3(z) = E3(z) exp
(
−1

2

∫ z

A1(ζ)dζ
)
. (37)

However, if the functional dependence of εr is not simple, A1(z) would
not be easily integrable and the accuracy of the solution would be poor.

Another alternative approach to study the form of the solutions
of the equation (35) would be to apply a Prüfer transformation [25],

dE3(z)
dz

= R(z) cos θ(z) (38)

E3(z) = R(z) sin θ(z) (39)

which produces the following pair of first order ODE,

dθ

dz
= A(z) sin2 θ + cos2 θ (40)

dR

dz
= [1 −A(z)]R sin 2θ. (41)

The study of the phase, θ, in equation (40) would give a detailed
description of the qualitative behavior of the solutions.

The propagation equations can be solved by accurate numerical
methods such as adaptative Runge-Kutta schemes. There are very
good and well tested mathematical libraries which can be used to
calculate both the eigenvalues and eigenfunctions. However, if the
dielectric permittivity has a complex behavior, the solutions can
oscillate quickly forming complicated patterns as can be observed in
Figure 3. Then a highly precise and stable algorithm is needed. Due
to its easily adjustable accuracy and stable converging properties, we
have found very convenient to use a simple pseudospectral technique
to solve the equations (33) and (34).

Our pseudospectral method is very easy to program and it can
produce highly accurate analytical solutions of the problem with a
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relatively low computational effort. The accuracy can be controlled
selecting the order of the approximating series, but, in practice, low
orders are enough for most purposes. Besides, our method shows good
numerical stability for finite, semi-infinite and infinite intervals, even
for high orders. It can be easily adapted to any kind of problems, such
as initial value, boundary value and eigenvalue problems. Also, it is
possible to obtain a quick analytical estimation of the solution, which
is very useful to study the qualitative behavior of the electromagnetic
waves in the material. The idea of the pseudospectral methods is to
produce an optimal global approximation of the solution by means of
interpolating functions, instead of the local polynomial approximation
of the finite difference techniques [26]. In fact, it can be proved
that many Runge-Kutta schemes are equivalent to suitable polynomial
collocation algorithms.

The main difference among different pseudospectral approaches
is the election of the basis functions. Generally these functions are
orthogonal, such as the Chebyshev polynomials for finite intervals and
the sinc functions for infinite intervals. This forces to carefully choose
the collocation points to avoid undesirable effects such as the Runge
phenomenon [26].

We have found empirically, after intensive testing, that a simple
cosine series combined with an even polynomial expansion provide
optimal accuracy and stability in this case. Another advantage of our
pseudospectral method is that it uses simple equispaced collocation
points without adverse effects, whose stability is only limited by the
machine precision. More sophisticated series such as complete Fourier
(sines and cosines), Chebyshev, Laguerre or sinc expansions produced
similar or worse results for the same problem. In general, Chebyshev
series provide optimal approximations for finite, Laguerre for semi-
infinite and sinc for infinite intervals, with a suitable choosing of the
collocation points [20, 26]. Our pseudospectral method is competitive
in every case and can use evenly distributed points. High orders of
approximation can be used, but we have found that N ∼ 3 is enough
for most purposes, if a reasonable integration interval is chosen.

The best empirical series we have found has this simple form,

u(z) ≈ a0 +
M∑

n=1

an cos
[
n

d
(z − z0) + ϕ

]
+

N∑
n=1

bn(z − z0)2n (42)

where M and N are the orders of the approximating series, z0 is the
initial integration point, d = λ

π , where λ is the incident wavelength,
and ϕ is a constant phase chosen to avoid undesired cancellations of the
cosine argument. A convenient value of the phase is ϕ =

√
2, although
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the concrete value does not affect the result appreciably. The solution
of the propagation equations are obtained substituting the series (42)
into the equations (33) and (34). The necessary collocation points
are equispaced over the interval of integration with a integration step
h = |zf−z0|

O , where zf is the end point of the integration interval and
O = M+N is the order of the series. Numerical stability of the solution
and the suppression of the Runge phenomenon are observed until
roundoff errors due to the machine finite precision become important.
The value of d in (42) can be adjusted for non-periodic solutions
to improve even more the quick convergence of our pseudospectral
method.

4. NUMERICAL EXAMPLES

4.1. The Bessel Equation

The numerical examples presented here have been solved with our
pseudospectral method implemented in the free Maxima [27] computer
algebra system.

The first example will be the solution of the Bessel equation of
order 0 to test the accuracy of the calculation scheme in an oscillating,
but not periodic, function. This equation can be written as

x2y′′ + xy′ + x2y = 0 (43)

We will solve first the initial value problem y(0) = 1, y′(0) = 0 with
Laguerre polynomials up to 6th order and 3+3 for sinc and cos + poly,
equation (42), expansions in the interval [0, 5] with an integration step
of 0.5 (equispaced). The results can be seen in Tables from 1 to 3.

Table 1. Comparison of exact values of the J0(x) and the results of
the Laguerre pseudospectral method of 6th order for the equation (43)
with initial values.

x J0(x) yLaguerre(x)

0 1 1

1 0.76519768655797 0.76519772875231

2 0.22389077914124 0.22389080535392

3 -0.26005195490193 -0.26005197303427

4 -0.39714980986385 -0.39714986111586

5 -0.17759677131434 -0.17759683725827
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Table 2. Comparison of exact values of the J0(x) and the results of
the sinc pseudospectral method of 6th order for the equation (43) with
initial values.

x J0(x) ysinc(x)

0 1 0.99999999999719

1 0.76519768655797 0.76519769321807

2 0.22389077914124 0.22389077349499

3 -0.26005195490193 -0.26005197903735

4 -0.39714980986385 -0.39714984910345

5 -0.17759677131434 -0.17759673631765

Table 3. Comparison of exact values of the J0(x) and the results of
our pseudospectral method of 3 + 3 order for the equation (43) with
initial values.

x J0(x) y
cos +poly(x)

0 1 0.99999999999974

1 0.76519768655797 0.76519769688696

2 0.22389077914124 0.22389074022318

3 -0.26005195490193 -0.26005199464582

4 -0.39714980986385 -0.3971498101612

5 -0.17759677131434 -0.17759672509972

In Table 4 we solve the same equation with boundary conditions
y(0) = 1, y(5) = J0(5) over the whole interval. The order of the series
(42) is 10 + 10.

We can see that for the initial value problem the sinc method is
the most accurate, very closely followed by cos + poly. However, the
sinc method turns unstable for higher orders and is not suitable for
periodic functions. In Table 4 the high accuracy and stability of our
method for a boundary value problem is shown. Another advantage of
pseudospectral methods over standard Runge-Kutta algorithms is that
the pseudospectral codes can integrate many differential equations,
such as (43), from x = 0 without 1

0 errors.
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Table 4. Comparison of exact values of the J0(x) and the results of
our pseudospectral method of order 10 + 10 for the equation (43) with
boundary values.

x J0(x) y
cos +poly(x)

0 1 1

1 0.76519768655797 0.76519776843422

2 0.22389077914124 0.22389082692518

3 -0.26005195490193 -0.26005196055422

4 -0.39714980986385 -0.39714984288502

5 -0.17759677131434 -0.17759676970203

4.2. A Simple Model of a Photonic Crystal

We can describe a very simple photonic crystal as a medium with a
periodic variation of its relative permittivity such as

εr(z) = 1 + sin2(z). (44)

Using our pseudospectral technique to solve the equation (34), the
approximate eigenvalues for kz = 2π

λ cos(0), i.e., for an initial wave
propagating in the z direction, are presented in the Table 5.

Table 5. Approximate eigenvalues for a 1D photonic crystal with
εr = 1 + sin2(z) and kz = 2π

λ .

λ kH

0.1 89

1 8.9

2 4.5

3 3.0

4 2.3

5 1.9

6 1.6

7 1.4

8 1.2

9 1.1

10 1.0
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Figure 1. Plot of A(z) of equation (35) for εr(z) = 1 + sin2(z), λ =
10 m, kz = ky = 2π

λ , kx =
√
k2 − k2

y − k2
z , k = 0.9.

In Figures 3 and 4 we show an example of the calculation of the
field components for an electromagnetic wave propagating in a semi-
infinite medium with the following initial data: εr(z) = 1+sin2(z), λ =
10 m, kz = ky = 2π

λ , kx =
√
k2 − k2

y − k2
z , k = 0.9, Ex0 = Ey0 =

Ez0 = 1 V/m, Hx0 = Hy0 = Hz0 = 1 A/m, E3(0) = H3(0) = 1 and
dE3(z)

dz = dH3(z)
dz = 0.

Figures 1 and 2 show the z dependent terms of equations (33) and
(34) in normal form. We can see the more complex pattern of the (33)
term, which generates the rich oscillating behavior of Ez in Figure 3.
For the specified initial values, the most contributing component
is Ex, which is 400 times more intense than the Ez component,
but exhibits a much smoother wave form. From the magnetic field
components, only Hz, Figure 4, is significative. All the three magnetic
components have a relatively simple periodic behavior in agreement
with the results of the Bloch-Floquet theory. Our numerical results
indicate a good ratio between computational effort and accuracy.
In [14] Taylor series up to 100 terms are used to approximate the
solution. We obtain similar results with orders less than 10 with the
pseudospectral series used in this paper. The very powerful theories
based on Green’s functions expansions are computationally expensive
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Figure 2. Plot of C(z) of equation (34) for εr(z) = 1 + sin2(z), λ =
10 m, kz = ky = 2π
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z , k = 0.9.
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Figure 3. Plot of E3(z) of equation (33) for εr(z) = 1 + sin2(z), λ =
10 m, kz = ky = 2π

λ , kx =
√
k2 − k2

y − k2
z , k = 0.9.
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Figure 4. Plot of H3(z) of equation (34) for εr(z) = 1 + sin2(z), λ =
10 m, kz = ky = 2π

λ , kx =
√
k2 − k2

y − k2
z , k = 0.9.

and have problems with undesirable properties of the integrals, like
singularities, oscillating behavior and slow convergence, so that very
sophisticated mathematical techniques are required to evaluate or
approximate them. Our differential formulation is directly deduced
from the Maxwell equations in exact form and it is continuous and
fully vectorial. Besides, very accurate approximations to the solutions
are possible, at least for the important case of unidimensional media.

5. CONCLUSIONS

A new full vectorial and very general method to study the propagation
of electromagnetic waves in inhomogeneous media has been presented.
It reduces the problem to the solution of two uncoupled ordinary
differential equations for the z-dependent factors of the separated
Maxwell equations in Cartesian coordinates. These equations permit
the simulation of materials with a continuous variation of their
dielectric permittivity without approximating them by discontinuous
layered media, reducing so the computational effort of the models. We
have developed an effective pseudospectral non-orthogonal collocation
technique to solve these equations. It provides very good accuracy
and excellent stability with low computational resources and it can be
easily adapted to a large class of problems. The obtained analytical
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approximations are very useful to perform quick qualitative analysis of
the propagation of electromagnetic waves in complex media. Further
research work is been done to extend this method to the study of
scattering problems in anisotropic, magnetic, conductive and higher
dimensional materials in several coordinate systems.
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