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Generalized Lorenz-Mie theory describes electromagnetic scattering of an arbitrary light beam by a spherical
particle. The computationally most expensive feature of the theory is the evaluation of the beam-shape
coefficients, which give the decomposition of the incident light beam into partial waves. The so-called localized
approximation to these coefficients for a focused Gaussian beam is an analytical function whose use greatly
simplifies Gaussian-beam scattering calculations. A mathematical justification and physical interpretation
of the localized approximation is presented for on-axis beams.

1. INTRODUCTION

In the analysis of many applications of light scattering,
such as optical particle sizing, optical particle levitation,
and the production of nonlinear optical effects in micro-
droplets, it is of great importance to have both an accurate
and a computationally efficient method of calculating the
scattering of an arbitrary light beam by a spherical par-
ticle. Of particular interest is the scattering of a focused
Gaussian laser beam. There are a number of mathemati-
cally equivalent theories for arbitrary beam scattering.' 7

An element common to each of these theories is the de-
composition of the incident beam into an infinite series of
elementary constituents, such as partial waves1' 5 or
plane waves,6' 7 each of which is scattered by the spherical
particle in a well-known and easily calculable way. The
amplitude and the phase of each elementary constituent
in the decomposition of the beam are given by a set
of beam-shape coefficients. The most time-consuming
task in the numerical implementation of arbitrary beam-
scattering theory is the evaluation of these coefficients.

Generalized Lorenz-Mie theory (GLMT) is a direct ex-
tension of the methodology of plane-wave Mie theory to
the case of arbitrary incident-beam scattering.'1 5 In this
formalism the scalar radiation potential8 of the incident,
scattered, and interior electromagnetic fields is expanded
in partial waves. The continuity of the tangential com-
ponents of the electric and magnetic fields at the sur-
face of the spherical particle allows one to solve for the
scattered and interior partial-wave amplitudes in terms
of the beam-shape coefficients. The beam-shape coeffi-
cients themselves may be calculated as three-dimensional
integrals over all space 4'9 "0 or as two-dimensional inte-
grals over a spherical surface5 ""',12 of the radial compo-
nent of the incident electric and magnetic fields, or they
may be calculated by a finite-series technique.' 0 "13 Since

the radial component of the incident fields is a rapidly
varying function, the computation of the beam-shape co-
efficients by numerical integration requires substantial
computer run time.

In the past few years a highly accurate analytical ap-
proximation to the beam-shape coefficients for a focused
Gaussian beam was discovered, first for a beam propa-
gating along the positive z axis (i.e., an on-axis beam)3

and then for a beam propagating parallel to the z axis
(i.e., an off-axis beam).1 4 This analytical approximation
has been called the localized approximation, in analogy to
van de Hulst's localization principle in plane-wave Mie
theory. 15 Although various semiquantitative motiva-
tions of the localized approximation for an on-axis Gauss-
ian beam have been given previously,'1 2"6 a rigorous
theoretical justification of the approximation for both on-
axis and off-axis beams is still lacking. The purpose of
this paper is to provide such a justification for the on-axis
case. The justification of the off-axis localized approxi-
mation is considered in a separate paper in this issue.17

The body of this paper proceeds as follows. In
Section 2 we briefly review the GLMT formalism. In
Section 3 we summarize the Davis approximations18 to a
focused TEMoo Gaussian laser beam. We also give the
localized approximation to the beam-shape coefficients
for an on-axis Davis first-order beam. In Section 4 we
calculate the Taylor series expansion of the beam-shape
coefficients for on-axis Davis first-, third-, and fifth-order
beams and compare it with the localized approxima-
tion. The results underscore the approximate nature of
the Davis beams and suggest a way that such approxi-
mate descriptions of the beam may be circumvented. Fi-
nally, in Section 5 we examine the profile of the beam
generated by the localized approximation and comment
on its physical interpretation. We find that the beam
defined by the localized approximation coefficients is

0740-3232/94/092503-13$06.00 © 1994 Optical Society of America
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both an exact solution of Maxwell's equations and very
close in shape to a focused TEMoo Gaussian laser beam.
Thus our analytical expression for the beam-shape coeffi-
cients should more properly be called the localized beam
model for Gaussian beam scattering rather than the
localized approximation.

2. GENERALIZED LORENZ-MIE THEORY
FOR AN ARBITRARY INCIDENT BEAM

Consider a monochromatic, linearly polarized electro-
magnetic wave traveling in the positive z direction in
a medium of refractive index n, whose electric and
magnetic fields are given by E(r, , O)exp(iwt) and
Bimc(r, , 4,)exp(iwt), respectively. The wave number of
the monochromatic beam is

2rn cnk = = 
A c

(1)

and its scalar radiation potential 4,in,(r, 6, )exp(icot)
(which is proportional to what some authors2 4 call the
Bromwich potential) satisfies the wave equation8

V2
0,,c + k2 qc = 0. (2)

As a result, the beam may be decomposed into partial
waves (n) having all possible azimuthal components (m)
by means of

such a case the integrals over 0 and 4, are proportional
to j,(R)/R. One may write the coefficients of Eq. (5)
alternatively as three-dimensional integrals of the radial
component of the incident fields,4

(gn')TE = 2I1 (-1)(2n + 1) (n - [ml)!
2ir2 ~(n + ml)!

x fRdRf sin Odof djn(R)

X Pnlml(cos 0)exp(-im4 , )cBrad (R, 0, (k)
nEo

)g = 2 1 (in-1 )(2n + 1)(n Iml)!
2ir 2 '(n + ml)!

x fRdRf sin dof dojn(R)

x P Iml(cos 0)exp(-im4, )Erad (, , 4),) (6)
Eo

by moving j(R) to the left-hand side of Eq. (5), multi-
plying by another factor of jn(R), integrating, and using
Ref. 19 to evaluate the integral on the left-hand side.

The beam is incident upon a spherical particle of radius
a whose center is at the origin of coordinates and that
has complex refractive index N relative to the external
medium. The far-field scattered intensity is

(a, n2n + 1 (n)-Eo E E (-i) n +1 gn"1) TE
n=1 m-n n(n + 1)

X jn(R)Pn1m1(cos 6)exp(imo),

_Eo Y_ y(_ i~n - (gnm m
n=1 m=-n n(n + 1)

X n(R)PnIml(cos 6)exp(im4,), (3)

where the associated Lengendre polynomials Pnlml(cos )
are defined as in Eq. (5) of Ref. 4,

R kr, (4)
jn(R) are spherical Bessel functions, and the electric-field
strength is E. The quantities (gn

m
)Tm are the trans-

verse magnetic beam-shape coefficients, and (gnm)TE are
the transverse electric beam-shape coefficients. These
coefficients are two-dimensional integrals of the radial
component of the incident electric and magnetic fields5 :

(gnm)h = -(n-l) R (n-m)!
47r jn(R) (n + ml)!

x f sin d6 2 d4 Pnlml(cos 6)

X exp(-im , )Bradinc(R, 6, 4,)
nEo

9nmr -1 Un-1 R (n -1mD)!
4ir jn(R) (n + imi)!

X f sin 6d6J d0 Pn Iml(cos 0)

x exp(tim4,)Erad (R. , . ()
Bo

The value of R is arbitrary if Erad iC and BradirC correspond
to an exact solution of Maxwell's equations, because in

nE)n 02 1 12+0 2]lim I(r, 6, 0) = 1(6, 'k)12 + IS2(0, 4)l2], (7)

where I.o is the permeability constant of free space. The
scattering amplitudes S 1 and S2 are given by

S1(6 4,)= ~ n 2n + 1
ni(9 m= n(n + 1) [(gnm)TManm1TnImlo(6)

+ i(gnm)TEbnTnlmI(0)]exp(im-k),

! 20 n0 m, n(n + 1) U(9n)TEbnM7rn ml(0)

+ (gnm),manTnlm1(6)1exp(im-k), (8)

where the angular functions are

rn Wm8 = 1 P Iml(cOs ),.7 .m ( ) - s in 6 '

Tn fml (0) = d PnlIm(cos 6), (9)

and the coefficients a and b are the partial-wave scat-
tering amplitudes of the plane-wave Mie theory.

Of special interest is an incident beam of field strength
Eo propagating along the z axis that strikes the spherical
particle head on. This is known as an on-axis beam,
and the radial component of the incident fields for this
geometry reduces to

Erad lhC(R, 0, 4) = Bo exp(-iR cos O)fe(R, O)sin 0 cos 4,

BradmC(R, , 4) = Bo exp(-iR cos 6)fb(R, 6)sin sin 4,

Bo = nEo/c. (10)

OincTE(R, 0, ,) =

OincTM(R, 6, ,) =

J. A. Lock and G. Gouesbet
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As a result, the 0 integration in Eqs. (5) and (6) may be
performed analytically. Only the m = +1 beam-shape
coefficients are nonzero; i.e.,

(g m)TE = +iI2(g)/0,+1 (g m )FM = '12(gn)em,,,

(11)

approximation to the actual beam. The higher the
power of s that is retained, the better the approxi-
mation.2 1 22

In the Davis procedure one assumes that the vector po-
tential of the beam is linearly polarized in the x direction;
i.e.,

(16)
where A(r, t) = A(r)Cz2 exp(iwt).

(ge = I-/2(ifl)J ) (n+ 1) f| sin2 OdD fe(R, 0)

x exp(-iR cos 0)Pnl(cos 0),

(g)b = -/2(in-l).1 ) ( 1 1 sin22dDfb(R, 0)

X exp(-iR cos 0)Pnl(cos 0) (12)

from Eq. (5), or, equivalently,

(gn)e = -(jfl) n+i1 RdR f sin2 Odafe(R, 0)IT =~ n(n +1) Jo, -

x jn(R)exp(-iR COS 0)Pnl(cos 0),

(gn)b = - 1(in-1)2n + RdR d sin2 dfb(R, 0)

X j,,(R)exp(-iR cos 0)Pnl(cos 0) (13)

from Eq. (6). For this situation the scattering ampli-
tudes become

Si(0, O) = sin 2 n(n + 1)

X [(gn)ean'lrn'(0) + (gn)bbnrn'(0)],

' 2n+1I
S2(0, IN = cOs ' E n(n+ 1)

X [(gn)eanTn'(0) + (gn)bbn7rn'(0)]- (14)

The vector potential then satisfies the scalar-wave equa-
tion

V2 A(r) + k2A(r) = 0. (17)

For a focused Gaussian beam, A(r) is taken to be of the
form

A(r) = k exp(-ikz)a(r). (18)

The scaling factor iEo/ck produces an electric field of
peak strength Eo. In terms of rectangular coordinates
normalized to the width of the beam focal waist and its
spreading length (I = wo/s),

x: X
wo

y
77 -

wo

(19)

(20)

(21)sz
wo

the differential equation satisfied by a(r) is

a 2 a 2 2 a=- +- +s2- 2i =0.
ag a 0772 og

2 (22)

The solution of this equation may be written 8 2 2 as a
series in powers of S2 as

At this point it might seem appropriate to give the local-
ized approximation to the beam-shape coefficients, thus
completing our summary of the GLMT formalism. But
because the specific form of the localized approximation
for a focused Gaussian beam is closely related to the
expressions for the beam's electric- and magnetic-field
strength, we defer stating the localized approximation
until the end of Section 3, after the expressions for the
focused Gaussian fields have been presented.

a(g, 7, ) = Do exp(-vDo)[1 + s2(2Do - 2Do3 )

+ 4(6Do2 - 3 2D0
4 - 21 3D5 + /2J4DO 6 )

+ O(S6)], (23)

where

V = 2 + 72,

Do = (1- 2i)-1.
(24)

(25)
3. DAVIS ON-AXIS-BEAM
APPROXIMATIONS

In this section we examine an on-axis Gaussian beam
polarized in the x direction and propagating along the z
axis, which is focused by a lens to a half-width wo in the
z = 0 plane. The so-called Davis procedure 18 2 0 allows
one to construct the expression for the focused beam as a
series expansion in powers of

1

=kwo

(15)

that satisfies Maxwell's equations exactly. Truncat-
ing the series at any given power of s produces an

Once a (r) is truncated at a certain power s2, the electric
and magnetic fields of the beam are determined to the
same order of approximation by substitution of Eq. (18)
into

E(r, t) = c [(A + s2 ax + 82 a UA

X exp(iwt),

(26)

B(r, t)=- s- uY - uI)exp(i&t).ao g 077/J
(27)

J. A. Lock and G. Gouesbet
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If we use the form for a(r) in Eq. (23), the field expres-
sions become

E(r, t) = Eo exp(-ikz + it)Do exp(-vDo)

X (e~i2, + ey + 2iDoeaz,), (28)

B(r, t) = Bo exp(-ikz + icot)Do exp(-vDO)
x (ba, + buy + 2iDo77bza), (29)

where e, e, e, b, by, and b are series expansions in
powers of s.

As was mentioned in Section 2, the beam-shape coeffi-
cients are integrals of the radial component of the electric
and magnetic fields. These radial components are given
in terms of the rectangular components of Eqs. (28) and
(29) by

Erad(r, 0 d>) = E. sin 0 cos / + Ey sin 0 sin 0

+ Ez cos 0,

Brad(r, 0, S) = B sin 0 cos 0 + By sin 0 sin '

+ B, cos 0.

(30)

(31)

Substituting this into Eq. (10), we obtain

fe(R, 0) = Do exp(-s2 R2 Do sin2 0)he(R, 0),

fb(R, 0) = Do exp(-s2 R2 Do sin2 0)hb(R, 0),

(32)

(33)

where he and hb are series expansions in powers of s2.
In Section 4, fe and fb will be integrated into Eq. (12) to
yield the on-axis beam-shape coefficients.

The Davis first-order beam approximation corresponds
to truncation of Eq. (23) at the power so, giving

aDl(r) = Do exp(-vDo). (34)

If we substitute this into Eqs. (18), (26), and (27), the
resulting expressions for E and B contain terms of powers
s through S

3 . However, the S2 term in a(r) that has not
yet been considered produces additional contributions to
the fields of powers s2 through S5. Thus one may obtain
the Davis first-order fields by truncating the expressions
for E and B at the power s'. We call this truncation the
mathematically conservative (MC) version of the fields,
since higher-order contributions to a(r) will not change
these terms in the field expressions. The result is

exMcl = 1 ey MC = 0 ezMCl S, (35)

bMc1 = 0, b MC = 1 bzMcl s, (36)

hMcl hMCI = hbMC = 1. (37)

The Davis first-order beam approximation describes a
laser beam in the TEMoo mode quite accurately when
the beam is weakly focused.2 ' For example, when A
0.6328 um and wo 0 30 ,um, s = 0.0034 and the S2 and 3

corrections to Eqs. (35)-(37) are only one part in 1O5. On
the other hand, if the beam is tightly focused with wo 
1 gim, then s = 0.1 and the higher-order beam corrections
become important, since the expressions for the fields22

are a slowly convergent series in s.

The Davis third-order beam approximation is the first
of these higher-order corrections, since it truncates a(r)
at the power s, giving

a`D(r) = Do exp(-vDo)[1 + S2 (2Do - V2D0
3)]. (38)

If we substitute Eq. (38) into Eqs. (18), (26), and (27), the
resulting expressions for E and B contain new terms of
powers s2 through S5 . Again, the s4 term in a (r) that
has not yet been considered produces additional contri-
butions to the fields of powers SI through S

7 . Thus the
Davis third-order MC fields are given by truncation of the
expressions for E and B at the power s 3:

exMC3
= 1 + S (4 

2Do2
- D ),

eyMC3 =S2(4 7D 2)

e MC3 =S + s 3 (-2Do + 4vDo 2
- V2 Do 3 ), (39)

b MC3 = 0,
byMC3 = 1 + s 2(2vDo2

-
2 Do3),

bzMC3
= s + s 3 (2Do + 2vDo 2

- V
2 Do3

),

hMC3 he MC
3

= hbMC
3

= 1 + 2is
2 RDo cos 0.

(40)

(41)

The Davis fifth-order beam approximation truncates
a(r) at S4, giving

a D5(r) = Do exp(-vDo)[1 + s2 (2Do - v 2Do3 )

+ s4(6Do2
- 3V2Do4

- 2D 0
5 + /2V4Do6 )].

(42)

To the same order of approximation, the MC versions of
the electric and the magnetic fields are

eMC5 = 1 + s2(46 2Do2
- v

2
Do

3 ) + s4(2Do 2 - 4vDo3

- V2 D0
4 + 1662vD 0

4 - 2V3 Do5
- 42V2D05

+ 12 V4D0
6),

eyMC5 = s2(46 7Do2) + s4 (46 7Do2)(4vDo2 - V2Do3)

eMC5 = s + s3(-2Do + 4vD0
2 - 2Do3 ) + s5 (-6Do 2

- 6vDO + 17v2 D0
4 - 61AD0

5 + '/2v4Do6), (43)

bxMC5 = 0,

byMC5 = 1 + s2(2vDo2
-

2D0
3 ) + S4 (-2Do2 + 4vD0

3

+ 5V2D0
4 - 4V3Do5 + I2V4 Do

6
),

bMC5 = s + s3(2Do + 2D 0 2
-

2Do3) + s(6Do2

+ 6vDO3 + 3 V2 D0
4 - 4V3D 0

5 + /2V4Do6 ),

respectively, and

heMC5 = 1 + s
2
Do(2iR cos 0)

+ s4 Do2(2 - 4iR cos 0 + 4R 2 sin2
0),

hbMC
5 = 1 + s 2 DO(2iR cos 0)

+ s4 Do2 (-2 + 4iR cos 0 + 2R 2 sin2 0),

(44)

(45)

respectively.
Since the Davis beam approximations are not exact

solutions of Maxwell's equations, the beam-shape coeffi-
cients derived from them through Eqs. (5) and (12) are

J. A. Lock and G. Gouesbet
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Table 1. Terms in the Series Expansion of g in
Powers of s That Are Independent of R for Zf = 0

Beam Shape k = 1 k = 3 k = 5
Coefficients First Order Third Order Fifth Order

g MCk s0ss 2 S0 S2 S4

gnLk S0 S2 S0 S2S4 SOs2S4S6
gnBk sOs2 SOS2S4S6 S0 S2 s4 s 6 s8s1 0

not independent of R. Since the radial component of E
and B is written as a power series in s, the beam-shape
coefficients will also be a power series in s. The lowest
power of s that multiplies an R-dependent term in the
beam-shape coefficients provides a measure of how close
he(R, 6) and hb(R, ) come to representing an exact so-
lution of Maxwell's equations. The precise powers of s
that are independent of R will be examined below and
are collected in Table 1.

The R dependence represents a potential shortcoming
in the implementation of GLMT, since the theory relies
on the fact that the beam-shape coefficients are constants.
There is, however, a way to minimize this potential dif-
ficulty. It consists of employing either of two other ver-
sions of the radial component of the Davis fields that lead
to gn coefficients with weaker R dependence than those
produced by Eqs. (37), (41), and (45) and thus are more
appropriate for the parameterization of tightly focused
beams.

In Refs. 1-4 the first of the two additional versions is
called the L-type radial fields. One obtains this version
by substituting the Davis rectangular coordinate compo-
nents of the fields given by Eqs. (35) and (36), (39) and
(40), and (43) and (44) into Eqs. (28) and (29) and retain-
ing terms of all powers of s, even though the coefficients of
some powers of s will change when the next-higher-order
fields are calculated. This procedure gives

hLl heLl = hbLl 1 + s2Do(2iR COS 0) = Do (46)

for the L-type first-order fields,

heL3 = s4Do2 (-4iR cos 6) + Do(l + 4s 4Do2 R2 sin2

-s
6D0

3R4 sin4
6),

hbL3 = s4Do2(4iR cos 6) + Do(l + 2s4 D0
2R2 sin2

6

- s 6D 0
3R4 sin4 0)

for the L-type third-order fields, and

heL5 = s4 D 2(2 - 4iR cos 6) + s6Do3 (-12iR cos 6
- 4R2 sin2 6) + s8DO4 (-12iR 3 sin2 6 cos 6

- 2R4 sin4 6) + Do(1 + 4s4 D0
2R2 sin2

0

- s6Do3R4 sin4 0 + 17s8 D0
4 R4 sin4 6

- 6s10 D 5R6 sin6 + 2S12D 0
6R 8 sin8 60),

hbL5
= s4Do2 (-2 + 4iR cos 6) + s6 Do3 (12iR cos 6

+ 4R2 sin2 6) + s8DO4 (12iR 3 sin2 6 cos 6

+ 2R4 sin4 0) + Do(1 + 2s4 D0
2R2 sin2

- s6Do3R4 sin4 6 + 3s8Do 4R4 sin4
0

- 4s10 D0
5 R6 sin 6 0 + '12S2D 0

6
R
8 sin8 6)

(47)

for the L-type fifth-order fields.
The second of the two additional versions is the Barton

symmetrized version of the Davis fields.22 Although the
Davis first-order electric and magnetic fields of Eqs. (35)
and (36) are symmetrical, i.e.,

ex = by, ey = bx ez = bz, (49)

the Davis third- and fifth-order fields are not. Specifi-
cally, since the vector potential is polarized in the x di-
rection and B = V X A, the x component of the magnetic
field vanishes. If a vector potential that is identical but
polarized in the y direction is added to Eq. (16), the re-
sulting electric and magnetic fields are symmetric for all
powers of s, giving

exB= byB= 1,

eyB = bxB = O,

ezBl = bzBl = s (50)

for the Barton symmetrized first-order fields,

ex B3
= b B3 = 1 + S2(262Do2 + vD0

2
-

2 Do3 ),

eyB3 = bXB3 = S2(2evD2)

ezB3 = bB 3
= + s

3 (3vD 0
2

-
2 Do3 ) (51)

for the Barton symmetrized third-order fields, and

ex B5 = b B
5

= 1 + s
2 (24t2Do2 + vD2- 2Do3

)

+ 4(2v2 Do4 + 8 2 v0Do4 - 3V3D0
5

- 2 2 V2D 5 + /2V4D0
6),

ey B5
- bB

5
= s

2
(26n Do

2
) + s

4
(25½77D0

2
)(4vD02 - VAD 0

3
),

ezB
5 = bB 5

= s + s
3 (3vDO2

- V2Do3 )

+ 5 (1OV2 Do4 - 53D 0
5 + 1

/2V4D0
6
) (52)

for the Barton symmetrized fifth-order fields. If these
expressions are then substituted into Eqs. (28) and (29)
for the electric and the magnetic fields, respectively, and
terms of all powers in s are retained, we obtain

B heB1 = hbB1 = Do,

hB
3

heB3 = hbB
3 = Do(1 + 3s

4 Do2 R2 sin2
6

- s6 D0 3R
4 sin4 ),

hB5
= he B5 = hbB

5 = Do(1 + 3s4 Do2 R2 sin2

- s6 D0
3R4 sin4 + 8Do4R 4 sin4

- 5s 0 D 0
5 R6 sin6 + 1/2S

12Do6R8 sin8 ).

(53)

(54)

(55)

It should be noticed that hBl is identical to hLi. This
equivalence between the B and the L versions of the fields
does not persist for the higher-order fields. It turns out,
however, that hB3 is the average of heL3 and hbL

3 and that
hB5 is the average of heL5 and hbL5. This relationship
also holds for the beam-shape coefficients. Thus the Bar-
ton symmetrized fields possess the virtue that one does
not require two separate sets of beam-shape coefficients
in Eqs. (14). The TE coefficients (gn)b and the TM coef-

(48) ficients (gn, are equal.
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Up to this point we have assumed that the center of
the focal waist of the beam is at the origin of coordinates.
If the center of the focal waist is placed instead at the
coordinate (0, 0, zf), all the above equations remain valid,
with the replacements

Z- zZf (56)

made in Eqs. (10), (28), and (29) and

Do-4D = (1 + 2isf - 2i)
wo

the origin, where fMcl(R, 0) and
Eqs. (32) and (33) and Eq. (37).
fMcl(R, 0) in powers of s2 gives

hMci(R, ) are given by
A series expansion of

fMcl(R, 0) = 1 + s2(2iR cos 0 - R2 sin2
0)

+ s4 (1/2R 4 sin 4 0 - 4R 2 cos2 0

- 4iR 3 sin2 0 COS 0) + s6 (-8iR 3 cos3 0

+ 12R 4 sin 2
0 cos2 0 + 3iR 5 sin 4 0 cos 0

- 1/6R6 sin6 ) + 0 (s8).
(57)

in Eqs. (32)-(55).
In analogy with van de Hulst's localization principle,' 5

the localized approximation to the beam-shape coeffi-
cients for an on-axis Gaussian beam associates an inci-
dent light ray at a transverse distance r from the z axis
with the partial wave n according to prescription

kr - n + 1/2,

0 - ir/2.

If we use the notation of Eqs. (10), (32), and (33), the
localized approximation to the beam-shape coefficients for
an on-axis Davis first-order beam is then3

(g)loc = floc exp(ikzf) = [1 + 2is(zf/wo)]-'exp(ikzf)

xloc = f ( s 2 n + 1/2),

f 10C = f c'(R = n + 1/2, 0 = r/2). (59)

(58)

(60)

When this series is substituted into Eqs. (12), a number
of integrals of the form

J
sin 2 OdOT(0)exp(-iR cos 0)P1

1(cos 0),
0

(61)

where

T(0) = 1, cos 0, cOs2 0, sin 2 0, cos
3 0, sin

2
0 COS 0,

sin 2 0 cos2 0, sin 4 0, sin 4
0 cos 0, sin 6 0, (62)

must be evaluated. The simplest of these is'2

Jr sin2 OdO exp(-iR cos 0)Pn'(cos 0)

= -2(-i)n-ln(n + 1)Gn(R), (63)

where

These coefficients have been compared'2 with the values
of the beam-shape coefficients obtained by numerical inte-
gration of the on-axis Davis first-order fields in Eqs. (12).
The two sets of coefficients were found to agree to a few
parts in 105 for s c 0.007. The appropriateness of the
localized approximation for larger values of s is examined
in Sections 4 and 5.

4. JUSTIFICATION OF THE
LOCALIZED APPROXIMATION FOR
AN ON-AXIS GAUSSIAN BEAM

There are two ways to assess the accuracy of the local-
ized approximation for a focused Gaussian beam. First,
one may calculate the beam-shape coefficients for a Davis
beam by use of Eqs. (12) or (13) and compare the val-
ues of the localized approximation coefficients with them.
This is the approach taken in this section. But inserting
Eqs. (11) and (59) into Eq. (3) provides an exact solution
of Maxwell's equations that defines a focused beam in its
own right. A second and perhaps more physically mean-
ingful way to assess the validity of the localized approx-
imation is to compare the profile of this localized beam
with that of a TEMoo focused laser beam. This approach
is examined in Section 5 below.

We now evaluate Eqs. (12) for an on-axis Davis first-,
third-, and fifth-order beam by expanding fe(R, 0) and
fb(R, 0) in powers of s and integrating term by term.
Consider the expression for gn of Eqs. (12) for an on-axis
Davis first-order beam in the MC version and focused at

Gn(B) - j(R)
GnR B (64)

One evaluates all the other integrals encountered by tak-
ing successive derivatives of Eq. (63) with respect to R.
The resulting expression for gnMcl may then be simpli-
fied by use of the differential equation for Gn(R),

R2 Gn" + 4RGn' + R2Gn = (n - 1)(n + 2)Gn, (65)

and various derivatives of it to eliminate second and
higher derivatives of Gn. When this procedure is carried
out we obtain

(g MC) = (gnMc1)b = gnMC1 = 1 s
2 (n - 1)(n + 2)

2s 2RGn' (R)
+ GnR + (S 4 ) (66)

for the on-axis Davis first-order beam-shape coefficients
in the MC version. Since the Davis first-order beam ap-
proximation is not an exact solution of Maxwell's equa-
tions, the 0 integral in Eqs. (12) is not exactly proportional
to jn(R)/R. As a result, gnMcl is not independent of R.
The R-dependent terms occur at powers s2 and higher.

In order to gain further insight into the Davis beam
approximations, we calculate gnMc , using Eqs. (12) with
the Davis third-order beam approximation. Taylor series
expanding Eqs. (32) and (33) and Eq. (41) in powers of
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s2 and integrating the resulting expression term by term
gives

gn MC = 1-s 2 (n-1)(n + 2)
S4+ -(n - 3)(n -1)(n + 2)(n + 4)
2

l2s 4 RGn'(R)+ Gn'(R) + O (S6). (67)

This set of beam-shape coefficients contains R-dependent
terms of powers S4 and higher. Use of the Davis fifth-
order beam approximation of Eqs. (32), (33), and (45)
gives

(g.MC 5 )e = 1-s 2 (n (+ 2) + 2(n-1) 2(n + 2)2

- 2(n -)(n + 2) + 4] + NCT[ G (R) ) ' + 

(gfMC5)b = 1 - s2 (n - 1)(n + 2) + -[n - 1)2(n + 2)2

2

-6(n-1)(n + 2)-4]+NCT 6RGn'(R) s6R2],

(68)

which contain R-dependent or nonconstant terms, NCT,
of powers s6 and higher.

The on-axis beam-shape coefficients of Eqs. (66)-(68)
are adequate for a weakly focused Gaussian beam with
s 0.001. But for a tightly focused Gaussian beam with
s 0.1, the nonconstant terms in gn must be shifted to
higher powers of s in order that the R dependence of
the coefficients be minimized. One accomplishes this by
employing either of the two alternative versions of the
radial fields described in Section 3. For the L-type first-
order radial fields of Eq. (46), Taylor series expanding fL1

and integrating term by term gives

gnL1 = 1-s 2(n - 1)(n + 2) + NCT[ sG(R)] (69)

which is nonconstant beginning at s4, whereas gnMcl was
nonconstant beginning at s2. For the L-type third-order
radial fields of Eqs. (47) we obtain

(gnL3)e -1 - 2(n - )(n+ 2)+ (n-)(n + 2)

X (n2 + n -4) + NCT[ S RGnR(R)]

(gnL3)b = 1- s2(n - 1)(n + 2) + 2(n - 1)(n + 2)

X (n2 + n - 8) + NCT[ s6RGnR(R)], (70)

which are nonconstant beginning at s6 , whereas gMca
was nonconstant beginning at s4. For the L-type fifth-
order radial fields of Eqs. (48) we obtain

(g.L
5) = 1 - s2(n - 1)(n + 2)

+ -[(n - 1)2(n + 2)2 - 2(n - 1)(n + 2) + 4]
2

S6

- 6(n - 2)(n - 1)(n + 2)(n + 3)(n2 + n - 6)
6

+ NCT [s8 RG(R)

(gfL
5) = 1 - s2(n - 1)(n + 2)

+ -[(n - 1)2(n + 2)2 - 6(n - 1)(n + 2) - 4]

S6
- (n - 2)(n - 1)(n + 2)(n + 3)(n2 + n - 18)

6

+ NCT8Gn(R) ] (71)

which are nonconstant beginning at s8, whereas gMc5

was nonconstant beginning at s6.
The R dependence of the beam-shape coefficients

obtained from the Barton symmetrized version of the
Davis radial fields is even weaker. For the Barton sym-
metrized first-order radial field of Eq. (53), Taylor series
expanding f[l in powers of s and integrating term by
term gives

gnBl = 1- s 2(n - 1)(n + 2) + NCT[s4 RGn() ] (72)

For the Barton symmetrized third-order radial field of
Eq. (54) we obtain

gnB3
= 1 - s2 (n - 1)(n + 2) + 2 (n - 2)(n - 1)(n + 2)

X (n + 3) - 6(n - 3)(n - 2)(n - 1)(n + 2)(n + 3)
6

x (n + 4) + NCT[s8 RGn'(R) s8R2], (73)

and for the Barton symmetrized fifth-order radial field of
Eq. (55) we obtain

gnB = 1-s(n - )(n + 2) + 2 (n - 2)(n - 1)
2

S
6

x (n + 2)(n + 3) - (n - 3)(n - 2)(n - 1)
6

'8
x (n + 2)(n + 3)(n + 4) + -(n - 4)(n - 3)

24
x (n - 2)(n - 1)(n + 2)(n + 3)(n + 4)(n + 5)

10
-- 120(n - 5)(n - 4)(n - 3)(n - 2)

x (n - 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)

+ NCTF 12 RGn'(R), s12R2
, S

12 R 3Gn'(R) 1
(74)

In each case the TE and TM coefficients are equal. These
results are summarized by
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gBk (-1)s 2 1 (n - 1)! (n + 1 + 1)!
an 1=0 1! (n -1-i)! (n + 1)!

+ NCT(s 2 k+2),

(n + 1/2)2 = n2 + n + 1/4,

(75)

where k = 1, 3, 5 and NCT(s2 k+2 ) indicates that there are
a number of different types of nonconstant term begin-
ning at the power S2k+2. Even for a tightly focused beam
with wo A, the on-axis Barton symmetrized beam-shape
coefficients as calculated by Eq. (74) are constants, as re-
quired by GLMT, to 1 part in 108. The R dependences
of the MC-type, L-type, and Barton symmetrized beam-
shape coefficients are compared in Table 1.

The results of Eqs. (69)-(74) indicate that the method
by which both the L-type and the Barton k-order radial
fields are generated from the rectangular components of
the Davis fields anticipates the form that the MC-type
radial fields will have at the k + 1 order. At the present
time, we do not completely understand why this is so.
We do, however, recognize that this procedure enables us
to weaken substantially the R dependence of the beam-
shape coefficients for the Davis approximations. This
weakening is especially important for off-axis beams for
which the field expressions are sufficiently complicated
that analytical calculations beyond the Davis first-order
beam are quite lengthy.

The beam-shape coefficients of Eqs. (66)-(75) were de-
rived under the assumption that the Gaussian beam was
focused at the origin. If instead the center of the focal
waist is at (0, 0, zf), the Barton symmetrized beam-shape
coefficients become, after much algebra,

gn Bk(zf) = E+ E ( s- (-1)1S21 (+ ! I
j=O0=1 0 WO ! j! 1!

(n -i)! (n + 1+l)
X (n - 1 - 1)! (n + 1)! exp(ikzf)

+ NCT(s2 k+2)

(80)

B5 5 

gn B(0) = E 1[_s2(n + 1/2)2]l exp[-s 2 (n + 1/2)2],
1=0 

(81)

which verifies the localized approximation on-axis for Zf =
0. For zf 0 Eq. (76) becomes approximately

=+21=11 ZfJ) (1 + j)! [s 2 (n + 1/2)2]l
gnlB5 (Zf) =YI -i f- ( /

(82)

But since

.p(p+l1) 2
(1+e)-P=1-pe+ 2 E2

_ p(p + l)(p + 2) e3 + ...
3!

j=O (p - !j

Eqs. (59) become

I-~~~~~ 

(g )loc 1____ E____ -s 2(n + 1/2)2 1

(9010C 2isf zY 1 -2 zf -j exp(ikzf)1 + 2is 1=0 1 + 2is - 1.
wo wo

1 [-s
2

(n + 1/2)21 exp(ikzf)

1=0 + 2 i) '+1 ) 1

WO~~~~~~~1

j=O1= Zf J! (n + 1/2)]

(76)
X exp(ikzf), (84)

(83)

for k 1, 3, 5. This is our most general result for the
analytical evaluation of the beam-shape coefficients for
an on-axis focused Gaussian beam.

It now remains to compare the value of the beam-shape
coefficients of Eq. (76) with the beam-shape coefficient of
the localized approximation of Eqs. (59). For Zf = 0 the
localized approximation becomes

(gn)IC = exp[-S 2 (n + 1/2)2], (77)

and Eq. (76) with the nonconstant terms removed reduces
to

gnBS (0) = E (-1)'S21 (n - 1)! ( + + 1)!
1= 1! (n-i-i)! (n+1)! (8

The ratio of the factorials containing n and I in Eq. (78)
may be written as a product of I pairs of factors, each
pair having the form

(n-I-q)(n+2+q)=n 2 +n-(2+3q+q 2 ), (79)

where 0 q • - 1. If n >> 12, these factors may be
approximated by

which verifies the localized approximation on-axis for
Zf 0. It is surprising that f10c of Eqs. (59) for a Davis
first-order beam is so closely related to the gB5 co-
efficients derived from the Barton symmetrized fifth-order
beam approximation. This close relation is not shared by
fMC3(n + 1/2, /2) or fMc5(n + 1/2, X/2).

On the basis of the form of Eqs. (72)-(74), we propose
a modified localized approximation to the beam-shape
coefficients for a focused Gaussian beam:

(gn)m.boc = fm.oc exp(ikzf)

= (1 + 2is- exp(ikzf)

S 2(n - 1)(n + 2)1Xexpr 1 + 2is Zf

fm-1°C = fMcl{R = [(n - 1)(n + 2)12 0 = 7r/2}. (85)

The new radial evaluation point R = [(n - 1)(n + 2 )]v/2
arises from the form of the differential equation for Gn(R)
in Eq. (65). The justification of the modified localized
approximation proceeds identically as in Eqs. (78)-(84).

J. A. Lock and G. Gouesbet
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All the results of this section were obtained from
Eqs. (12), which express the beam-shape coefficients as a
two-dimensional integral over a spherical surface. Might
a different perspective on the coefficients be obtained if
Eqs. (13), which express them as a three-dimensional in-
tegral over all space were used? If the radial component
of the incident fields is an exact solution of Maxwell's
equations, Eqs. (12) and (13) are identical. But if the
radial component is only an approximate solution to
Maxwell's equations, as is the case for the Davis fields,
then Eqs. (12) and (13) give different results. The R-
dependent terms arising from Eqs. (12) are integrated
over in Eqs. (13), producing beam-shape coefficients that
should presumably be constants for all powers of s. But
some of the nonconstant terms diverge when integrated
over R. Thus for the Davis beams the use of Eqs. (13)
does not circumvent the problems that arose with use of
Eqs. (12) to evaluate the beam-shape coefficients.

5. SHAPE OF THE LOCALIZED BEAM

Thus far we have considered the beam-shape coefficients
given by the localized approximation of Eqs. (59) and the
modified localized approximation of Eqs. (85) to be exactly
that: approximations to the coefficients derived from a
Davis beam. But the Davis beams are themselves ap-
proximate solutions to Maxwell's equations. Thus, by
comparing the numerical values of the gn coefficients,
we have been comparing one approximation with another.
In this section we take a different point of view, namely,
that the choice of any arbitrary set of beam-shape coeffi-
cients can be used to construe on the basis of Eqs. (12) an
exact solution of Maxwell's equations. This solution then
assumes the form

E = F1 - F 2 sin2 ,

E, = F2 sin cos 0,

Ez = F 3 cos X,

cBs/n = F2 sin 0 cos X,

cBs/n = F1 - F 2 cos2 X,

cB/n = F3 sin 4,

where

F1 = G1 sin + G2 cos 6,

F2 = G sin + G2 cos 0 - G3,

F3 = G cos - G2 sin 0,

G = sin (-i) (2n + 1)gn J( )n() 
n=1R

G2 = 9n E(-i)n 2n + 1 gn[J.(R)iTn'(0)
R = n(n + 1

+ in'(R)rn1(0)]I

G3 = (2i) n + 1 gn[Jn(R)T'n(0)
+ n= n(n +1)

+ iJn'(R)'irn1(0)],

with the Ricatti-Bessel function J defined by

(89)

We call this point of view the localized beam model for
the incident fields in GLMT.

It should be noted that the fields of Eqs. (86)-(89)
are obtained from the scalar radiation potential or the
Bromwich potential of Eqs. (2) and (3), whereas the radial
components of the Davis fields that led to the beam-shape
coefficients of Eqs. (59) and (85) are obtained from the
vector potential of Eqs. (16) and (17). This suggests that
there is a fundamental connection between the Bromwich
potential and vector potential descriptions of the incident
beam. Although we were able to work out all the details
of this connection for a plane wave, we were unable to
do so for a focused Gaussian beam. This connection be-
tween the two beam descriptions for a focused Gaussian
beam warrants further study.

In this section we examine the focal waist of the lo-
calized beams defined by the beam-shape coefficients of
Eqs. (59) and (85) and compare its properties with the
focal waist of a Barton symmetrized fifth-order beam. At
this point we also define what we call the S beam by the
infinite series generalization of Eq. (76):

g S(zf) E (-2isf (-,)s, (+ J)! 1
j=Ol1=0 O1 j! 1!

> (n -1)! (n + 1 + 1)! exp(ikzf).
(n - 1-1)! (n + 1)!

(90)

we conjecture tat tis eam woulI oe me limt ou
Eq. (76) if the Davis procedure were to be carried out to
all orders, thus producing an exact solution of Maxwell's
equations. Since the beam-shape coefficients for the
Barton symmetrized fifth-order beam differ from Eq. (90)

(86) by terms of the powers s12 and higher, the comparison
of Eqs. (59) and (85) with gnB5 for wo ' A or s ! 0.16 is
nearly identical to that with Eq. (90).

In the z = 0 focal plane the beam-profile functions of
Eqs. (87) and (88) become

(87) F1(R, -) = Yj(2n + 1)gn JR |Tnl2L)

F2(R, 2)

(2n + 3)gn+1 +
(n + 1)

(91)

(n + 2)gn) jn+l(R)= ( (n + )9n+2 -

n=l

X |1rnl ( IT )

(88)

(92)

2 - (g2 - gl)j(R) +
2/ 2

F -(n + 2)(n + 4)gn+ 3

n=1l

+ (2n + 5)gn+2 + (n + 1)(n + 3)gn+1 1 7
(n + 1)(n + 3) j2n+2 (R)7Tn k2,/

(93)

-
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Fig. 1. Magnitude of the beam-profile functions of Eqs. (91)-(96) as a function of r for A = 0.6328 um and for six values of s. For
(a)-(d) the localized beam profiles (circles), the modified localized beam profiles (triangles), and the Barton fifth-order beam profiles
(solid curves) are indistinguishable. For (a)-(d), Fl(r) and a Gaussian function are indistinguishable.

For a plane wave with g = 1, these equations reduce
to F(R, n-/2) = 1 and F 2(R, r/2) = F 3 (R, 7r/2) = 0, as
expected. The focal-plane beam profile of the on-axis
Barton symmetrized fifth-order beam approximation is
given in analytical form by"

FB5(R, r/2) = (1 + 3s4 R2 - 6R4 + 10s8R4

- 5s10R6 + /2s' 2R8 )exp(-s2 R2 ) (94)

F2B5(R, 7/2) = (2s 4R2 + 8s8R4 - 2s' 0 R 6)exp(-s 2 R 2 ),

(95)

F3 B5(R, vr/2) = (2s2 R + 6s6R3 - 2s8 R5 + 20sl°R5

- 5s12R7
+ 

4R9 )exp(-S2 R2 ). (96)

The beam-profile functions F,(R), F2(R), and F3(R) for

the localized beam of Eqs. (59), the modified localized
beam of Eqs. (85), and the Barton symmetrized fifth-
order beam approximation of Eqs. (94)-(96) are shown
in Figs. 1(a), 1(b), 1(c), 1(d), 1(e), and 1(f) for s = 0.001,
s = 0.0033, s = 0.01, s = 0.033, s = 0.1, and s = 0.33,
respectively. The function F,(R) describes the dominant
shape of the beam at its focal waist. The profile func-
tions F2(R) and F3(R) describe the fields induced by the
Gaussian falloff of E. and By in the x and y directions,
respectively. For s ' 0.033, F(R) is almost exactly a
Gaussian. For larger values of s, F1 (R) deviates from a
Gaussian because of the falloff of Ey, E2, Bx, and B, in the
x and y directions and induces additional E, and By fields
proportional to various powers of s. The more times the
fields induce each other back and forth, the higher the

0)

0
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Table 2. Average of the Magnitude of the
Deviation of the Ratio FjlocIFjs from Unity

in Parts per 11 for i = 1, 2, 3a

S IFillC/Fls - have 1F2 oc1/F2 - lave IF3
1
0c/F3s -have

0.001 1 3 2
0.0033 13 34 20
0.01 117 306 178
0.033 1322 3409 1994
0.084 9366 21,954 13,270
0.1 14,167 31,399 19,382

= 1.4% = 3.1% = 1.9%
0.15 4.8% 7.6% 5.5%

aThe average extends over 0 c R 2.625/s or 1.0 Ž exp(-s 2R2)-
0.001. Fis for the S beam is obtained from Eqs. (90)-(93) with use of a
52-term sum for gn

8
. loc, localized beam.

power of s in the contribution to Eqs. (94)-(96). As the
beam width decreases and s correspondingly increases,
the induced fields become stronger and the profile func-
tions F2 (R) and F3 (R) increase with respect to F1 (R) but
are still dominated by it.

For s c 0.033 in Fig. 1, the localized beam, the modified
localized beam, and the Barton symmetrized fifth-order
beam approximation are virtually identical. A quantita-
tive comparison of the localized beam and the S beam,
which we consider a generalization of the Barton fifth-
order beam, is given in Tables 2 and 3. For tightly fo-
cused beams with s > 0.1 in Fig. 1, the localized beam and
the modified localized beam continue to be virtually iden-
tical but behave differently from the Barton symmetrized
fifth-order beam when the magnitude of Fi(R) falls below
a certain value. In each case F(R) initially decreases
more slowly than a Gaussian because of the strong in-

duced components in E. and By and then becomes oscil-
latory. In Fig. 1 the localized and the modified localized
beams are superposed on an oscillatory background of am-
plitude 10`1 as a result of roundoff errors in the compu-
tation of Eqs. (91)-(93). This low-level background is 6
orders of magnitude below the minimum values plotted
in Fig. 1. When wo < A, the localized beam has difficulty
being confined in the focal plane, as is demonstrated in
Table 4, where the value of the actual rms beam width
worms, defined by I1/2

2 f R (EX + EY + E ) 2dR
kwo rms= 2 0 (97)

3 o R2 (Ex2 + Ey2 + E 2) 2dR

is given as a function of the intended beam width wo. For
a purely Gaussian beam profile, Worms and wo should be
equal. Table 4 shows that the beam-shape coefficients of
Eqs. (59) and (85) that define the localized beams are in-
capable of producing a beam localized to any less than
Worm, - 0.8A. The Barton symmetrized fifth-order beam
has difficulty localizing to any less than Worms 0.3A.
The results shown in Table 4 may be taken as a qualita-
tive demonstration that a light beam cannot be focused to
a width any narrower than approximately its wavelength.

In previous studies of Gaussian-beam scattering, the
beam-shape coefficients were obtained by direct integra-
tion of Eqs. (5) and (12) for s = 0.084 with use of the
Davis first-order beam approximation5 '2 3 and for s = 0.082
with use of the Barton symmetrized fifth-order beam
approximation2 4 or by decomposition of a Davis first-order
Gaussian beam with s = 0.084 into an angular spectrum

Table 3. Average of the Magnitude of the
Deviation of the Ratio Fim°c/Fi From Unity in Parts per 101 for i = 1, 2, 3a

s IFimlec/Fis - Iave IF2 mloC/F2 s - 1ave IF3 mloc/F3 s - ave

0.001 2 3 2
0.0033 17 31 21
0.01 157 277 186
0.033 1754 3085 2068
0.084 11,737 20,095 13,208
0.1 17,301 28,858 18,943

= 1.7% = 2.9% = 1.9%
0.15 5.4% 6.9% 5.2%

aThe average extends over 0 R 2.625/s or 1.0 exp(-s2 R2 ) 2 0.001. F for the S beam is obtained from Eqs. (90)-(93) with use of a 52-
term sum for g. mloc, modified localized beam.

Table 4. Actual rms Half-Width of the Focal Waist of the Localized Beam, the Modified
Localized Beam, and the Barton Symmetrized Fifth-Order Beam Approximation

Wo (Aum) s (worm,), (/ttm) (W0 rms)mlec (ALm) (Worm )B5 (Am)

1000 0.001 999.999 999.999 999.999
300 0.003333 299.997 300.000 300.000
100 0.01 99.992 99.992 99.990
30 0.03333 29.972 29.972 29.967
10 0.1 9.917 9.917 9.899
5 0.2 4.922 4.922 4.824
4 0.25 4.432 4.432 3.876
3 0.3333 5.497 5.497 3.121
2 0.5 5.283 5.283 2.622
1 1.0 - - 1.655
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of many thousands of plane waves.6 7 25 In each of these
cases the computation of the beam-shape coefficients re-
quired substantial computer run time. The results of
Tables 2 and 3 indicate that for s = 0.084 the focused
beams defined by the localized and the modified local-
ized approximations, i.e., what we are now calling the
localized beams, differ by only -1% from a Barton sym-
metrized fifth-order beam in the region in which the elec-
tric field satisfies Eo 2 E 2 10-3 Eo. Similarly, Fig. 1(e)
indicates that the comparison remains reasonably good
for E 106 Eo. As a result, we claim that for s = 0.084
the parameterization of the incident beam by the local-
ized or the modified localized approximations of Eqs. (59)
and (85) is equal in validity to the parameterizations of
the computationally more expensive methods of Refs. 5-7
and 23-25. A consequence of this claim is that, for
either weakly focused or tightly focused beams, use of
the localized beams of Eq. (59) or Eq. (85) represents
a great simplification in Gaussian-beam scattering and
reduces manyfold the computer run time required for
its implementation.

We make our claim concerning the validity of the lo-
calized beams on a number of grounds. Experimental
laser-beam profiles are rarely measured beyond their le
or l/e2 points because of limitations in detector dynamic
range, background illumination, and detector noise. Un-
less the beam has been spatially filtered, optical noise
and diffraction rings from dust on the laser mirrors cor-
rupt the Gaussian-beam profile.26 Even if the beam has
been spatially filtered, forward scattering from dust along
the beam path and inhomogeneities in the focusing lens
cause small deviations from the ideal Gaussian profile.
With these limitations on the quality of an experimen-
tal beam, any member of a family of beam models that
deviates from other members by less than a fraction of
a percent for E 10-6 Eo or, equivalently I 10- 2 io,

but may deviate more substantially for E S 10-6 Eo is an
equally valid candidate to be an acceptable model of the
experimental beam. From the point of view of the scat-
tered light, beam models that deviate from each other
at the level 10-6 Eo produce scattered fields that deviate
from each other at a level of 10-6 of the maximum field
strength, as a result of geometrical ray scattering. These
small differences in the scattered intensity are well be-
low background noise levels and detector dynamic range.
The only conditions for which differences among various
models might be detectable is in focused scattering,27 i.e.,
forward diffraction, rainbows, and glory scattering.

A related issue is the determination of the largest value
of s for which the localized beams defined by Eqs. (59) or
(85) may be considered good approximations to a focused
Gaussian laser beam. Figure 1 and Tables 2-4 give an
indication of the answer. For s = 0.1, Fig. 1(e) shows
that the oscillatory behavior in F1(R), F2(R), and F3 (R)
occurs at the level F1(R) s 10-7. For s = 0.2 it occurs
at F1 (R) s 10-3. Also, the actual width of the localized
beam wo"rm remains close to the idealized width wo for
s < 0.2, as shown in Table 4. These two results provide
evidence that the localized beam model is achieving the
required degree of localization for s < 0.2. On this ba-
sis we believe that the on-axis localized beams defined by
Eqs. (59) or (85) are accurate approximations to an experi-
mental focused TEMOO laser beam for s 5 0.15, and possi-

bly for localizations as tight as s = 0.2. By comparison,
wo = A corresponds to s = 1/27r 0.16. As a result, the
localized beam model provides a useful practical tool for
simplifying and speeding up GLMT computations of the
scattering of either a weakly or tightly focused Gaussian
laser beam by a spherical particle.
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