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Abstract

Judicious use of interval arithmetic, combined with careful pen and paper esti-
mates, leads to effective strategies for computer assisted analysis of nonlinear oper-
ator equations. The method of radii polynomials is an efficient tool for bounding
the smallest and largest neighborhoods on which a Newton-like operator associated
with a nonlinear equation is a contraction mapping. The method has been used to
study solutions of ordinary, partial, and delay differential equations such as equilib-
ria, periodic orbits, solutions of initial value problems, heteroclinic and homoclinic
connecting orbits in the Ck category of functions. In the present work we adapt
the method of radii polynomials to the analytic category. For ease of exposition
we focus on studying periodic solutions in Cartesian products of infinite sequence
spaces. We derive the radii polynomials for some specific application problems, and
give a number of computer assisted proofs in the analytic framework.

1 Introduction

Spatiotemporal patterns in applied mathematical problems are often described by spe-
cial solutions of evolution equations. These special solutions may represent coherent
structures a diverse as traveling waves and pulses, spots, fronts, breathers, snakes, isolas,
modulated wave trains, spiral wave defects, and shocks to name only a few. Special
solutions of evolution equations also describe the classical building block solutions of dy-
namical systems theory such as equilibria, periodic orbits, heteroclinic and homoclinic
connecting orbits of ordinary, delay, and partial differential equations. By appending
appropriate phase or symmetry conditions to the evolution equation it is possible to see
these special solutions as isolated zeros of nonlinear operator equations on a Banach
space. This philosophy connects the study of patterns and structure in applied mathe-
matics to the tools of nonlinear functional analysis. For a much more nuanced discussion
of this point we refer to the review article [1].

In practice the obstruction to this program is the fact that the nonlinear functional
equation is still difficult to solve. For a given problem it may be impossible, outside the
perturbative regime, to obtain useful information about a solution by hand. Numerical
methods illuminate the structure of the problem by providing accurate approximate so-
lutions. Since the seminal work of Lanford [2] on the Feigenbaum conjectures in the early
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1980s a great deal of work has gone into developing methods for mathematically rigorous
computer assisted analysis of solutions of nonlinear equations. A thorough review of
the literature on computer assisted proof lies far outside the scope of this paper but the
interested reader might consult [3, 4, 5, 6, 7, 8].

Newton’s method has long been known as a powerful tool for nonlinear analysis, and
many computer assisted proof strategies are based on studying Newton-like operators.
Newton-like operators are discussed formally in Section 2, but the main idea is this:
given an approximate solution of the equation and a choice of approximate inverse for
the differential, one defines a new map whose fixed points correspond to solutions of the
original equation. A constructive computer assisted proof of the existence of a solution
of the original equation is obtained as soon as one shows that the Newton-like operator is
a contraction mapping on some neighborhood of the approximate solution. This requires
a mixture of analytic bounds as well as deliberate management of round-off error. The
Banach space in which one decides to work determines the regularity properties of the
validated solution, and also influences the estimates which appear in the proof.

Given a particular approximate solution, a particular choice of approximate inverse,
and a choice of the Banach space on which to formulate the problem, the method of
radii polynomials (first introduced in [9]) is an efficient strategy for obtaining bounds
on the smallest and largest neighborhoods of the approximate solution on which the
corresponding Newton-like operator is a contraction mapping (see Proposition 2). The
size of the smallest of these neighborhoods provides tight bounds on the location of the
true solution of the problem. The size of the largest of these neighborhoods provides
information about the isolation of the true solution of the problem. The continuity of
the radii polynomials can be exploited in order to smoothly connect the results of one
computer assisted proof to another, and can also be exploited in the implementation of
bisection-type algorithms for optimizing computer assisted proofs.

The method of radii polynomials has been employed in mathematically rigorous com-
puter assisted study of a wide variety of problems in differential equations and dynamical
systems. For example equilibria and periodic orbits of ordinary, delay, partial differen-
tial equations (PDEs) as well as systems of PDEs are considered in [10, 11, 12, 13, 14,
15, 16, 17]. The same approach is applied in order to validate transverse connecting
orbits for ordinary differential equations in [18, 19, 20], to study symmetric pulses and
kinks in reaction diffusion equations [21], to solve initial and boundary value problems
for ordinary differential equations in a mathematically rigorous way [19, 22], and to val-
idate series expansions for the Floquet normal form for linear differential equations with
periodic coefficients. This leads to methods for validated computations of the linear sta-
ble and unstable bundles of periodic orbits in differential equations [23]. Exploiting the
isolation bounds as well as continuity of the radii polynomials facilitates the study of
problems which depend on parameters via rigorous one- and multi-parameter continu-
ation [24, 25, 26]. We note that the works just mentioned develop the theory of radii
polynomials in the context of a Ck function space setup.

In the present work we develop a radii polynomial approach for studying Newton-like
operators on spaces of analytic functions. For the sake of simplicity we focus on spaces
corresponding to analytic functions which are periodic on some complex strip (more
precisely they are analytic on an open strip containing the real axis, and continuous on
the closure of the strip). These spaces are isomorphic (through the S1 Fourier transform)
to certain classical sequence spaces. Namely, the spaces utilized in the present work are
products of

`1ν
def
= {c = {ck}k∈Z : ‖c‖ν <∞} , (1.1)
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equipped with a “weighted ell one norm”

‖c‖ν
def
=
∑
k∈Z
|ck|ν|k|, (1.2)

for some fixed weight ν ≥ 1. The little ell moniker distinguishes these sequence spaces
from the classical Lebesgue function spaces endowed with integral norms.

In our context, ‖ · ‖ν is a weighted sum of the absolute values of Fourier coefficients
(see Section 2). The space `1ν is a Banach algebra under the discrete convolution product.
This fact facilitates nonlinear analysis. We can also exploit the fact that `1ν has a well
understood dual space in order to study linear functionals and operators which arise
naturally in the course of analyzing the Newton-like operators.

Before proceeding further, it is important to say that the use of analytic function
spaces in computer assisted analysis is far from new. Indeed the work of [2] on the
Feigenbaum conjectures was formulated using the same sequence spaces used here, and
since then many authors have employed this functional analytic framework. The novelty
of the present work is the adaptation of the radii polynomial approach to the analytic
setting.

Prior to now the theory of radii polynomials has been used in the context of Ck

function spaces for 0 ≤ k < ∞. The case k > 0 is considered in [10, 11, 12, 13, 14, 15,
16, 17, 19, 20, 22, 26] using the space of sequences

Ωs
def
=

{
c = {cn}n∈Z : ‖c‖∞n

def
= sup

n∈Z
|cn|ns <∞

}
,

for s > 1. The case k = 0 is considered in [18, 21] and the proofs were performed using C0

splines with the supremum norm. The Ck category has the advantage of being applicable
to a broader class of differential equations. However, it has some downsides. For example
the dual space of Ωs is difficult to exploit and estimating linear functionals defined on
Ωs requires special efforts. Similarly Ωs is not naturally a Banach algebra under discrete
convolutions, and special convolution estimates have to be developed in order to study
the nonlinearities. Finally the optimal choice of the algebraic decay rate s > 1 needed in
a particular problem is not clear a-priori, as sometimes s ∈ (1, 2) is preferable to s ≥ 2
while sometimes it is the other way around (e.g. see [15]).

These problems are not present in `1ν . As already mentioned, the Banach algebra
structure of `1ν under discrete convolutions provides the estimates needed when studying
nonlinearities. Moreover, the dual of `1ν is well known (it is a weighted `∞ space discussed
below). Finally, the space admits an a-priori choice for ν that is the most numerically
stable: namely ν = 1. If a computer assisted proof is performed at ν = 1 then the
continuity (in ν) of the radii polynomials (see Proposition 3) gives that there exists a
ν > 1 on which the proof goes through. It follows that there is a complex strip on which
the solution is analytic. If explicit bounds on the size of the strip are desired (i.e. explicit
bounds on the exponential decay rate of the Fourier coefficients of the solution) then the
proof can be repeated with ν > 1. In fact the continuity of the radii-polynomials can be
exploited via a bisection algorithm in order to maximize the ν > 1 on which the proof
works.

Another motivation for the present work is the development of validated numerics for
studying analytic parameterizations of stable/unstable invariant manifolds of periodic
orbits of differential equations. The inputs for such a method will have to be analytic
representations of the periodic orbit as well as its stable and unstable bundle. This could
be done by combining the methods of the present work with the validated methods for
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computation of the Floquet normal form developed in [23], and will lead to methods for
studying heteroclinic and homoclinic orbits connecting to periodic orbits of differential
equations in the analytic category. This informs the choice of example problems discussed
in the present work.

We have chosen to focus on periodic problems in the present work in order to simplify
the presentation. However the approach taken here extends naturally to other spectral
bases. For example there is much recent interest in using Chebyshev series in conjunc-
tion with the radii polynomial approach in order to develop computer assisted proofs
for boundary and initial value problems [19, 27]. Moreover, the examples studied here
illustrate that the general Ck radii polynomial approach of [10, 12, 13, 15, 16, 19, 28] used
in order to validate periodic solutions of delay equations, periodic solutions of Hamilto-
nian systems, equilibria of systems of PDEs, periodic orbits of PDEs and equilibria of
PDEs defined on domains of dimension greater than one can be extended to the analytic
category.

We have also chosen to restrict our discussion to quadratic and cubic nonlinearities,
again in order to simplify the exposition. There is no loss of generality in this restriction
as long as one is interested in problems with nonlinearities built from “the elementary
functions of mathematical physics” (powers, exponential, trig, rational, Bessel, elliptic
integrals, etc.) This is because such nonlinearities are themselves solutions of first or sec-
ond order linear differential equations. These differential equations can then be appended
to the original problem of interest in order to obtain a strictly polynomial nonlinearity,
albeit in a higher number of variables. This is a standard trick which we learned from
[29], and which is sometimes employed in software packages which manipulate formal se-
ries expansions. See for example the discussion in [30]. Therefore the ideas as presented
here apply with only small modification to many problems of interest.

Finally, we do not intend to give the reader the impression that the functional analytic
approach to computer assisted proof provides the only successful methods for studying
nonlinear equations. In fact nothing could be further from the truth. Methods based on
topological analysis appear in the literature as early as [31] and the use of topological
methods for computer assisted proof remains a rapidly growing field. The interested
reader might consult [32] for more discussion of this exciting area. We also refer to the
review article of [2] for a broad overview of the field of validated numerical methods.
It is our view that topological and analytical methods provide complementary tools for
computer assisted study of problems in nonlinear analysis.

We conclude this introduction by summarizing the example applications discussed
more fully in the remainder of the paper.
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Application 1. We use the methods of the present work in order to study periodic
orbits in the Lorenz equations

u′1 = σ(u2 − u1)

u′2 = ρu1 − u2 − u1u3 (1.3)

u′3 = u1u2 − βu3.

For example at σ = 10, β = 8/3 and ρ = 13.92657 we computed an approximate periodic
solution with period roughly 5.8162. This orbit is approximated using m = 320 Fourier
modes. We prove that the `1ν error between the approximate solution and the true solution
is no greater than r = 2.3267× 10−7 with ν = 1.027. Then the domain of analyticity is
a strip in the complex plane about the real axis whose width is not less than 0.024662.
The `1ν norm bounds the C0 norm so that r also provides a bound on the error in phase
space between the true periodic orbit and the image of the approximate Fourier series.
We refer to Figure 1 to see the profile of the solution and to Section 4 for the details of
the approach and for more examples.
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Figure 1: Periodic orbit in the Lorenz equations at ρ = 13.92657 with period T ≈ 5.8162.
The validated error bound for the orbit is much smaller than the width of the lines in
the figure.
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Application 2. The methods of the present work can also be used to study solutions of
PDEs. The Swift-Hohenberg PDE with even periodic boundary conditions is

ut = (λ− 1)u− 2uyy − uyyyy − u3 , in Ω = [0,
2π

L
] (1.4)

u(y, t) = u(y + 2π/L, t) , u(y, t) = u(−y, t) , on ∂Ω.

This model was originally introduced to describe the onset of Rayleigh-Bénard heat
convection [33], where L is a fundamental wave number for the system size 2π

L . The
parameter λ corresponds to the Rayleigh number and its increase is associated with the
appearance of multiple solutions that exhibit complicated patterns. For the computations

presented here we fixed L = 0.65. At λ =
(
1− 4L2

)2
, there is a pitchfork bifurcation

from u ≡ 0. The bifurcating solution corresponds to the solution cos(2Ly). Using a
numerical continuation method based on a predictor corrector algorithm we continued
to a solution at λ = 3.5× 108, and proved that near the numerical approximation there
exists an exact solution. The proof used a Fourier approximation to m = 2103 modes.
The `1 error between the approximate solution and the exact solution is smaller than
r = 2.6536 × 10−4. The proof is discussed in Section 5 and uses the notion of radii
polynomials as introduced in Section 3.
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Figure 2: Equilibrium solution of (1.4) at λ = 3.5× 108. The computation is rigorously
validated. The resulting error is smaller than the width of the curve. So we can say for
example that the true solution exhibits the small spiking behavior just before and just
after the large spike, as shown in the figure. This phenomena is in this case not numerical
error associated with the “Gibbs effect”.

The remainder of the paper is organized as follows. In Section 2, we introduce the
functional analytic background necessary to perform the computer-assisted proofs in the
analytic category. In Section 3, we present the new adaptation of the radii polynomial
approach to the analytic category setting. In Section 4, we apply the method to prove
existence of periodic solutions in the Lorenz equations and finally in Section 5, we apply
the method to prove existence of equilibria of the Swift-Hohenberg PDE.
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2 Background

2.1 Sequence Spaces

In Equations (1.1) and (1.2) we defined the ν-weighted ell-one space of infinite sequences.
We note that `1ν is a Banach space and moreover has the property of being a Banach
algebra under discrete convolution defined as

a ∗ b =

{ ∑
n1+n2=n

an1
bn2

}
n∈Z

, a, b ∈ `1ν .

More explicitly, if ν ≥ 1 and a, b ∈ `1ν , then a ∗ b ∈ `1ν and ‖a ∗ b‖ν ≤ ‖a‖ν‖b‖ν .
Note that with ν = 1 the space `11 is the classical Wiener algebra. We also recall the

classical fact that the dual space of `11, which is denoted (`11)∗, is the space `∞. Similarly
if ν > 1 then the dual of `1ν is a weighted “ell-infinity” space which we define now. For a
bi-infinite sequence of complex numbers c = {ck}k∈Z, the ν-weighted supremum norm is
defined by

‖c‖∞ν
def
= sup

k∈Z

|ck|
ν|k|

. (2.1)

Let
`∞ν = {c = {ck}k∈Z | ck ∈ C for all k ∈ Z, and ‖c‖∞ν <∞} . (2.2)

The key to the proof that `∞ν = (`1ν)∗ is the following bound which is itself useful in the
sequel.

Lemma 1. Suppose that a ∈ `1ν and c ∈ `∞ν . Then∣∣∣∣∣∑
k∈Z

ckak

∣∣∣∣∣ ≤∑
k∈Z
|ck||ak| ≤ ‖c‖∞ν ‖a‖ν .

The following results states that `∞ν is the dual of `1ν , in the sense of isometric iso-
morphism. It follows that any linear functional on `1ν can be represented as an element
of `∞ν , and that the operator norm can be computed by taking the weighted “ell-infinity”
norm of the corresponding sequence.

Theorem 1. For any ν ≥ 1 we have that (`1ν)∗ ∼= `∞ν .

A related result, which is not usually stated but which is useful in the work to follow,
is the following isometric isomorphism theorem for linear maps from C into `1ν .

Lemma 2. The set B(C, `1ν) of bounded linear maps from C into `1ν is isometrically
isomorphic to `1ν . Specifically l ∈ B(C, `1ν) if and only if there exists a ∈ `1ν so that
l(z) = za, for all z ∈ C. Moreover ‖l‖B(C,`1ν) = ‖a‖ν .

The following result is a consequence of Lemma 1, and provides a useful and explicit
bound on the norm of an “eventually diagonal” linear operator on `1ν . The proof is a
direct computation.

Corollary 1. Let A(N) be an (2N + 1)× (2N + 1) matrix with complex valued entries,
{δk}|k|>N a bi-infinite sequence of complex numbers and δN > 0 a real number such that

|δk| ≤ δN , for all |k| > N.
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Given a = (ak)k∈Z ∈ `1ν , denote by a(N) = (a−N , . . . , a−1, a0, a1, . . . , aN ) ∈ C2N+1.
Define the map A : `1ν → `1ν by

[A(a)]k =

{
[A(N)a(N)]k, if |k| ≤ N
δkak, if |k| > N.

Then A is a bounded linear operator and

‖A‖ ≤ max(K, δN ),

where

K
def
= max
|n|≤N

1

ν|n|

∑
|k|≤N

|Ak,n|ν|k|. (2.3)

In applications we are often interested in differential equations subject to some number
of scalar constraint equations. When studying such problems the product space

X k1,k2ν = Rk1 ×
(
`1ν
)k2

,

is needed. Here k1 corresponds to the number of scalar constraint equations and k2

corresponds to the number of unknown scalar functions. When ν, k1, and k2 are un-
derstood from context we simplify the notation and write X = X k1,k2ν . We denote by
x = (x1, . . . , xk1 , a1, . . . , ak2) an element of X and endow the space with the norm

‖x‖X = max (|x1|, . . . , |xk1 |, ‖a1‖ν , . . . , ‖ak2‖ν) . (2.4)

Again when there is no cause for confusion we sometimes simply write ‖x‖X = ‖x‖.

3 The radii polynomial approach on X
Now we are interested in developing the radii polynomial approach to solve nonlinear
equations of the form

F (x) = 0, (3.1)

with x = (x1, . . . , xk1 , a1, . . . , ak2) ∈ X = Rk1×
(
`1ν
)k2

and F a nonlinear map on X (we do
not specify the range of F ). This approach requires first the computation of a numerical
approximation that is obtained by computing on a finite dimensional projection. Given
c = (ck)k∈Z ∈ `1ν denote by cF = (ck)|k|<m ∈ C2m−1 a finite part of c of size 2m − 1.

Consider a finite dimensional projection F (m) of (3.1) given by

F (m)(x1, . . . , xk1 , (a1)F , . . . , (ak2)F ) =



F1(x1, . . . , xk1 , (a1)F , . . . , (ak2)F )
...

Fk1(x1, . . . , xk1 , (a1)F , . . . , (ak2)F )

F
(m)
k1+1(x1, . . . , xk1 , (a1)F , . . . , (ak2)F )

...

F
(m)
k1+k2

(x1, . . . , xk1 , (a1)F , . . . , (ak2)F )


,

(3.2)

where F
(m)
j (x1, . . . , xk1 , (a1)F , . . . , (ak2)F ) ∈ C2m−1 (j = k1 +1, . . . , k1 +k2) corresponds

of the finite part of Fj of size 2m − 1. We have that F (m) : Rk1 × Ck2(2m−1) → Rk1 ×
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Ck2(2m−1), and we seek a numerical solution of the finite dimensional problem F (m) = 0
using Newton’s method. Let x̄ = (x̄1, . . . , x̄k1 , ā1, . . . , āk2) ∈ Rk1 × Ck2(2m−1) be the
approximate solution of F (m) so obtained, with each āi ∈ C2m−1.

We would now like to employ some kind of Newton-Kantorovich argument in order
to establish the existence of a true solution of F near x̄. However it is not the case in
general that F maps X into itself. This is because a differential operator is in general
unbounded on `1ν . In order to overcome this problem we look for an injective linear
smoothing operator A : X → X having that

AF (x) ∈ X , (3.3)

for all x ∈ X in some neighborhood of x̄, and also that

‖I −A ·DF (x̄)‖X � 1. (3.4)

Equation (3.3) says that A is a smoothing operator, which sends F (x) back into the space
`1ν . Equation (3.4) says that A is a left approximate inverse for DF (x̄). Note that the
approximate inverse condition need only hold for the Frechet derivative at x̄, while the
smoothing condition must apply in a neighborhood of the approximate solution.

The choice of the approximate inverse A is an application dependent problem; we
discuss it in the context of specific applications in Sections 4 and 5. For now we take A
as given and define the Newton-like operator T : X → X by

T (x) = x−AF (x), (3.5)

for x in some neighborhood of x̄. The injectivity of A demands that x is a solution of
F (x) = 0 if and only if it is a fixed point of T . Moreover since T now maps X back into
itself we study Equation (3.5) via the contraction mapping theorem applied on closed
balls centered at the numerical approximation x̄.

Recall the definition of the norm on X in (2.4), denote by B(r) = {x : ‖x‖X ≤ r} ⊂ X
the closed ball of radius r in X and denote

Bx̄(r)
def
= x̄+B(r).

Given x̄ = (x̄1, . . . , x̄k1 , ā1, . . . , āk2), with āj = (āj−m+1, . . . , ā
j
−1, ā

j
0, ā

j
1, . . . , ā

j
m−1), define

the bounds
Y = (Y1, . . . , Yk1 , Yk1+1, . . . , Yk1+k2)

Z(r) = (Z1(r), . . . , Zk1(r), Zk1+1(r), . . . , Zk1+k2(r))
(3.6)

with Yj , Zj(r) ∈ R for j = 1, . . . , k1 and Yj = (Y jk )k∈Z, Zj(r) = (Zjk(r))k∈Z ∈ `1ν for
j = k1 + 1, . . . , k1 + k2 satisfying∣∣∣[T (x̄)− x̄]j

∣∣∣ ≤ Yj and sup
b,c∈B(r)

|DTj(x̄+ b)c| ≤ Zj(r), for j = 1, . . . , k1 (3.7)∣∣∣[T (x̄)− x̄]
j
k

∣∣∣ ≤ Y jk and sup
b,c∈B(r)

∣∣∣[DT jk (x̄+ b)c
]∣∣∣ ≤ Zjk(r) for j = k1 + 1, . . . , k1 + k2.

Proposition 1. Consider the bounds Y and Z(r) as (3.6) and satisfying the component-
wise inequalities (3.7). If ‖Y ‖X +‖Z(r)‖X < r, then T : Bx̄(r)→ Bx̄(r) is a contraction.
Moreover, there exists a unique x̃ ∈ Bx̄(r) such that F (x̃) = 0.
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Proof. First, let x ∈ Bx̄(r). Then, y
def
= x− x̄ ∈ B(r). For each j = 1, . . . , k1, there exists

ξ = ξ(j) ∈ [0, 1] such that

|[T (x)− x̄]j | = |Tj(x)− x̄j |
≤ |[Tj(x)− Tj(x̄)]|+ |[Tj(x̄)− x̄j ]|
= |DTj(x̄+ ξy)y|+ |[Tj(x̄)− x̄j ]|
≤ Zj(r) + Yj .

Similarly, for each j = k1 + 1, . . . , k1 + k2 and each k ≥ 0, there exists ξ = ξ(k, j) ∈ [0, 1]
such that

|[T (x)− x̄]jk| = |T jk (x)− ājk|
≤ |[Tk(x)− Tk(x̄)]j |+ |[T jk (x̄)− ājk]|
= |DT jk (x̄+ ξy)y|+ |[T jk (x̄)− ājk]|
≤ Zjk(r) + Y jk ,

and then

‖[T (x)− x̄]j‖ν =
∑
k∈Z
|[T (x)− x̄]jk|ν

k ≤
∑
k∈Z

(Zjk(r) + Y jk )νk = ‖Yj‖ν + ‖Zj(r)‖ν .

Therefore,

‖T (x)− x̄‖X = max (|[T (x)− x̄]1|, . . . , |[T (x)− x̄]k1 |,
‖[T (x)− x̄]k1+1‖ν , . . . , ‖[T (x)− x̄]k1+k2‖ν)

≤ max (Z1(r) + Y1, . . . , Zk1(r) + Yk1 ,

‖Yk1+1‖ν + ‖Zk1+1(r)‖ν , . . . , ‖Yk1+k2‖ν + ‖Zk1+k2(r)‖ν)

= ‖Y ‖X + ‖Z(r)‖X < r.

That shows that T (x) ∈ Bx̄(r), that is T : Bx̄(r) → Bx̄(r). Let us now show that T
is a contraction. Consider x, y ∈ Bx̄(r) such that x 6= y. Then, for each j = 1, . . . , k1,
there exists ξ = ξ(j) ∈ [0, 1] such that

|[T (x)− T (y)]j | = |DTj(ξx+ (1− ξ)y)(x− y)|

=

∣∣∣∣DTj(ξx+ (1− ξ)y)(x− y)

(
r

‖x− y‖X

)∣∣∣∣ ‖x− y‖Xr

≤ Zj(r)

r
‖x− y‖X .

Similarly, for each j = k1+1, . . . , k1+k2 and each k ≥ 0, there exists ξ = ξ(k, j) ∈ [0, 1]
such that

|[T (x)− T (y)]jk| = |DT jk (ξx+ (1− ξ)y)(x− y)|

=

∣∣∣∣DT jk (ξx+ (1− ξ)y)(x− y)

(
r

‖x− y‖X

)∣∣∣∣ ‖x− y‖Xr

≤
Zjk(r)

r
‖x− y‖X ,
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and moreover

‖[T (x)−T (y)]j‖ν =
∑
k∈Z
|[T (x)−T (y)]jk|ν

k ≤
∑
k∈Z

Zjk(r)

r
‖x−y‖X νk =

‖Zj(r)‖ν
r

‖x−y‖X .

Since ‖Y ‖X + ‖Z(r)‖X < r, then

κ
def
=
‖Z(r)‖X

r
< 1. (3.8)

Therefore,

‖T (x)− T (y)‖X = max (|[T (x)− T (y)]1|, . . . , |[T (x)− T (y)]k1 |,
‖[T (x)− T (y)]k1+1‖ν , . . . , ‖[T (x)− T (y)]k1+k2‖ν)

≤ max

(
Z1(r)

r
‖x− y‖X , . . . ,

Zk1(r)

r
‖x− y‖X ,

‖Zk1+1(r)‖ν
r

‖x− y‖X , . . . ,
‖Zk1+k2(r)‖ν

r
‖x− y‖X

)
=
‖Z(r)‖X

r
‖x− y‖X

= κ‖x− y‖X .

This implies that T : Bx̄(r) → Bx̄(r) is a contraction with contraction constant κ < 1
defined by (3.8). By the contraction mapping theorem, there exists a unique x̃ ∈ Bx̄(r)
such that T (x̃) = x̃ = x̃ − AF (x̃). Since A is injective, it follows that there exists a
unique x̃ ∈ Bx̄(r) such that F (x̃) = 0.

Remark 1 (The Z bound as a polynomial in r). The computation of the Z bound
requires estimating each component of DT (x̄+ b)c for all b, c ∈ B0(r). This is equivalent
to estimating each component of DT (x̄+ ur)vr for all v, r ∈ B0(1). If the nonlinearities
of the original differential equation are polynomials of order less or equal to n, then F
will consists of discrete convolutions with power at most n. Since T (x) = x − AF (x)

and DT (x̄ + ur)vr ∈ X = Rk1 ×
(
`1ν
)k2

, then each component of DT (x̄ + ur)vr can be
expanded as a nth order polynomial in r with the coefficients being either in R or in `1ν .

For j = k1 + 1, . . . , k1 + k2, consider uppers bounds Yj such that ‖Yj‖ν ≤ Yj and
Zj(r) such that ‖Zj(r)‖ν ≤ Zj(r). The previous remark justifies the following definition.

Definition 1. Given the bounds Y and Z(r) satisfying (3.7) we define the radii polyno-
mials {pj}j=1,...,k1+k2 by

pj(r)
def
= Zj(r)− r + Yj , for j = 1, . . . , k1 (3.9)

pj(r)
def
= Zj(r)− r + Yj , for j = k1 + 1, . . . , k1 + k2. (3.10)

Remark 2 (Continuity of the coefficients of the radii polynomials in ν). The
coefficients of the radii polynomials pj can be constructed as continuous functions of ν.
To see this, recall that the dual space of `1ν is `∞ν given in (2.2) with norm (2.1). As we
will see in the applications, the coefficients of the pj depend on two types of quantities:

• the `1ν norm of finite dimensional vectors (these quantities will be analytic in ν);

11



• the `∞ν norm of finite dimensional vectors and matrices (these quantities will only
be continuous in ν).

This implies that the coefficients of the pj are continuous functions of ν. Hence, we have
that pj = pj(r, ν) with the dependency in the variable radius r being polynomial and the
dependency in the exponential decay rate ν being continuous.

The next result shows that the radii polynomials provide an efficient strategy for
obtaining sets on which the corresponding Newton-like operator is a contraction mapping.

Proposition 2. Fix ν ≥ 1 an exponential decay rate and construct the radii polynomials
pj = pj(r, ν) for j = 1, . . . , k1 + k2 of Definition 1. Define

I = I(ν)
def
=

k1+k2⋂
j=1

{r > 0 | pj(r, ν) < 0}. (3.11)

If I 6= ∅, then I is an open interval, and for any r ∈ I, there exists a unique x̃ ∈ Bx̄(r)
such that F (x̃) = 0.

Proof. Assume that the degree of the polynomial nonlinearity of the original differential
equation is n. Fix ν ≥ 1 and j ∈ {1, . . . , k1 + k2}. From Remark 1, the coefficients of the
radii polynomials will be of the form

pj(r, ν) = a(j)
n rn + a

(j)
n−1r

n−1 + · · ·+ a
(j)
1 r − r + a

(j)
0 ,

with a
(j)
i ≥ 0 for all i = 0, . . . , n. Since I 6= ∅, then a

(j)
1 − 1 < 0. Otherwise we would

not be able to find r > 0 such that pj(r, ν) < 0. By Descartes’ rule of signs and since
I 6= ∅, each radii polynomial pj has exactly two positive real zeros that we denote by

r
(j)
− < r

(j)
+ . Defining Ij = (r

(j)
− , r

(j)
+ ), we obtain that I = ∩k1+k2

j=1 Ij . This implies that I
is an open interval.

Consider now r ∈ I so that pj(r, ν) < 0 for all j = 1, . . . , k1 + k2. Then

‖Y ‖X + ‖Z(r)‖X = max (Y1 + Z1(r), . . . , Yk1 + Zk1(r),

‖Yk1+1‖ν + ‖Zk1+1(r)‖ν , . . . , ‖Yk1+k2‖ν + ‖Zk1+k2(r)‖ν)

≤ max (Y1 + Z1(r), . . . , Yk1 + Zk1(r),

Yk1+1 + Zk1+1(r), . . . ,Yk1+k2 + Zk1+k2(r))

= max
j=1,...,k1+k2

(pj(r, ν) + r) < r.

The result follows from Proposition 1.

If I 6= ∅, then let r− < r+ such that I = (r−, r+). The previous result demonstrates
that the method of radii polynomials provides a strategy for obtaining bounds on the
smallest ball (given by Bx̄(r−)) and largest ball (given by Bx̄(r+)) about the approximate
solution on which the corresponding Newton-like operator is a contraction mapping. The
size of the smallest of these neighborhoods r− provides tight bounds on the location of the
true solution of the problem. The size of the largest of these neighborhoods r+ provides
information about the isolation of the true solution of the problem.

The following result states that if a proof is performed at ν = 1, we automatically get
analyticity of the solution.
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Proposition 3. Assume that the coefficients of the radii polynomials (3.9) and (3.10)
are continuous in ν ≥ 1. Set ν = 1 and assume that I(1) 6= ∅. From Proposition 2, there
exists a unique x̃ ∈ {x : ‖x − x̄‖1 ≤ r} such that F (x̃) = 0, for any r ∈ I. Then there
exists ν > 1 such that the solution x̃ actually lies in the smoother space {x : ‖x−x̄‖ν ≤ r}.

Proof. For any r ∈ I(1) and for any j = 1, . . . , k1 + k2, pj(r, 1) < 0. By continuity of
the radii polynomials in ν, there exists ν > 1 such that pj(r, ν) < 0 for all r ∈ I(1) and
j = 1, . . . , k1 + k2. The conclusion follows from Proposition 2.

Remark 3 (Maximizing bounds on the domain of analyticity). Proposition 3
provides a starting point for an algorithm to maximize the validated domain of analyticity
of the solutions we are studying. Assume that the radii polynomials are all negative at
ν = 1 on the interval of I, that is I(1) 6= ∅, and that I(ν1) = ∅ for some ν1 > 1 fixed.
There is a natural bisection algorithm that allows maximizing the domain of analyticity
as follows. Initialize νleft = 1 and νright = ν1. Set νmid =

νleft+νright
2 and construct

I(νmid). If I(νmid) = ∅, then set νright 7→νmid and start over. If I(νmid) 6= ∅, then set
νleft 7→νmid and start over. By fixing at the beginning a number of maximal bisection
steps and a tolerance on |νright− νleft|, the algorithm terminates and we set νmax = νmid.

The previous remark provides a general strategy to study periodic solutions in the
analytic category. We choose a finite dimensional projection and compute an approximate
solution. Based on that, we construct the radii polynomials at ν = 1 and construct I(1).
If I(1) 6= ∅, we apply the strategy of Remark 3 to maximize the domain of analyticity of
the periodic solutions. If I(1) = ∅, then we can increase the size of the finite dimensional
projection, and start over.

Remark 4 (Real Solutions). A solution of F (x) = 0 with F given in (3.1) corresponds
to a real valued function if and only if (ai)−k = (ai)k for all k ∈ Z. If our goal is to
show that the problem has a real solution then we must take this symmetry into account.
One possibility is to impose the condition in the sequence space `1ν defined in (1.1). In
other words we take X to be the collection of all sequences in `1ν which also satisfy the
symmetry, that is we consider the symmetric sequence space

`1ν
def
= {a = {ak}k∈Z | ak ∈ C, a−k = āk for all k ∈ Z, and ‖a‖ν <∞} .

Now we must check that the map F , as well as the linear operator A, are maps which
take the symmetric sequence space into itself. This is usually clear for F . However
we must take care in the definition of A that the symmetry is preserved. We illustrate
this procedure in Section 4. Another possibility is to decompose the map F into real
and imaginary parts, that is to work with sine and cosine as basis functions instead of
the complex exponential. In this case we end up working in one sided sequence spaces,
however the analysis is often a little more tedious. The choice is just a matter of con-
venience, and is best considered on a problem by problem basis. We illustrate the one
sided sequence approach in Section 5.

We are now ready to present some applications.
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4 Periodic orbits in the Lorenz equations

Recall the Lorenz equations given by (1.3) and denote by γ(t) = (u1, u2, u3)(t) an a priori
unknown 2π

ω -periodic solution to this system. Denote its Fourier expansion as

u1(t) =
∑
k∈Z

(a1)ke
iωkt, u2(t) =

∑
k∈Z

(a2)ke
iωkt, u3(t) =

∑
k∈Z

(a3)ke
iωkt.

The unknowns for this problem are the frequency ω and the three sequences of Fourier
coefficients a1, a2 and a3 of the components u1(t), u2(t) and u3(t) respectively. Therefore,
the infinite dimensional vector of unknowns is given by x

def
= (ω, a1, a2, a3). The function

space in which the unknown x lives is then X = X 1,3
ν = R× `1ν × `1ν × `1ν .

In order to isolate the periodic solution in the function space X , we set a phase
condition for any potential orbit γ to be γ̇0·(γ̄0−γ(0)) = 0, for fixed γ̄0 = (γ̄0,1, γ̄0,2, γ̄0,3) ∈
R3 and γ̇0 = (γ̇0,1, γ̇0,2, γ̇0,3) ∈ R3. In terms of the Fourier coefficients of γ(t), this is
equivalent to

γ̄0,1γ̇0,1 + γ̄0,2γ̇0,2 + γ̄0,3γ̇0,3 −
∑
k∈Z

(γ̇0,1(a1)k + γ̇0,2(a2)k + γ̇0,3(a3)k) = 0.

However, this condition can be relaxed, by fixing k0 ∈ N, to the following

F0(x)
def
= γ̄0,1γ̇0,1 + γ̄0,2γ̇0,2 + γ̄0,3γ̇0,3−

∑
|k|≤k0

(γ̇0,1(a1)k+ γ̇0,2(a2)k+ γ̇0,3(a3)k) = 0. (4.1)

Thus, if we have a periodic orbit with the phase condition (4.1), then the coefficients in
its Fourier expansion satisfy

(F1(x))k
def
= −iωk(a1)k + σ ((a2)k − (a1)k) = 0

(F2(x))k
def
= −iωk(a2)k + ρ(a1)k − (a2)k −

∑
k1+k2=k

(a1)k1(a3)k2 = 0 (4.2)

(F3(x))k
def
= −iωk(a3)k − β(a3)k +

∑
k1+k2=k

(a1)k1(a2)k2 = 0.

Since we are interested in real periodic solutions of (1.3), we impose the complex conju-
gacy condition a−n = ān directly in the space of two-tailed complex sequences, i.e.

`1ν =

{
a = (an)n∈Z : an ∈ C, a−n = ān, ||a||ν =

∑
n∈Z
|an| νn <∞

}
.

Note that even if we impose the complex conjugacy condition in the space `1ν , it still
remains a Banach algebra under discrete convolutions. Indeed, given a, b ∈ `1ν

(a ∗ b)−k =
∑

k1+k2=−k

ak1bk2

=
∑

−k1−k2=k

ak1bk2 =
∑

k1+k2=k

a−k1b−k2 =
∑

k1+k2=k

āk1 b̄k2 = (a ∗ b)k.

Recalling (4.2), this implies that for j = 1, 2, 3 and for any x ∈ X 1,3
ν , we have that

[Fj(x)]−n = Fj(x)n. Now, given any x ∈ X 1,3
ν , set

F (x)
def
=


F0(x)
F1(x)
F2(x)
F3(x)

 .
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Note that for F does not map X 1,3
ν into itself, because the map L(a)

def
= (kak)k∈Z

(a ∈ `1ν) is unbounded on `1ν . Indeed, for any ν′ < ν, F : X 1,3
ν → X 1,3

ν′ since L : `1ν → `1ν′

is bounded. To see this let δ
def
= ν/ν′ > 1. Then there exists k0 ∈ N such that |k|

δk
≤ 1 for

any |k| > k0. Therefore, for any a ∈ `1ν

‖L(a)‖ν′ =
∑
k∈Z
|kak|(ν′)k =

∑
k∈Z

|k|
δk
|ak|νk =

∑
|k|≤k0

|k|
δk
|ak|νk +

∑
|k|≥k0

|k|
δk
|ak|νk

≤
∑
|k|≤k0

|k|
δk
|ak|νk +

∑
|k|≥k0

|ak|νk <∞.

On the other hand one can find sequences a ∈ `1ν so that ‖L(a)‖ is a divergent series.
The following elementary results are going to be useful in the computation of the

bounds required to construct the radii polynomials of Definition 1.

Lemma 3. Let a ∈ `1ν . The function lka : `1ν → C defined by

lka(c) =
∑

k1+k2=k

ak1ck2

with c ∈ `1ν , is a bounded linear functional.

Proof. Linearity in c follows by definition and linearity of the sum. Let a, c ∈ `1ν and
k ∈ Z, To see that lka is bounded, note that

∣∣lka(c)
∣∣ =

∣∣∣∣∣ ∑
k1+k2=k

ak1ck2

∣∣∣∣∣ = |(a ∗ c)k| < |(a ∗ c)k| νk ≤ ‖a ∗ c‖ν ≤ ‖a‖ν‖b‖ν <∞.

Corollary 2. Let a ∈ `1ν and k ∈ Z. Then

∥∥lka∥∥∞ν ≤ sup
m∈Z

|ak−m|
ν|m|

.

Proof. By Lemma 3 we have that lka ∈ (`1ν)∗. Note that

lka(c) =
∑

k1+k2=k

ak1ck2 =

∞∑
m=−∞

am−kck,

and that {aj}j∈Z ∈ `
1
ν (as the aj are bounded). The result follows by Lemma 1.

Fix a truncation mode to beN . Given a ∈ `1ν , set aN
def
= (. . . , 0, 0, a−N , . . . , aN , 0, 0, . . .) ∈

`1ν and aI
def
= a−aN ∈ `1ν . For a, b ∈ `1ν the truncation to N modes of the k-th convolution

coefficient is
(a ∗ b)Nk

def
=

∑
k1+k2=k

|k1|,|k2|≤N

ak1bk2 ,

and the tail of the k-th convolution coefficient is

(a ∗ b)Ik
def
=

∑
k1+k2=k

|k1|or|k2|≥N+1

ak1bk2 .
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If ā is a finite sequence, that is if ā = aN = (. . . , 0, 0, a−N , . . . , aN , 0, 0, . . .), then
aj = 0 when |j| ≥ N + 1 and

(āI ∗ b)Ik = (ā ∗ b)Ik =
∑

k1+k2=k

|k2|≥N+1

āk1bk2

We define the operators
lka,N (c) = (a ∗ c)Nk ,

and
lka,I(c) = (a ∗ c)Ik.

Note that lka,N , lka,I are bounded linear functionals on `1ν . The following technical bound
will play a small but important role in the truncation error analysis of nonlinearities in
Sections 4 and 5.

Corollary 3. Let a ∈ `1ν be a sequence truncated at the N -th mode, that is suppose that

a = aN . Suppose that |k| ≤ N and define l̂ka ∈ (`1ν)∗ by

l̂ka(c) = (a ∗ c)Ik =
∑

k1+k2=k

|k2|≥N+1

ak1ck2 .

Then

∥∥∥l̂ka(c)
∥∥∥∞
ν
≤ Ψk(a)

def
=


max

k≤j≤−1

|ak−j+N |
νN+|j| , if k < 0

0, if k = 0

max
1≤j≤k

|ak−j−N |
νN+j

, if k > 0

(4.3)

The proof follows from the bound in Corollary 2 by considering the terms which
remain when a is a finite sequence and |k| ≤ N . We will use the notation l̂ka only when
it is understood that a = aN .

Since we may only deal with a finite number of Fourier modes numerically we define
projections of the infinite dimensional space X 1,3

ν onto a finite-dimensional space. Set

a
(N)
j = ((aj)n)|n|≤N ∈ C2N+1 for j = 1, 2, 3, and x(N) = (ω, a

(N)
1 , a

(N)
2 , a

(N)
3 ) ∈ R ×

C3(2N+1). We also truncate each Fj at the N th and −N th mode (with N ≥ k0). Recall
(3.2) and define F (N) : R× C3(2N+1) → R× C3(2N+1) component-wise by

F
(N)
0 (x(N)) = γ̄0,1γ̇0,1 + γ̄0,2γ̇0,2 + γ̄0,3γ̇0,3 −

k0∑
k=−k0

(γ̇0,1(a1)k + γ̇0,2(a2)k + γ̇0,3(a3)k)

F
(N)
1 (x(N)) =

[
− ikω(a1)k + σ(a2)k − σ(a1)k

]N
k=−N

F
(N)
2 (x(N)) =

−iωk(a2)k + ρ(a1)k − (a2)k −
∑

k1+k2=k

|k1|,|k2|≤N

(a1)k1(a3)k2


N

k=−N

F
(N)
3 (x(N)) =

−iωk(a3)k − β(a3)k +
∑

k1+k2=k

|k1|,|k2|≤N

(a1)k1(a2)k2


N

k=−N

.
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Assume that using Newton’s method, we numerically found x̄ ∈ R × C3(2N+1) such
that F (N)(x̄) ≈ 0. We want to use the radii polynomial approach of Section 3 to show
that near x̄, there is an exact solution x̃ of F (x̃) = 0. The next step is to define an
approximate inverse A for DF (x̄).

Given x = (ω, a1, a2, a3) ∈ X 1,3
ν note that the Fréchet derivative DF (x̄) can be

visualized as

DF (x̄) =


∂ωF0(x̄) Da1F0(x̄) Da2F0(x̄) Da3F0(x̄)
∂ωF1(x̄) Da1F1(x̄) Da2F1(x̄) Da3F1(x̄)
∂ωF2(x̄) Da1F2(x̄) Da2F2(x̄) Da3F2(x̄)
∂ωF3(x̄) Da1F3(x̄) Da2F3(x̄) Da3F3(x̄)


where 

∂ωF0 : R→ R
∂ωFj : R→ `1ν for j = 1, 2, 3,

DaiF0 : `1ν → R are linear functionals (i = 1, 2, 3)

DaiFj : `1ν → `1ν′ are linear operators for i, j = 1, 2, 3 with ν′ < ν.

Given the numerical solution x̄ = (ω̄, ā
(N)
1 , ā

(N)
2 , ā

(N)
3 ) = (ω̄, ā1, ā2, ā3) ∈ R × C3(2N+1),

we first approximate DF (x̄) with the operator

A†
def
=


A†ω,0 A†a1,0 A†a2,0 A†a3,0
A†ω,1 A†a1,1 A†a2,1 A†a3,1
A†ω,2 A†a1,2 A†a2,2 A†a3,2
A†ω,3 A†a1,3 A†a2,3 A†a3,3

 ,
which acts on b = (b0, b1, b2, b3) ∈ X 1,3

ν component-wise as

(A†b)0 = A†ω,0b0 +

3∑
i=1

A†ai,0bi
def
= ∂ωF

(N)
0 (x̄)b0 +

3∑
i=1

D
a
(N)
i
F

(N)
0 (x̄)b

(N)
i

(A†b)j = A†ω,jb0 +

3∑
i=1

A†ai,jbi ∈ `
1
ν′ , (j = 1, 2, 3),

where A†ω,j = ∂ωF
(N)
j (x̄) and A†ai,jbi ∈ `

1
ν′ is defined component-wise by

(
A†ai,jbi

)
k

=

{ (
DaiF

(N)
j (x̄)b

(N)
i

)
k
, |k| ≤ N

(−iω̄δi,j)k(bi)k, |k| > N.

Let A(N) a finite dimensional approximate inverse of DF (N)(x̄) (which will usually be
obtained numerically). Define the decomposition

A(N) =


A

(N)
ω,0 A

(N)
a1,0

A
(N)
a2,0

A
(N)
a3,0

A
(N)
ω,1 A

(N)
a1,1

A
(N)
a2,1

A
(N)
a3,1

A
(N)
ω,2 A

(N)
a1,2

A
(N)
a2,2

A
(N)
a3,2

A
(N)
ω,3 A

(N)
a1,3

A
(N)
a2,3

A
(N)
a3,3

 ∈ C(6N+4)×(6N+4),
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where A
(N)
ω,0 ∈ R, A

(N)
ai,0
∈ C1×(2N+1), A

(N)
ω,j ∈ C(2N+1)×1 and A

(N)
ai,j
∈ C(2N+1)×(2N+1). By

approximate inverse we mean that for some ε with 0 < ε� 1,∣∣∣∣∣∣IR×(C2N+1)3 −A(N)DF (N)(x̄)
∣∣∣∣∣∣ ≤ ε. (4.4)

We define the approximate inverse A of the infinite dimensional operator DF (x̄) by

A
def
=


Aω,0 Aa1,0 Aa2,0 Aa3,0
Aω,1 Aa1,1 Aa2,1 Aa3,1
Aω,2 Aa1,2 Aa2,2 Aa3,2
Aω,3 Aa1,3 Aa2,3 Aa3,3

 .
A acts on b = (b0, b1, b2, b3) ∈ X 1,3

ν component-wise as

(Ab)0 = A
(N)
ω,0 b0 +

3∑
i=1

A
(N)
ai,0

b
(N)
i

(Ab)j = A
(N)
ω,j b0 +

3∑
i=1

Aai,jbi ∈ `1ν , (j = 1, 2, 3),

where A
(N)
ω,j ∈ C(2N+1)×1 is understood to be an element of `1ν by padding the tail with

zeros, and Aai,jbi ∈ `1ν is defined component-wise by

(Aai,jbi)k =


(
A

(N)
ai,j

b
(N)
i

)
k
, |k| ≤ N

1

(−iω̄δi,j)k
(bi)k, |k| > N.

Having defined A piece by piece, we can now the Newton-like operator by

T (x) = x−AF (x).

Recalling (2.4), the norm on X = X 1,3
ν is given by

‖x‖X = max (|ω|, ‖a1‖ν , ‖a2‖ν , ‖a3‖ν) .

Proposition 4. T : X 1,3
ν → X 1,3

ν .

The proof consists of showing that the tail of A is exactly what is needed to cancel
the tail of F (x), so that the result lies in X . We omit the details.

4.1 The radii polynomials for Lorenz.

Recall that we have a numerical approximation x̄ = (ω̄, ā1, ā2, ā3) ∈ X 1,3
ν . We begin

the construction of the radii polynomials (3.9) and (3.10) by constructing the bounds
Y0,Y1,Y2,Y3 such that

|[T (x̄)− x̄]0| = |[AF (x̄)]0| ≤ Y0

||[T (x̄)− x̄]1||ν = ||[AF (x̄)]1||ν ≤ Y1

||[T (x̄)− x̄]2||ν = ||[AF (x̄)]2||ν ≤ Y2

||[T (x̄)− x̄]3||ν = ||[AF (x̄)]3||ν ≤ Y3
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We only show explicitly the calculation of Y2, as the other cases are similar. We have
that

||[T (x̄)− x̄]2||ν = ||[AF (x̄)]2||ν
= ||Aω,2F0(x̄) +Aa1,2F1(x̄) +Aa2,2F2(x̄) +Aa3,2F3(x̄)||ν
=
∑
k∈Z

∣∣∣[A(N)
ω,2 F0(x̄)]k + [Aa1,2F1(x̄)]k + [Aa2,2F2(x̄)]k + [Aa3,2F3(x̄)]k

∣∣∣ ν|k|
=

N∑
k=−N

∣∣∣[A(N)
ω,2 F

(N)
0 (x̄)]k + [A

(N)
a1,2

F
(N)
1 (x̄)]k + [A

(N)
a2,2

F
(N)
2 (x̄)]k + [A

(N)
a3,2

F
(N)
3 (x̄)]k

∣∣∣ ν|k|
+
∑
|k|>N

|[Aa2,2F2(x̄)]k| ν|k|,

where the first summand is finite and the second summand satisfies∑
|k|>N

|[Aa2,2F2(x̄)]k| ν|k|

=
∑
|k|>N

∣∣∣∣∣ 1

−iω̄k

(
−iω̄k(ā2)k + ρ(ā1)k − (ā2)k −

∑
k1+k2=k

(ā1)k1(ā3)k2

)∣∣∣∣∣ ν|k|
=

∑
N<|k|≤2N

∣∣∣∣∣(ā2)k +
ρ(ā1)k
−iω̄k

− (ā2)k
−iω̄k

− 1

−iω̄k

∑
k1+k2=k

(ā1)k1(ā3)k2

∣∣∣∣∣ ν|k|
=

∑
N<|k|≤2N

1

ω̄|k|

∣∣∣∣∣ ∑
k1+k2=k

(ā1)k1(ā3)k2

∣∣∣∣∣ ν|k| since (ā1)k, (ā3)k, zk = 0 for |k| > N .

Since we may do the same with Y3, and the bound for Y1 has no convolution terms, we
are done by setting

Y0
def
=

∣∣∣∣∣A(N)
ω,0 F

(N)
0 (x̄) +

3∑
i=1

A
(N)
ai,0

F
(N)
i (x̄)

∣∣∣∣∣ (4.5)

Y1
def
=

N∑
k=−N

∣∣∣∣∣[A(N)
ω,1 F

(N)
0 (x̄)]k +

3∑
i=1

[A
(N)
ai,1

F
(N)
i (x̄)]k

∣∣∣∣∣ ν|k|, (4.6)

Y2
def
=

N∑
k=−N

∣∣∣∣∣[A(N)
ω,2 F

(N)
0 (x̄)]k +

3∑
i=1

[A
(N)
ai,2

F
(N)
i (x̄)]k

∣∣∣∣∣ ν|k| (4.7)

+
∑

N<|k|≤2N

1

ω̄|k|

∣∣∣∣∣ ∑
k1+k2=k

(ā1)k1(ā3)k2

∣∣∣∣∣ ν|k|,
Y3

def
=

N∑
k=−N

∣∣∣∣∣[A(N)
ω,3 F

(N)
0 (x̄)]k +

3∑
i=1

[A
(N)
ai,3

F
(N)
i (x̄)]k

∣∣∣∣∣ ν|k| (4.8)

+
∑

N<|k|≤2N

1

ω̄|k|

∣∣∣∣∣ ∑
k1+k2=k

(ā1)k1(ā2)k2

∣∣∣∣∣ ν|k|.
The next step in the construction of the radii polynomials (3.9) and (3.10) is to

construct the bounds Z0(r),Z1(r),Z2(r),Z3(r). Let b, c ∈ B(r) ⊂ X 1,3
ν . Then

DT (x̄+ b)c = I −ADF (x̄+ b) = [I −AA†]c−A[DF (x̄+ b)−A†]c. (4.9)
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We first bound the quantities involved in the first term of (4.9). Let B
def
= I − AA†,

which we express as

B =


Bω,0 Ba1,0 Ba2,0 Ba3,0
Bω,1 Ba1,1 Ba2,1 Ba3,1
Bω,2 Ba1,2 Ba2,2 Ba3,2
Bω,3 Ba1,3 Ba2,3 Ba3,3

 ,
Denote c = (c0, c1, c2, c3) ∈ B(r) ⊂ R × (`1ν)3. Due to the structure of B, we have that
[(Bc)j ]k = 0 for |k| > N and j = 1, 2, 3,. Define

Z
(0)
0

def
= |Bω,0|+

3∑
i=1

(
sup
|k|≤N

|(Bai,0)k|
ν|k|

)
(4.10)

Z
(0)
j

def
=

∑
|k|≤N

|(Bω,j)k|ν|k| +
3∑
i=1

max
|n|≤N

1

ν|n|

∑
|k|≤N

|(Bai,j)k,n|ν|k|
 , (4.11)

for j = 1, 2, 3. Now, recalling (2.1) and Lemma 1, we have that

|(Bc)0| =

∣∣∣∣∣Bω,0c0 +

3∑
i=1

∑
k∈Z

(Bai,0)k(ci)k

∣∣∣∣∣ ≤ |Bω,0|+
3∑
i=1

‖Bai,0‖∞ν = Z
(0)
0 .

Thus, for j = 1, 2, 3, recalling Lemma 2, Corollary 1 and (2.3), we get that

‖(Bc)j‖ν =

∥∥∥∥∥Bω,jc0 +

3∑
i=1

Bai,jci

∥∥∥∥∥
ν

≤ ‖Bω,j‖ν +

3∑
i=1

‖Bai,j‖B(`1ν ,`
1
ν) = Z

(0)
j ,

which bounds the first term of (4.9).
Next, we bound the quantities involved in the second term: Denote b = (b0, b1, b2, b3) ∈

B(r) ⊂ R × (`1ν)3. For j = 0, 1, 2, 3, let zj
def
=
(
[DF (x̄+ b)−A†]c

)
j

and set z
def
=

(z0, z1, z2, z3). Now, since N > k0, z0 = 0. For j = 1, 2, 3,

z1 = {−i(b0(c1)k + c0(b1)k)k}k∈Z + {σ((c2)k − (c1)k)}|k|>N
z2 = {−i(b0(c2)k + c0(b2)k)k − (b1 ∗ c3)k − (c1 ∗ b3)k}k∈Z

+ {ρ(c1)k − (c2)k − (ā1 ∗ c3)k − (c1 ∗ ā3)k}|k|>N
+
{
−(ā1 ∗ cI3)k − (cI1 ∗ ā3)k

}
|k|≤N

z3 = {−i(b0(c3)k + c0(b3)k)k + (b1 ∗ c2)k + (c1 ∗ b2)k}k∈Z
+ {−β(c3)k + (ā1 ∗ c2)k + (c1 ∗ ā2)k}|k|>N
+
{

(ā1 ∗ cI2)k + (cI1 ∗ ā2)k
}
|k|≤N .

The second term of (4.9) is A[DF (x̄+ b)−A†]c = Az given component-wise by

(
A[DF (x̄+ b)−A†]c

)
j

= (Az)j =

3∑
i=1

Aai,jzi.

Consider b̃ = (b̃0, b̃1, b̃2, b̃3), c̃ = (c̃0, c̃1, c̃2, c̃3) ∈ B(1) such that b = b̃r and c = c̃r for
r > 0. For each j = 0, 1, 2, 3 and i = 1, 2, 3, define the vector Ãai,j = {k(Aai,j)k}k∈Z .
We now consider construct an upper bound for |(Az)j | for the cases j = 0, 1, 2, 3.
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Case 1: a bound on |(Az)0|.

(Az)0 =

3∑
i=1

Aai,0zi

= Ãa1,0

{
−i(b̃0(c̃1)k + c̃0(b̃1)k)

}
k∈Z

r2

+Ãa2,0

{
−i(b̃0(c̃2)k + c̃0(b̃2)k)

}
k∈Z

r2 −Aa2,0
{

(b̃1 ∗ c̃3)k + (c̃1 ∗ b̃3)k

}
k∈Z

r2

+Aa2,0
{
−(ā1 ∗ c̃I3)k − (c̃I1 ∗ ā3)k

}
|k|≤N r

+Ãa3,0

{
−i(b̃0(c̃3)k + c̃0(b̃3)k)

}
k∈Z

r2 +Aa3,0

{
(b̃1 ∗ c̃2)k + (c̃1 ∗ b̃2)k

}
k∈Z

r2

+Aa3,0
{

(ā1 ∗ c̃I2)k + (c̃I1 ∗ ā2)k
}
|k|≤N r.

Note that |b̃0|, ‖b̃1‖ν , ‖b̃2‖ν , ‖b̃3‖ν , |c̃0|, ‖c̃1‖ν , ‖c̃2‖ν , ‖c̃3‖ν ≤ 1. Using Lemma 1, Corol-
lary 3 and (4.3), we get that∣∣∣∣∣

3∑
i=1

Aai,0zi

∣∣∣∣∣ ≤ 2
(
‖Ãa1,0‖∞ν + ‖Ãa2,0‖∞ν + ‖Aa2,0‖∞ν + ‖Ãa3,0‖∞ν + ‖Aa3,0‖∞ν

)
r2

+

 ∑
|k|≤N

|(Aa2,0)k|
(
|l̂kā1(c̃3)|+ |l̂kā3(c̃1)|

)
+
∑
|k|≤N

|(Aa3,0)k|
(
|l̂kā1(c̃2)|+ |l̂kā2(c̃1)|

) r

≤ Z
(2)
0 r2 + Z

(1)
0 r (4.12)

def
= 2

(
‖Ãa1,0‖∞ν + ‖Ãa2,0‖∞ν + ‖Aa2,0‖∞ν + ‖Ãa3,0‖∞ν + ‖Aa3,0‖∞ν

)
r2

+

 ∑
|k|≤N

(|(Aa2,0)k|+ |(Aa3,0)k|) (Ψk(ā1) + Ψk(ā3))

 r

where we recall that Ψk is defined in Equation (4.3).
Case 2: a bound on |(Az)j|, j = 1, 2, 3.
For a fixed j = 1, 2, 3, one has that the expansion of (Az)j is given by

(Az)j =
3∑
i=1

Aai,jzi

= Aa1,j

{
−i(b̃0(c̃1)k + c̃0(b̃1)k)k

}
k∈Z

r2 +Aa1,j {σ((c̃2)k − (c̃1)k)}|k|>N r

+Aa2,j

{
−i(b̃0(c̃2)k + c̃0(b̃2)k)k

}
k∈Z

r2 −Aa2,j
{

(b̃1 ∗ c̃3)k + (c̃1 ∗ b̃3)k

}
k∈Z

r2

+Aa2,j {ρ(c̃1)k − (c̃2)k − (ā1 ∗ c̃3)k − (c̃1 ∗ ā3)k}|k|>N r

+Aa2,j
{
−(ā1 ∗ c̃I3)k − (c̃I1 ∗ ā3)k

}
|k|≤N r

+Aa3,j

{
−i(b̃0(c̃3)k + c̃0(b̃3)k)k

}
k∈Z

r2 +Aa3,j

{
(b̃1 ∗ c̃2)k + (c̃1 ∗ b̃2)k

}
k∈Z

r2

+Aa3,j {−β(c̃3)k + (ā1 ∗ c̃2)k + (c̃1 ∗ ā2)k}|k|>N r

+Aa3,j
{

(ā1 ∗ c̃I2)k + (c̃I1 ∗ ā2)k
}
|k|≤N r.

Before bounding |(Az)j | for j = 1, 2, 3, we need the following useful result whose proof
is a slight modification of Corollary 1.
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Corollary 4. For i, j = 1, 2, 3, let

Kai,j
def
= max

|n|≤N

1

ν|n|

∑
|k|≤N

|(Aai,j)k,n| ν|k|.

K̃ai,j
def
= max

|n|≤N

|n|
ν|n|

∑
|k|≤N

|(Aai,j)k,n| ν|k|.

Let a = {ak}k∈Z ∈ `1ν and ã
def
= {kak}k∈Z ∈ `1ν . Then

‖Aai,ja‖ν ≤ max

{
Kai,j ,

1

ω̄(N + 1)
δi,j

}
and ‖Aai,j ã‖ν ≤ max

{
K̃ai,j ,

1

ω̄
δi,j

}
.

Using the previous result, we obtain that∥∥∥∥∥
3∑
i=1

Aai,1zi

∥∥∥∥∥
ν

≤ Z
(2)
1 r2 + Z

(1)
1 r (4.13)

def
= 2

(
max

{
K̃a1,1,

1

ω̄

}
+ K̃a2,1 + K̃a3,1 +Ka2,1 +Ka3,1

)
r2

+

 2|σ|
ω̄(N + 1)

+
∑
|n|≤N

∑
|k|≤N

|(Aa2,1)n,k| (Ψk(ā1) + Ψk(ā3))

+
∑
|n|≤N

∑
|k|≤N

|(Aa3,1)n,k| (Ψk(ā1) + Ψk(ā2))

 r,
∥∥∥∥∥

3∑
i=1

Aai,2zi

∥∥∥∥∥
ν

≤ Z
(2)
2 r2 + Z

(1)
2 r (4.14)

def
= 2

(
K̃a1,2 + max

{
K̃a2,2,

1

ω̄

}
+ K̃a3,2 + max

{
Ka2,2,

1

ω̄(N + 1)

}
+Ka3,2

)
r2

+

 |ρ|+ 1 + ‖ā3‖ν + ‖ā1‖ν
ω̄(N + 1)

+
∑
|n|≤N

∑
|k|≤N

|(Aa2,2)n,k| (Ψk(ā1) + Ψk(ā3))

+
∑
|n|≤N

∑
|k|≤N

|(Aa3,2)n,k| (Ψk(ā1) + Ψk(ā2))

 r,
and∥∥∥∥∥

3∑
i=1

Aai,3zi

∥∥∥∥∥
ν

≤ Z
(2)
3 r2 + Z

(1)
3 r (4.15)

def
= 2

(
K̃a1,3 + K̃a2,3 + max

{
K̃a3,3,

1

ω̄

}
+Ka2,3 + max

{
Ka3,3,

1

ω̄(N + 1)

})
r2

+

 ∑
|n|≤N

∑
|k|≤N

|(Aa2,3)n,k| (Ψk(ā1) + Ψk(ā3)) +
|β|+ ‖ā1‖ν + ‖ā2‖ν

ω(N + 1)

+
∑
|n|≤N

∑
|k|≤N

|(Aa3,3)n,k| (Ψk(ā1) + Ψk(ā2))

 r.
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Recall (4.10), (4.11), (4.12), (4.13), (4.14) and (4.15), let

Z0(r)
def
= (Z

(0)
0 + Z

(1)
0 )r + Z

(2)
0 r2 (4.16)

Zj(r)
def
= (Z

(0)
j + Z

(1)
j )r + Z

(2)
j r2, for j = 1, 2, 3. (4.17)

Using (4.5), (4.6), (4.7), (4.8), (4.16) and (4.17), we define the radii polynomials by

p0(r)
def
= Z0(r)− r + Y0 (4.18)

pj(r)
def
= Zj(r)− r + Yj , for j = 1, . . . , 3. (4.19)

4.2 Validated numerics in Lorenz

Using a numerical continuation method based on a predictor corrector algorithm, we
computed a branch of periodic orbits for the Lorenz equations (1.3). We single out
the approximate periodic orbits at ρ = 24.6815, ρ = 18.0815 and ρ = 13.92657 for
validation. For all computations, we fixed k0 = 10 in the phase condition (4.1). Hence,
the minimum number of Fourier modes for the proofs is m = 11. We used a computer
program in MATLAB with the interval arithmetic library INTLAB [34] to compute the
coefficients p(r, 1) as defined in (4.18) and (4.19). We constructed I(1) 6= ∅ as defined in
(3.11). Then following the idea of Remark 3, we used a bisection algorithm to find the
maximal ν = νmax for which I(νmax) 6= ∅. We could therefore maximize the lower bound
on the domain of analyticity of the periodic solutions. At ρ = 24.6815 with m = 60, we
obtained νmax = 12.59 and the have that the width of the domain of analyticity is at
least 0.26394. At ρ = 18.0815 with m = 60, we obtained νmax = 2.36 and the width of
the domain of analyticity is at least 0.14047. At ρ = 13.92657 with m = 320, we obtained
νmax = 1.027 and the width of the domain of analyticity is at least 0.024662.

ρ ν m I(ν)
24.6815 1 11 [1.4637× 10−11 6.2662× 10−4]
24.6815 1 60 [7.8346× 10−12 1.1684× 10−3]
24.6815 5 60 [5.4680× 10−9 9.4860× 10−4]
24.6815 10.21 11 [8.0895× 10−5 9.9004× 10−5]
24.6815 12.19 30 [2.1602× 10−4 2.4747× 10−4]
24.6815 12.59 60 [2.5544× 10−4 2.9000× 10−4]
18.0815 1 15 [1.3606× 10−5 9.1574× 10−3]
18.0815 1 60 [1.3184× 10−12 7.5540× 10−2]
18.0815 2.26 33 [1.2138× 10−3 1.9007× 10−3]
18.0815 2.36 60 [2.3669× 10−3 3.7767× 10−3]
13.92657 1 180 [2.1441× 10−7 2.5715× 10−7]
13.92657 1.019 240 [2.4350× 10−7 2.6216× 10−7]
13.92657 1.027 320 [2.3267× 10−7 2.9420× 10−7]

Figure 3: Different data for the proofs of three periodic orbits in Lorenz. The orbit
associated with the date in the last line of the table is illustrated in Figure 1. Also note
that in all cases recorded here we obtain the best error bounds when ν = 1, but increasing
ν gives bounds on the decay rate of the Fourier coefficients/width of the domain.
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5 Equilibria of the Swift-Hohenberg PDE

Recalling the Swift-Hohenberg PDE (1.4), we note that the solutions can be expressed
via the Fourier expansion

u(y, t) =

∞∑
k=−∞

ak(t)eikLy = a0 + 2

∞∑
k=1

ak(t) cos(kLy), (5.1)

where ak ∈ R and a−k = ak. Plugging (5.1) in (1.4) results in the infinite set of ODEs
given by

ȧk = Fk(a)
def
= µkak −

∑
k1+k2+k3=k

ak1ak2ak3 , (5.2)

where
µk

def
= λ−

(
1− k2L2

)2
(5.3)

is the eigenvalue of the linear part of (1.4). Since a−k = ak, then F−k = Fk. This implies
that one can consider only the variables ak for k ≥ 0 and the functions Fk for k ≥ 0.
This is the reason why in this case we are going to use the one-sided sequences `1ν . Note
that looking for equilibria of the Swift-Hohenberg PDE (1.4) is equivalent to compute
solutions of F (a) = 0 in `1ν , for some ν > 1 small enough.

We fix L = 0.65 and leave λ as a continuation parameter. Equilibria u = u(y) of
(1.4) correspond to solutions of F (a) = 0, where a = (ak)k≥0 is the infinite sequence of
Fourier coefficients and F = (Fk)k≥0 is given component-wise by (5.2). In this case, the
expansion (5.1) reads as

u(y) =
∑
k∈Z

ak cos(kLy) = a0 + 2
∑
k≥1

ak cos(kLy). (5.4)

Since there is a natural symmetry a−k = ak in the Fourier coefficients of u, we slightly
adjust the definition of the space as follows: given an infinite sequence a = (ak)k≥0, define

‖a‖ν
def
=
∑
k≥0

|ak|νk

and the function space consisting of one-sided sequences

`1ν = {a = (ak)k≥0 : ‖a‖ν <∞} .

Endow the one-sided `1ν with the following extended discrete convolution product: given
a = (ak)k≥0, b = (bk)k≥0 ∈ `1ν , extend them with the symmetry a−k = ak and b−k = bk,
and define a ∗ b component-wise by

(a ∗ b)k
def
=

∑
k1+k2=k

k1,k2∈Z

ak1bk2 , k ≥ 0.

Then
‖a ∗ b‖ν ≤ 4‖a‖ν‖b‖ν , (5.5)

as can be checked by direct computation.
Given an infinite dimensional vector v = (vk)k≥0, we use the notation vF = (v0, v1, . . . , vm−1) ∈

Rm to denote its finite dimensional projection. A Galerkin projection F (m) : Rm → Rm is
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defined by F (m)(aF ) = (F (aF , 0))F . Assume that using Newton’s method, we computed
a solution ā = (ā0, ā1, . . . , ām−1) such that F (m)(ā) ≈ 0. Consider Am computed so that

Am ≈
(
DF (m)(ā)

)−1
and assume that Am is invertible. Recalling (5.3), set

A
def
=


Am 0

0

µ−1
m

µ−1
m+1

. . .

 .
Take the Galerkin projection dimension m large enough so that |µk| ≥ |µm| for all k ≥ m.
Recalling (2.3), set

K
def
= max

0≤n≤m−1

1

νn

m−1∑
`=0

|(Am)`,n|ν`,

and define

αν = max(K,
1

µm
). (5.6)

Then, by Corollary 1, we have that

‖A‖ν ≤ αν . (5.7)

Proposition 5. Define the Newton-like operator by

T (a) = a−AF (a). (5.8)

Then T : `1ν → `1ν .

We omit the elementary proof.
As explained in Section 3, the goal is to demonstrate that nearby the approximate

solution ā, there exists an exact solution of F (a) = 0, with F given component-wise by
(5.2). In this case, F is defined on the function space X = X 0,1

ν = `1ν , hence there will be
only one radii polynomial. This radii polynomial is denoted here p(r) and it corresponds
to (3.10) for the case j = k1 + 1 = 1 since here k1 = 0. Once p(r) is constructed, we
use Proposition 2 and attempt to construct an interval I 6= ∅ to conclude that for any
r ∈ I, there exists a unique ã ∈ Bā(r) such that F (ã) = 0. We now present the explicit
construction of the radii polynomial.

5.1 Computation of the radii polynomial

Let us now compute the bounds Y and Z in the context of the equilibria of the Swift-
Hohenberg PDE (1.4). Recall that by considering a Galerkin projection F (m) : Rm →
Rm, one computed a solution ā = (ā0, ā1, . . . , ām−1) such that F (m)(ā) ≈ 0. Hence,

|[T (ā)− ā]k| = |[−AF (ā)]k| ≤ Yk. (5.9)

Compute YF = (Y0, Y1, . . . , Ym−1)T with the formula

YF = |Am(F (ā))F |. (5.10)

Since āk = 0 for all k ≥ m, then Fk(ā) = µkāk − (ā ∗ ā ∗ ā)k = 0 for all k ≥ 3m− 2. For
k = m, . . . , 3m− 3, set

Yk = | − 1

µk
Fk(ā)| = 1

|µk|
|(ā ∗ ā ∗ ā)k| . (5.11)
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Using (5.10) and (5.11), one may obtain

‖Y ‖ν =

m−1∑
k=0

|[Am(F (ā))F ]k| νk +

3m−3∑
k=m

1

|µk|
|(ā ∗ ā ∗ ā)k| νk. (5.12)

To simplify the computation of the bounds Zk(r) define the operator

A†
def
=


DF (m)(ā) 0

0

µm
µm+1

. . .

 .
Considering b, c ∈ B(r) and recalling the definition of the Newton-like operator (5.8),
notice that

DT (ā+ b)c = [I −ADF (ā+ b)]c = [I −AA†]c−A[DF (ā+ b)c−A†c]. (5.13)

We now bound the ν−norm of each of the terms in the right hand side of (5.13). Consider
u, v ∈ B(1) such that b = ur and c = vr. Let

Z(0) def
= max

0≤n≤m−1

1

νn

m−1∑
`=0

∣∣∣∣(Im −AmDf (m)(x̄)
)
`,n

∣∣∣∣ ν`. (5.14)

By definition of the diagonal tails of A and A†, the diagonal tail of I − AA† is zero.
Hence, by Corollary 1

‖[I −AA†]c‖ν ≤ Z(0)r.

The next step is to bound the term ‖ −A[DF (x̄+ b)c−A†c]‖ν . For this, notice that for
k = 0, . . . ,m− 1,

[DF (ā+ b)c−A†c]k = µkck − 3[(ā+ b)2c]k − [DF (m)(ā)cF ]k

= µkck − 3[(ā+ b)2c]k − (µkck − 3[ā2 ∗ cF ]k)

= −3[ā2cI ]k − 6[ābc]k − 3[b2c]k

=
(
−3[ā2vI ]k

)
r + (−6[āuv]k) r2 +

(
−3[u2v]k

)
r3,

where

vI
def
= (0, 0, . . . , 0, vm, vm+1, . . . )

[ā2vI ]k =
∑

k1+k2+k3=k

|k3|≥m

āk1 āk2vk3

[āuv]k =
∑

k1+k2+k3=k

āk1uk2vk3

[u2v]k =
∑

k1+k2+k3=k

uk1uk2vk3 .

Similarly, for k ≥ m,

[DF (ā+ b)c−A†c]k = µkck − 3[(ā+ b)2c]k − µkck
=

(
−3[ā2v]k

)
r + (−6[āuv]k) r2 +

(
−3[u2v]k

)
r3.
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Using (5.5) and (5.7),

‖A[DF (ā+ b)c−A†c]‖ν =

m−1∑
k=0

∣∣(Am[
(
−3[ā2vI ]F

)
r + (−6[āuv]F ) r2 +

(
−3[u2v]F

)
r3]
)
k

∣∣ νk
+
∑
k≥m

∣∣∣∣ 1

µk

(
−3[ā2v]kr − 6[āuv]kr

2 − 3[u2v]kr
3
)∣∣∣∣ νk

≤

3

m−1∑
k=0

∣∣(|Am|[|ā|2|vI |]F )k∣∣ νk +
3

|µm|
∑
k≥m

∣∣[ā2v]k
∣∣ νk
 r

+6‖A‖`1ν‖ā ∗ u ∗ v‖νr
2 + 3‖A‖`1ν‖u

2 ∗ v‖νr3

≤ Z(1)r + 6 · 16‖A‖`1ν‖ā‖νr
2 + 3 · 16‖A‖`1νr

3,

where the bound Z(1) can be obtained using Lemma 1. However, such bounds can be
computationally expensive. One way to circumvent this issue is to use the following
coarser (yet faster to compute!) bound.

sup
‖v‖ν≤1

3

m−1∑
k=0

∣∣(|Am|[|ā|2|vI |]F )k∣∣ νk +
3

|µm|
∑
k≥m

∣∣[ā2v]k
∣∣ νk


≤ 3

m−1∑
k=0

∣∣(|Am|[|ā|2ω̃]F
)
k

∣∣ νk +
48‖ā‖2ν
|µm|

,

where
ω̃

def
= (0, 0, . . . , 0, ν−m, ν−(m+1), . . . , ν−(3m−3)).

The above bound is the worst case scenario, in the sense that each component k ≥ m
of vI is replaced by 1

νk
. But this bound is much faster to compute as it requires the

evaluation of only one convolution term.
Recall the definition of αν in (5.6) and set

Z(1) def
= 3

m−1∑
k=0

∣∣(|Am|[|ā|2ω̃]F
)
k

∣∣ νk +
48‖ā‖2ν
|µm|

, (5.15)

Z(2) def
= 96αν‖ā‖ν , (5.16)

Z(3) def
= 48αν . (5.17)

Combining (5.14), (5.15), (5.16) and (5.17), we set

‖Z(r)‖ν
def
= Z(3)r3 + Z(2)r2 + (Z(1) + Z(0))r. (5.18)

Finally combining (5.12) and (5.18), one can define the radii polynomial by

p(r, ν) = ‖Z(r)‖ν − r + ‖Y ‖ν
= Z(3)r3 + Z(2)r2 +

(
Z(1) + Z(0) − 1

)
r

+

m−1∑
k=0

|[AmfF (ā)]k| νk +

3m−3∑
k=m

1

|µk|
|(ā ∗ ā ∗ ā)k| νk. (5.19)

Next, we show some results about rigorous computations of equilibria of (1.4) using the
radii polynomial (5.19) and Proposition 2.
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5.2 Validated numerics for equilibria of Swift-Hohenberg: exis-
tence, isolation, and domain of analyticity

Recalling the Swift-Hohenberg PDE (1.4), we fix the fundamental wave number L = 0.65
for the system size 2π

L . As mentioned in the introduction there is a pitchfork bifurcation

from u ≡ 0 at λ =
(
1− 4L2

)2
which corresponds to the solution cos(2Ly). Using a

numerical continuation method based on a predictor corrector algorithm we computed
numerical approximations for a long branch of equilibria and single out the parameter
values of λ = 1, λ = 10 and λ = 3.5 × 108 for rigorous validation. Then, we used a
computer program in MATLAB to compute with interval arithmetics (again using INT-
LAB) the coefficients p(r, 1) as defined in (5.19). We constructed I(1) 6= ∅ as defined in
(3.11). Then following the idea of Remark 3, we used a bisection algorithm to find the
maximal ν = νmax for which I(νmax) 6= ∅. We could therefore maximize the lower bound
on the domain of analyticity of the spatially periodic solutions. At λ = 1, we obtained
νmax = 2.249 so that the function is analytic on a strip of width at least 1.2469. At
λ = 10, we obtained νmax = 1.584 and the width of the strip is at least 0.70762. At
λ = 3.5× 108, we obtained νmax = 1.003 and the width of the strip is at least 0.0046085.

λ ν m ‖Y ‖ν Z(1) Z(2) I(ν)
1 1 18 2.9936× 10−13 1.222× 10−3 250.8012 [2.9972× 10−13 0.0039689]
1 2.249 18 1.7541× 10−4 0.014095 1368.2697 [0.00032037 0.00040009]
10 1 31 5.4406× 10−12 3.4333× 10−3 151.3427 [5.4594× 10−12 6.5776× 10−3]
10 1.584 31 3.1532× 10−4 0.013617 742.2918 [0.00053541 0.00079332]

3.5× 108 1 2103 2.1516× 10−4 0.18899 0.73393 [0.00026536 1.1047]
3.5× 108 1.003 2103 1.6521× 10−3 0.13209 1.2908 [0.0019089 0.67048]

Figure 4: Different data for the proofs.
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