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Abstract

The simulation of the propagation of divergent beams us-
ing Fourier-based angular spectrum techniques can pose chal-
lenges for ensuring correct sampling in the spatial and recip-
rocal domains. This challenge can be compounded by the
presence of diffracting objects, as is often the case. Here, I
give details of a method for robustly simulating the propa-
gation of beams with divergent wavefronts in a coordinate
system where the wavefronts become planar. I also show how
diffracting objects can be simulated, whilst guaranteeing that
correct sampling is maintained. These two advances allow
for numerically efficient and accurate simulations of diver-
gent beams propagating through diffracting structures using
the multi-slice approximation. The sampling requirements
and numerical implementation are discussed in detail and I
have made the computer code freely available.

1 Introduction

The so-called multi-slice (MS) approximation has been widely
used to perform wave optical simulations of beams propagat-
ing through diffracting structures too large for the projection
approximation to be valid, see for example [1, 2, 3, 4, 5, 6],
and is thus well established. The MS approximation instead
divides the diffracting structure into a partition of slices to
which the projection approximation may be applied individu-
ally. Algorithms employing the MS approximation generally
use the theory of Fourier optics [7] to propagate beams across
a slice between planes. Numerical implementations of such
algorithms use the discrete Fourier transform (DFT) which
make such algorithms computationally tractable. Careful at-
tention must be paid to sampling in DFT based beam propa-
gation techniques, which can become prohibitive when mod-
elling divergent beams since correct sampling must be main-
tained in both the spatial and reciprocal spaces, throughout
the entire simulated volume. This challenge can be exacer-
bated when modelling diffracting objects which may not be
properly represented on a sampled grid. Despite the large

number of published studies which employ the MS approx-
imation, I am unaware of any which have analysed, or pro-
posed a solution to, the challenge posed by sampling diver-
gent beams in a MS simulation containing diffracting objects.
A method of transforming a divergent beam geometry into
a plane wave geometry for single slice simulation has been
demonstrated [8, 9, 6]. In this paper I provide a full descrip-
tion of how to integrate this transformation into a MS sim-
ulation in order to calculate how a coherent divergent beam
propagates through a diffracting sample extended in the axial
direction. Furthermore, I provide a thorough analysis of the
sampling requirements of this new approach and show how
it can be implemented in such a way that guarantees that
correct sampling is maintained throughout the simulation.

I begin this paper with an overview of preliminary theory
required to develop the simulation technique, including angu-
lar spectrum approaches to propagating beams within a sys-
tem described by the paraxial wave equation. The sampling
requirements of this technique, in both the spatial and recip-
rocal spaces, are reviewed before describing how diffracting
objects are treated. I then introduce the divergent-wave to
plane-wave transformation which allows for significant relax-
ation of the sampling requirements. It is then shown how this
transformation can be applied in the MS approximation and
provide details of its numerical implementation and sampling
requirements. I conclude the paper with a series of examples
which provide verification of the new simulation method and
illustrate its usefulness.

1.1 Preliminary theory

I consider a system as depicted in Fig. 1 where a monochro-
matic point source is located at the origin of the global co-
ordinate system. Extended sources which are spatially inco-
herent can be represented by collections of point sources and
polychromatic sources may be modelled by incoherently su-
perimposing simulations performed at wavelengths through-
out the source spectrum. Although beyond the scope of this
paper, sources with more general states of coherence may be
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modelled by performing one simulation for each mode of the
source’s coherent mode decomposition. I assume that free
space exists for 0 ≤ z ≤ ∆zso, where I use the subscript
so to denote source to object distance. I also assume that
some degree of refractive index inhomogeneity exists in the
region z ≥ ∆zso and that our ultimate goal is to calculate
the field in the plane z = ∆zso + ∆zod , where ∆zod is the
object to detector distance. I thus refer to the space defined
by ∆zso ≤ z ≤ ∆zso + ∆zod as the computational region.
I describe fields propagating in this system according to the
form u(x, y, z) exp(ikz−iωt), where k is the wavenumber , ω is
the angular frequency of the radiation emitted by the source
and it is assumed that u(x, y, z) varies only weakly with z. If
u(x, y, z) exp(ikz− iωt) is substituted into the time-harmonic
scalar wave equation, it is not difficult to show that the parax-
ial wave equation is obtained as:

∂2u

∂x2
+

∂2u

∂y2
+ 2ik

∂u

∂z
= 0. (1)

The angular spectrum, U(a, b, z), associated with a wave-
field, u(x, y, z), can be used to propagate such a field over
some axial distance in a homogeneous space. It has been
shown that u(x, y, z) and U(a, b, z) are related according to
[7]:

U(a, b, z) =

∫∫ ∞

−∞
u(x, y, z) exp(−i2π(x(a/λ) + y(b/λ)))dxdy

(2)

u(x, y, z) =

∫∫ ∞

−∞
U(a, b, z) exp(i2π(x(a/λ) + y(b/λ)))

· d
(a

λ

)

d

(

b

λ

)

.

(3)

It is then relatively straight forward to show that a component
of an angular spectrum may be propagated a distance ∆z
in homogeneous space according to [7]: U(a, b, z + ∆z) =
P (a, b,∆z)U(a, b, z), where

P (a, b,∆z) = exp(−ik(a2 + b2)∆z/2) (4)

is the well known free space propagation operator.
The spherical wave emitted by the point source has com-

plex amplitude in the free space region of exp(ikr)/r, where

r =
√

x2 + y2 + z2. If I make the Fresnel approximation to
this field and drop the exp(ikz) dependence, I obtain the ex-
pression:

uinc(x, y, z) = exp
(

ik(x2 + y2)/(2z)
)

/z, (5)

which satisfies the paraxial wave equation, Eq. (1).
Our objective in this paper is to employ discrete Fourier

transform (DFT) techniques to determine the complex am-
plitude which emerges from the plane z = ∆zso + ∆zod
when refractive index inhomogeneities may exist in the re-
gion z ≥ ∆zso. The principal limitation when using DFT
based techniques is that the field must at all times be sam-
pled in a manner which satisfies the Nyquist criterion. When
considering spherical waves, impractically dense sampling re-
quirements may result . Since the main aim of this paper is

to avoid such dense sampling, I first show how these dense
sampling requirements arise from Eq. (5). In particular, if
one writes uinc as:

uinc(x, y, z) = exp(iφ(x, y, z))/z, (6)

the local spatial frequencies may be defined as [7]:

finc,x =
1

2π

∂

∂x
φ(x, y, z) =

x

λz
(7)

finc,y =
1

2π

∂

∂y
φ(x, y, z) =

y

λz
. (8)

However, A further constraint on sampling arises after cal-
culating the angular spectrum of uinc using Eq. (2) which
gives:

Uinc(a, b, z) = iλ exp(−i(a2 + b2)kz/2), (9)

which must also be sampled according to the Nyquist crite-
rion. By following the same procedure as was used to derive
Eqs. (7) and (8), I can obtain the following expressions for
the local frequency content of the angular spectrum:

finc,a =
az

λ
(10)

finc,b =
bz

λ
. (11)

In any DFT based field propagation technique, discrete spa-
tial coordinates and propagation vectors must be defined. I
denote these by (x̃, ỹ) and (ã, b̃), respectively. Furthermore,
for simplicity, in the remainder of this manuscript I will as-
sume that x̃ = ỹ and ã = b̃. Then, if I have N (assumed
even without loss of generality) sample points for each such
quantity, these discrete coordinates may be defined as:

x̃ = ỹ = {(j −N/2)∆x|0 ≤ j < N} (12)

ã = b̃ = {λ(j −N/2)/(N∆x)|0 ≤ j < N}. (13)

For this analysis only I shall neglect the additional compli-
cation arising from the implicit periodicity in N underlying
the DFT. This discretisation must satisfy the Nyquist crite-
rion in both the spatial and reciprocal spaces. In particular,
∆x = ∆y and ∆a = ∆b must satisfy:

∆x ≤
1

2max (|finc,x|)
(14)

∆a ≤
1

2max (|finc,a|)
, (15)

where max(f) is taken to mean the maximum value of f .
Equations (12) and (13) reveal that max(x) = ∆xN/2 = X
and max(a) = λ/(2∆x) = A which allows, with the aid of
Eqs. (7) and (10), us to write:

max (|finc,x|) =
∆xN

2λ∆zso
(16)

max (|finc,a|) =
∆zso +∆zod

2∆x
. (17)

In order to proceed it is assumed that N is fixed and that ∆x
may be varied to achieve correct sampling. Then, by substi-
tuting Eqs. (16) and (17) into Eqs. (14) and (15), respectively,
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and using the relationship ∆a = λ/(N∆x), the following in-
equalities are obtained, which must be satisfied if the Nyquist
criterion is to be satisfied in both the spatial and reciprocal
spaces:

∆x ≤

√

λ∆zso
N

(18)

∆x ≥

√

λ(∆zso +∆zod)

N
, (19)

which are unable to be satisfied simultaneously. Equa-
tion (18) states that since N is fixed, the transverse width
of the simulation must not exceed a particular value if the
field incident upon the computational volume is to be sam-
pled correctly in the spatial domain. Equation (19), however,
states that in order to correctly sample the angular spectrum
in the reciprocal space for fixed N , at some plane beyond the
computational volume entrance plane, the transverse width
of the simulation must exceed a particular value. The prob-
lem arises because these two constraints cannot be satisfied
simultaneously.
The final aspect of preliminary theory deals with inhomo-

geneous refractive index distributions, which I treat using the
so-called projection approximation [10, 6]. I explain this with
the aid of Fig. 1 which contains a position dependent refrac-
tive index distribution, within the region zi ≤ z ≤ zi+1, de-
scribed by:

n(x, y, z) = 1− δ(x, y, z) + iβ(x, y, z). (20)

Under the projection approximation it is assumed that if the
field exiting the region zi ≤ z ≤ zi+1, in the absence of a
refractive inhomogeneity, is given by u(x, y, zi+1), the per-
turbed field is given as u(x, y, zi+1) exp(iφ(x, y)), where

φ(x, y) = k

∫ zi+1

zi

(−δ(x, y, z) + iβ(x, y, z))dz, (21)

and k is the free space wavenumber. In obtaining this result
it is assumed that, outside of the support of the refractive
index inhomogeneity, δ(x, y, z) = 0 and β(x, y, z) = 0. Typi-
cal implementations of the MS method work by partitioning
the volume containing a diffracting structure into slices, as
depicted in Fig. 2, such that the (i + 1)th slice is defined by
zi ≤ z ≤ zi+1. The field exiting the plane z = zi+1 is first
calculated assuming the slice zi ≤ z ≤ zi+1 is composed of
free space. This is performed by calculating the angular spec-
trum of the field u(x, y, zi) according to Eq. (2), propagating
the angular spectrum to the end of the slice using the free
space propagation operator (Eq. (4)), before evaluating the
field at z = zi+1, u(x, y, zi+1), using Eq. (3). Refractive index
inhomogeneity in the slice is then accounted for by multiply-
ing u(x, y, zi+1) by exp(iφ(x, y)) where φ(x, y) is evaluated
according to Eq. (21). This procedure is then repeated until
the field at z = ∆zso +∆zod is obtained.

1.2 Divergent beam to plane wave transfor-

mation

The sampling requirements expressed in Eqs. (18) and (19)
for modelling divergent spherical waves cannot be achieved

simultaneously. However, they can be circumvented by ap-
plying a coordinate system transformation which transforms
the divergent spherical wave into a plane wave [8, 9, 6]. Al-
though this subject is treated in detail by Paganin [6], I follow
here the notation introduced by Sziklas and Siegman [8, 9]. I
introduce this transformation by considering the problem de-
picted in Fig. 1 whereby the complex amplitude incident upon
the plane z = zi is known, which I denote by u(x, y, z−i ). Con-
sider for now that the space zi ≤ z ≤ zi+1 is composed only of
homogeneous space, i.e., there is no refractive index inhomo-
geneity present within the slice. I note that two coordinate
systems are depicted in this diagram: the global coordinate
system (x, y, z) and a coordinate system (x′

i, y
′
i, z

′
i), valid only

for zi ≤ z ≤ zi+1. In order to evaluate u(x, y, z−i+1), I first
perform a transformation into a primed coordinate system
defined by [8, 9]:

u(x, y, zi) = exp
(

ik(x2 + y2)/(2zi)
)

v(x′
i, y

′
i, z

′
i)/zi (22)

x′
i(x, z) =

x

Mi

(23)

y′i(x, z) =
y

Mi

(24)

z′i(z) =
z − zi
Mi

, (25)

where Mi(z) = z/zi. It is clear from Eqs. (22)-(25) that at
z = zi I have x′

i(x, zi) = x, y′i(y, zi) = y and z′i(zi) = 0, thus
the transverse coordinates are identical. Furthermore, it is
straightforward to show that v(x′

i, y
′
i, z

′
i) satisfies the parax-

ial wave equation (Eq. (1)) in the primed coordinate system.
This means that techniques, such as angular spectrum prop-
agation, developed for calculating the propagation of fields
which satisfy the paraxial wave equation can be applied to
v(x′

i, y
′
i, z

′
i) instead of u(x, y, z). This overcomes the sam-

pling problem expressed by Eqs. (18) and (19) since a diver-
gent spherical wave in the global coordinate system becomes
a plane wave in the primed coordinate system.

Having obtained v(x′
i, y

′
i, z

′
i(zi) = 0) from Eq. (22) it re-

mains to calculate v(x′
i, y

′
i, z

′
i(zi+1)) using angular spectrum

propagation. I begin by calculating the angular spectrum of
v(x′

i, y
′
i, 0) using Eq. (2) thus giving V (ai, bi, 0), which can be

propagated a distance z′i(zi+1) according to Eq. (4) as:

V (ai, bi, z
′
i(zi+1)) = P (ai, bi, z

′
i(zi+1))V (ai, bi, 0) (26)

where, from Eq. (25), z′i(zi+1) = (zi+1 − zi)/Mi(zi+1)
and Mi(zi+1) = zi+1/zi. The complex amplitude
in the primed coordinate system can thus be obtained
by applying Eq. (3) to V (ai, bi, z

′
i(zi+1)) thus giving

v(x′
i(x, zi+1), y

′
i(y, zi+1), z

′
i(zi+1)). The complex amplitude in

the global coordinate system is found by inverting the coordi-
nate system transformation expressed in Eqs. (22)-(25) which

3



will result in:

u(x, y, zi+1) = exp
(

ik(x2 + y2)/(2zi+1)
) v(x′

i, y
′
i, z

′
i(zi+1))

zi+1

(27)

x = (zi+1/zi)x
′
i(x, zi+1) = Mi(zi+1)x

′
i(x, zi+1)

(28)

y = (zi+1/zi)y
′
i(y, zi+1) = Mi(zi+1)y

′
i(x, zi+1)

(29)

z = zi+1, (30)

which illustrates how returning from the primed (i.e. local)
coordinate system to the global coordinate system entails a
magnification of the transverse coordinates. Having obtained
u(x, y, zi+1), the procedure outlined above may be repeated
to propagate the complex amplitude from the plane z = zi+1

to the plane z = zi+2 and so on.

Figure 1: Schematic diagram of the system studied in this
manuscript. A point source is located at the origin of
the Cartesian coordinate system. Refractive index inhomo-
geneities may exist for z > ∆zso, one example of which is
illustrated in a layer bounded by the planes z = zi and
z = zi+1 = zi +∆zi.

1.3 Simulation of an inhomogeneous refrac-

tive index distribution

I use the projection approximation discussed in Sec. 1.1 to
model refractive index inhomogeneities present within the
slice zi ≤ z ≤ zi+1. The projection approximation can be
applied in either the global or primed coordinate systems
due to the linearity of Eq. (22). I opt to apply the pro-
jection approximation directly in the primed coordinate sys-
tem, i.e., I apply it directly to v(x′

i, y
′
i, z

′
i(zi+1)), where I have

dropped the dependence of x′
i and y′i on (x, z) and (y, z), re-

spectively, for brevity. It is important to note, however, that I
must transform the argument of the projection function (Eq.
(21)) from the global to the primed coordinate system. In
particular, the projection approximation must be applied as
v(x′

i, y
′
i, z

′
i(zi+1)) exp(iφ(Mix

′
i,Miy

′
i)) when operating in the

primed coordinate system. Whilst this is evident from the
transformation expressed in Eqs. (22)-(25), this may be un-
derstood intuitively by noting that the lateral cross-section of
an object must effectively be de-magnified in the primed coor-
dinate system to compensate for the lack of divergence in the

incident wavefront. However, despite this de-magnification,
its optical thickness must remain the same in both coordinate
systems.

1.4 Mitigating aliasing due to use of discrete

Fourier transforms

Even after applying the divergent to plane wave transfor-
mation, aliasing, due to the use of discrete Fourier trans-
forms, may still result due to the presence of diffracting re-
fractive index inhomogeneities. In particular, the projection
function exp(iφ(x, y)) will not, in general be band limited.
Thus, if a complex amplitude in the absence of a diffract-
ing object, v(x′, y′, z′), is band limited, the complex ampli-
tude after the application of the projection approximation
v(x′, y′, z′) exp(iφ(Mix

′
i,Miy

′
i)) will not be, in general. I sug-

gest an approach to overcoming this problem by calculating a
band limited projection function. This approach is only pos-
sible for diffracting objects for which the Fourier transform
of its projection function can be calculated either analytically
or numerically to high precision. Suppose I define a projec-
tion function t(x, y) = exp(iφ(x, y)), I define the band limited
version of t(x, y) as:

tBL(x̃, ỹ) = F̂−1{W (f̃x, f̃y)T (f̃x, f̃y)}, (31)

where tBL is the band limited version of t, W is a windowing
function, T (fx, fy) = F{t(x, y)}, F̂ is the discrete Fourier
transform operator and F is the continuous Fourier transform
operator. I note here that is convenient to introduce the
spatial frequency parameters (fx, fy) = (a/λ, b/λ). Variables
under the tilde sign are assumed to be discretised. A variety
of windowing functions could be used, however, in this work
a Tukey window was employed.
It is worth noting that for many applications this step may

be omitted without significantly perturbing the calculation
of the transmitted complex amplitude, as many other imple-
mentations of the multi-slice method do. This approach is
presented here as a means of eliminating aliasing for applica-
tions where this is important.

2 Calculation of field propagating

through an arbitrary number of

slices

Consider the geometry depicted in Fig. 2 where the space
z0 ≤ z ≤ zNs

is divided into Ns slices. Propagation from
the plane z = z0 to the plane z = zNs

can be achieved by
performing Ns individual propagation calculations between
the planes indicated in Fig. 2. When using the divergent
beam to plane wave transformation, it is important to note
that a different transformation is required for each slice. The
details of these transformations are indicated in Fig. 2. I
denote the primed coordinate system in a particular slice by
the subscript associated with the plane closest to the source.
For example, the primed coordinate system corresponding to
the region zi ≤ z ≤ zi+1 is denoted (x′

i, y
′
i, z

′
i). Propagation

through the first slice (i.e., the slice defined by z0 ≤ z ≤
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z1) is achieved by evaluating v(x′
0, y

′
0, 0) according to Eqs.

(22)-(25), giving the field in the primed coordinate system
at z = z0. Under this transformation the primed and global
coordinate systems coincide at z = z0, i.e., x

′
0(x, z0) = x and

y0(y, z0) = y. Propagation to z = z1 would be achieved by
multiplying the angular spectrum associated with v(x′

0, y
′
0, 0)

(i.e., V (a0, b0, 0)) according to:

V (a0, b0,∆z′0) = P (a0, b0,∆z′0)V (a0, b0, 0), (32)

where ∆z′0 = (z1 − z0)/M0(z1). Returning to the global co-
ordinate system at z = z1 entails the change of coordinates:

x = M0(z1)x
′
0(x, z1) (33)

y = M0(z1)y
′
0(y, z1). (34)

An important detail emerges when propagating the field
through the second slice beginning at z = z1. In particular,
following the same strategy as for propagation through the
first slice, I apply the transformation into the primed coordi-
nate system (x′

1, y
′
1, z

′
1) where x

′
1(x, z1) = x and y′1(x, z1) = y,

meaning that:

x′
1(x, z1) = M0(z1)x

′
0(x, z1) (35)

y′1(x, z1) = M0(z1)y
′
0(y, z1). (36)

After propagation through this slice, the transformation be-
comes:

x′
2(x, z2) = x = M1(z2)M0(z1)x

′
0(x, z1) (37)

y′2(x, z2) = y = M1(z2)M0(z1)y
′
0(y, z1). (38)

I can thus write the following general expressions for the co-
ordinate system transformation at the entrance plane z = zi
of a slice:

x′
i(x, zi) = x = x′

0(x, z1)

i−1
∏

j=0

Mj(zj+1) (39)

y′i(y, zi) = y = y′0(y, z1)
i−1
∏

j=0

Mj(zj+1) (40)

and

Mi(zi+1)x
′
i(x, zi+1) = x = x′

0(x, z1)

i
∏

j=0

Mj(zj+1) (41)

Mi(zi+1)y
′
i(y, zi+1) = y = y′0(y, z1)

i
∏

j=0

Mj(zj+1) (42)

for the exit plane z = zi+1.

2.1 Outline of algorithm

All of the elements of the MS algorithm introduced in this
paper have now been introduced and the algorithm can be
explained in its entirety. Assuming a partition of slices as
illustrated in Fig. 2, the complex amplitude due to a point
source is evaluated analytically on the sampled grid at z = z0,
which is immediately transformed into the primed coordinate

system according to Eqs. (22)-(25) yielding v̂(x′
0, y

′
0, z

′
0(z0)).

This field is the base case of a recursive definition of the al-
gorithm which propagates the field in the primed coordinate
system to the end of the final slice given as:

v̂(x̂′
i, ŷ

′
i, z

′
i(zi+1)) =

exp (iφ(Mi(zi+1)x̂
′
i,Mi(zi+1)ŷ

′
i)) ·

F̂−1
{

P (â′i, b̂
′
i, z

′
i(zi+1))F̂ {v̂(x̂′

i, ŷ
′
i, z

′
i(zi))}

}

. (43)

It is also necessary to make the following assignment when
transferring from the end of one slice into the beginning of an
adjacent slice:

v̂

(

x̂′
i+1

Mi(zi+1)
,

ŷ′i+1

Mi(zi+1)
, z′i+1(zi+1)

)

= v̂(x̂′
i, ŷ

′
i, z

′
i(zi+1)).

(44)

At the end of the final slice located at z = zNs
, the field in

the primed coordinate system, v̂(x̂′
Ns−1, ŷ

′
Ns−1, z

′
Ns−1(zNs

)),
must be transformed back to the global coordinate system
according to Eqs. (22)-(25). It is worth noting that at each
iteration of Eq. (43), v̂ is simply a matrix which is continu-
ally updated by the DFT and multiplication operations con-
tained within Eq. (43). In particular, no additional operations
such as resampling are necessary. Instead, the underlying real
space coordinate system vectors are continually being rescaled
according to:

x̂′
i = x̂′

0

i−1
∏

j=0

Mj(zj+1) (45)

ŷ′i = ŷ′0

i−1
∏

j=0

Mj(zj+1), (46)

where x̂′
0 and ŷ′0 are established at the beginning of the cal-

culation and it is understood that x̂′
i and ŷ′i correspond to

the beginning of the slice zi ≤ z ≤ zi+1. Furthermore, as
is outlined in Sec. 2.2 below, the reciprocal space coordinate
system vectors are also constantly being rescaled according
to:

â′i = â′0/

i−1
∏

j=0

Mj(zj+1) (47)

b̂′i = b̂′0/
i−1
∏

j=0

Mj(zj+1), (48)

where â′0 and b̂′0 are established at the beginning of the sim-
ulation.

2.2 Numerical implementation

The simulation methodology outlined in this paper is de-
signed to be implemented using discrete Fourier transforms.
I assume that a divergent spherical wave is incident upon the
plane z = z0. After applying the coordinate system trans-
formation into the primed coordinate system, the spatially
sampled grid must be defined as indicated in Eq. (12). By
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noting that at z = z0 I have (x′
0, y

′
0) = (x, y), the sampled

grid in the primed coordinate system is defined as:

x̃′
0 = ỹ′0 = {(j −N/2)∆x|0 ≤ j < N} (49)

and the reciprocal space propagation vectors as:

ã′0 = b̃′0 = {λ(j −N/2)/(N∆x)|0 ≤ j < N}. (50)

The only non-trivial aspect of this algorithm from a numerical
point of view is that each time the field is propagated through
a slice, the sampled grid (Eq. (49)) is magnified after transfor-
mation back to the global coordinate system. For example,
after performing angular spectrum propagation and trans-
forming back to the global coordinate system after the first
slice, the sampled complex amplitude ũ will now be implicitly
defined on a global coordinate system sampled grid defined by
M0(z1)x̃

′
0 and M0(z1)ỹ

′
0, respectively. In general, using Eqs.

(41) and (42), the sampled grid in the global coordinate sys-

tem at exit plane z = zi+1 will be given by x̃′
0

∏i

j=0
Mj(zj+1)

and ỹ′0
∏i

j=0
Mj(zj+1), respectively. This has two princi-

pal consequences for the algorithm, the first of these be-
ing that at the exit plane z = zi+1 the sampled reciprocal
space propagation vectors are given by ã′0/

∏i

j=0
Mj(zj+1)

and b̃′0/
∏i

j=0
Mj(zj+1), respectively. The second of these im-

plications is that any band limited projection functions (see
Eq. (31)) must be evaluated on a different spatially sampled
grid for every slice. In some cases this may not entail signif-
icant computational cost. However, in the case of diffracting
spheres, for example, where the Fourier transform of the pro-
jection function must be evaluated via numerical integration
(see Appendix A), direct evaluation of this Fourier transform
on a different grid for each slice may be too computationally
costly. In this case, however, use can be made of the Fourier
transform relationship:

t(Mx,My) = F−1{T (fx/M, fy/M)}/M2, (51)

meaning that Tsphere

(√

f2
x + f2

y

)

must be resampled onto

the reciprocal space frequency grid (f̃x/M, f̃y/M) which may
be done efficiently by one-dimensional interpolation of a
lookup table. As an additional step, prior to performing in-
verse Fourier transformation to obtain tsphere(Mx̃,Mỹ), it is

convenient to multiply T (fx/M, fy/M) by exp(−i2π(f̃xxs +

f̃yys)) to allow for modelling spheres located at an arbitrary
position (xs, ys, zs) where it is assumed that zs lies within the
slice being considered.

2.3 Sampling requirements

I shall define the sampling requirements with reference to
a cut-off frequency fco such that the windowing function
W (fx, fy), assumed to be separable in fx and fy, takes the
value of 0 for |fx| > fco and |fy| > fco. From this point on I
shall assume that the spatial, and therefore reciprocal, com-
putational grids are entirely isotropic. The first requirement
that ∆x = ∆y must satisfy is:

∆x ≤
1

2fco
. (52)

Figure 2: Diagram illustrating the principal coordinate sys-
tem notation used in this manuscript.

The next requirement is that propagation of the angular spec-
trum from z = z0 to z = zNs

using Eq. (4) must be correctly
sampled in the reciprocal space. Following Matsushima and
Shimobaba [11], I find that the sampling period in the recip-
rocal space, ∆fx = ∆fy must satisfy:

∆fx ≤
zNs

2λ(zNs
− z0)z0fco

, (53)

however, since ∆fx = 1/(N∆x), this can also be written as:

N ≥
2λ(zNs

− z0)z0fco
∆xzNs

. (54)

The criteria expressed in Eqs. (52) and (54) do not consider
the sampling requirements imposed by diffracting objects. In
the case of modelling a single diffracting object, I shall assume
that fco is chosen such that the band limited projection func-
tion, tBL(x̂, ŷ), has satisfactory agreement with the actual
projection function, t(x, y). I do not propose criteria for mak-
ing this assessment, however, one can assess this by consider-
ing the difference between scattered fields predicted by both
treatments. In order to avoid aliasing when using the pro-
jection approximation, a guard band of width fco should be
employed as illustrated in Fig. 3. Whenever a complex ampli-
tude, û(x̂, ŷ), encounters a diffracting object, t̂(x̂, ŷ), imposed
via the projection approximation, aliasing will not occur if
both û and t̂ do not contain spectral components within the
guard band. The field after diffraction, û(x̂, ŷ)t̂(x̂, ŷ), will in
general contain spectral components within the guard band.
In order to prevent aliasing at a subsequent diffracting ob-
ject, the spectral components of the field within the guard
band can be filtered out. The energy lost due to such filter-
ing can be monitored to ensure it is kept below a tolerable
level, dependent upon the application. In practice however,
it has been found in the examples considered in this paper
that the amount of energy entering the guard band is neg-
ligible meaning that artefacts arising from aliasing are also
negligible.
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Figure 3: Illustration of the region in reciprocal space (the
intersection of |fx| < fco and |fy| < fco) where the angular
spectrum of the field is permitted to reside, along with a
guard band where angular spectrum content is filtered after
propagation through each layer.

2.4 Non-uniform background refractive in-

dices

Up until this point, for clarity, it has been assumed that all
scatterers are contained within free space. It is, however,
relatively simple to allow each slice defined by zi ≤ z ≤ zi+1

to have a background refractive index ni = 1− δi+iβi. If the
slice contains a refractive index homogeneity as in Eq. (20),
this should be redefined as:

n(x, y, z) = 1− (δ(x, y, z)− δi) + i(β(x, y, z)− βi), (55)

recalling that this applies to (x, y, z) inside the inhomo-
geneity only. The free-space propagation operator (Eq. (4))
must be redefined as:

P (a, b,∆z) = exp

(

−i
k

1− δi + iβi

(a2 + b2)∆z/2

)

. (56)

An additional final step must then be applied where the total
field exiting the slice must be multiplied by:

Ti = exp(ik(zi+1 − zi)(−δi + iβi)), (57)

which is necessary because the field u(x, y, z) is considered
within the paraxial approximation, meaning that a term
exp(ikz) is factored out of the field. It is useful to note that

the sampled reciprocal space parameters (â′i, b̂
′
i) do not re-

quire rescaling due to the redefintion of the free-space propa-
gation operator in Eq. (56).

3 Examples and analysis

Code for performing each of the following examples may freely
downloaded [12].

3.1 A diffracting aperture

I consider first the simple example of a square diffracting
aperture and a monochromatic point source as depicted in
Fig. 4 which shows a point source placed 1.6m from a square
aperture of width W = 20µm. The field is observed on the
observation plane which is located a further 0.3m from the
aperture. The attenuating part of the aperture is assumed to
be perfectly attenuating whilst the transmitting region of the
aperture is assumed to be perfectly transmitting. The point
source is assumed to be monochromatic with photon energy
of 20 keV.
The objective of this test is to demonstrate how the choice

of N , the number of sample points along each Cartesian direc-
tion, impacts upon the accuracy of the simulation method. In
particular, for a given choice of N , it remains only to choose
either ∆x (the isotropic spatial sampling period), or equiva-
lently, X (half the total spatial width of the simulation, see
Sec. 1.1). I choose the value of ∆x to ensure that, within
the primed coordinate system, a spherical wave that has its
source in the plane z = za is correctly sampled after propa-
gating distance z′ = (zo − za)za/zo (see Eq. (25)), resulting
in the requirement given by Eq. (14):

∆x ≤

√

λ(zo − za)za
Nzo

, (58)

where ∆x was chosen to have a value of 0.95 of its maximum
allowable value. Note that Eq. (58) represents the worst case
scenario in which a diffracting object located at z = za leads
to the creation of a spherical wave within the primed coor-
dinate system. The cut-off frequency, fco is thus dictated
by Eq. (52). Increasing the value of N allows for fco to be
increased, which reduces the difference between the band lim-
ited and true projection functions of the aperture, and later
spheres, as explained in Sec. 1.4.
The results of this simulation are shown in Figs. (5) and

(6). Figure 5 shows the magnitude of the diffracted field at
z = zo directly evaluated using Fresnel-Kirchhoff diffraction
theory as per Eq. (1) of reference [13], without using the
primed coordinate system. The field magnitudes as evaluated
using primed coordinate system angular spectrum model for
N = 1024, 3072, 5120 and 7168, appear very similar to that
plotted in Fig. 5. As a result, the magnitude of the differ-
ences between the complex amplitudes evaluated using the
angular spectrum approach and those evaluated directly are
plotted in Fig. 6. These plots show that at lower values of
N , the diffracted field at z = zo is spatially truncated as a
result of increased filtering of the aperture’s projection func-
tion. These plots show clearly that increasing N increases
the spatial extent over which the calculated diffracted field
remains accurate. To further probe the effect that N has
upon accuracy, I introduce an error metric defined as:

ǫ =

√

∑

i,j |u(i∆x, j∆y)− uref (i∆x, j∆y)|2
∑

i,j |uref (i∆x, j∆y)|2
, (59)

to quantify the error between complex amplitude u(i∆x, j∆y)
and a reference complex amplitude uref (i∆x, j∆y). This er-
ror metric is plotted in Fig. 7 where the field calculated using
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Fresnel-Kirchhoff diffraction theory is used as the reference
field. This plot shows that the error in the field calculated
using the primed coordinate system angular spectrum model
reduces approximately linearly with the log of N .

Figure 4: Schematic diagram of the diffracting aperture and
point source upon which all examples in Sec. 3 are based.
Values of W = 20µm, za = 1.6m and zo = 1.9m were chosen.
Note that the diagram is not drawn to scale.
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Figure 5: Magnitude of the field diffracted by the aperture
found by direct evaluation of the Fresnel-Kirchhoff diffraction
integral.

3.2 A diffracting aperture and single sphere

In this example I introduce a single sphere of radius 5µm with
δ = 2×10−6, located a distance 0.1m downstream of the aper-
ture and situated at transverse position (5, 0)µm relative to
the center of the aperture. Following the same method of
presentation as in the previous example, the diffracted field
found by direct evaluation of the Fresnel-Kirchhoff diffraction
integral is plotted in Fig. 5. For the case of a single sphere,
a two-dimensional extension of Eq. (8) in reference [13] was
used to find the directly evaluated field. The difference be-
tween the primed coordinate system angular spectrum model

N = 1024

x ( 7m)

-50 0 50

y
 (
7

m
)

-50
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50

#10
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5

10

15

N = 3072

N = 5120

N = 7168

Figure 6: Plots of the magnitude of the error in each calculate
complex amplitude relative to that calculated using Fresnel-
Kirchhoff diffraction theory for a diffracting aperture.
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Figure 7: Plot of the error ǫ as a function ofN where the refer-
ence field is that calculated using Fresnel-Kirchhoff diffraction
theory.
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and the directly evaluated field is also plotted in Fig. 9, which
is seen to be very similar to the case where a sphere was not
present. I do not plot the error metric in this case as it was
seen to be nearly identical to that which arose in the absence
of a sphere, as is plotted in Fig. 7. This example serves the
purpose of demonstrating that the primed coordinate system
angular spectrum model converges to the directly evaluated
field for a reasonably general example.
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Figure 8: Magnitude of the field diffracted by the aperture
and a single sphere found by direct evaluation of the Fresnel-
Kirchhoff diffraction integral.
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Figure 9: Plots of the magnitude of the error in each calculate
complex amplitude relative to that calculated using Fresnel-
Kirchhoff diffraction theory for the case of a single sphere and
diffracting aperture.

3.3 A diffracting aperture and two spheres

In this example I include an additional sphere with the same
radius and δ value as in the previous example, however, lo-

cated 0.15m down stream of the aperture and at transverse
location (5, 5)µm with respect to the center of the aperture.
This example was calculated for the case N = 7168 only.
The field at the observation plane, calculated using the the
primed coordinate system angular spectrum model is shown
in the left of Fig. 10. For validation purposes a field was eval-
uated directly using Fresnel-Kirchhoff diffraction theory. The
Fresnel-Kirchhoff field was evaluated by first considering each
of the two spheres in isolation. The field resulting from this
calculation, as if Born’s first-order approximation holds, is
shown in the right hand of Fig. 10, which demonstrates that
the first-order approximation is not appropriate in this case.
The field can be evaluated correctly by taking into account
the field which is scattered by both spheres, as is detailed in
Appendix B. Once the multiply scattered field is taken into
account an error of ǫ = 1.2× 10−3 is obtained, thus illustrat-
ing the accuracy of the primed coordinate system angular
spectrum model.
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Figure 10: Magnitude of the field obtained when two spheres
are located between the aperture and observation plane (left)
and the magnitude of the field obtained by considering the
two spheres in isolation (right).

3.4 A diffracting aperture and an ensemble

of spheres

This final example illustrates the type of application where
this model may be particularly useful. Using the same com-
bination of source and aperture as in the previous exam-
ple, this example considers an ensemble of non-overlapping
spheres. Spheres were arranged within a cuboid with a square
transverse cross-section of width 100µm and bounded by the
planes located 5cm and 10cm, respectively, downstream of
the diffracting aperture. A total of 47746 spheres were ar-
ranged within this volume resulting in a sphere density of 5%
by volume. Although the computation time could have been
reduced by considering slices containing multiple spheres, the
simulation was performed with one sphere per slice. This was
done for two main reasons: to demonstrate how computation-
ally efficient the simulation is, and to ensure the validity of
the projection approximation. Simulations were performed
for a single ensemble of spheres but each simulation consid-
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ered a different value of δ. In any one simulation, each sphere
had the same δ value.
The results of the simulation are illustrated in Fig. 11. Each

of the four columns in Fig. 11 corresponds to a different value
of δ of the spheres, including the free space case. The first
row of images shows a somewhat zoomed out view of the field
magnitude on the observation plane, whilst the middle row
shows a zoomed in view. The lower row of images shows a
histogram of the proportion of pixels having field magnitude
within a certain range. The bar plots are derived from the
pixels within the magnified views of the middle row of im-
ages. The line plot shows the distribution of field magnitudes
that would be expected from a Rayleigh distribution [14] hav-
ing mean equal to that of the simulated field distributions
shown in the middle row of images. This comparison with
the Rayleigh distribution is performed purely to demonstrate
that for δ = 10−6, the complex amplitude can be considered
to be a fully developed speckle pattern.

3.5 Comparison of computational complex-

ity

The primed coordinate system angular spectrum method is
several orders of magnitude more computationally efficient
than direct evaluations of the Fresnel-Kirchhoff integral for
the case of a single sphere. For multiple spheres direct eval-
uations of the Fresnel-Kirchhoff integral becomes unfeasible
from a computational point of view. This is illustrated in
Fig. 12 which plots the computation time per observation
point against the number of observation points. This timing
information was obtained for the case of a single sphere and
a square diffracting aperture as discussed in Sec. 3.2. Simu-
lations were run on a computer containing 512 MB of RAM
and two Intel R© Xeon R© Gold 6148 Processors each possess-
ing 20 physical cores running at 2.40 GHz. I note, however,
that only a small proportion of the RAM was used for either
simulation. Both simulation techniques were implemented in
MATLAB (R2017b) and all 40 physical cores were used. The
Fresnel-Kirchhoff method was parallelised trivially by using
a parfor loop to compute the field at different points in the
observation plane in parallel. The primed coordinate system
angular spectrum method was parallelised using the paral-
lelisation intrinsic to MATLAB’s implementation of the fast
Fourier transform (i.e., fft2).
Both simulation techniques are seen to exhibit a reduction

in the computation per sample point as the number of sample
points increases as simulation overheads are amortised over an
increasing number of points. The computation time per point
for the primed coordinate system angular spectrum method
is of the order of 5×104 times lower than that of the Fresnel-
Kirchhoff method.
The simulations considered in Sec. 3.4 each required ap-

proximately the same computation time, irrespective of the
value of δ the spheres were assumed to have. Each compu-
tation such as are displayed in Fig. 11 took an average of
6.3×104 seconds to compute. Whilst this may be consid-
ered a substantial computation time, such a calculation is
intractable using the Fresnel-Kirchhoff formalism. Also, as
discussed in Sec. 3.4, this simulation could have been evalu-

Figure 11: The magnitude of the field that results when an
ensemble of spheres is located between a square diffracting
aperture and the observation plane. Each group of three im-
ages corresponds to a different value of δ for the spheres,
including the top left group which represents free space. The
middle image in each group is a magnified view of the region
denoted by the outline box in the top image. The lowest im-
age shows a histogram of the magnitudes of the pixels within
the magnified region along with a Rayleigh distribution with
mean equal to that of the magnified region.10



ated significantly faster by considering multiple spheres per
slice, thus substantially reducing the number of evaluations
of fft2.
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Figure 12: Plots of computation time per sample point in
the observation plane for the Fresnel-Kirchhoff and primed
coordinate system angular spectrum methods.

4 Conclusions

I have shown how the simulation of divergent beams propa-
gating through axially extended diffracting objects can pose
sampling challenges when using Fourier based multi-slice
propagation techniques. Two principle solutions to these
challenges have been demonstrated. The first of these is to use
a divergent-wave to plane-wave transformation which signifi-
cantly reduces the sampling requirement when simulating the
propagation of such beams through homogeneous volumes.
The second of these is the calculation of band limited object
projection functions which guarantees that aliasing will not
occur when using Fourier theory to propagate a beam which
has been perturbed by a diffracting object under the projec-
tion approximation. Both of these solutions have been com-
bined into a multi-slice simulation technique. I have provided
validation of the technique for an example employing a square
aperture only and for the case of a square aperture with one
or two spheres, respectively. I have also used the technique to
simulate beam propagation through an ensemble of spheres
dispersed throughout a macroscopic scale volume. I expect
this technique to be useful in the study of modalities such as
X-ray dark field imaging.

Appendix A: Band limited projection

function of a sphere

The projection function of a sphere, located at the origin,
with refractive index n = 1− δ+ iβ and radius R is given as:

tsphere(x, y) =

{

exp(ik2(−δ + iβ)
√

R2 − x2 − y2) x2 + y2 ≤ R2

1 Otherwise,

and its Fourier transform by:

Tsphere(fx, fy) =

∫∫ ∞

−∞
tsphere(x, y) exp(−i2π(xfx + yfy))dxdy

= δ(fx, fy)+
∫

√
R2−x2

−
√
R2−x2

∫ R

−R

(tsphere(x, y)− 1) exp(−i2π(xfx + yfy))dxdy,

(60)

where δ(fx, fy) is Dirac’s delta function. I can simplify Eq.
(60) by substituting in polar coordinates for both the spatial
and frequency coordinates as:

x = ρ cosφ (61)

y = ρ sinφ (62)

fx = ξ cosϕ (63)

fy = ξ sinϕ, (64)

allowing us to write Eq. (60) as:

Tsphere(ξ) = δ(fx, fy)+
∫ 2π

0

∫ R

0

(tsphere(ρ)− 1) exp(−i2πρξ cos(φ− ϕ))ρdρdφ

= δ(fx, fy) + 2π

∫ R

0

(tsphere(ρ)− 1)ρJ0(ρξ)dρ

(65)

where J0 is the zero-order Bessel function of the first kind. As
discussed in Sec. 1.4 the band limited version of tsphere(x, y)
is then obtained as:

tsphere,BL(x̃, ỹ) = F̂−1

{

W (f̃x, f̃y)Tsphere(
√

f̃2
x + f̃2

y )

}

,

(66)

where, recall, that (x̃, ỹ) and (f̃x, f̃y) are the discretised spa-
tial and reciprocal space sample grids, respectively.

Appendix B: Fresnel-Kirchhoff

diffraction theory

I consider a complex amplitude incident upon a diffracting
object which I define as uinc(x, y, z). I assume that the
diffracting object is contained within the planes z = z1 and
z = z1+∆z1. Then I apply the projection approximation, as
outline in Sec. 1.1, to obtain the field in the plane z = z1+∆z1
as u(x, y, z1+∆z1) = uinc(x, y, z1+∆z1) exp(iφ1(x, y)) where
φ1(x, y) is evaluated according to Eq. (21) with zi = z1 and
zi+1 = z1+∆z. The field at some arbitrary observation point,
down stream of the diffracting object, may then be found ac-
cording to:

u(x, y, zo) =

∞
∫∫

−∞

K(x, y, x′, y′, zo − (z1 +∆z1))

uinc(x
′, y′, z1 +∆z1) exp(iφ1(x

′, y′))dx′dy′, (67)
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where K is the Fresnel-Kirchhoff integral kernel given by [13]:

K(x, y, x′, y′, z) =
−i

λz
exp(ikz) exp

(

ik
(x− x′)2 + (y − y′)2

2z

)

.

(68)
The integral in Eq. (67) must be evaluated over an infinite
plane which is unsuitable for numerical integration. Instead,
an often used technique is to rewrite the integral as:

u(x, y, zo) = uinc(x, y, zo) +

∫∫

Ω1

K(x, y, x′, y′, zo − (z1 +∆z1))

· uinc(x
′, y′, z1 +∆z1)

(

exp(iφ1(x
′, y′))− 1

)

dx′dy′,
(69)

where uinc(x
′, y′, zo) is the field incident directly on (x, y, zo)

in the absence of the diffracting aperture and Ω1 is the trans-
verse extent of the diffracting object. Using this approach the
concept of the scattered field, usc(x, y, zo), can be defined by
decomposing u(x, y, zo) as:

u(x, y, zo) = uinc(x, y, zo) + usc(x, y, zo). (70)

If now a second diffracting object is introduced within the
planes z = z2 and z = z2 +∆z2, with z1 +∆z1 ≤ z2 ≤ z2 +
∆z2 ≤ zo, the field at (x, y, zo) may be found by evaluating
Eq. (69), by noting that the field incident upon the second
sphere is given as u(x, y, z2) = uinc(x, y, z2) + usc(x, y, z2),
which allows the field on the observation plane to be evaluated
as:

u(x, y, zo) = uinc(x, y, zo)+

usc(x, y, zo) +

∫∫

Ω2

K(x, y, x′, y′, zo − (z2 +∆z2))

(

uinc(x
′, y′, z2 +∆z2) + usc(x

′, y′, z2 +∆z2)
)

(

exp(iφ2(x
′, y′))− 1

)

dx′dy′. (71)

Up until this point, I have used the notation usc(x, y, z) to
refer to the field scattered by the first diffracting object only.
In order to avoid confusion, I now introduce usc,1(x, y, zo) and
usc,2(x, y, zo) which refer to the fields scattered by the two
diffracting objects, respectively, each in isolation. This allows
the field due to two diffracting objects to be decomposed as:

u(x, y, zo) = uinc(x, y, zo) + usc,1(x, y, zo)

+ usc,2(x, y, zo) + usc,sc(x, y, zo), (72)

where uinc(x, y, zo) is the field directly incident in the absence
of any diffracting objects and usc,sc(x, y, zo) is the multiply
scattered field.
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