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The Supporting Information comprises 5 pages, and includes an outline of the Ohshima formalism for the 

electrophoretic mobility of soft charged particles, description of the procedures used to obtain the intrinsic stability 

constants for metal ion binding by nanoparticulate complexants, Table S1 with definitions of the parameters used 

in the CCD-based model, Figure S1 showing the intraparticulate speciation of Cd species associated with Aldrich 

HA, Figure S2 showing the double logarithmic plot of intK  vs. M  and SSCP waves for Cd(II) and Cu(II) 

complexes with FA, and a list of the references cited in the SI. 

Ohshima Formalism for the Electrophoretic Mobility of Soft Charged Particles 

The rigorous theory for electrophoresis of hard (ion-impermeable) particles, valid for any ratio between the 

particle radius, rp, and the Debye layer thickness in the bulk medium, 1  , was established in the late 70’s by 
O’Brien and White.1 The key electrokinetic quantity obtained from experimental data by such a theory is the 

particle zeta-potential, i.e. the potential located at the slip plane separating the stagnant liquid layer surrounding 

the particle from the ‘bulk’ mobile liquid phase.2 The zeta-potential is converted to particle surface charge density 

by means of Gouy-Chapman theory or more sophisticated double layer representations.3 However, the basic 

concept of a zeta-potential is not applicable to soft NPs due to the absence of a discrete slip plane at the interphase 

they form with the electrolytic medium (see ref 4 and references cited therein). The formalisms for electrokinetics 

of soft particles differ according to their treatment of electrostatics, in particular their ability to apply to thin double 

layer cases ( p 1r  ),5-8 or to the degree of sophistication in integrating particle backbone material distribution 

which impacts on both the electrostatic and hydrodynamic flow field distributions and, in turn, the particle 

electrophoretic mobility, µ .7-9 The model by Ohshima5 has been successfully employed to determine the 

electrostatic surface properties of various particles, including microgels, erythrocytes, and bacterial surfaces.4,6 

Specifically, the electrophoretic mobility µ of soft particles that meet the conditions for establishment of a Donnan 

phase, i.e. p 1r  , reads as: 
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where p  represents the net density of charges (in C m-3) carried by the soft NP (and assumed to be 

homogeneously distributed therein), p1/   the intraparticulate Debye layer thickness, o1 /   the characteristic 

penetration length of the electroosmotic flow within the soft NP,   and   are the permittivity and dynamic 

viscosity of the electrolyte medium, respectively, o  corresponds to the NP surface potential, and D  to the 
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Donnan potential. The parameters D , o  and p1/   all depend on the space charge density p  and on the 

electrolyte concentration according to:  
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which are written here for a 1-1 electrolyte with concentration 1
*c . 

In agreement with experimental data, Ohshima’s model quantitatively describes how the particle mobility  

decreases in magnitude with increasing solution ionic strength due to particle charge screening. Most remarkably, 

it demonstrates that the mobility µ  of soft Donnan particles (Figs. 1A-B in main text), unlike that of hard 

particulate systems (Fig. 1C in main text), asymptotically reaches a non-zero plateau value at sufficiently large 

electrolyte concentrations, which is a direct consequence of their defining ion permeability features.4,6,7  

Computation of intK  Values 

The expression for the intrinsic stability constant intK  is given as eq 15 in the main text, and repeated here for 

convenience: 
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where MSc , Mc  and Sc  are the local average concentrations of inner-sphere complexes, free metal ion and reactive 

sites in the particle body, respectively. In the present case, the total intraparticulate concentration of reactive sites, 

S,tc , corresponds to the concentration of charged sites and S S,t MSc c c  . 

For small NPs, with p pr  ≈ 1, Mc  is obtained from MB,M
*f c  , where M

*c  is the concentration of the free metal ion 

in the bulk solution and B,Mf  is the Boltzmann factor for M2+ computed via the mean-field Poisson-Boltzmann 

approach based on the equilibrated potential profile over the intraparticulate and relevant extraparticulate zones. 

See ref 10 for details. The smeared-out concentration of metal ions associated with the NP, 
M,b

c , simply 

corresponds to the difference between the total metal ion concentration in the dispersion and the free metal ion 

concentration in the bulk solution. The intraparticulate concentration of all forms of M associated with the particle 

(= Mc  + MSc ) is given by 
M,b

c  divided by the aqueous particle volume fraction in the dispersion; subsequent 

subtraction of Mc  yields MSc . 

For large NPs, with p pr  >> 1, the CCD electrostatic model is used to compute the intraparticulate speciation in 

the intraparticulate double layer (DL) and Donnan volume.11 The defining parameters are given in Table S1. In 

practice, an iterative process is used to determine the intraparticulate speciation. In a first step, the particle-

associated M is distributed to satisfy the electrostatic demands of counterion condensation and Donnan 

partitioning, and the remaining M is ascribed to inner-sphere complexes, MS. The presence of MS in the DL 

reduces the net charge therein, and thus the proportion of condensed ions is correspondingly decreased. 

Accordingly, the initial intraparticulate metal speciation is iterated with respect to the concentrations of inner-

sphere complexes MSc  versus condensed metal ions in the DL zone DL
M,condc  until a consistent intraparticulate 

distribution over the Donnan bulk and DL zone is attained. Typically ca. 4 iterations are required to obtain 

consistent values for MSc  and DL
M,condc . 
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Table S1. CCD-Based Model Parameters Defining the Intraparticulate Metal Speciation in Highly 

Charged, Soft Nanoparticulate Complexants(a) 

M(II) species 
Intraparticulate 

double layer 

Donnan 

volume 

Governing physicochemical 

features 

Free M  
DL

DL
M MB,M

*c f c  
D

D
M,f MB,M

*c f c  Donnan 

Condensed M DL DL
M,cond SCc f c  0(b) Counterion condensation 

Inner-sphere MS(c) 
intMS S Mc K c c  Covalent binding 

(a) The concentrations are denoted by superscript D or DL for local intraparticulate concentrations in the pertaining 

part of the particle volume; the superscript * denotes the free metal ion concentration in the bulk solution. The 

condensation limit for 2+ counterions in the DL with DL   is denoted by Cf .  

(b) In the high charge density regime, with p pr  >> 1, counterion condensation is confined to the intraparticulate 

double layer shell. See main text. 
(c) See eq S5.  

 

 

 

 

 

Figure S1. Intraparticulate speciation of Cd species associated with Aldrich HA, for a total Cd concentration of 

4.610-3 mM and an HA concentration of 50.5 g m-3, in 10 mM KNO3 at pH 6. Data correspond to the local 

concentrations determined via the (A) CCD model, intraparticulate double layer: condensed M (pale blue) and 

inner-sphere complexes (solid black); (B) CCD model, Donnan volume: free M (dark blue) and inner-sphere 

complexes (solid black); (C) and (D) NICA-Donnan model using (c) generic and (d) Aldrich optimised 

parameters: free M (dark blue) and inner-sphere complexes with nominal carboxylic groups (diagonal stripes) and 

phenolic groups (horizontal stripes); and (E) WHAM: free M (dark blue) and inner-sphere complexes that are 

monodentate (solid dark grey), bidentate (black dots), and tridentate (vertical black stripes). 

 

 

5

15

25

50

150

250

lo
ca

l 
co

n
ce

n
tr

a
ti

o
n

 /
 m

o
l

m
-3

CCD, VDL CCD, VD NICAD 

generic

WHAMNICAD 

Aldrich

A B C D E



page S4 

 

 

Figure S2. (A) Intrinsic stability constant, log intK , as a function of the degree of inner-sphere complex formation, 

log M , for Cd(II) and Cu(II) complexes with FA. The mean-field Poisson-Boltzmann (PB)-based results were 

obtained from experimental data for SRFA,10 obtained in 10 mM KNO3 (solid black squares), 100 mM KNO3 

(solid black diamonds), 3.33 mM Ca(NO3)2 (solid blue squares), and 33.33 mM Ca(NO3)2 (solid blue diamonds). 

The NICAD-Donnan computations were done using the generic parameters for FA,12,13 and MSc  was taken as the 

sum of the complexes with the nominal carboxylic and phenolic sites. For WHAM, MSc  was taken as the sum of 

the mono-, bi-, and tri-dentate complexes. The computations with both speciation codes were performed for the 

background electrolytes 10 mM KNO3 (NICA-Donnan: open grey squares; WHAM: open red squares), 100 mM 

KNO3 (NICA-Donnan: open grey diamonds; WHAM: open red diamonds), 3.33 mM Ca(NO3)2 (NICA-Donnan: 

open grey circles; WHAM: open red circles), and 33.33 mM Ca(NO3)2 (NICA-Donnan: open grey triangles; 

WHAM: open red triangles). The SSCP waves10 for (B) CuFA and (C) CdFA correspond to the experimental 

(solid diamonds) and computed curves for the indicated  values (curves) of the normalised reoxidation time, , 
as a function of deposition potential, Ed. The experimental data correspond to 

M,b S,t
/c c  ≈ 0.03 for Cu and 0.01 

for Cd, and were measured in Ca(NO3)2 electrolyte at pH 6 and an ionic strength of 100 mol m-3 for CuHA and 

10 mol m-3 for CdHA. 
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