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4 T. BODINEAU, D. IOFFE, AND Y. VELENIKW� (V ) = R@V ��(~nx) dH(d�1)xx ~nx@V VaporCrystalFigure 1. The free energy of the crystal-vapor interface is given by the integral of theanisotropic surface tension �� over @V . H(d�1) is the (d � 1)-dimensional Hausdor�measure.Part 1. Introduction1.1. Phenomenological Wulff construction1.1.1. Equilibrium crystal shapes. The phenomenological theory of equilibrated crys-tals dates back at least to the beginning of the century [Wu]. Suppose that two di�erentthermodynamic phases (say crystal and its vapor) coexist at a certain temperature T .Assuming that the whole system is in equilibrium, in particular that the volume v of thecrystalline phase is well de�ned, what could be said about the region this phase occupies?Of course, the issue cannot be settled in the language of bulk free energies - these do notdepend neither on the shape, nor even on the prescribed volume v of the crystal. Instead,possible phase regions are quanti�ed by the value of the free energy of the crystal-vaporinterface, or by the total surface tension between the crystal and the vapor1. Equilibriumshapes correspond, in this way, to the regions of minimal interfacial energy. This is anisoperimetric-type problem: The surface tension �� (where, throughout the article, � de-notes the inverse temperature, � = 1=T ) is an anisotropic function of the local direction ofthe interface. Thus, assuming that the crystal occupies a region V � Rd, the correspond-ing contribution W� (V ) to the free energy is equal to the integral of �� over the boundary@V of V (Fig. 1).The Wul� variational problem could then be formulated as follows:(WP)v W� (V ) �! min Given : vol(V ) = vAs in the usual isoperimetric case (WP)v is scale invariant,8s > 0; W��@(sV )� = sd�1W��@V �:Consequently, any dilatation of an optimal solution is itself optimal, and one really talkshere in terms of optimal shapes.The canonical way to produce an optimal shape is given by the following Wul� con-struction (Fig. 2): De�neK = \~n2Sd�1nx 2 Rd : x � ~n � ��(~n)o �= \~n2Sd�1H� (~n) : (1.1.1)1In this review, our point of view is that of mathematical physics; for an exposition of the problem fromthe viewpoint of theoretical physics, we refer to [RW] and references therein.



5
H(~n1)H(~n2)H(~n3) ~n1~n2~n3Figure 2. Function ��(~n) (left) with three half-spaces H(~n1), H(~n2) and H(~n3) (forbetter visibility, only H(~n1) has been shaded). The intersection of all such half-spacesgives rise to the corresponding Wul� shape (right).It would be convenient to normalize K asK1 �= ds 1vol(K)K:We refer to K1 as to the normalized, or unit volume, Wul� shape. The variational theoryof (WP)v , which we briey address in the subsequent subsection, states that any solutionto (WP)v can be obtained by a shift of the corresponding dilatation Kv �= dpvK1 of K1.1.1.2. Variational methods. The corresponding literature is rather rich and diverse,here we merely attempt to facilitate the orientation of the reader and to introduce somenotations which will be useful in the sequel.Since the half-spaces H� (~n) in (1.1.1) are convex, so is the Wul� shape K. Furthermore,in all the problems we consider here, the surface tension �� is bounded above and below,0 < min~n2Sd�1 ��(~n) 6 max~n2Sd�1��(~n) < 1: (1.1.2)Accordingly, equilibrium crystal shapes are bounded and have non-empty interiors, 0 2int�Kv�.The fact that K is optimal follows from the general Brunn-Minkowski theory: Let ����be the support function of K, ���� (x) = supfy � x j y 2 Kg. Of course, if the homogeneousextension of �� ��(~x) �= k~xk2�� � ~xk~xk2� ; (1.1.3)is convex, then �� and ���� coincide. In general ���� is the convex lower-semicontinuousregularization of ��, in particular ���� 6 ��. Nevertheless, for the Wul� shape K,W��� (K) �= Z@K ���� (~nx) dH(d�1)x = Z@K ��(~nx) dH(d�1)x :where, as before, ~nx is the outward normal to @V in x and H(d�1) is the (d�1) dimensionalHausdor� measure in Rd.



6 T. BODINEAU, D. IOFFE, AND Y. VELENIKOn the other hand, the action of the regularized functional W��� could be extended toany compact set V � Rd in terms of the mixed volumeW��� (V ) = lim inf"!0 1" (vol(V + "K)� vol(V )) ;the latter de�nition coincides with the integral de�nition of W��� for regular V . TheBrunn-Minkowski inequality [Sch]vol(A+B) > �vol(A) 1d + vol(B) 1d�d ;implies that for any regular V with vol (V ) = vol (K),W� (V ) > W��� (V ) > d vol(K) =W�(K):Of course, we have been rather sloppy above, and we refer the reader to the works[Ta], [F] and [FM] for the comprehensive discussion and results, including the history ofthe variational Wul� problem. The language employed in the latter works is that of thegeometric measure theory, and we proceed with setting up some of the correspondingnotation which will also turn out to be useful for the L1-approach to the microscopicjusti�cation of the Wul� construction, as described in Part 2 of this review. In the lattercase, the macroscopic state of the system will be determined by the value of an orderparameter which speci�es the phase of the system. In the systems that we will consider,the pure phases are characterized by their averaged density, which are encoded by twovalues �l(�) and �h(�), for example �h for the crystal and �l for the vapor. (In fact,we shall derive all the results in the symmetrized spin language, in which case the twovalues will be �m�(�), where m�(�) is the spontaneous magnetization (see Section 2) atthe inverse sub-critical temperature � > �c). For a given temperature, it is convenientto replace this order parameter by a parameter with values �1. We suppose that themacroscopic region of Rd where the system is con�ned is the unit torus bTd = (R=Z)d.The macroscopic system is described by a function v taking values �1 and the fact thatvr = 1 for some r in bTdmeans that locally at r the system is in equilibrium in the phasem�.For any measurable set V in bTd, the perimeter of V is de�ned byP(V ) = sup�ZV div�(x) dx �� � 2 C1(bTd;Rd); j�j 6 1� : (1.1.4)A function v with values �1 is said to be of bounded variation in bTd if the perimeter of theset fv = 1g is �nite. We denote by BV(bTd; f�1g) the set of functions of bounded variationin bTd with values �1 (see [EG] for a review). For any v in BV(bTd; f�1g), there exists ageneralized notion of the boundary of fv = 1g called reduced boundary and denoted by@�v. If fv = 1g is a regular set, @�v coincides with the usual boundary @v. Furthermore, ablow-up Theorem (see [EG] p. 199) ensures that for all x in @�v an approximate tangentplane can be de�ned locally. This will imply the existence of a unit vector ~nx called themeasure theoretic unit normal to fv = 1g at x. For any x in Rd and any vector ~n, wede�ne the half spacesH+(x;~n) = fy 2 Rd j (y � x) � ~n > 0g ;H�(x;~n) = fy 2 Rd j (y � x) � ~n 6 0g :



7fv = �1g fv = 1g~n H+(x; ~n)H�(x; ~n) @�vxFigure 3. Measure theoretic unit normal to fv = 1g at xThen for all x in @�v, there is a unit vector ~nx such thatlimr!0 1rdvol�B(x; r)\fv = 1g\H+(x;~n)� = 0 ;limr!0 1rdvol�B(x; r)\fv = �1g\H�(x;~n)� = 0 ;where B(x; r) is the ball of radius r centered in x. The previous property shows that thereduced boundary is not too wild (see Fig. 3). In fact, it is possible to prove that a set of�nite perimeter has \measure theoretically a C1 boundary".The functional W� can be extended on L1(bTd; [� 1m� ; 1m� ]) as followsW�(v) = � R@�v �( ~nx) dH(d�1)x ; if v 2 BV(bTd; f�1g) ;1 ; otherwise: (1.1.5)Under the assumption that the homogeneous extension (1.1.3) of �� is convex, a result byAmbrosio and Braides (see [AmBr], Theorem 2.1) ensures thatW� is lower semi-continuouswith respect to L1 convergence. In certain cases (attractive interactions) the convexity of�� can be derived from the properties of the corresponding microscopic system as will beexplained later.To any measurable subset A of bTd, we associate the function 1IA = 1Ac � 1A and simplywrite W�(A) = W�(1IA). In this new setting, the isoperimetric problem is to �nd theminimizers ofmin�W�(v) �� v 2 BV(bTd; f�1g); �� ZbTdm� vr dr�� � m	; (1.1.6)where m belongs to ] �m(�); m�(�)[. The parameter �m is chosen such that the minima ofthe variational problem above are translates of the set Km deduced from the Wul� shapeK by dilatation in order to satisfy the volume constraint. This restriction enables us toexclude pathological minimizers which occur from the periodicity. Nevertheless, noticethat the precise shape or the uniqueness of the minimizers of the variational problem willbe irrelevant for the microscopic derivation of the Wul� construction.1.1.3. Stability properties. In two dimensions Wul� solutions to (WP)v are stable inthe metric of Hausdor� distance: let V be a connected and simply connected subset of R2with a recti�able boundary @V . Assume that Area(V ) > 1. Then,minx dH (V; x+K1) 6 c1qW�(V )�W�(K1): (1.1.7)



8 T. BODINEAU, D. IOFFE, AND Y. VELENIKThis result has been established in [DKS] as a generalization of the classical Bonneseninequality.If V consists of several connected and simply connected components, V = _ni=1Vi, andthe total surface tension of V is close to the optimal,W�(V ) = nXi=1W�(Vi) 6 W�(K1) + ";then, again assuming that Area(V ) =Pni=1Area(Vi) > 1, an easy consequence of (1.1.7)implies (see (2.9.7) and (2.9.8) in [DKS]) that actually all but one components of V aresmall, and that the only large component, say V1, is close to a shift of K1. NamelynXi=2 Area(Vi) 6 c2"2 and nXi=2W�(Vi) 6 c3";and V1 satis�es (1.1.7).These stability properties are indispensable for a sharp justi�cation of the phenomeno-logical Wul� construction directly from the microscopic assumptions on the local inter-particle interactions (see Section 3.5 of Part 3).As far as we understand, stability properties of higher dimensional isoperimetric prob-lems are much less studied. Already in three dimensions the Hausdor� distance is, ofcourse, not an adequate measure of stability. Trivial rate-free stability properties in L1simply follow from the uniqueness of Wul� solutions and the compactness of BV-ballsin L1. On a more qualitative side there are well studied stability properties in the classof convex sets [Sch] and, also, for sets with a smooth boundary [Ha]. We feel, however,that the statistical stability under the microscopic approximations in the problems weconsider here might be better than the impartial stability of the corresponding variationalproblems. A result of this sort is supposed to appear in [BIV].1.1.4. Winterbottom problem. The Wul� variational problem provides a descriptionof an equilibrium crystal shape deep inside a region �lled with gas phase. If, however, thespatial extent of the system is �nite, it may happen that the boundary of the surroundingvessel exhibits a preference toward the crystal phase. In such a situation, the equilibriumstate may not be given by the Wul� shape anymore, but may have the crystal attachedto the boundary. We discuss briey the simplest model of such an interaction between anequilibrium crystal and an attractive substrate. Suppose, for simplicity, that our systemis contained in the half-space H = fx 2 Rd : x(d) > 0g; the boundary of this half-space,the hyperplane w = fx 2 Rd : x(d) = 0g represents the boundary of the vessel and iscalled the wall. We also suppose to simplify the analysis, and because these assumptionswill always be satis�ed, that ��(~n) = ��(�~n), and that the homogeneous extension of ��is convex2.To model the degree of attractiveness of the wall, we introduce a new thermodynamicalquantity, the wall free energy �bd(�; �), which depends on both the inverse temperature �and the \chemical structure" of the wall �, and modify the free energy functional accord-ingly, W�;�(V ) �=W�(V ) + (�bd(�; �)� ���)H(d�1)(@V \ w) ;2In the models we consider in this paper, this is a consequence of FKG inequality.



90 Kw�bd(�; �) ���Figure 4. The Winterbottom shape is obtained by taking the intersection between theWul� shape and the half-space fx(d) > � �bd(�;�)g, and rescaling the obtained body.where ��� �= ��(~ed), ~ed 2 Rd with ~ed(k) = �kd. The wall free energy replaces therefore thesurface tension �� along the wall. At equilibrium, a thermodynamical stability argumentshows that �bd(�; �)6 ��� (this can also be proved in some microscopic models, see Part 4),so that this last term is always non-positive. The new variational problem is(WBP)v W�;�(V ) �! min Given: V � H , vol(V ) = v .It has �rst been studied in [Wi] and is called the Winterbottom variational problem. Letus now discuss what its solution looks like. It turns out that there are three cases toconsider:1. �bd(�; �) = ���In this case, W�;�(V ) = W�(V ) and therefore the solution is the Wul� shape as-sociated to ��. The equilibrium crystal is not attached to the wall. This can happeneven if a priori the chemical structure of the wall is such that it is energetically favor-able for the crystal to lay on the wall, see Part 4 for a discussion from a microscopicpoint of view.2. j�bd(�; �)j< ���Now the wall is really attractive for the crystal shape. The solution of the varia-tional problem is given by a suitably rescaled version of the following set (see Fig. 4),Kw �= K \ fx 2 Rd : x(d) > � �bd(�; �)gso that the volume constraint is satis�ed (notice that this variational problem is stillscale invariant); see [KP] for a simple proof.3. �bd(�; �) = ����This is a somewhat pathological case. Indeed, the solution of the variationalproblem is completely degenerate, the solution being unbounded. A minimizingsequence is, for example,Rn = fx 2 H : jx(k)j 6 n; k = 1; : : : ; d� 1; 0 6 x(d) 6 n1�d vg :As n ! 1, Rn covers the whole wall with a �lm of vanishingly small width; thelimiting value of the surface free energy functional is 0. This describes the regime ofso-called complete wetting where the wall so strongly prefers the crystal that it wantsto prevent any contact with the gas phase.



10 T. BODINEAU, D. IOFFE, AND Y. VELENIK1.1.5. Microscopic justi�cation. Microscopic models we consider here are simple lat-tice gas type models (in the magnetic interpretation), which are going to be de�ned pre-cisely in the next section. The prototype situation when the Wul� construction is thoughtto be recovered as a law of large numbers as the size of the microscopic system tendsto in�nity could be loosely described as follows: Suppose that the particles of a certainsubstance live on the vertices of the integer lattice Zd, so that each vertex of Zd could beeither occupied by a particle or remain vacant. Thus, various particle con�gurations ncould be labeled by points of f0; 1gZd, where one puts ni = 1 if there is a particle at sitei 2 Zd, and ni = 0, otherwise. These random con�gurations are sampled from a Gibbsdistribution P, which takes into account the assumptions on the microscopic interactionsbetween the particles. The strength of the interaction is quanti�ed by the value � = 1=Tof the inverse temperature; the larger � (respectively the smaller the temperature T ) is,the stronger is the interaction. In many instances su�ciently low temperatures give riseto two stable phases - the low density phase (which we call vapor) with an average parti-cle density per site �l and the high density phase (crystal) with a corresponding averagedensity �h, 0 < �l < �h < 1.Suppose now that all the particles are con�ned to a large �nite volume vessel �N �Zd, where the subindex N indicates the linear size of �N ; we put for simplicity j�N j =Nd. Let us �x � 2 (�l; �h) and ask what are the typical geometric properties of particlecon�gurations n under the conditional measure P� � ��Pi2�N ni = �Nd�. In other words,we �x the total number of particles �Nd in such a way that it falls in-between the twostable values �lNd and �hNd.The prototype law of large numbers result we have in mind is schematically:P0BBBBBBBBBBBBBBB@ ������ Xi2�N ni = �Nd1CCCCCCCCCCCCCCCA �! 1 :Thus, with an overwhelming P� � ��Pi2�N ni = �Nd�-probability particle con�gura-tions n on �N , n 2 f0; 1g�N , obey the following phase segregation pattern: �N splitsinto two regions, �N = �hN _ �lN , where �hN is occupied by the high density phase, and,respectively, �lN by the low density one. The relative volume of �hN can be recovered fromthe canonical constraint �h���hN �� + �l���lN �� = �Ndand the shape of �hN is asymptotically Wul�.There is a long way even towards making the above statement precise - we should de�nethe microscopic models, quantify the notion of phases, in particular of phases over �nitevolumes, and explain how the surface tension is produced in the large N limit.



111.2. Microscopic Models1.2.1. Models with �nite-range ferromagnetic 2-body interactions. We want tointroduce mathematically precise realizations of the models discussed in subsection 1.1.5.As described there, our interest lies in models of lattice gases. For simplicity we restrictour attention to a particular subclass of such models, which enjoy several nice properties,the Ising models with �nite-range ferromagnetic 2-body interactions.It is rather convenient to work with another, equivalent, formulation of these models,in which the symmetries present are more transparent; this is the magnetic interpretation.To do this, we introduce a new family of random variables �i, i 2Zd, de�ned by�i = 2ni � 1 :The random variables �i therefore take values in f�1; 1g; �i is called the spin at the sitei. Expressed in these variables, the model is de�ned through the following Gibbs measurein � with boundary conditions � 2 f�1; 1gZd,���;�;h(�) = 8><>: 1Z��;�;h exp��Xi2� hi �i + � Xfi;jg\� 6=? Jij �i�j� if �i = �i, for all i 62 �,0 otherwise,where hi 2 R are called the magnetic �elds and the coupling constants Jij = Jki�jk1 satisfyJij > 0 and Jij = 0 if ki � jk1 > r. A con�guration � such that �i = �i, for all i 62 �,is said to be compatible with b.c. � in �; the set of all such con�gurations is denoted by
�;� . We are particularly interested in the + and � b.c. corresponding respectively to� � 1 and � � �1. The Gibbs measure in � with free b.c. is the probability measure on(f�1; 1g�;F�) de�ned by���;h(�) = 1Z��;h exp��Xi2� hi �i + � Xfi;jg�� Jij �i�j� :Expected value w.r.t. these measures are denoted with brackets notations, h � i��;�;h, ...In the magnetic formulation, the Canonical Ensemble corresponds to �xing the value ofthe magnetization (density) m(�) = 1j�jPi2� �i,���;�;h( � jm(�) = em) ;where em 2 Range(m). If hi � h for all i, then the (in�nite-volume) Gibbs states ���;h for+, � and free b.c. can be shown to exist; it is always unique when h 6= 0. The phasetransition statement takes now the following form: There exists 1 > �c > 0 such that� For all � < �c, the Gibbs state is unique and hmi��;0 = 0.� For all � > �c, m�(�) � hmi�+;0 > 0 > hmi��;0 = �m�(�).We will use the terminology Ising models to refer to the lattice gases in the magneticformulation. When h = 0, we will generally omit it from the notations.Ferromagnetic models are particularly well-suited for non-perturbative analyses. In-deed, they enjoy several very useful qualitative properties, most of which taking formof correlation inequalities. Of particular importance for us are the following statements



12 T. BODINEAU, D. IOFFE, AND Y. VELENIK(�A �= Qi2A �i): h�Ai��;h > 0 ;h�A�Bi��;h > h�Ai��;hh�Bi��;h ;provided hi > 0 for all i (1st and 2nd Gri�ths', or GKS, inequalities [Gr, KS]); also,@2@hi@hj h�ki��;h 6 0 ;for all i, j and k, provided hl > 0 for all l (GHS inequalities [GHS]); �nallyhfgi��;h > hfi��;hhgi��;h ;for any increasing3 functions f and g, and any h 2 R� (FKG inequality [FKG]). Observethat any b.c. can be obtained starting with free b.c. and applying suitable magnetic �eldson the spins on the inner boundary of �, where the inner boundary of a set A � Zd isde�ned as @inA �= fi 2 A : 9j 62 A; i � jg ;where i � j means that Ji;j 6= 0. Similarly, we de�ne the (exterior) boundary of A by@A �= fi 62 A : 9j 2 A; i � jg :1.2.2. 2D nearest-neighbors ferromagnetic Ising model. A particularly simple mem-ber of the above-mentioned class of models is the two-dimensional nearest-neighbors Isingmodel, in which Jij = 0 if i and j are not nearest-neighbors, and Jij = 1 if they are. Thismodel has still additional remarkable features. First, even though this only plays a verymarginal role in this review, it is the only one for which it is possible to compute explicitlyvarious quantities (free energy, surface tension, correlations, ...). Of more importance forour purposes is the property of self-duality4 that it enjoys.The nearest-neighbors model admit a geometric description in terms of very simpleobjects, the contours. To de�ne contours in the present context, it is useful to introducethe notion of the dual of the lattice Z2. The dual lattice is the set of dual sitesZ2? = fx 2 R2 : x+ (12 ; 12) 2Z2g :To each edge e = hx; yi, x; y 2Z2, we associate a dual edge e� connecting nearest-neighborsdual sites, which is the unique such edge intersecting e (as subset of R2).Now, if we consider the Ising model in � bZ2 with b.c. �, a con�guration � 2 
�;� isentirely determined by giving the following set of dual edges,fe� : e� dual to e = hi; ji; fi; jg \ � 6= ?; �i�j = �1g :The maximal connected components of these dual edges, seen as closed line segments inR2, are called contours. We denote by (�) the contours of the con�guration �. The3A function f : f�1; 1gZd ! R is increasing if f(�) > f(�0) as soon as �i > �0i, for all i; it is calleddecreasing if �f is increasing.4The fact that this model is self-dual is very convenient, but is not required anywhere. What we needis to be able to control precisely the dual of the model; for example, the Ising model on the hexagonallattice is not self-dual, but it would be possible to prove the same kind of statements for this model as forthe one on the square lattice.



13boundary @ of a contour  is the set of all dual sites belonging to an odd number of thedual edges composing . A contour is said to be closed if @ = ?, otherwise it is open.A set � b Z2 is simply connected if Si2�fx 2 R2 : kx � ik1 6 1=2g is a simplyconnected subset of R2.Given � � Z2, its dual is �� = fi 2 Z2? : 9j 2 �; kj � ik1 = 1=2g. A family ofcontours is said to be ��-compatible if they are disjoint (as sets of bonds and sites) andare included in ��. A family of contours  is said to be (�; �)-compatible if there exists acon�guration � 2 
�;� such that (�) = . It is easy to show that for simply connected�, ��-compatibility of a family of closed contours is equivalent to (�;+)-compatibility.The measure ���;� can be easily written in terms of these objects; for any � 2 
�;� ,���;�(�) = 1Z�� (�) expf�2� X2(�)jjg ; (1.2.1)where jj is the number of edges in  andZ�� (�) = X (�; �)-comp. expf�2�X2jjg � X (�; �)-comp.Y2w(; �) : (1.2.2)We now discuss the property of self-duality. Let � b Z2 be simply connected. Weconsider the model at inverse temperature �� in the box �� bZ2?, with free boundary con-ditions. There exists another graphical representation for this model, the high-temperaturerepresentation, which results from writinge���i�j = cosh ��(1 + �i�j tanh ��) ;opening all the brackets and expanding. After a simple summation over �, this yieldsZ���� = C(�) X ��-comp.(tanh��)P2 jj � C(�) X ��-comp.Y2w�(; ��)� C(�)Z��(��) ; (1.2.3)where C(�) is some constant which only depends on the set �. Setting tanh�� = e�2� ,we see from (1.2.2) and (1.2.3) that Z�+(�) = Z��(��), since � is simply connected. In thesame way, we can expand the 2-point function, for example, and get the following veryuseful identity h�i�ji���;+ = X�:i!j q����(�) ; (1.2.4)where the sum is over all open contours � such that @� = fi; jg, andq����(�) = w�(�; ��) Z��(�� j�)Z��(��) ;Z��(�� j�) = X closed(;�) ��-comp.Y2w�(; ��) :Identity (1.2.4) is the so-called random-line representation for the 2-point function of theIsing model, and plays a basic role in the approach to the DKS theory of Part 3 (see[PV2, PV3] for much more details on this topic). What is particularly useful is that theweights q���� , which we have de�ned for an open contour, can be immediately extended to



14 T. BODINEAU, D. IOFFE, AND Y. VELENIKany family of ��-compatible contours (closed or open). In particular, if  is a family of��-compatible closed contours, then the following identity holdsq����() = ���;+( � ( � )) :Applications and further results about the random-line representation are given in Sec-tion 3.4 and in Part 4. The results stated above also hold when the coupling constantsare allowed to vary from edge to edge, provided they remain ferromagnetic; if we denoteby J(e) the coupling constant at edge e, then the duality relation takes the formtanh(��J�(e�)) = e�2�J(e) : (1.2.5)1.2.3. Kac models. In the original van der Waals Theory, the occurrence of phase transi-tions is due to long range attractive forces between molecules. In its statistical mechanicsformulation, these forces are described by Kac potentials that depend on a positive scalingparameter " which controls the strength and the range of the potential (see [KUH]). The�rst probabilistic approach to this model was made in the celebrated paper of Lebowitzand Penrose [LePe].In dimension d, Ising systems with Kac potentials are de�ned by Gibbs measures withpotentials depending on a scaling parameter " > 08 i; j 2Zd; J"i;j = "dJ("ki� jk2) ;and J is a non-negative, smooth function supported by [0; 1] and normalized so thatZRddr J(krk2) = 1:The Gibbs measure on the domain � is denoted by ��";�. The constant " will be so thatthe system has �nite but long range interaction. It is convenient to consider interactionparameters of the form " = 2�m (m is typically assumed to be large but �xed).This model bridges the �nite range models and the mean �eld models. In particular,if the range of the interaction, i.e. "�1, is scaled proportionally to the number of spinsthen the statistical properties of the system can be recovered from a mean �eld functional.In the true thermodynamic limit, when " is kept �xed while the number of spins goes toin�nity, the behavior of the system cannot be described by the mean �eld continuum limit.Nevertheless, by localizing in �nite size regions it is possible to derive some informationsfrom the mean �eld functional. This strategy was used to recover the phase diagram ofthe model and to prove that it is arbitrarily close to the one of the mean �eld model when" goes to 0. More precisely, let us recall the following result which has been proven byCassandro, Presutti [CP] and by Bovier, Zaharadnik [BZ] (see also [BP])Theorem 1.2.1. For any � > 1, there is "0 > 0 such that for any " smaller than "0 aphase transition occurs and there are at least 2 distinct pure phases �+" and ��" .If � > 1, there is a breaking of symmetry and the spontaneous magnetization is denoted by�+" (�0) = m�". De�ne m� = lim"!0m�". This Theorem was proven via a renormalizationprocedure which we shall describe in Subsection 2.3.1.
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M N�(N;M)~e1~n Figure 5. De�nition of the surface tension.1.2.4. Surface tension. We �x ~n a vector in Sd�1 and consider an orthonormal basis(~e1; : : : ; ~ed�1; ~n). Let b�(N;M) be the parallelepiped of Rd centered at 0 with side lengthN for the sides parallel to (~e1; : : : ; ~ed�1) and side length M for the sides parallel to ~n. Themicroscopic counterpart of b�(N;M) is denoted by �(N;M). The boundary @�(N;M) issplit into 2 sets @+~n �(N;M) = fi 2 @�(N;M) j~i:~n > 0g;@�~n �(N;M) = fi 2 @�(N;M) j~i:~n < 0g:We �x the boundary conditions outside �(N;M) to be equal to 1 on @+~n �(N;M) andto �1 on @�~n �(N;M). The corresponding partition function on �(N;M) is denoted byZ��(N;M);~n;�.Notice that any con�guration � contributing to the partition function Z��(N;M);~n;� con-tains a �-contour  which crosses �(N;M) under the \averaged" direction orthogonal to~n (Fig. 5). Such a contour is absent in the con�gurations � contributing to partition func-tions Z��(N;M);+ with pure boundary conditions on @�(N;M). This contour represents themicroscopic �-interface under the direction ~n.De�nition : The surface tension in the direction ~n 2 Sd�1 is de�ned5 by��(~n) = limN!1 limM!1 � 1Nd�1 log Z��(N;M);~n;�Z��(N;M);+ : (1.2.6)The proof the existence of the surface tension can be found in many papers ( [Ab2], [Pf2]to mention a few). A general approach has been developed by Messager, Miracle-Sole andRuiz [MMR]. The core of their proof is the sub-additivity of the sequence of �nite-volumeapproximation to ��(~n) which is obtained by means of FKG inequality. The proof is alsovalid for a wide range of models like Ising models with �nite range interactions, Potts andSOS models. Furthermore, they showed that surface tension can be de�ned with paral-lelepipeds �(N;MN), where MN is a function of N which diverges as N goes to in�nity.5Notice that surface tension is sometimes de�ned with an extra multiplicative factor 1� .



16 T. BODINEAU, D. IOFFE, AND Y. VELENIKMore general domains can also be considered provided they contain a parallelepiped ofthe type �(N;MN).The convexity of the homogeneous extension of �� (see (1.1.3)) is a consequence of thepyramidal inequality proven in Theorem 3 of [MMR] : Let A0; : : : ; Ad be d + 1 points ofRd and denote by (�i)i�d the simplex de�ned by these points. Let ~ni be the unit normalto �i and j�ij its area. Then, the pyramidal inequality saysj�0j ��(~n0) 6 dXi=1 j�ij ��(~ni):Note also that the homogeneous extension of �� is continuous because it is locallybounded and convex. Furthermore, �� is uniformly positive on Sd�1. This follows fromthe fact that the surface tension ��(~n0) in the direction ~n0 = (1; 0; : : : ; 0) is strictly positiveas � is larger than �c (see Lebowitz and P�ster [LePf]).1.3. Scope of the theoryThe key notion behind the attempts to give a rigorous meaning to the type of the phasesegregation phenomena, which have been vaguely discussed in Subsection 1.1.5, is thatof renormalization or coarse graining. The energy (probability) competes with theentropy (number) of microscopic con�guration in the corresponding energy shells. Macro-scopic quantities like surface tension are produced in the aftermath of the entropy/energycancelation, which is to say that in order to derive large-N (N -linear size of the system)asymptotics one should renormalize appropriate microscopic objects. The appropriate ob-jects here are, of course, microscopic phase boundaries, which decouple between di�erent\large" microscopic phase regions. These renormalization procedures could follow two dif-ferent trends, depending on whether the renormalized (mesoscopic) structures keep trackof the microscopic or macroscopic state of the system.1.3.1. Dobrushin-Koteck�y-Shlosman Theory. The coarse graining of the DKS theoryclosely follows microscopic phase segregation patterns. Basic tools comprise a uctuationanalysis of the microscopic phase boundaries and sharp uniform local limit estimatesover domains encircled by such boundaries. Thus, the notion of �nite volume phasesis quanti�ed by the rate of the relaxation of the statistics of microscopic observables insidethe microscopic phase regions towards the corresponding equilibrium values.The theory has been developed using the low-temperature cluster expansions in theseminal monograph [DKS]. Our exposition in Part 3 is non-perturbative and follows theworks [Pf2], [I1], [I2], [PV2], [ScS3] and [ISc]. By and large the existing results are con�nedto the simplest two-dimensional models (percolation and nearest neighbor Ising).1.3.2. L1-Theory. The renormalization approach of the L1-theory is, in a sense, oppositeto that of DKS. In the latter case the principal coarse grained objects (skeletons, see Part 3)are built upon underlying families of large microscopic contours. Such information iswaved out in the L1-approach, and the basic renormalization objects here are the local(mesoscopic) order parameters or, in the spin language, locally averaged magnetizationon various length scales. The idea is that on su�ciently large scales local averages of themagnetization are, with an overwhelming probability, close to one of the two equilibriumvalues �m�. Thus, under the renormalization, con�gurations are characterized by theirphase labels on di�erent mesoscopic blocks. The objective of the L1-theory is to describetypical mesoscopic magnetization pro�les (or their phase labels) under a relaxed canonical



17constraint of shell type. Unlike in the DKS case, the mesoscopic phase labels are classi-�ed by their proximity to various macroscopic states. Combinatorial complexity of thisapproximation is reduced by an exponential tightness property of the mesoscopic phaselabels (for a general claim of this sort see Theorem 2.2.1), which enables to restrict atten-tion only to L1-compact subsets of feasible macroscopic states, namely to the phase-setsof �nite perimeter. The core of the compactness estimates is based on the renormaliza-tion decoupling techniques introduced in [Pi1] and on the methods developed to controlthe phase of small contours by [I2], [PV2], [ScS3] and [ISc]. These techniques are robustenough to be applied on a renormalized scale in any dimensions in a non perturbativesetting.Our exposition in this review is based on the work of [B1] with, though, one exception{ we speci�cally stress that all the relevant estimates of the L1-theory are obtained onappropriate �nite scales. The validity of Lemma 2.4.1 up to the slab percolation thresholdfollows from the results of [CePi].1.3.3. Boundary Phenomena. Parts 2 and 3 provide a derivation of Wul� constructionfrom the basic principles of Equilibrium Statistical Mechanics. Part 4 is concerned with astudy of the e�ect of the boundary conditions on the macroscopic geometry of the phaseseparation. In particular, it is shown how the interaction with the boundary of the vesselcan be analyzed, and used to provide a derivation of Winterbottom construction. Therelationship between the macroscopic geometry in this case and the wetting transition isalso discussed. The presentation follows [PV2] for the 2D case, and [BIV] for the higher-dimensional ones.1.3.4. Bibliographical review. The rigorous investigation of the macroscopic geometryof phase separation under a canonical constraint certainly started with two seminal pa-pers of Minlos and Sinai in 1967-68 [MS1, MS2]. In these papers, the authors considerednearest-neighbor very low temperature Ising models in arbitrary dimensions d > 2, eventhough they only wrote down the proof explicitly in the case d = 2. Their results couldbe roughly stated in the following way: At su�ciently low temperatures, typical con�gu-rations of the Ising model in the exact canonical ensemble over �nite vessels of linear sizeN , consist of a single large contour whose shape is \nearly a square", whereas the rest ofthe contours are small, that is at most of the order logN . This is the picture of low tem-perature excitations of canonical ground states, and it has been treated by the authors assuch. In particular, the entropic factor has been frequently suppressed by the microscopicenergy cost. However, exact asymptotic results on the level of a microscopic justi�cationof the Wul� construction depend, even at very low but still non-zero temperatures, on anon-trivial entropy/energy competition, and, hence, could not be derived in this way.Then there followed 15-20 years of a relative stagnation, the only contributions to thearea being con�ned to generalizations of [MS1, MS2] to more complicated models [Ku1].A popular interest to the problem has been revived towards mid-eighties in the frameworkof an on-going mingle between probability and statistical mechanics [Sc], [FO], [LeSc],[CCSc].A breakthrough occurred around 1989, when Dobrushin, Koteck�y and Shlosman founda way to derive the Wul� shape in a scaling limit of the low temperature 2D Ising model.They found much more: Essentially the monograph [DKS] sets up a comprehensive math-ematical theory of phase segregation. This theory happened to be an intrinsically prob-abilistic one. The DKS approach is, above all, to quantify the phenomenon of phase



18 T. BODINEAU, D. IOFFE, AND Y. VELENIKseparation in terms of probabilistic limit theorems and, accordingly, to study the proba-bilistic structures related to the canonical states. Thus, in a sharp contrast with most ofthe preceding works, the ideology of [DKS] has been from the start a very robust one and,actually, pertained to the whole of the phase transition region. It could be implemented,however, only at very low temperatures, since the authors used low temperature clusterexpansions as the principal tool for proving the corresponding probabilistic theorems.The ideas of [DKS] did not wait long to inspire a wave of investigations, even before thedraft of the work started to circulate. Two subsequent works of a fundamental importanceare [Pf2], where an alternative simpli�ed proof of parts of the DKS results has beengiven using techniques, which are speci�c to the 2D Ising model, like self-duality, and[ACC], where the Wul� construction has been derived in the context of the 2D Bernoullipercolation, but in a completely non-perturbative fashion, that is down to the percolationthreshold 1=2. In both instances the exact canonical setting has been substituted by shell-type integral constraints, and, respectively, softer integral type limit results have beenused instead of the local estimates of the original DKS theory.The results and techniques of [ACC] and [Pf2] have been combined with profoundrenormalization ideas of [Pi1] and lead to an extension of this weak integral approachto the Wul� construction in the whole of the 2D Ising phase coexistence limit [I1], [I2].Simpler proofs of some of the basic estimates of these two works (e.g estimates in thephases of small contours or skeleton lower bounds) have been found in [ScS1], [ScS2], andthe integral version of the two-dimensional DKS theory has been essentially completedin [PV2], the estimates of the latter work being already optimal along the lines of theintegral approach. Furthermore, P�ster and Velenik [PV1, PV2] investigated the e�ectof boundary conditions, and in particular studied the e�ect of an arbitrary boundarymagnetic �eld, thus providing a derivation of the Winterbottom construction.In spite of these successes, a non-perturbative treatment of the full DKS theory was stillout of reach, because a key ingredient was missing: only rough estimates were availablein the phase of small contours. By proving a local limit theorem in the phase of smallcontours, Io�e and Schonmann were �nally able to provide a non-perturbative version ofthe strong Wul� theory [ISc]. The techniques of [ISc] are based on improved versions ofasymptotic expansions in metastable cuto� phases developed in [ScS3].In principle, the two-dimensional DKS theory should lead to exact expansions of canon-ical partition functions up to zero-order terms. This, however, requires a superb controlover the statistical behavior of microscopic phase boundaries, which is currently beyondthe reach for the Ising model at moderately low temperatures. A certain progress, though,has been reported at very low temperatures [DH], [H] or either in the case of simpli�edmodels [HI]. Finally, it should be noted that at moderately low temperatures the successof the DKS theory in two dimensions has been by and large con�ned to the Ising and per-colation models, and that there are serious technical and possibly theoretical challengesto extend it to more general two-dimensional models (see Section 3.6 for more on this).On the other hand, as it has been communicated to us, an appropriate version of the lowtemperature DKS theory (as originally developed in [DKS]), should apply to any 2-phasemodel in the realm of the Pirogov-Sinai theory [Sh].There is a strong interplay between dynamical properties of the Ising model and itsbehavior in equilibrium : in absence of phase transition, the correlations at equilibriumare related to the exponential relaxation of the system; instead as a phase transitionoccurs, the dynamics is driven by the evolution of droplets (nucleation, motion by meancurvature ...). We will not enter into details and simply refer to the seminal paper on



19metastability by Schonmann and Shlosman [ScS3] and to the lecture notes by Martinelli[Ma] (and references therein) for a survey of the recent works. Let us just mention that, asfar as phase coexistence is considered, many dynamical results are only valid in dimension2 because of the absence of a precise description of the equilibrium properties in higherdimensions.If the 2D case was subject to rapid progress, the best results for higher dimensionsremained for a long time those of Minlos and Sinai.The turning point of the latest developments should be traced back to the seminalworks by Pisztora [Pi1] and by Cassandro and Presutti [CP], where crucial renormalizationdecoupling estimates have been established in the case of the nearest neighbour Ising and,respectively, Kac interactions.The basic philosophy of the L1-approach has been originally developed in the works[ABCP], [BCP], [BBBP], [BBP] in the context of the Ising systems with Kac potentials,and, in a less explicit way, elements and ideas of the theory already appeared in [ACC],[Pi1], [I2] and [PV2].Using an embedding of the renormalized observables into a continuum setting, Alberti,Bellettini, Cassandro and Presutti [ABCP], [BCP] emphasized the appropriateness of geo-metric measure theory setting, introduced relevant analytic approximation procedures (seeSubsection 2.6.1) and proved large deviation bounds for the appearance of a droplet ofthe minority phase in a scaling limit when the size of the domain diverges not much fasterthan the range of the Kac potentials. In this scaling the system can be controlled by a con-tinuum limit via the �-convergence of functionals associated to the spins system [ABCP]and by compactness arguments [BCP].The approach of [ABCP] and [BCP] has been extended by Benois, Bodineau, Butta andPresutti [BBBP], [BBP] to the case when the range of the interaction remains �xed anddoes not change with the size of the system. The latter works are, already, structured ina way very similar to the one we expose here. Thus the main steps of [BBBP] and [BBP]comprise the coarse-graining of the rescaled magnetization pro�les by the L1-proximityto various continuum sets of �nite perimeter, surgery procedures to con�ne interfaces totubes around the boundaries of such sets and exponential tightness arguments to reduce thecombinatorial complexity of the rescaled problem. The essential model-related input hasbeen provided by the decoupling estimates on the renormalized magnetization [CP], [BZ]and by the result on the instanton structure of Kac interfaces [DOPT1, DOPT2]. Thelatter structure, however, yields only approximate bounds at each �xed �nite interactionrange. Consequently, the exact (van der Waals) surface tension could be recovered onlywhen the range of the interaction tends to in�nity, that is only in the Lebowitz-Penroselimit. Nevertheless, at long but �nite range interactions one could say that the typicalmesoscopic con�gurations concentrate on droplets with L1-almost spherical shapes.A complete picture of the higher-dimensional L1-Wul� construction has been, for the�rst time, grasped and worked out in a recent remarkable work [Ce1], where the corre-sponding results have been established in the context of the super-critical 3-dimensionalBernoulli bond percolation. Using novel and unusual renormalization procedures basedon the decoupling results of [Pi1], he has essentially rediscovered all the main steps of theL1-approach as described above. The main turning point of [Ce1] was the introduction of



20 T. BODINEAU, D. IOFFE, AND Y. VELENIKan alternative ingenious de�nition of the surface tension which happened to be compatiblewith the setup of L1-renormalization procedures 6.The work of [Ce1] triggered a wave of new investigations. In [B1] his ideas on how tode�ne and treat the surface tension have been combined with an appropriate adjustment ofthe renormalization approach of [BBBP] and [BBP], which lead to a relatively short proofof the L1-Wul� construction for the nearest neighbour Ising model in three and higherdimensions and at su�ciently low temperatures. Most recently, a similar construction hasbeen established up to the FK slab percolation threshold in [CePi]. In the latter articlenew and important techniques have been developed in order to go around mixed boundaryconditions via bulk relaxation properties of the FK-measures.Although the techniques of the L1-theory might look \soft" when compared to thelocal limit setting of the DKS approach, one should bear in mind that there is always a\hard" step needed to initialize the L1-machinery: The renormalized mesoscopic phaselabels have to possess su�ciently good decoupling properties. For the case of Kac modelsthe corresponding estimates have been established in [CP], [BZ], [BMP], and in the caseof percolation (including FK for the nearest neighbor Ising model) models in dimensiond > 3 in [Pi1], on which both [Ce1],[CePi] and [B1] rely in a fundamental way.Higher dimensional Winterbottom type shapes have been recovered in the context ofe�ective interface models [BI], [BD], [DGI], [DM] following the original two-dimensionalmodel de�ned and studied in [CDR].The results of these works have been also formulated in terms of L1 concentrationproperties, but the corresponding approach is quite di�erent from the one we expose here.Thus, the analysis of [BI] heavily relies on speci�c properties of Gaussian interactions.It should be noted, though, that, unlike in the nearest neighbour higher dimensionalIsing case, there is better insight into the uctuation and relaxation properties of higherdimensional microscopic interfaces [FS], [DGI]. On the other hand, the shapes producedby the e�ective interface models are much less \physical", in particular the equilibriumshapes are not scale invariant, and the corresponding surface tension is not convex.
6It should be noted, though, that despite relative technical simplicity of this observation, the work [Ce1]most certainly prompted the completion of the L1-theory by many years.



21Part 2. L1-TheoryOn the macroscopic level the phenomenon of phase segregation is studied in terms ofconcentration properties of the locally averaged magnetization. Statistical properties ofthe microscopic phase boundaries are waved out, and the backbone of the L1-theory arehard model-oriented renormalization estimates, which enable a sharp surface order analysisof the mesoscopic magnetization pro�les. Example of such coarse graining procedures inthe case of Kac, percolation and Ising models are given in Section 2.3.The averaging is performed on various mesoscopic scales:Mesoscopic Notation. All the intermediate scales are of the form 2k; k 2 N. For anyM = 2k �xed we split the unit torus bTd into the disjoint union of the correspondingmesoscopic boxes, bTd = _x2bTdk bBk (x); (2.0.1)where bTdk is the scaled embedding of the discrete torus TM = f1; : : : ;Mgd into bTd asbTdk �= bTd \ � 1MTM� ;and, given x 2 bTd the box bB k (x) � bTd is de�ned viabBk (x) �= x+ h� 12k+1 ; 12k+1 �d:Let us use Fk to denote the (�nite) algebra of the subsets of bTd generated by the parti-tion (2.0.1) . Given the size of the system N = 2n, the local magnetization Mk on theM = 2k 6 N scale is always an Fn�k-measurable function. This notation should not beconfusing: the subindex k inMk measures the \coarseness" of the mesoscopic magnetiza-tion pro�le. Thus, M0 corresponds to the microscopic con�guration, and Mn identicallyequals to the averaged total magnetization. In general the local magnetization Mk is apiecewise constant function on bTd de�ned as8x 2 bTdn�k; 8y 2 bBn�k (x); Mk(�; y) = 1Md Xj2BM (2nx)�j :Notice that the microscopic counterpart of the box bBn�k (x) is the box BM (2nx) of sidelength M centered in 2nx.We formulate all the results of Section 2.1 for the nearest neighbor Ising model. Alongwith the super-critical Bernoulli percolation this is the only instance when a relativelycomplete L1-theory has been developed. In both instances, the validity of the L1-Theoryhinges in a crucial way on the validity of Pisztora's coarse graining [Pi1], which is byfar the most profound model related fact employed. Nevertheless, the approach itself israther robust, and in subsequent Subsections we shall try to distinguish between speci�cmodel dependent properties and more general results. In particular, compactness prop-erties of local magnetization pro�les are discussed in Section 2.2 without any referenceto speci�c models. Instead we briey indicate how the conditions of the correspondinggeneral exponential tightness Theorem could be veri�ed in several particular cases.



22 T. BODINEAU, D. IOFFE, AND Y. VELENIK2.1. Results and the strategy of the proof2.1.1. Main results. For simplicity, we restrict to the case of the torus TN and denoteby �N the Gibbs measure with periodic boundary conditions.De�ne the total magnetization MTN asMTN �= 1Nd Xi2TN �i:Let us de�ne also the set Bp asBp = f� : Pisztora's coarse-graining hold for the Ising model at inverse temperature �g:We refer to the original article [Pi1] and [CePi] for the precise relevant de�nitions (seealso remark at the end of the Subsection 2.3.3). It is known that Bp contains all exceptfor at most countably many points of the interval ] ~�c;1[, where ~�c is the so called slabpercolation threshold, which is conjectured to coincide with �c.A compact way to state the main result of the L1-theory is:Theorem 2.1.1. For any � 2 Bp and m in ] �m;m�[limN!1 1Nd�1 log �N���MTN�� 6 m� = �W�(Km);where �m = �m(�) and Km were de�ned in Subsection 1.1.2.Remark. The above Theorem has been established for � � 1 in [B1]. The only additionalingredient required for an extension of the results of the latter paper to the whole of thetemperature range ~�c was the validity of the Lemma 2.4.1. Such a statement happens tobe highly non-trivial, and it has been proven in [CePi] along with an alternative derivationof the claim of Theorem 2.1.1.Theorem 2.1.1 looks like a surface order large deviation principle. Such an appellation,however, would not help to explain the structure of the underlying phenomena. In factTheorem 2.1.1 is essentially equivalent to a seemingly stronger statement on the macro-scopic geometry of the phase segregation of local magnetization pro�les under the condi-tional measure �N � � �����MTN�� 6 m�:For any function v in L1(bTd; [� 1m� ; 1m� ]), the �-neighborhood of v is denoted by V(v; �)V(v; �) �= �v0 2 L1�bTd; [� 1m� ; 1m� ]� �� ZbTd jv0x � vxj dx 6 �� :The L1-Theorem on the phase separation says that for � large enough with �N � : ��� ��MTN�� � m�-probability converging to 1, the functionMk is close to some translate of the Wul� shapem�1IKm .More precisely, �x a number � < 1=d.Theorem 2.1.2. For any � 2 Bp and m in ] �m;m�[ the following holds:For every � > 0, one can choose a scale k0 = k0(�; �), such thatlimN!1 mink0 6 k 6 �n �N 0@Mkm� 2 [x2bTdV(1IKm+x; �) ��� ��MTN�� 6 m1A = 1;



23where �m and Km were de�ned in Subsection 1.1.2.The proofs of Theorems 2.1.1 and 2.1.2 are similar and are divided into 2 steps. The�rst step amounts to prove a compactness Theorem and the second one to derive preciselogarithmic asymptotics.2.1.2. Exponential tightness. Recall [EG] that for any a positive, the setKa �= �v 2 BV(bTd; f�1g) j P(fv = 1g) 6 a	;is compact with respect to convergence in L1(bTd).Proposition 2.1.1. Let � be in Bp. Then there exists a constant C(�) > 0 such that forall � positive one can �nd k0(�)8a > 0; lim supN!1 1Nd�1 maxk0(�) 6 k 6 �n log�N �Mkm� 2 V(Ka; �)c� 6 � C(�) a;where V(Ka; �) is the �-neighborhood of Ka in L1(bTd; [� 1m� ; 1m� ]).This proposition tells us that only the con�gurations close to the compact set Ka havea contribution which is of the surface order. This statement reduces the complexity of theproblem : as Ka is compact, it is enough to derive the leading terms in the logarithmicasymptotics for the probability of a �nite number of events.In Section 2.2, we prove that the analog of Proposition 2.1.1 holds for a broad class ofmodels.2.1.3. Precise logarithmic asymptotics. As the minimizers are known, it is su�cientto derive a lower bound for con�gurations concentrated close to Km.Proposition 2.1.2. Let � be in Bp and let m be in ] �m;m�[lim infN!1 1Nd�1 mink0(�) 6 k 6 �n log�N �Mkm� 2 V(1IKm ; �)� > �W�(Km)� o(�) ;where the function o(�) depends only on � and vanishes as � goes to 0.According to proposition 2.1.1, we will prove the upper bound only for a restricted classof eventsProposition 2.1.3. Let � be in Bp. Then for all v in BV(bTd; f�1g) such that W�(v) is�nite, one can choose �0 = �0(v), such that uniformly in � < �0lim supN!1 1Nd�1 maxk0(�) 6 k 6 �n log�N �Mkm� 2 V(v; �)� 6 �W�(v) + o(�) :where the function o(�) depends only on � and v and vanishes as � goes to 0.The Propositions above ensure that given a precision �, there is a �nite scale k0(�) afterwhich the phases are uniformly segregated with this precision.



24 T. BODINEAU, D. IOFFE, AND Y. VELENIK2.1.4. Scheme of the proof. The scheme of the proof is well known in the soft contextof large deviations: one �rst proves an exponential tightness property and then a weaklarge deviation principle (Proposition 2.1.2 holds also for any bounded variation functionwith �nite perimeter). To be sure, the proof itself has nothing to do with the theory oflarge deviations: the central tools here are the renormalization estimates leading to Peierlstype bounds and estimate in the phase of small contours, and, of course, the identi�cationmethods to produce the macroscopic surface tension in the precise logarithmic asymptotics.Thus, Proposition 2.1.1 tells us that, under the appropriate renormalization, the occur-rence of many small contours or of very large contours is unlikely. It is a straightforwardconsequence of the general exponential tightness Theorem 2.2.1, which we state in Sec-tion 2.2. The statement is reminiscent to the results proven in [BBP], but the proof itselfis based on the analysis of the phase of small contours developed in [I2], [ScS1], [PV2].To prove Propositions 2.1.2 and 2.1.3, we �rst consider the macroscopic event �Mkm� 2V(v; �)	 and by using several localization procedures, we reduce to compute the probabilityof microscopic events from which, adopting the procedure developed in [Ce1], we can derivethe exact surface tension factor. This enables us to avoid the computations related to themicroscopic phase boundaries at, however, a principal cost of loosing track of the latter.Since the most likely con�gurations in �Mkm� 2 V(v; �)	 are those for which both phasescoexist along the boundary of @�v, we would like to prove that a microscopic interface islocalized close to the boundary. To derive the lower bound (Proposition 2.1.2), one canenforce such a microscopic interface and then recover the surface tension factor.This is not the case for the upper bound (Proposition 2.1.3) because the L1 constraint�Mkm� 2 V(v; �)	 imposed on the magnetization is not strong enough to localize the interfaceclose to @�v : there might be mesoscopic �ngers of one phase percolating into the other.To circumvent this problem, we follow an argument developed in [BBBP] and �rst provea weak localization on a mesoscopic level. This involves a surgery procedure called theminimal section argument. This procedure ensures that one can chop o� the mesoscopic�ngers without changing too much the probability of the event and therefore localize theinterface on a mesoscopic level. The renormalization is an essential feature of this proof.Once the interface is localized on the mesoscopic level, it remains to identify surfacetension.We now proceed by �rst de�ning a coarse graining and deducing the exponential tight-ness from Theorem 2.2.1. Then we compute the logarithmic asymptotics.2.2. Coarse graining and mesoscopic phase labelsAt every mesoscopic scale M = 2k the local magnetization Mk gives a coarse grainedrepresentation of the system. Statistical properties of the microscopic con�gurations arewaved out, and instead one keeps track only of the local order parameters over the cor-responding mesoscopic blocks. These are quanti�ed by three values �1 and 0 accordingto whether they are su�ciently close to one of the two equilibrium values �m� or not.0-blocks play the role of the mesoscopic phase boundaries, and the �1 blocks of the cor-responding mesoscopic phase regions. Thus, the outcome of the renormalization could beschematically represented as the following two-step diagram :�Microscopiccon�gurations� �! �Localmagnetization� �! �Mesoscopicphase labels� :



25There are two principal results to be discussed in this Subsection: we show that the L1-di�erence between the local magnetization and the corresponding phase labels vanisheson the exponential scale, and we give a general exponential tightness criterion for familiesof f�1; 0g-valued phase label functions. In Section 2.3, we will indicate how to constructphase labels in the case of Kac, percolation and nearest neighbor Ising models.De�nition : A f�1; 0g-valued function u on bTd is called a mesoscopic phase label, ifthere exists k 2 N, such that u is an Fk-measurable function.2.2.1. Tightness theorem for mesoscopic phase labels. We �x now a sequence ofnon-negative numbers f�kg such that limk!1 �k = 0: (2.2.1)The following compactness result holds uniformly in the microscopic scales N = 2n.Theorem 2.2.1 (Tightness of Mesoscopic Phase Labels). Let N = 2n and assume thatfuk(!; x)g is a sequence of random mesoscopic phase label functions de�ned on the commonprobability space (
N ;AN ;PN), such that the realizations of uk 2 Fn�k ; k = 1; :::; n, andfor every k the following two conditions hold:A. The distribution of the family of random variables fjuk(!; x)jgx2bTdn�k is stochasticallydominated by the Bernoulli site percolation measure P�kperc on bTdn�k. In particular,PN (uk(x1) = 0; :::; uk(x`) = 0) 6 (�k)`: (2.2.2)B. If for two di�erent points x; y 2 bTdn�k the corresponding uk-phase labels have oppositesigns, that is if uk(x)uk(y) = �1, then on any �ner scale k0 6 k any �-connected chain ofbBn�k0 blocks joining bBn�k (x) to bBn�k (y) contains at least one block with zero k0-label.Then for every a > 0 and � > 0 there exists a �nite scale k0 = k0(�), such that1Nd�1 logPN (uk 2 V(Ka; 2�)c) 6 � c1(d)min��2n�dk ; a2(d�1)k0 ; �2n�dk0nd � ; (2.2.3)for all k > k0 .Remark . The proof of this general theorem is given in Appendix A. Notice that forN su�ciently large we obtain a simpler surface order estimate which, for every � < 1=d�xed, holds uniformly in all mesoscopic scales k0(�) 6 k 6 � logN ,1Nd�1 logPN (uk 2 V(Ka; 2�)c) 6 � c1(d) a2(d�1)k0 : (2.2.4)Also an inspection of the proof shows that the tightness of the phase labels on a certainscale k does not depend on the validity of Assumptions A and B on the successive scalesk0 > k. In particular, the estimate (2.2.4) is valid on �xed (large) �nite scales k = k0, oncethe Assumption A is satis�ed, and once any �-connected sign changing chain of k0-blocksnecessarily contains a 0-block. This simpli�ed version of Theorem 2.2.1 is used in the caseof Kac potentials which we discuss in Subsection 2.3.1.



26 T. BODINEAU, D. IOFFE, AND Y. VELENIK2.2.2. Relation to magnetization pro�les. The original Gibbs measure is related tothe above abstract setting in the following way: For every N = 2n, one constructs a(possibly enlarged) probability space (
N ;AN ;PN), on which both the spin variables� 2 f�1;+1gTN and various indexed families fu�kg of mesoscopic phase labels are de�ned.Such construction should enjoy the following set of properties:C1. The marginal distribution of � under PN is precisely �N .C2. For every � > 0 the family fu�kg of mesoscopic phase labels satis�es Assumption Aof Theorem 2.2.1 with the corresponding sequence f�k;�g of site percolation probabilitiesobeying (2.2.1).C3. For every k 2 f0; :::; ng and � > 0 the local magnetization pro�le Mk and the phaselabel u�k are related as follows: PN-a.s.,���Mk(x)�m�u�k(x)��� 6 � whenever ju�k(x)j = 1: (2.2.5)Notice that both functions above are Fn�k-measurable, that is (2.2.5) should be veri�edover the mesoscopic boxes indexed by the points x 2 bTdn�k.Under conditions C1-C3, given any � > 0 one can choose the accuracy � of the coarsegraining, a �nite scale k0 = k0(�; �) and a sequence of mesoscopic phase labels fu�kg, suchthat for every � < 1=d �xed,1Nd�1 logPN � maxk0 6 k 6 �n kMk �m�u�kk1 > �� 6 � c2 2(1�d�)n: (2.2.6)Notice that (2.2.6) holds uniformly in the size of the system N = 2n, once AssumptionsC1-C3 do so.Let us check (2.2.6). By the very construction,kMk �m�u�kk1 6 � + 2jbTdn�kj Xx2bTdn�k 1u�k(x)=0:Consequently, using the domination by the Bernoulli site percolation (Assumption A),PN �kMk �m�u�kk1 > �� 6 PN0B@ 1jbTdn�kj Xx2bTdn�k 1u�k(x)=0 > � � �2 1CA6 P�k;�perc0B@ 1jbTdn�kj Xx2bTdn�k 1u�k(x)=0 > � � �2 1CA 6 exp��c12d(n�k) log � � �2�k;� � :The latter estimate is of the super-surface order once �k;� � (� � �)=2 and k < n=d.2.3. Examples of mesoscopic phase labelsWe show that mesoscopic phase labels can be constructed in the case of Kac, percolationand Ising models.



272.3.1. Kac potentials. For this model mesoscopic phase labels are de�ned on the originalspace of spins � 2 f�1;+1gTN : the coarse graining is obtained by averaging locally themagnetization. Recall that we are using dyadic length scales N = 2n.Phase labels are constructed in three steps. First, for any integer k and � > 0, weintroduce the block spin variables �u�k which label the boxes bBn�k according to the averagedmagnetization over the boxes of the linear size M = 2k. These �u�k are constant on each ofthe blocks bBn�k (x) with x 2 bTdn�k�u�k(�; x) �= � �1 if j 1MdPi2BM (2nx) �i �m�j < �;0 otherwise:In the Kac case we do not use Theorem 2.2.1 in its full generality, the object of thecoarse graining is to choose a �nite scale k0, such that the family of mesoscopic phaselabels is exponentially tight in L1. Recall that the scaling parameter is chosen such that" = 2�m with m large but �xed. Eventually �nite renormalization scales k0 are goingto satisfy k0 = m + a0, where a0 depends on � and �, but not on m. The sign of thek0-label over a box bBn�k0 (x) depends on a more re�ned information on the uctuations ofthe magnetization inside the box : we choose another scale `0; `0 = m� b0, where, as inthe case of a0, the scale b0 will eventually depend only on � and �, and de�ne the familyof modi�ed block spins f~u�k0g on the k0-scale as~u�k0(�; x) �= � �1 if �u�̀0(�; y) = �1; 8 y 2 bTdn�`0 \ bBn�k0 (x)0 otherwise:Finally, we de�ne the mesoscopic phase label functions fu�k0(�; x)g. If ~u�k0(�; x) = 0, weset u�k0(�; x) = 0. If x; y 2 bTdn�k0 are �-neighbors, but the corresponding modi�ed blocksspins satisfy ~u�k0(�; x) ~u�k0(�; y) < 0 then u�k0(�; x) = u�k0(�; y) = 0. Otherwise, we setu�k0(�; x) = ~u�k0(�; x).A consequence of the Peierls estimate proven in [CP] and [BZ] is that assumption A issatis�ed, namelyTheorem 2.3.1. For any � > 1, there exists �0 = �0(�) > 0, such that the followingholds: For any � < �0 one can choose "0 = "0(�), a0 = a0(�) and b0 = b0(�), such thatuniformly in the interaction parameters " = 2�m < "0,�";N �u�k0(x1) = 0; : : : ; u�k0(xr) = 0� 6 exp�� c0"d r� ;where, for every �xed " = 2�m < "0, the mesoscopic phase labels u�k0 are constructed onthe scales k0 = m+ a0(�) and l0 = m� b0(�).Remark. A more re�ned statement implying exponential decay of correlations was provenin [BMP]. Notice that conditions C1-C3 of the previous Section are satis�ed by de�nitionof the mesoscopic phase label functions. Notice also that assumption B of Theorem 2.2.1is automatically satis�ed on the k0-scale. Thus, the family fu�k0g is exponentially tight inL1.A similar renormalization procedure was carried out by Lebowitz, Mazel and Presutti[LMP] for a system of point particles in Rd interacting with Kac potentials. In this case thestudy of phase transition in the continuum is much more involved. Beyond a proof of the



28 T. BODINEAU, D. IOFFE, AND Y. VELENIKliquid-vapor phase transition, their results provide an accurate description of the systemin terms of mesoscopic phase labels which represent the liquid and the gaseous phases.Such a coarse graining should be helpful to obtain further results on phase coexistence inthe continuum.2.3.2. Bernoulli bond percolation. Bernoulli bond percolation exhibits features similarto the Ising model as phase transition and surface order behavior in a regime of phasescoexistence. Nevertheless, as the setting is di�erent from the Ising model, we briey recallsome notation. The set of edges is E = �fx; yg j x � y	, where x � y means that thevertices are nearest neighbors. An edge b in E is open if !b = 1 and closed otherwise.To any subset � b Zd, we associate [�]e the set of edges in �. The space of bondscon�gurations in � is 
� = f0; 1g[�]e. For a given p in [0; 1], we de�ne the Bernoulli bondpercolation measure on 
� by�p�(!) = Yb2[�]e(1� p)1�!bp!b :For simplicity �pN denotes the measure on 
N = 
TN.Let ! be a con�guration in 
, an open path (x1; : : : ; xn) is a �nite sequence of distinctnearest neighbors x1; : : : ; xn such that on each edge !fxi;xi+1g = 1. We write fA $ Bgfor the event such that there exists an open path joining a site of A to one of B. Theconnected components of the set of open edges of ! are called !-clusters.A phase transition is characterized by the occurrence of an in�nite cluster. De�ne �pby �p = limN!1�pN (f0$ @TNg) ; (2.3.1)then there is a critical value pc in ]0; 1[ such that for any p below pc there is no percolationand �p = 0, instead for any p above pc the occurrence of an in�nite cluster starting from0 has positive probability �p. In the thermodynamic limit, there exists only one limitingGibbs measure and almost surely a unique in�nite cluster with local density �p. In orderto mimic the coexistence of 2 phases in the �nite domains TN, we say that one phase isformed by the largest cluster and the other phase by the other clusters.For this model, Pisztora introduced a renormalization procedure [Pi1], [DePi], [Pi2]which holds as soon as p > pc and d > 3. The mesoscopic phase labels fu�kg will bede�ned for any mesoscopic scale M = 2k, where k is an integer which eventually dependson N . This construction requires 2 steps. The �rst step is to retain only the main featuresof the typical con�gurations on �nite size boxes BM . Then we attribute a sign to theblocks bBn�k according to the phase they represent. Set M 0 = 2M . For any x in bTdn�k, thefollowing events depend only on con�gurations in the box BM 0 (2nx).Ux = �! 2 
N �� there is a unique crossing cluster C� in BM 0 (2nx)	 :A crossing cluster is a cluster which intersects all the faces of the box. Let ` be an integersmaller than k which will be �xed laterRx = Ux\n! 2 
N �� every open path in BM 0 (2nx) with diameter larger than 2`is contained in C� o;



29where the diameter of a subset A of Zd is supx;y2A kx� yk1. Finally, we consider an eventwhich imposes that the density of the crossing cluster in BM (2nx) is close to �p withaccuracy � > 0V �x = Ux\�! 2 
N �� jC� \ BM (2nx)j 2 [�p � �;�p + �]Md	;where j � j denotes the number of vertices in a set.Each box bBn�k (x) is labeled by the variable ~u�k(!; x)8x 2 bTdn�k; ~u�k(!; x) �= � 1 if ! 2 Rx \ V �x ;0 otherwise:Let fx1; : : : ; xrg be vertices in bTdn�k not �-neighbors of x, then [Pi1] implies that for everyp > pc, there exists k0(p; �), and `0(p) such that for all k > k0 and k > ` > `0�pN �~u�k(x) = 0 �� ~u�k(x1); : : : ; ~u�k(xr)� 6 exp(�c1 2`) + exp(�c2(�)2k);From [LSS] (Theorem 1.3), we deduce that for k and ` large enough, the random variablesf~u�k(x)g are dominated by a Bernoulli site percolation measure P�kperc�k 6 exp(�c(�) 2`): (2.3.2)A straightforward way to recover the previous statement is to partition bTdn�k into c(d)sub-lattices �bTdn�k�1;i�i�c(d) which are translates of bTdn�k�1. Any collection of verticesfx1; : : : ; xrg in bTdn�k can be rearrange into c(d) subsets fx(i)1 ; : : : ; x(i)ri g such that eachfx(i)1 ; : : : ; x(i)ri g belongs to bTdn�k�1;i. Applying H�older inequality, we get�pN �~u�k(x1) = 0; : : : ; ~u�k(xr) = 0� 6 c(d)Yi=1�pN �~u�k(x(i)1 ) = 0; : : : ; ~u�k(x(i)ri ) = 0� 1c(d) :As the vertices in bTdn�k�1;i are not �-neighbors in bTdn�k, the domination by a Bernoulliproduct measure follows.We say that a block bBn�k (x) is regular if ~u�k(x) = 1. Finally we de�ne the mesoscopicphase labels u�k to be equal to 1 on the regular blocks connected to the largest clusterand to �1 on the regular blocks disjoint from the largest cluster. Otherwise, we setu�k(!; x) = ~u�k(!; x) = 0. From (2.3.2), the mesoscopic phase labels satisfy assumptionA. Notice that if x and y are �-neighbors in bTdn�k the boxes BM 0 (2nx) and BM 0 (2ny)overlap. Choosing the parameter ` 6 k � 3 we insure that if the boxes bBn�k (x) andbBn�k (y) are both regular, then the crossing clusters in these boxes are connected. Thisimplies that assumption B is satis�ed : two blocks with k-labels of di�erent signs cannotbe �-connected.The Bernoulli bond percolation model is precisely described by Pisztora's coarse grain-ing, namely on a su�ciently large scale 2k, the typical con�gurations have a unique crossingcluster surrounded by small islands of size smaller than 2`. According to Theorem 2.2.1,the family fu�kg is exponentially tight in L1.



30 T. BODINEAU, D. IOFFE, AND Y. VELENIK2.3.3. Ising nearest neighbor. An extension of the preceding renormalization procedureapplicable to the Ising model has been also introduced in [Pi1]. Unlike Ising model withKac potentials, this coarse graining is de�ned on an enlarged phase space via the FKrepresentation. For a review of FK measures, we refer the reader to [Pi1], [ACCN] and[Gri].Let us recall the de�nition of the random cluster measures (or FK measures) whichare a generalization of the Bernoulli bond percolation measures with correlated bonddistribution. To any subset � of Zd and � included in @�, we associate a set of edges[�]�e = �fx; yg j x � y; x 2 �; y 2 � [ �	;and the space of con�gurations in � is 
�� = f0; 1g[�]�e . The �rst step is to introduce ameasure on 
��. A vertex x of � is called �-wired if it is connected by an open path to�. We call �-clusters the clusters de�ned with respect to the boundary condition � : a�-cluster is a connected set of open edges in 
�� and we identify to be the same cluster allthe clusters which are �-wired, i.e. connected to �. For a given p in [0; 1], we de�ne theFK measure on 
�� with boundary conditions � by��;p� (!) = 1Z�;p� 0@ Yb2[�]�e (1� p)1�!bp!b1A 2c�(!);where Z�;p� is a normalization factor and c�(!) is the number of clusters which are not �-wired. If � = @� then the boundary conditions are said to be wired and the correspondingFK measure on 
w� is denoted by �w;p� . Finally, the periodic measure on the torus TN isdenoted by �per;pN and the phase space by 
perN .In order to recover the Gibbs measure ��, we �x the percolation parameter p� =1 � exp(�2�) and generate the edges con�guration ! in 
perN according to the measure�per;p�N . Given !, we equip randomly each !-cluster with a color �1 with probability 12 in-dependently from the others. This amounts to introducing the measure P!N on f�1; 1gTNsuch that the spin �i has the color of the cluster attached to i. The Gibbs measure �N canbe viewed as the �rst marginal of the coupled measure PN(�; !) = P!N (�)�per;p�N (!) on thespace f�1; 1gTN 
 
perN . In the case of �-wired boundary conditions, the spins attachedto the �-wired cluster are equal to 1.As a consequence of this representation, one has for any increasing sequence of sets �Nm� = limN!1�+�N (�0) = limN!1�w;p��N (f0$ @�Ng) = �p� :In the following, we use m� or �p� depending on the context. Furthermore, we supposethat limN!1�f ;p��N (f0$ @�Ng) = limN!1�w;p��N (f0$ @�Ng) = �p� : (2.3.3)This property is satis�ed for all � outside a subset of R which is at most countable (seeLebowitz [L] and P�ster [Pf1]).On the scale M = 2k, we de�ne, in the same way as for Bernoulli bond percolation, thevariables ~u�k(!; x) which are piecewise constant on each box bBn�k (x) with x in bTdn�k. Themesoscopic phase labels depend on the averaged magnetization in regular blocks. De�ne



31the label of bBn�k (x) byu�k(�; !; x) �= � sign(C�) if ~u�k(!; x) = 1 and jMk(�; x)� sign(C�)m�j < 2�;0 otherwise;where C� is the crossing cluster in BM (2nx).In a regular box bBn�k (x) (i.e. ~u�k(x) = 1), the averaged magnetization is controlledby the random coloring of the small clusters included in BM (2nx). So that the averagedmagnetization in a regular box is independent of the con�gurations in the neighboringboxes. In the case of Ising model, the additional parameter ` = `(k) is tuned in order tocontrol the uctuations of the magnetization over the small clusters. As a consequenceof this, assumptions A, B and C1-C3 are satis�ed for p� above a certain non-trivial slabpercolation threshold p~�c , which is conjectured to coincide with p�c (see [Pi1] for details),and Theorem 2.2.1 holds.Remark . Using the notations of this Subsection, the set Bp introduced in Subsection2.1.1 could be de�ned asBp = f� : � > ~�c and (2.3.3) holdsg:2.4. Surface tensionWe are going to derive Propositions 2.1.2 and 2.1.3 for Ising model with nearest neighborinteraction. As explained before, the philosophy of the proof is to start from the macro-scopic level and to localize successively on �ner scales with the help of a coarse graining.The approach itself is quite general. Nevertheless the coarse graining is model dependent,therefore we will need �rst to state an alternative representation of the surface tension interms of the FK representation in order to use the estimates which will be obtained fromPisztora's coarse graining. The idea of such de�nitions has been introduced in [Ce1].2.4.1. FK representation. We �x ~n a vector in Sd�1 and study ��(~n). Following no-tation of Subsection 1.2.4, we consider, for any " positive, the parallelepiped b�(N; "N)of Rd oriented according to ~n. Namely, the basis of b�(N; "N) with side lengths equal toN is orthogonal to ~n and the other sides have lengths equal to "N . For simplicity itsmicroscopic counterpart b�(N; "N) \Zd will be denoted by �N (").By using the correspondence between the Ising model and the FK representation, onecan rewrite �� in terms of the bond model. Let f@+�N (") 6$ @��N(")g be the event suchthat there is no open path inside �N(") joining @+�N(") to @��N("). Then,��(~n) = limN!1 � 1Nd�1 log �w;p��N (")�f@+�N(") 6$ @��N(")g�: (2.4.1)Notice that the event f@+�N(") 6$ @��N(")g takes only into account the paths inside�N(") and not the identi�cation produced by wired boundary conditions. The relationabove will be useful only in the proof of Proposition 2.1.2.We are now going to state an approximate expression of the surface tension whichis weakly dependent on the boundary conditions. It will be used in the derivation of



32 T. BODINEAU, D. IOFFE, AND Y. VELENIKProposition 2.1.3. Let �0N (") be the the parallelepiped�0N (") = ni 2 �N(") �� ~i � ~n 2 [�"4N; "4N ]o ; (2.4.2)and denote by @top�0N(") (resp @bot�0N(")) the face of @+�0N(") (resp @��0N(")) orthogonalto ~n. Let f@top�0N(") 6$ @bot�0N(")g be the event such that there is no open path inside�0N(") connecting @top�0N(") to @bot�0N("). One hasLemma 2.4.1. [[B1] � � 1, [CePi] � 2 Bp] For any � 2 Bp��(~n) = � 1Nd�1 log ��;p��N (") �f@top�0N(") 6$ @bot�0N(")g�+ c";N(�); (2.4.3)where the function c";N goes to 0 as N tends to in�nity and " goes to 0, uniformly overthe boundary conditions � and ~n 2 Sd�1.As it will be explained in Part 4 on the wetting phenomenon, the system is in fact ex-tremely sensitive to boundary conditions. Nevertheless in the above Lemma, the interfaceis constrained to be in �0N("), so that it does not feel the inuence of the boundary : theboundary conditions are screened because the system relaxes to equilibrium in the region�N(") n �0N(").Let us �rst examine the inuence of the boundary conditions � on the faces of �N(")orthogonal to ~n. As f@top�0N (") 6$ @bot�0N(")g is a decreasing event, FKG inequalityimply that it is enough to check that��(~n) = limN!1 � 1Nd�1 log �f ;w;p��N (")�f@+�0N(") 6$ @��0N(")g�; (2.4.4)where �f ;w;p��N (") is the FK measure with free boundary conditions on the faces orthogonal to~n and wired on the others. This can be proved by means of a Peierls argument for � largeenough [B1] or by an analysis of the relaxation of the clusters density for � in Bp [CePi].As already noticed in [Ce1] in the context of percolation, the inuence of the boundaryconditions on the sides of �N(") parallel to ~n is negligible as " goes to 0. This explainsthat the factor c";N(�) vanishes uniformly over the boundary conditions.2.4.2. Extended representation. We would like to stress that the previous treatment ofthe surface tension is not satisfactory and a more coherent approach would be to considera more general de�nition independent of the model in terms only of mesoscopic phaselabels. In fact, a de�nition of surface tension valid in an abstract setting would be di�cultto use because the surgical procedure of the minimal section argument requires a preciseknowledge of how the microscopic system is related to the mesoscopic phase labels.2.5. Lower bound : Proposition 2.1.2The proof is divided into 3 steps. We �rst start by approximating the surface @�Km bya regular surface @ bK and imposing the condition that a mesoscopic interface exists closeto @ bK. Then, using the de�nition of surface tension (2.4.1), we derive Proposition 2.1.2.
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Figure 6. Polyhedral approximation.

bU�~nibBi bRi Km2.5.1. Step 1 : Approximation procedure. A polyhedral set has a boundary includedin the union of a �nite number of hyper-planes. The surface @�Km can be approximatedas follows (see Fig. 6)Theorem 2.5.1. For any � positive, there exists a polyhedral set bK such that1I bK 2 V(1IKm ; �) and ��W�( bK)�W�(Km)�� 6 �:For any h small enough there are ` disjoint parallelepipeds bR1; : : : ; bR` with basis bB1; : : : ; bB`included in @ bK of side length h and height �h. Furthermore, the sets bB1; : : : ; bB` cover @ bKup to a set of measure less than � denoted by bU � = @ bK nSì=1 bBi and they satisfy��� X̀i=1 Z bBi ��(~ni) dH(d�1)x �W�(Km)��� 6 �;where the normal to bBi is denoted by ~ni.The proof is a direct application of Reshtnyak's Theorem and can be found in the paperof Alberti, Bellettini [AlBe].Using Theorem 2.5.1, we can reduce the proof of Proposition 2.1.2 to the computation ofthe probability of fMkm� 2 V(1I bK ; �)g. According to (2.2.6) the estimates can be restated interms of the mesoscopic phase labels. For any � > 0, there exists � = �(�) and k0 = k0(�)such that Proposition 2.1.2 will be implied bylim infN!1 1Nd�1 mink0(�) 6 k 6 �n logPN �u�k 2 V(1I bK ; �)� > �W�( bK)� o(�): (2.5.1)2.5.2. Step 2 : Localization of the interface. The images of bK, bRi and bU � in TN willbe denoted by KN , RiN and U �N . In order to enforce a mesoscopic interface which crosseseach RiN , we de�ne the event A = \̀i=1f@+RiN 6$ @�RiNg :We consider also B the set of con�gurations such that the bonds at distance less than 10of U �N are closed. Notice that these events depend only on bonds variables. One hasPN �u�k 2 V(1I bK ; �)� > PN �nu�k 2 V(1I bK ; �)o \ A \ B� : (2.5.2)



34 T. BODINEAU, D. IOFFE, AND Y. VELENIKThe interface imposed by the event A \ B decouples KN from its complement, thereforethe system is in equilibrium in KN and KcN : a proof similar to the one of Theorem 2.2.1implies that one can choose �0 = �0(�) and k00 = k00(�) such thatlimN!1 maxk00(�) 6 k 6 �n PN �Z� ju�0k (x)� 1j dx > �2 or Z� ju�0k (x) + 1j dx > �2 ��� A \ B� = 0 ;where � stands for bK or bKc. So that (2.5.2) can be rewritten for N large enough asmink0(�) 6 k 6 �n PN �u�k 2 V(1I bK ; �)� > 18 �per;p�N (A \ B) : (2.5.3)2.5.3. Step 3 : Surface tension. Combining the de�nition of surface tension (2.4.1),inequality (2.5.3) and Theorem 2.5.1, we getlim infN!1 1Nd�1 mink0(�) 6 k 6 �n logPN �u�k 2 V(1I bK ; �)� > � X̀i=1 Z bBi ��(~ni) dHd�1x � o(�):We have also used the fact that the event B is supported by at most c(d; �)Nd�1 edgeswhere c(d; �) vanishes as � goes to 0. Therefore the probability of B is negligible withrespect to a surface order.2.6. Upper bound : Proposition 2.1.3The proof is divided into 3 steps. First we decompose @�v in order to reduce the proofto local computations in small regions. Then in each region we localize the interface onthe mesoscopic level via the minimal section argument. Finally the last step is devoted tothe computation of the surface tension factor.2.6.1. Step 1 : Approximation procedure. We approximate @�v with a �nite numberof parallelepipeds (see Fig. 7).Theorem 2.6.1. For any � positive, there exists h positive such that there are ` disjointparallelepipeds bR1; : : : ; bR` included in bTd with basis bB1; : : : ; bB` of size h and height �h.The basis bBi divides bRi in 2 parallelepipeds bRi;+ and bRi;� and we denote by ~ni the normalto bBi. Furthermore, the parallelepipeds satisfy the following propertiesZ bRi jX bRi(x)� v(x)j dx6 � vol( bRi) and ��� X̀i=1 Z bBi ��(~ni) dH(d�1)x �W�(v)��� 6 �;where X bRi = 1 bRi;+ � 1 bRi;� and the volume of bRi is vol( bRi) = �hd.This Theorem is a rather standard assertion of the geometric measure Theory. A variationof it has been formulated and applied in the context of the L1-theory of phase segregationin [ABCP] along with a sketch of the proof, which, however, contained a gap (see [B1]for a detailed proof along the lines of [ABCP]). A very clean alternative derivation of asimilar result has been given by Cerf [Ce1] using the Vitali covering Theorem.Theorem 2.6.1 enables us to decompose the boundary into regular sets (see Fig. 7) sothat it will be enough to consider events of the type(Mkm� 2 \̀i=1 V( bRi; �vol( bRi))) ;



35h12�h fv = �1g fv = 1g~nibBi bRi;+bRi;�bRiFigure 7. Approximation by parallelepipeds.where V( bRi; ") is the "-neighborhood of X bRiV( bRi; ") = �v0 2 L1�bTd� �� Z bRi jv0(x)� X bRi(x)j dx 6 "� :Using (2.2.6), we see that to derive Proposition 2.1.3, it is equivalent to prove the followingstatement for any � positive and k0 = k0(�), � = �(�)lim supN!1 1Nd�1 maxk0(�) 6 k 6 �n logPN�u�k 2 \̀i=1 V( bRi; �vol( bRi))� 6 �W�(v) + C(�; v)�:2.6.2. Step 2 : Minimal section argument. The microscopic domain associated to bRiis RiN = N bRi \TN. We also set Ri;+N = N bRi;+ \TN and Ri;�N = RiN nRi;+N . At the scaleM = 2k, we associate to any con�guration (�; !) the set of bad boxes which are the boxesBM intersecting RiN labeled by 0 and the ones intersecting Ri;+N (resp Ri;�N ) labeled by �1(resp 1). For any integer j, we set bBi;j = bBi + j c(d)2n�k ~ni and de�neBi;jN = �j 0 2 RiN j 9x 2 bBi;j ; kj 0 �Nxk1 6 10	:Let Bji be the smallest connected set of boxes BM intersecting Bi;jN . By construction theBji are disjoint surfaces of boxes. For j positive, let n+i (j) be the number of bad boxes inBji and de�ne n+i = min�n+i (j) : 0 < j < �h2c(d)2n�k	:Call j+ the smallest location where the minimum is achieved and de�ne the minimalsection in Ri;+N as Bj+i . For j negative, we denote by Bj�i the minimal section in Ri;�N andn�i the number of bad boxes in Bj�i (see Fig. 8).For any con�guration (�; !) such that u�k(�; !) belongs to Tì=1 V( bRi; �vol( bRi)), one canbound the number of bad boxes in the minimal sections byX̀i=1 n+i + n�i 6 �C1(v)2(d�1)(n�k) : (2.6.1)Such an estimate implies that a mesoscopic interface is mainly located between the 2minimal sections and that only some mesoscopic �ngers attached to the interface may
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bad blocks

bad blocks fv = �1gfv = 1g Bj�i
Bj+iRi;+N 0Ri;�N 0

Figure 8. Minimal sections.percolate. As these �ngers will cross the minimal sections through bad boxes, the strategyis therefore to modify the con�guration ! on the bad boxes so that no �ngers can percolatein the new con�guration. More precisely, we introduce the setA = �! 2 
perN �� 9� such that u�k(�; !) 2 \̀i=1 V( bRi; �vol( bRi))	 ;and for any ! in A de�ne �! the con�guration with closed edges on the boundary of thebad blocks in the minimal sections and equal to ! otherwise. Inequality (2.6.1) impliesthat ! and �! di�er only on at most �C2(v)Nd�1 edges, so that we can control preciselythe cost of the surgical procedure which consists in isolating the bad blocks in the minimalsections by closing the edges around them.PN u�k(�; !) 2 \̀i=1 V( bRi; �vol( bRi))! 6 �per;p�N �A� (2.6.2)6 exp �� C3(v; �)Nd�1� �per;p�N � �A� ;where �A = f�! j ! 2 Ag.2.6.3. Step 3 : Surface tension estimates. Let bRi 0 be the parallelepiped included inbRi with basis bBi and height �2h. Its microscopic counterpart is RiN 0. We are going to checknow that �A is included in Tì=1f@topRiN 0 6$ @botRiN 0g. This amounts to say that not onlythe minimal section argument enables us to �nd a mesoscopic interface in RiN but thatin fact this interface exists on the microscopic level. To see this, choose any con�guration! in A which contains an open path C joining @topRiN 0 to @botRiN 0 and suppose that Ccrosses the minimal sections without intersecting a bad box. Then C intersects 2 regularboxes BM (2nx+) and BM (2nx�) in Bj+i and Bj�i . According to the de�nition of the coarsegraining, this would imply that the crossing clusters of BM (2nx+) and BM (2nx�) areconnected to C, so that ~u�k(x+) = ~u�k(x�). Therefore one of these boxes has to be a badbox.



37From (2.6.2), we getPN  u�k 2 \̀i=1 V( bRi; �vol( bRi))! 6 exp �� C3(v; �)Nd�1��per;p�N � \̀i=1f@topRiN 0 6$ @botRiN 0g�:Conditioning outside each domain RiN and using (2.4.3), we derivelim supN!1 1Nd�1 maxk0(�) 6 k 6 �n log PN u�k 2 \̀i=1 V( bRi; �vol( bRi))! 6�X̀i=1 Z bBi ��(~ni) dHx + C4(�; v)�:This concludes the Proposition. 2.7. Open problemsWe would like mention some open questions related to the L1-theory1. Extention of the L1-theory to general �nite range models and to the context ofPirogov-Sinai Theory.2. Proof of the Wul� construction for continuum models in an L1-setting.3. Upgrade of the concentration properties to the Hausdor� distance, based on moredelicate versions of the minimal section argument; some results of this sort shouldappear in [BIV].4. A more challenging problem would be to provide an accurate description of phasesegregation �a la DKS. In particular one should understand how to control phaseboundaries and prove local limit results with boundary conditions which are onlystatistically pure.



38 T. BODINEAU, D. IOFFE, AND Y. VELENIKPart 3. Dobrushin-Koteck�y-Shlosman (DKS) theory in 2DIn this part we review and explain the results on phase separation in the two-dimensionalnearest neighbor Ising model as enforced by the canonical constraint on the magnetization[DKS], [ISc]. The theory is built upon sharp local estimates over �nite volume vessels �Nand on the probabilistic analysis of the random microscopic phase separation line. Wefocus here on the \free" spatial geometry of the phase segregation, that is disregardingthe boundary e�ects. These e�ects could enter the picture in two di�erent ways: in termsof the boundary conditions on @�N and in terms of the geometry of �N . In the formercase the minority phase could be absorbed by part of the boundary @�N . This andrelated phenomena are discussed in Part 4. In the second case the �nite vessel �N mightnot be able to accommodate the corresponding optimal crystal shape. Such a geometricconstraint is, from the point of view of the microscopic theory, merely a technical nuisance,though, on the macroscopic level, it might lead to formidable variational problems. Wego around this domain geometry issue by choosing �N to be of the Wul� shape itself�N = NK1 \Z2;where K1 is the unit area Wul� shape. Thus, �N accommodates any optimal shape ofarea smaller than N2.The corresponding �nite volume canonical Gibbs measure is then de�ned by���N ;� � � �� MN (�) = �N2m� + aN� ; (3.0.3)where MN �= Pi2�N �i is the total spin, m� = m�(�) is the spontaneous magnetization,and aN points inside the phase transition region, aN 2 (0; 2N2m�). In the sequel we shalluse the shortcut ��N;� for the �nite volume measure ���N ;�.Notation. The values of positive constants c1; c2; ::: are updated with each subsection.3.1. Main ResultDKS theory gives a comprehensive solution to the following problem of phase separation:Problem 1. For � > �c and aN 2 (0; 2N2m�) characterize typical spin con�gurations �under the canonical measure (3.0.3) .An ostensibly simpler problem isProblem 2. For � > �c and aN 2 (0; 2N2m�) �nd sharp local asymptotics of��N;� �MN = �m�N2 + aN� :In fact both problems are equivalent. In particular, the phenomenon behind the shift ofthe magnetization is inside the phase transition region not a bulk one (and hence is notin the realm of the usual theory of large deviations), and the crucial role is played by thespatial geometry of symmetry breaking.3.1.1. Heuristics. Under the �nite volume pure state ��N;� the typical maximal size of� contours is of order logN . One could then visualize a typical microscopic con�guration� on �N in terms of an archipelago of small (that is of the maximal size � logN) \+"islands which could contain still smaller \�" lakes etc. This archipelago spreads outuniformly over �N , and the density of the plus \soil", which spells out in terms of the



39magnetization MN(�) as (j�N j+MN (�))=2j�N j, is close to its equilibrium valuej�N j+ hMN i�N;�2j�N j � 1�m�2 :Thus, one could think of two di�erent competing patterns behind the aN -shifts, aN > 0,of the magnetization MN from its equilibrium value hMNi�N;� � �m�j�N j:1) The density of the archipelago increases in a spatially homogeneous fashion without,however, altering the typical sizes of the islands.2) Spatial symmetry is broken, and an abnormally huge island of the \+" phase of excessarea � aN=2m� appears.Heuristically, the �rst scenario corresponds to Gaussian uctuations, and its price, interms of probability, should be of orderexp ��c1(�)a2N=N2� :Phase segregation manifests itself in the second scenario, and the probabilistic price forcreating such a huge island is proportional to the length of its boundaryexp (�c2(�)paN) :A comparison between the two expressions above suggests that the �rst scenario shouldbe preferred whenever aN � N4=3, whereas large shifts aN � N4=3 should result in thephase segregation picture described in the second scenario. This indeed happens to be thecase, and we refer to [DS] and [ISc] for a complete rigorous treatment7.For the sake of the exposition, we shall stick here to the possibly most interesting caseof aN � N2, which corresponds also to the macroscopic type of scaling discussed in Part 2.The DKS theory gives then the following sharp characterization of the phase segregation inthe canonical ensemble: under ��N;� � � ��MN = �m�N2 + aN� a typical spin con�guration� contains exactly one abnormally large contour  which decouples between the \+" phase(inside ) and the \�" phase (outside ). In particular, the average magnetization inside(respectively outside)  is close to m� (respectively �m�), and the area encircled by  canbe thus recovered from the canonical constraint,m� jint ()j �m� �N2 � jint ()j� � �m�N2 + aN =) jint ()j � aN2m� :Under the scaling of �N by 1=N , that is into the normalized continuous shape K � R2,the microscopic phase boundary  sharply concentrates around a shift of the Wul� shapeof the corresponding scaled area aN=2m�N2 (Fig. 9).3.1.2. DKS theorem. More precisely, for any r 2 R+ let Kr to denote the Wul� shapeof the area r. Also given a number s 2 R+, let us say that a microscopic contour  iss-large, if diam1() > s.Theorem 3.1.1 ([DKS]8,[ISc]). Let the inverse temperature � > �c be �xed, and let thesequence faNg, �m �N2 + aN 2 Range(MN), be such that the limita = limN!1 aNN2 2 (0; 2m�(�))7The critical case of aN � N4=3 is still an open problem.8In the original monograph [DKS] the corresponding results has been derived in the context of the Isingmodel with periodic boundary condition.



40 T. BODINEAU, D. IOFFE, AND Y. VELENIK1=N�! � phase+ phaseFigure 9. DKS picture under the 1=N scaling: On the left the microscopic �N box withthe unique K logN -large contour . On the right the continuous box K1 with the scaledimage of .exists. Then,log ��N;�� MN = �m�N2 + aN � = �W� �@K aN2m� ��1 + O�N�1=2 logN��:Moreover, if K = K(�) is large enough, with ��N;� � � jMN = �N2m� + aN�-probabilityconverging to 1 as N ! 1:1. There is exactly one K(�) logN -large contour .2. This  satis�esminx 1NdH� ; x+ @K aN2m� � 6 c1(�)N�1=4plogN (3.1.1)and minx 1N2Area� int ()��x +K aN2m� � � 6 c2(�)N�3=4plogN: (3.1.2)3.1.3. DKS theory. The DKS theory views the production of the event fMN �m�N2+aNg in terms of a two-step procedure: On the �rst stage a length scale s = s(N) is chosen,and all the microscopic s-large contours (1; :::; n) are �xed. If the total area insidethese s(N)-large contours is smaller than aN=2m�, then the total magnetization MN stillhas to be steered towards the imposed value MN = �m�N2 + aN , but already underthe constraint that all the � contours di�erent from (1; :::; n) are s(N)-small. Theprobability ��N;� �MN = �m�N2 + aN� reects the price of the optimal strategy alongthese lines.We record the two steps of the DKS theory as follows:1) Study the statistics of s(N)-large contours under ��N;�.2) Give local limit estimates on the magnetization in the s(N)-restricted phases.The introduction of s(N)-cuto�s leads to the separation of the length scales which hasa double impact on the problem: it sets up the stage for the renormalization analysis ofmicroscopic phase boundaries, and it improves the control over the bulk magnetizationinside the corresponding microscopic phase regions. Let us try to explain this in moredetails: As far as the statistics of the s(N)-large contours is considered, we are interested



41u1u2u3 un�1un 1 2
Figure 10. Two microscopic contours 1 and 2 are compatible with the same skeletonS = (u1; :::un).in giving sharp estimates on the ��N;�-probability of the events of the typef s(N)-large contours of � encircle a certain prescribed area g :The point is that the contribution of any particular microscopic contour to the probabilityof such an event is negligible. In other words, one also has to take into account the entropy(number) of all the contributing contours. The required entropy cancelation (and hence theproduction of the relevant limiting thermodynamic quantity - surface tension) is achievedby means of a certain coarse graining procedure, the so called skeleton calculus, whichwe describe in Section 3.4. Roughly, instead of studying the probabilities of individualmicroscopic contours one considers the packets of all contours passing through the verticesof a given \s(N)-skeleton" S = (u1; u2; :::; un) and staying within a distance of the orders(N) from the closed polygonal line Pol(S) (Fig. 10). The distance between successivevertices of S complies with the length scale s(N), kui+1 � uik1 � s(N). Surface tensionis produced on the level of skeletons. In fact, the probability of observing a � contourcompatible with a given skeleton S admits an asymptotic with s(N)%1 description��N;� (S) � exp f�W� (Pol(S))g : (3.1.3)We quote the precise result in Section 3.4, which we devote to a general exposition of theskeleton calculus.Since the vertices of S are s(N)-apart, and the surface tension �� is strictly positive forall � > �c, the energy W� (Pol(S)) controls the number #(S) of vertices of S as#(S) 6 c3(�)W� (Pol(S))s(N) : (3.1.4)When combined with (3.1.3) this leads to the reduction of the combinatorial complexityof the problem: the number of di�erent skeletons of a �xed energy cWN does not competewith the approximate probability expf�cWNg to observe any such skeletons. Thus, thestudy of fMN = �m�N2 + aNg reduces, in terms of skeletons, to the maximal termestimation. It should be stressed, however, that unlike the coarse graining procedures ofthe L1 theory, the mesoscopic objects (skeletons) of the DKS theory closely follow themicroscopic structure of phase boundaries.



42 T. BODINEAU, D. IOFFE, AND Y. VELENIKThe local limit estimates in the s(N)-restricted phases are, therefore, required uniformlyover �nite lattice domains whose boundaries are carved with s(N)-large contours compat-ible with not too costly skeletons. This imposes a natural restriction on the length ofthese boundaries, and we shall describe the appropriate family of domains in Section 3.2along with the exposition of the corresponding uniform local limit results. Intuitively, longcontours are responsible for long range dependencies between spins, and, therefore, thes(N)-cuto� constraint improves the mixing properties of the system and helps to extendthe validity of classical (Gaussian) behavior of moderate deviations. In Section 3.3 wequote the corresponding relaxation and decay properties which lie in the heart of the locallimit estimates. In Section 3.5 we give an outline of the proof of the DKS theorem.Finally, the (long) list of open problems is briey addressed in Section 3.6.3.2. Estimates in the phases of small contoursAs it has been mentioned, the estimates in the phase of small contours should be deriveduniformly over a family of lattice domains whose boundaries are composed of not too costlys(N)-large contours.De�nition Basic family DN of subsets A � �N : We �x two numbers a (small) and R(big). A 2 DN () aN2 6 jAj and j@Aj 6 RN logN:We �x a basic scale s(N) = K logN of large contours, where K = K(�) is a su�cientlylarge number, so that K logN -contours are highly improbable under the pure state ��N;�.Of course, exactly the same number K appears in the statement of Theorem 3.1.1. Theupper bound on @A in the de�nition of the family DN states that the con�gurations withtotal length of K logN large contour exceeding RN logN are ruled out. This conclusionis explained in more detail in Section 3.4 (see the remark following Lemma 3.4.1).3.2.1. Structure of local limit estimates. Let us turn now to the structure of locallimit estimates in the s(N)-restricted phases. First of all, given any A � Z2, the s-restricted phase on A is de�ned via��;sA;� ( � ) �= ��A;� � � ���All � contours are s-small� :We would like to study the probabilities of deviations aN > 0 of the total magnetizationMA from the corresponding averaged value hMAi�;sA;�. Let us de�ne the set of feasiblevalues of such deviations asM+A = naN > 0 : hMAi�;sA;� + aN 2 Range(MA)o :Roughly, the cuto� s extends the validity of Gaussian moderate deviations for the followingreason: The price of shifting the magnetization by aN on the expense of s(N)-smallcontours is of the order (aN=s2)s � aN=s(N). This should be tested against the Gaussianmoderate deviation exponent of the order a2N=N2. Thus the Gaussian behavior shouldprevail once aN � N2=s(N). Of course, the latter constraint on aN becomes less stringentas s(N) decreases. On the rigorous mathematical part the classical approach to estimating��;sA;� �MA = hMAi�;sA;� + aN� ;amounts to �rst �nding the value of magnetic �eldg = g(A; s(N); aN);



43such that the expected magnetization under the g-tilted state is precisely what we want,hMAi�;sA;�;g = hMAi�;sA;� + aN ; (3.2.1)and, then, to rewrite the ��;sA;�-probability in terms of the ��;sA;�;g one:�sA;� �MA = hMAi�;sA;� + aN�= exp�� (hMAisA;� + aN )g + log 
egMA��;sA;�	 ��;sA;�;g� MA = 
MA��;sA;�;g �= exp8<:� gZ0 gZr 
MA;MA��;sA;�;hdhdr9=; ��;sA;�;g � MA = 
MA��;sA;�;g� : (3.2.2)One then tries to derive su�ciently precise estimates on the semi-invariants of ��;sA;�;h andto prove a local CLT under ��;sA;�;g . Thus, it is extremely important to understand how themagnetization hMAi�;sA;�;g and other semi-invariants of ��;sA;�;g change with the magnetic�eld g in the phase of s(N)-small contours.Breaking of the classical limit behavior in the s(N)-restricted phase manifests itself bythe jump of the magnetization which is related to the appearance of abnormally large �-contours. Without cuto�s this jump occurs for g � 1=N , and imposing the s(N) constraintwould delay such a jump [ScS3]. It is easy to imagine what should be the critical orderof the magnetic �eld g, at which those large contours should start to be favored in thes-restricted phase: for a � contour of the linear size s(N) one wins � s2g on the level ofmagnetization and loses � s on the level of surface energy. These two terms start to becomparable when sg � 1. Therefore no particular deviation from the classical behaviorshould be expected as far as gs(N) � 1. We refer to [ISc], where all these heuristicconsiderations have been made precise.3.2.2. Basic local estimate on the K logN scale. Actually [ISc] it is enough to con-sider only the basic K logN -scale:Lemma 3.2.1 ([ISc]). Assume that a sequence of numbers fbNg satis�eslimN!1 bN logNN2 = 0:Then, on the basic scale s(N) = K logN , the estimate��;sA;� �MA = hMAi�;sA;� + aN�= 1p2��� jAj exp�� a2N2��jAj +O�a2NN3 (logN _ aNN )�	�1 + o(1)�; (3.2.3)holds uniformly in domains A 2 DN and in aN 2M+A\[0; bN ], where �� is the susceptibilityunder the pure state ���.3.2.3. Super-surface estimates in the restricted phases. Moderate deviations onthe intermediate scales s(N) � logN are, for the purposes of the theory, controlled bythe following super-surface order estimate in the phase of small contours (c.f. Lemma 2.5.1in [ISc])



44 T. BODINEAU, D. IOFFE, AND Y. VELENIKLemma 3.2.2. Let the large contour parameter s(N) � logN be �xed. There exists aconstant c1 = c1(�) > 0, such that for all N > 0, A 2 DN and all aN 2M+A,��;sA;�� MA = hMAi�;sA;� + aN � 6 exp � � c1 a2NN2 ^ aNs(N) �: (3.2.4)The idea of the proof is simple: either an area of order aN=2m� is exhausted by theK logN large contours, which, in the ��sN;�-restricted phase, should have a surface ten-sion price with the exponent of the order aN=s(N), or K logN large contours cover anarea much less than aN=2m�, which means that the remaining de�cit of the magneti-zation should be compensated in the basic K logN restricted phase, where we can useLemma 3.2.1. 3.3. Bulk Relaxation in Pure PhasesThe term relaxation is used here in the equilibrium setting in order to describe theapproximation of local �nite volume statistics by the in�nite volume ones. We successivelydescribe the relaxation properties of pure \�" states with non-positive and small positivemagnetic �elds and in the restricted phases of small contours.3.3.1. Non-positive magnetic �elds h � 0. The crucial property of low temperaturepure phases could be stated as follows: Let us say that the sites i and j are �-neighbors ifki� jk1 = 1. Given a spin con�guration � on f�1;+1gZ2, let us say that the sites i and jare +�-connected, if there exists a �-connected chain of sites i1; :::; in, i1 = i and in = j,such that �(ik) = 1 for every k = 1; :::; n.Theorem 3.3.1 ( [CCSc]). For every � > �c there exists c1 = c1(�) > 0, such thatuniformly in subsets A �Z2, i; j 2 A and in magnetic �elds h � 0,��A;�;h � i +� ! j � � e�c1(�)ki�jk1: (3.3.1)Remark. Of course, since ni +� ! jo is a non-decreasing event, the uniformity follows fromthe FKG ordering, once (3.3.1) is veri�ed for the in�nite volume zero-�eld measure ���.Corollary 3.3.1 (Relaxation of local observables). Fix k 2 Z. Uniformly in A � Z2,magnetic �elds h � 0 and local observables f with jsupp(f)j = k,���hfi�A;�;h � hfi��;h��� � c2(k)e�c3(�)dist1�supp(f);@A� (3.3.2)Furthermore,Corollary 3.3.2 (Relaxation and decay of semi-invariants). Fix n 2 Z. Uniformly inA �Z2, magnetic �elds h � 0 and sites i1; :::; in 2 A,���h�(i1); :::; �(in)i�A;�;h � h�(i1); :::; �(in)i��;h��� � c4(n)e�c5(�)dist1�fi1;:::;ing;@A� (3.3.3)and���h�(i1); :::; �(in)i�A;�;h��� � c6(n)exp(�c7(�)diam1�i1; :::; in�n ) : (3.3.4)Finally,



45Corollary 3.3.3 (Asymptotic expansions). Fix n 2 Z. Uniformly in A � Z2 and ini 2 A,�����h�(i)i�A;�;h � ��m�(�) + nXk=1 sk hkk! ������ � c8(n)jhjn+1 + c9(n)e�c10(�)dist1�i;@A�;(3.3.5)where sk is the k-th semi-invariant of the zero-�eld in�nite volume measure ���,sk �= Xi1;:::;ik2Z2h�(0); �(i1); :::;�(in)i��:Remark It is possible (and straightforward) to formulate (3.3.3), (3.3.4) and (3.3.5) inthe general case of n local observables f1; :::; fn.3.3.2. Positive magnetic �elds h > 0. Modifying \�" states by negative magnetic �eldsh < 0 amounts to moving away from the phase transition region. Relaxation propertiesof ��A;�;h with h > 0 are radically di�erent - uniformity is lost, and the size of the domainA starts to play a crucial role. Indeed, the unique in�nite volume measure ���;h = ��hstochastically dominates ��+ whatever small h > 0 is. Thus, for large domains A, thecon�guration in the bulk is ipped under ��A;�;h into the \+" dominated state. It is easyto understand on the heuristic grounds what should be the order of the critical size ofA for such a \ip" to occur: given h > 0, the surface energy of a �-contour  is of theorder jj and it competes with the bulk gain inside the contour which, in its turn, isproportional to hArea(). The latter factor wins (loses), once the linear size of  is muchlarger (respectively much smaller) than 1=h. Thus the sign of the dominant spin under��A;�;h should depend on whether A can accommodate large enough contours, or, in otherwords, on how the linear size of A relates to 1=h.The important and remarkable fact is that exponential relaxation properties of �nitevolume \�" states are uniformly preserved for domains of the sub-critical size.Theorem 3.3.2 ([ScS3], [ISc]). There exists a constant a = a(�) > 0 such that for anyh > 0 �xed, ��A;�;h � i +� ! j � � e�c1(�)ki�jk1: (3.3.6)uniformly in domains A � Z such that any connected component of A has diameterbounded above by a=h. As a consequence exponential decay of semi-invariants (3.3.4)and the asymptotic expansion estimate (3.3.5) hold uniformly in such domains as well.3.3.3. Phases of small contours. Theorem 3.3.2 explains how the cuto� parameters(N) upgrades the regular behavior of \�"-states with positive magnetic �elds h: By thede�nition of the restricted phase ��;sA;� the diameter of any relevant microscopic domain isat most of the order s(N).Theorem 3.3.3 ([ScS3], [ISc]). There exists a constant a = a(�) > 0 such that for anyh > 0 and s satisfying hs 6 a(�),��;sA;�;h � i +� ! j � � e�c1(�)ki�jk1 ; (3.3.7)



46 T. BODINEAU, D. IOFFE, AND Y. VELENIKuniformly in domains A �Z.Furthermore, the expectations in restricted phase are controlled as follows: for every k 2Z,���hfi�;sA;�;h � hfi�A\�s(f);�;h��� � c2(k)e�c3(�)s; (3.3.8)uniformly in A � Z2 and in local functions f , ���supp(f)��� = k, where we have used thefollowing notation: �s(f) �= fi : d1 (i; supp(f)) 6 sg. Finally, the decay of the semi-invariants is controlled in the restricted phases as���h�(i1); :::; �(in)i�;sA;�;h��� � c4(n)exp(�c5(�)diam1�i1; :::; in�n ^ s) : (3.3.9)3.4. Calculus of SkeletonsThe renormalization analysis of large � contours is performed on various cuto� scaless, the appropriate choice of s typically depending on the linear size N of the systems = s(N). We shall state coarse graining estimates uniformly in �nite domains A � Z2and in the cuto� scales s.3.4.1. De�nition. A � contour  is said to be s-large if diam1() > s. Given a cuto�scale s 2 N and an s-large � contour  we say that S = (u1; :::; un) is an s-skeleton of , � S if1. All vertices of S lie on .2. s(N)=2 6 kui � ui+1k1 6 2s; 8 i = 1; :::; n, where we have identi�ed un+1 � u1.3. The Hausdor� distance dH between  and the polygonal line Pol(S) through thevertices of S satis�es dH�;Pol(S)� 6 s(N):Similarly, given the collection (1; :::; n) of all s-large contours of a con�guration � 2 
A;�,let us say that a collection S = (S1; :::; Sn) of s-large skeletons is compatible with �, � � S,if i � Si for all i = 1; :::; n.Of course, a con�guration � 2 
A;� has, in general, many di�erent compatible collec-tions of s-skeletons. Nonetheless, for each particular S the probability��A;� (S) �= ��A;� (� : � � S) (3.4.1)is well de�ned.3.4.2. Energy estimate. As the renormalization scale s grows, the probabilities (3.4.1)start to admit a sharp characterization in terms of the energies W�(S),W� (S) �= nX1 W� (Pol(Si)) ;for a collection S = (S1; :::; Sn). Below we a give precise version of this crucial statementin terms of the upper and lower bounds on the corresponding probabilities. The �rstimportant renormalization energy estimates could be [Pf2] formulated as followsLemma 3.4.1 ([Pf2]). On every skeleton scale s and independently of A �Z2,��A;�� S � 6 exp� �W�(S) 	: (3.4.2)



47Furthermore, uniformly in A �Z, r > 0 and cuto� parameters s,��A;� (W�(S) > r) 6 exp��r�1� c1 log jAjs �� : (3.4.3)Energy estimate (3.4.2) provides an upper bound on the probability of observing � con-tours in the vicinity of a skeleton. Before going to a complementary lower bound let usdwell on the sample path structure of the contours which is hidden behind these renor-malization estimates.3.4.3. Calculus of skeletons. By de�nition a contour is a self-avoiding closed path ofnearest neighbor bonds of Z2. For every set A � Z2 the Ising measure ��A;� induces aweight function q��A� on the space of such self-avoiding polygons (see Subsection 1.2.2),q��A� () = ��A;� (� 2 
 :  is a � contour of �) :In terms of these weights the probability of observing a certain skeleton S = fu1; :::; ungcould be written as ��A;� (S) = X�S q��A� () :Each microscopic contour  compatible with S,  � S, splits into the union of disjointopen self-avoiding lattice paths k : uk ! uk+1; k = 1; :::; n. The analysis of limitproperties of ��A;� comprises two main steps which could be loosely described as follows:1) As the renormalization scale s grows, the statistical behavior of di�erent pieces kdecouple under q��A� , that isX�S q��A� () � nYk=10@ Xk :uk!uk+1 q��A� (k)1A : (3.4.4)2) The k�th term (k = 1; :::; n) in the above product corresponds to a � interface stretchedin the direction of the vector uk+1 � uk 2 R2, in other wordsq��A� (k) � e���(uk+1�uk): (3.4.5)Thus, the skeleton calculus resembles a re�ned version of the sample path large devia-tion principle for genuinely two-dimensional random curves. At very low temperatures, avery precise local analysis of the phase separation line has been developed in [DKS],[DS]using the method of cluster expansions. Our approach here pertains to the whole of thephase transition region � > �c, but is strongly linked to the very speci�c self-duality prop-erties of the two-dimensional nearest neighbor Ising model. We refer to Subsection 1.2.2and, eventually, to [PV2, PV3] for comprehensive description and study of the relevantproperties of the duality transformation. The output of these techniques could be recordedin the following formLemma 3.4.2 (Probabilistic Structure of the Phase Separation Line [PV2]). Given any A �Z2 and any two compatible self-avoiding paths �1 and �2,q��A� (�1 [ �2) > q��A� (�1) q��A� (�2) : (3.4.6)



48 T. BODINEAU, D. IOFFE, AND Y. VELENIKFurthermore, e�c1(�)j�2j 6 q��A� (�1 [ �2)q��A� (�1) 6 e�c2(�)j�2j (3.4.7)On the other hand, given any A �Z2 and any three points u; v; w 2 A�, the q��A� weight ofthe paths going from u to v through w is bounded above as [PV2]X�:u!vw2� q��A� (�) 6 0@ X�1:u!w q��A� (�1)1A0@ X�2:w!v q��A� (�2)1A : (3.4.8)Finally, the weights q��A� are non-increasing in A, and are related to the dual connectivitiesas X�: u!v q��A� (�) = h�(u)�(v)i��A�;f : (3.4.9)Relation (3.4.9) is the link to the surface tension: �rst of all the impact of a particularset A exponentially diminishes with the distance to @A [I1],h�(u)�(v)i��f � exp f�c2(�)d (fu; vg; @A)g 6 h�(u)�(v)i��A� ;f 6 h�(u)�(v)i��f :(3.4.10)uniformly in A� � Z2 and any u; v 2 A�. Moreover the following Ornstein-Zernike typecorrection formula [Al] holds uniformly in u; v 2Z2:exp f��� (u� v)� c3(�) log ku� vk1g 6 h�(u)�(v)i��f 6 exp f��� (u� v)g ;(3.4.11)3.4.4. Skeleton lower bound. The energy estimate (3.4.2) is an immediate consequenceof the (iterated) sub-multiplicative property (3.4.8), the representation formula (3.4.9) andthe right-most inequalities in (3.4.10) and (3.4.11). In order to prove a lower bound oneessentially needs to reverse the inequality in (3.4.8). An indirect way to do so is to usethe FK representation (see [ScS2] and [ISc]). We shall briey present here a more directapproach which has been developed in [I1] and [PV2]. Qualitatively it gives the same orderof corrections as the FK one, but has a clear advantage of being explicitly related to thestatistics of the microscopic phase boundaries at di�erent length scales. The basic ideais that the phase separation line has rather strong mixing properties, in particular paths�1 and �2 on the right hand side of (3.4.8) should interfere, in the case of (u; v; w) beingin a general position, only in a vicinity of w. Thus, at a price of lower order corrections(as we shall see these corrections are logarithmic with the skeleton scale s) the inequality(3.4.8) could be reversed using the super-multiplicativity property (3.4.6). The notion of\general position" simply means that u; w and v do not form too small an angle and liveon the same length scale, and it is quanti�ed by the followingDe�nition. Given a skeleton scale s 2 N and a number " > 0, let us say that that a triple(u; w; v) of Z2-lattice points is (s; ")-compatible, ifs2 6 min fkw� uk1; kv � wk1g 6 max fkw� uk1; kv � wk1g 6 2s;whereas cos (w � u; v � w) > � 1 + ".We shall state the lower bound in terms of the limiting weights q�� (�) �= limA�%Z2? q��A�(which exist by Lemma 3.4.2).



49Lemma 3.4.3. Fix " > 0. Then there exists a scale s = s("), such thatX�:u!vw2� q�� (�) > exp f� (��(w � u) + ��(v � w))� c1(�) log sg ; (3.4.12)uniformly in all skeleton scales s > s(") and in all (s; ")-compatible triples (u; w; v).We sketch the proof of this lemma in Appendix B. Iterating (3.4.12) we arrive to thefollowing lower bound on the probability of observing a certain regular skeleton:De�nition. A skeleton S = (u1; :::; un) is said to be (s; ")-regular, if any triple (ui�1; ui; ui+1)of successive points of S is (s; ")-compatible, and the distance between any two non-neighboring intervals [ui; ui+1] and [uj ; uj+1] exceeds "s.Lemma 3.4.4. For every " > 0, there exists a number c2 = c2(") < 1, such that uni-formly in the skeleton scales s and in all (s; ")-regular skeletons S,��N;� �9 a � contour  : dH(;Pol(S)) � K(�)ps log s�� exp f�W� (Pol(S)) � c2(")#(S) logsg� exp��W� (Pol(S))�1 � c3("; �) log ss �� ; (3.4.13)where #(S) denotes the number of vertices in S, and the last inequality follows from(3.1.4).In fact we need lower bounds only for a very speci�c set of s-skeletons, namely on thoseapproximating the Wul� shape KaN=2m�. These skeletons always satisfy the conditions ofthe above theorem. An academic attempt to prove a lower bound for all possible shapeswill lead to annoying, though solvable, technicalities, but will fail to contribute much tothe microscopic theory of phase separation, as we see it.3.5. Structure of The ProofIn order to give a probabilistic characterization of the microscopic canonical state��N;� � � ��MN = �m�N2 + aN� one �rst derives a sharpest possible lower bound on theprobability ��N;� �MN = �m�N2 + aN�, and then rules out those geometric events (interms of skeletons, but with an eventual translation to the language of microscopic spincon�gurations), which happen to qualify as improbable when compared with this lowerbound.3.5.1. Lower bound. The best lower bound comes as an outcome of the optimal com-bination of the basic local limit Lemma 3.2.1 and the skeleton lower bound (3.4.13). Wechoose a skeleton approximation of the corresponding Wul� shape KaN=2m� , and usinglocal limit estimates steer the magnetization towards the desirable value �m�N2 + aN .Optimality reects the choice of the best possible skeleton scale: Notice that the estimate(3.4.13) becomes sharper with the growth of the cuto� parameter s(N). On the otherhand, the area of the microscopic phase region is controlled, with respect to the area in-side Pol(S) � aN=2m�, up to a Nps(N) log s(N) correction (see Appendix B or [ISc]),which, of course, makes the local limit step more expensive for large values of s(N). Ithappens that the bounds are balanced on the skeleton scale s(N) � 4paN .



50 T. BODINEAU, D. IOFFE, AND Y. VELENIKTheorem 3.5.1 ([ISc]). Uniformly in aN 2 M+N , that is for all aN > 0, such that�m�N2 + aN 2 Range(MN ),��N;� �MN = �m�N2 + aN� > exp��r aN2m�W� (@K1)� c1(�) 4paN logN� : (3.5.1)3.5.2. Upper bounds. First of all, one derives an upper bound on the shift of the mag-netization. On any skeleton scale,��N;� �MN = �m�N2 + aN� 6 XS ��N;� �MN = �m�N2 + aN ; S� : (3.5.2)Due to the intrinsic entropy cancelation under the skeleton coarse graining, and in viewof the lower bound (3.5.1) and the energy estimate (3.4.2) one could, for example, shootfor the maximal term in the above sum. If the phase volume (see [DKS] for the precisede�nition ) ofS is much less than aN=2m�, then the de�cit of the magnetization should becompensated in the phase of s(N)-small contours, which, by Lemma 3.2.2 exerts a super-surface price in the exponent. On the other hand, if the phase volume of S is close toaN=2m�, then by the isoperimetric inequality and by the energy estimate (3.4.2), the bestpossible price one should be prepared to pay is already close to exp��W� �KaN=2m��	.Again the resulting estimate is subject to an optimization via a careful choice of theskeleton scale s(N).Theorem 3.5.2 ([ISc]). Uniformly in aN � N2,��N;� �MN = �m�N2 + aN� 6 exp��r aN2m�W� (@K1) + c1(�) 4paN logN� : (3.5.3)A more delicate study [DKS],[ISc] of the typical sample properties of the microscopiccon�guration � under ��N;� � � ��MN = �m�N2 + aN� is again based on the analysis of(3.5.2). At this point the stability Bonnesen-type estimates (see Subsection 1.3 of theIntroduction) for the Wul� variational problem become important - they enable to quantifythe conclusion that only those collections S, which are close to the shifts of the Wul�shape KaN=2m� , have a chance to survive a comparison with the lower bound (3.5.1). Astep further, involving local limit estimates of Lemma 3.2.1, is to conclude that all thesecollections actually contain exactly one large skeleton, which corresponds to the uniquelarge contour as asserted by the DKS theorem.3.6. Open ProblemsThere are still important open problems even in the nearest neighbor Ising case. No-tably, one knows how to control precise uctuations of the phase separation line only atvery low temperatures, that is using the method of cluster expansions [DH]. This is aserious gap in the theory, since large scale statistics of microscopic phase boundaries areultimately responsible for exact (up to zero order terms) expansions of canonical partitionfunctions [H]. So far qualitative probabilistic results have been obtained either for verylow temperature models [H], or in the simpli�ed setting of self-avoiding polygons [I3], [HI]or Bernoulli bond percolation [CI]. Another interesting and apparently important prob-lem is to understand sample path properties of spin con�gurations in a situation whena canonical constraint is imposed in the restricted phase. Apart from giving rise to apotentially fascinating probabilistic structure, this question is closely related to the issueof the dynamical spinodal decomposition.



51There is absolutely no matching probabilistic study of the phase separation in multi-phase two-dimensional models, for example q-states Potts models. Some results in thisdirection are reported in [V], but this issue is almost entirely open even in the context ofthe L1-theory. In particular, the corresponding phenomena is still not worked out on thelevel of macroscopic variational problems, see, however [ABFH], [MoS] and the referencestherein.The key issue, however, which we feel is largely misunderstood is that at moderatelylow temperatures the DKS theory of two-dimensional phase segregation, say in the gen-eral context of �nite range ferromagnetic models with pair interactions is far from beingcomplete. What currently exists is an example of how these ideas could be implementedin the nearest neighbor case. At least from the mathematical point of view, the nearestneighbor case is a degenerate one, in a sense that it enables a reduction to pure bound-ary conditions over decoupled microscopic regions even at temperatures only moderatelybelow critical. This should not be the case for more general range of interactions. Inthis respect the assertion that low temperature expansions should go through for generalinteractions much along the same lines as they do for the nearest neighbor model, seemsto be rather irrelevant - the real issue is not to kill mixed boundary conditions, but tounderstand how they should be incorporated into the DKS theory.



52 T. BODINEAU, D. IOFFE, AND Y. VELENIKPart 4. Boundary e�ectsIn the previous parts, we explained how the thermodynamical variational problem de-scribing the macroscopic geometry of coexisting phases can be derived in various latticemodels of statistical physics. To simplify the analysis, we restricted our attention to peri-odic boundary conditions or to systems contained in a Wul�-shaped box, avoiding thus adiscussion of the e�ect of a con�ning geometry on the behavior of the system. In this part,we would like to explain what happens when we take such e�ects into account. Boundaryconditions play a particularly important role in the kind of problems presented in this re-view, since they concern the asymptotic behavior of large but �nite systems and thereforethe boundary cannot be simply \sent to in�nity" as usually done. We will see that takingcare of boundary e�ects not only provides a complete description of the geometry of theseconstrained systems thus allowing a rigorous description of the interaction between anequilibrium crystal and a substrate, but also allows to study the e�ect of so-called surfacephase transitions.For simplicity, we only discuss the case of the Ising model with nearest neighbors inter-action. 4.1. Wall free energyThe vessel containing the system has not only the property of con�ning it, but can alsoact in an asymmetric way on the various phases inside, favoring some of them; indeedthis is what happens typically in real systems. In fact, this is precisely the reason oneintroduces boundary conditions in the �rst place: To impose the equilibrium phase thesystem realizes. It appears to be convenient to have a parameter allowing a �ne-tuningof the asymmetry, interpolating between pure + or � boundary conditions. Let us nowdescribe how this is done.Let � = fi 2Zd : i(d) = 0g and Ld = fi 2Zd : i(d) > 0g. The vessel of our system isthe boxDN;M = fi 2 Ld : �N 6 i(n) 6 N; n = 1; : : : ; d� 1; 0 6 i(d) 6Mg ;and the wall is �N = DN;M \ �.Let � 2 R; we consider the following Hamiltonian,H�DN;M (�) = � Xhi;ji�Ldhi;ji\DN;M 6=? �i�j � � Xi2�N �i :Let � 2 f�1; 1gLd; the Gibbs measure in DN;M with boundary condition � is the followingprobability measure on f�1; 1gLd 9,��;�DN;M ;�(�) = ((Z�;�DN;M ;�)�1 exp[��H�DN;M (�)] if �i = �i, 8i 62 DN;M ,0 otherwise.We'll usually use the short-hand notations ��;�N;M;�, Z�;�N;M;�, .... As usual, we write +for � � 1 and � for � � �1. We therefore distinguish one of the sides of the box9Note that we could equivalently consider ��;�DN;M ;� as a probability measure on f�1; 1gZd by extendingthe b.c. � by �i = 1 for all i 2Zd n Ld; it is then possible to replace the boundary magnetic �eld � by acoupling constant: �Pi2�N �i = �Phi;ji: i2�N ; j 62Ld �i�j . This will be used when dealing with negativeboundary �eld, see Subsection 4.4.1.



53DN;M , �N , which we call the \wall". Notice that instead of usual boundary conditions,a boundary magnetic �eld � is acting on �N ; since setting � = 1 produces + b.c. onthe wall, while setting � = �1 results in � b.c., this provides the promised interpolationparameter. Of course, we could also consider more complicated situations, where (possiblyinhomogeneous) boundary magnetic �elds act on the whole boundary of the box. However,for simplicity, we restrict our attention to this particular case, which will turn out to begeneral enough that the basic phenomena induced by the use of boundary �elds can alreadybe analyzed.To quantify the preference of the wall toward one of the phases, it is convenient tointroduce a new thermodynamic quantity, the wall free energy,�bd(�; �) �= limN!1M!1 1j�N j log Z�;�N;M;+Z�;�N;M;� : (4.1.1)The existence of this quantity, and the remarkable fact that the two limits can be takenin any order, has been established in [FP1]; the proof relies on the simple identity�bd(�; �) = limN!1M!1� Z ��� 1j�N j Xi2�Nh�ii�;�0N;M;+ d�0 : (4.1.2)We'll return to this formula in the next section. The heuristics behind the de�nition of�bd(�; �) is that the free energy F �;�N;M;+(�) = � logZ�;�N;M;+(�) of the + (�) phase can bedecomposed in the following way:F�;�N;M;+ = fb(�) jDN;M j+ f+s (�) j@DN;M n �N j+ f+w (�; �) j�Nj+ o(j@DN;M j; j�N j) ;F�;�N;M;� = fb(�) jDN;M j+ f�s (�) j@DN;M n �N j+ f�w (�; �) j�Nj+ o(j@DN;M j; j�N j) ;where fb(�) �= � limN;M!1jDN;M j�1 logZ�;�N;M;� ;f+s (�) �= � limN;M!1j@DN;M j�1 �logZ�;1N;M;+ � fb(�)jDN;M j� ;f+w (�; �) �= � limN;M!1j�N j�1 �logZ�;�DN;M ;� � fb(�)jDN;M j � f+s (�)j@DN;M n�N j� ;(and similarly for f�s (�) and f�w (�; �)). As the notations suggest, fb(�) is independentof � and �, f+s (�) is independent of � and by symmetry f+s (�) = f�s (�). Therefore, wesee that �bd(�; �) = limN!1M!1 1j�N j (F�;�N;M;��F�;�N;M;+) = f�w (�; �)� f+w (�; �) is nothing elsethan the leading order term of the di�erence in free energy between the two phases in thepresence of the wall.The ultimate justi�cation of (4.1.1) however is that this quantity plays exactly the roleof its thermodynamical analogue in the variational problem describing the macroscopicgeometry of phase coexistence, see Theorems 4.3.2 and 4.3.3 below.The following Theorem states basic properties of �bd(�; �); since �bd(�; �) is obviouslyodd in �, we just state them for � > 0 (also �bd(�; 0) = 0).Theorem 4.1.1. [FP2] Let ��� = ��(~ed) and suppose � > 0. Then� �bd(�; �) is a non-negative, increasing function of � and �, concave in �; moreover,if � > 0, �bd(�; �)> 0 , � > �c :



54 T. BODINEAU, D. IOFFE, AND Y. VELENIK� For all � and �, �bd(�; �) 6 ��� .� For all � > �c, there exists 1 > �w(�) > 0 such that�bd(�; �)< ��� , � < �w(�) :In the case of the 2D Ising model, �w(�) can be computed explicitly, see [Ab1, MW]and Fig. 11.The following terminology is standard10: when � > �w(�), we say that the system isin the complete drying regime; when j�j < �w(�), it is in the partial wetting regime; andwhen � 6 � �w(�), it is in the complete wetting regime. The reason for this terminologyshould become clear later. 4.2. Surface phase transitionIn this section, we will see that the boundary magnetic �eld can trigger surface phasetransitions: The behavior of the system in the vicinity of the wall depends dramaticallyon j�j being greater or smaller than �w(�). A more detailed discussion of these issues canbe found in [PV1].The state of the system in the middle of a big box DN;M is entirely determined bythe boundary conditions, and is independent of the value of the boundary �eld, so thatthe usual (in�nite volume) Gibbs state simply doesn't provide any information on thebehavior of the system close to the wall. To analyze the behavior of the system \in thevicinity" of the wall, it is therefore useful to introduce the notion of surface Gibbs states;these di�er from the Gibbs states usually considered in these models by the fact thatone does not work with a sequence of boxes converging to Zd, but instead convergingonly to the half-space Ld. More precisely, the surface Gibbs states are the weak limits ofthe measures ��;�N;M;� when N;M ! 1 (observe that DN;M % Ld). Two of them are ofparticular importance for our discussion, ��;�Ld;+ and ��;�Ld;�, obtained respectively by takingweak limits of the measures with + and � boundary conditions. It is not di�cult to show[FP1] that these two measures exist, are extremal, and are invariant under translationsparallel to the wall; moreover, there is uniqueness of the surface Gibbs state if and only if��;�Ld;+ = ��;�Ld;�.There is a close relation between �bd(�; �) and the behavior of the system near thewall; this can be most easily seen from the following identity, consequence of (4.1.2) andsymmetry [FP1],�bd(�; �) = Z ���h�0i�;�0Ld;+ d�0 = Z �0 �h�0i�;�0Ld;+ � h�0i�;�0Ld;�� d�0 : (4.2.1)Using (4.2.1), it is possible to prove the following Theorem showing that a surface phasetransition occurs at � = �w(�); this is the so-called wetting transition.Theorem 4.2.1. [FP2] There is a unique surface Gibbs state if and only if j�j > �w(�).Let us briey discuss the heuristics behind this result. The + and � boundary conditions�x the phase present in the bulk (i.e. in the middle of a big box DN;M ). However, Theorem4.2.1 shows that when � > �w(�), the surface Gibbs state is unique, and therefore the stateof the system near the wall is independent of the boundary conditions, i.e. of the phase10This terminology only makes sense once we have chosen one of the equilibrium phase as reference;here it is the � phase.



55present in the bulk. The mechanism responsible for this is the following. Suppose that� < 0 and consider +-boundary conditions; then it is natural to regard the boundary�eld as a negative b.c., and therefore to introduce an open contour with boundary @�Nseparating the � phase favored by the wall from the + phase present in the bulk (seeSection 4.4 for more details). As long as � > �1, there is a competition between twoe�ects: On the one hand it is energetically favorable for the open contour to follow thewall, on the other hand this would lead to a loss in entropy, since there is less roomfor uctuations. When � 6 � �w(�), the entropy wins: The contour is repelled awayfrom the wall, at a distance diverging with the size of the box; this is the phenomenonof entropic repulsion. The surface Gibbs state then describes the behavior of the systembelow this surface, i.e. a mesoscopic �lm of � phase along the bottom wall. The factthat the contour is sent away from the wall explains why we recover the surface tension,�bd(�; �) = ��� . When � > ��w(�) energy wins, and this modi�es completely the behaviorof the microscopic surface: it sticks to the wall, making only small excursions away from it;in this case, the phase in the bulk can reach the wall and the surface Gibbs state dependson the choice of boundary conditions.Part of these heuristics can be made quite precise in the 2D case. Consider + boundaryconditions. When 0 > � > ��w(�), one can prove that the probability that a connectedpiece I of the wall is not touched by the open contour is bounded above by K exp[�(��� ��bd(�; �)) jI j], showing that the phase separation line really sticks to the wall [PV2]. Theinformations available when � 6 � �w(�) are much less precise; the magnetization pro�lecomputed in [Ab1] shows that there is a �lm of width of order pN along the wall. Arelated, much more precise result, which holds at su�ciently low temperature and for� = �1 is that the phase separation line, once suitably rescaled, converges weakly to theBrownian excursion [D]; this should be true for any � 6 � �w(�).In higher dimensions, much less is known. When � > ��w(�), one can show that theprobability that the open contour touches the middle of the wall is bounded away from0 uniformly in the size of the box [FP2]. When � 6 � �w(�), very little is known,exceptin the simpler case of SOS models. Also, if it is known in dimension 2 that �w(�) < 1(since the exact expression for �w(�) has been computed [Ab1]), this is an open problemin higher dimensions.Theorem 4.2.1 gives a �rst explanation of the terminology introduced above: when thesystem is in the complete drying regime, the equilibrium phase along the wall is the +phase, whatever the phase in the bulk is; when there is complete wetting, it is the � phase;only in the regime of partial wetting can both phases be present near the wall. The factthat the phase transition is determined by �w(�) (i.e. the characterization of the partialwetting regime by ��� > j�bd(�; �)j) is known as Cahn's criterion.4.3. Derivation of the Winterbottom constructionIn this section, we show how Winterbottom construction, describing the equilibriumshape of a crystal in the presence of an attractive substrate, can be recovered from a mi-croscopic theory. To do this, we consider the measure ��;�N;rN;+, for some r 2 R, conditionedwith some canonical constraint (exact or approximate, see below). Of course, the situationhere is more complicated than the one described in the introduction, since instead of anin�nite wall, the system is contained in a �nite vessel. This, of course, makes the problemmore di�cult: When the solution of the Winterbottom variational problem does not �tinside the box bD dr �= fx 2 Rd : jx(n)j 6 1; n = 1; : : : ; d� 1; 0 6 x(d) 6 rg, the solution of



56 T. BODINEAU, D. IOFFE, AND Y. VELENIKa b cd e fTTc �1�1 (non-uniqueness ofsurface Gibbs state)Partial wettingFigure 11. The case of the 2D Ising model. Left: The phase diagram; the region ofnon-uniqueness of the surface Gibbs state is shaded. In the other region, there is a singlesurface Gibbs state. Right: A sequence of equilibrium shapes.the constrained problem will di�er fromWinterbottom shape. In fact, the general solutionof the constrained problem is not known. In the way we state them below, the derivationof this variational problem from statistical mechanics still applies in the case when thesolution is not known.Before stating the main Theorems of this Part, we briey describe how the wettingtransition manifests itself in the macroscopic geometry of phase separation. To do this,let � > �c be �xed, and choose a value m for the canonical constraint so that the corre-sponding Wul� shape is small enough to be placed inside the box bDdr . If � > �w(�), then�bd(�; �) = ��� , and the typical con�gurations will consist of a macroscopic droplet of �phase, with Wul� shape, immersed in a background of + phase; in particular, the shapeof the droplet is independent of the value of the boundary �eld (Fig. 11 a). This behaviorpersists up to the value � = �w(�). Notice that as soon as � < 1, it becomes energeticallymore favorable for the droplet to touch the wall. In dimension 2, however, since �w(�) < 1,the droplet stays away from the wall, because entropy loss is not compensated by energygain until � reaches the value �w(�). It is an interesting open problem to decide whether�w(�) = 1 for d > 2. When � < �w(�), the typical con�gurations consist of a macroscopicdroplet, with Winterbottom shape, tied to the wall. The shape of the droplet now dependson the value of �, and decreasing the boundary �eld amounts to letting the droplet spreadmore and more (Fig. 11 b{e). For some value e�, the droplet covers for the �rst time theentire wall (Fig. 11 e). From this point on, the shape of the droplet is left unchanged when� is decreased (Fig. 11 f; the dashed line represent part of a possible \true" equilibriumshape for the unconstrained problem).From this discussion, we see that the wetting transition at �w(�) has a macroscopicmanifestation in the canonical ensemble. Because of the con�ned geometry, however, thesecond transition, at � = ��w(�) cannot be seen. To be able to detect it, one has toconsider mesoscopic droplets (in the form of large moderate deviations, see the remarkafter Theorem 4.3.2).This also explains pretty well the terminology introduced previously: In the completedrying regime, the droplet stays away from the wall, and so the wall is completely dryw.r.t. the � phase; in the partial wetting regime, the droplet touches the wall, and boththe + and � phase are in contact with it (provided � < e�). The complete wetting regimecannot be distinguished from the partial wetting regime in this setting, but see the remarkafter Theorem 4.3.2 for a discussion of this issue.



574.3.1. 2D Ising model. Let r 2 R. The aim of this subsection is to describe the typicalcon�gurations under the measure��;�N;rN;+� � ��MN = m jDN;rN j� ;where m 2 (�m�; m�) and MN = Pi2DN;rN �i; we will simplify the notations further bywriting simply ��;�N;+ (r being kept �xed). As in Part 3, it is possible to obtain preciseasymptotics for the large deviations, in the form of the following generalization of the �rstpart of Theorem 3.1.1. Let W?�;�(m) be the in�mum of the functional W�;� on subsets ofbD 2r with volume m��m2m� jbD2r j.Theorem 4.3.1. Let the inverse temperature � > �c and the boundary magnetic �eld� 2 R be �xed; let the sequence faNg; �m � jDN;rN j+ aN 2 Range(MN), be such that thelimit a = limN!1 aNjDN;rN j 2 (0; 2m�(�))exists. Then,log ��;�N;+�MN = m�jDN;rN j � aN� = �W?�;� (1 +O(N�1=2 logN)):A version of this Theorem, in an approximate canonical ensemble (as in (4.3.1)), hasbeen proven in [PV2]; this stronger version can be obtained by combining the techniquesof [PV2] and of [ISc], see Section 4.4.In Theorem 4.3.1, we have made no statement about the asymptotic description of thetypical con�gurations under the conditioned measure. The reason is the following: Thesestrong concentration results require the knowledge of stability properties of the variationalproblem in the form, for example, of Bonnesen inequality. However, in the present case, onedoes not always have that much information about the variational problem; in fact, evenits solution is not always known. This prevents us from translating the energy estimateson the skeletons (see (4.4.8), (4.4.10) and (4.4.11)) into strong concentration propertiesof the microscopic contours. Of course, in the situations when such stability propertiesare known ([KP] contains a simple derivation of such a result for many situations), it ispossible to obtain statements of the same kind as those of Part 3.This illustrates the fact that although the probabilistic theory in the 2D case is com-plete, in the sense that all the relevant information on the microscopic scale is available,the sharpness of the statements one can make on the macroscopic scale still dependson macroscopic stability properties, which are logically separated from the probabilisticaspect of the analysis.However, even without information about the stability properties of the variationalproblem, it is still possible to derive weak concentration properties, in a L1 setting closeto the one of Part 2. We present such a result in the way it is stated in [PV2]. In this paper,an approximate canonical ensemble was considered, i.e. the measure was ��;�N;+( � j A(m; c)),where A(m; c) = n� : ���jDN;rN j�1MN (�)�m��� 6 N�co ; (4.3.1)with �m� < m < m�, and c is some real number not too large (see Theorem 4.3.2 below).We are going to prove that the phases concentrate near macroscopic droplets which belongto the set D(m)D(m) = nV � bD 2r : jV j = m� �m2m� jbD2r j ; W�;�(@V ) =W?�;�(m)o ;



58 T. BODINEAU, D. IOFFE, AND Y. VELENIKRecall that to each V 2 D(m), we associate the function 1IV = 1V c � 1V .To state this phase segregation Theorem, we use analogous notation to the mesoscopicsetup introduced in Part 2. Recall that N = 2n. For any a < 1, we de�ne a magnetizationpro�le M[an](�; x) at the 2[an]-scale which is piecewise constant on boxes bBn�[an](x) withx 2 bDdn \ 2[an]�nZd, M[an](�; x) = 2�d[an] Xi2B[an](2nx)�i : (4.3.2)We getTheorem 4.3.2. [PV2] Let � > �c, � 2 R, �m� < m < m� and 1=4 > c > 0. Thenthere exist a function �(N) such that limN!1 �(N) = 0, a real number � > 0 and acoarse-graining parameter 1 > a > 0 such that for N large enough��;�N;��M[an]m� 2 [V2D(m)V(1IV ; �(N)) �� A(m; c) � > 1� expf�O(N�)g :Remark: In this case, it should also be possible to study the whole range of moderatedeviations, combining the techniques of [ISc] and [PV2], although this has not been doneexplicitly. We briey describe the results obtained for large deviations su�ciently close tovolume order [V].As long as � > ��w(�), the results are similar to those obtained in the setting of Part 3:The measure concentrates on con�gurations containing a single large droplet of � phase,with Wul� or Winterbottom shape depending on �; in particular, the order of the largemoderate deviations is still expf�O(paN)g. There should not be any problem to extendthis to the whole large deviations regime (aN � N4=3).More interesting is the case � 6 � �w(�). For those values of the boundary �eld, thesystem is in the complete wetting regime (�bd(�; �) = ����), and the solution of the un-constrained variational problem is degenerate. The solution of the constrained variationalproblem in bD 2r is however still well-de�ned for every N ; it is obtained by extracting the capof a Wul� shape and rescaling it so that the basis of the cap completely covers the wall andthe rescaled cap has the required volume. When N goes to in�nity, this droplet spreadsout to become a thin �lm in the limit (covering the entire wall, hence the terminologycomplete wetting), and the corresponding value of the surface free energy functional goesto zero. As a result of this, the scale of the large moderate deviations is not the sameas when � < �w(�); indeed the leading term of the asymptotics can again be computedexplicitly, and is found to be of order expf�O((aN)2N�3)g. In particular, we see that thelarge moderate deviations cannot extend up to aN � N4=3, since (aN )2N�3 is of order 1already when aN � N3=2. This should not be surprising since, in the complete wettingregime, the volume under the microscopic contour is expected to have typical uctuationsof order N3=2 (this can be shown when � = �1 and � is very large using the convergenceto Brownian excursion stated in [D]). Therefore, typical uctuations of magnetizationin the complete wetting regime are not governed by bulk uctuations anymore, but byuctuations of the microscopic phase separation line. To prove that this behavior is validup to aN � N3=2 might be a non-trivial task.



594.3.2. Ising model in D > 3. Let r 2 R and let D(m) be the set of macroscopic dropletsat equilibrium in bD dr ,D(m) = nV � bD dr : jV j = m� �m2m� jbDdr j ; W�;�(@V ) =W?�;�(m)o :The rest of the notations were introduced in Part 2. The main result is the followingTheorem 4.3.3. [BIV] For any � in Bp, any � 2 R, any m in (�m�; m�), the followingholds: For any � > 0, there is k0 = k0(�) such that for � < 1dlimN!1 mink0 6 k 6 �n ��;�N;+ Mkm� 2 [V2D(m)V(1IV ; �) ��� MN 6 m jDN;rN j! = 1 :4.4. The toolsIn this Section, we explain how the procedures described in Parts 2 and 3 have to bemodi�ed to take into account the e�ect of the boundary.4.4.1. 2D Ising model. We describe the main modi�cations one needs to apply to theproofs of Part 3 in order to get the results stated in Theorems 4.3.1 and 4.3.2. We splitthis Subsection into two parts, one dealing with the lower bound on ��;�N;�(A(m; c)) or��;�N;�(MN = �m�jDN;rN j+ aN ), the other one with the upper bound.The lower bound. The constrained variational problem is more di�cult than the usual one.In fact, as noted above, the solution (and a fortiori its stability) is not known in general,although it is in many cases. This prevents us from proceeding as in Part 3, where the lowerbound follows from summing over large contours uctuating around the Wul� shape. Itwould then appear necessary to make the same kind of proof, but for any con�gurations ofdroplets surrounding the right volume (all potential solutions to the variational problem).This, however, would be tricky; indeed, since we want our results to hold for large, but�nite boxes, it is compulsory to obtain estimates uniform over the droplet in the chosen set!Fortunately, properties of the surface tension and wall free energy allow us to restrict ouranalysis to a small class of well-behaved droplets: The solution of the variational problemis necessarily taken on a single convex droplet. This is a consequence of the convexity of�� (use Jensen inequality) and the fact that �bd(�; �) 6 ��� , which imply that replacing adroplet by its convex hull cannot increase the surface free energy; rescaling the resultingdroplet decreases the energy even more. It is thus enough to prove the followingProposition 4.4.1. [PV2] Let � > �c and � 2 R. There exists N0 = N0(�; �;m; c; r) anda constant C such that, for any simple closed recti�able curve C which is the boundary ofa convex body of volume jbD 2r j(m�(�) +m)=2m�(�) contained in bD2r , and for all N > N0,��;�N;�(A(m; c))> expf�W�;�(C) N � � C N1=2 logNg :A completely analogous statement holds in the case of the exact canonical ensemble.The proof of Proposition 4.4.1 is similar to the proof of Theorem 3.5.1. We sketch nowthe main changes needed to deal with the boundary conditions. The case � 6 0 requiresa slightly more complicated proof than the case � > 0 so we �rst consider the latter.First case: � > 0As in the usual case, we want to approximate C with some polygonal curve with verticeson the dual lattice, and then sum over all contours going through the latter; this would
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Figure 12. When �bd(�; �) < ��� , the open contour connecting two sites close enoughto the wall might not stay inside an elliptical set as in the bulk (dashed contour), butinstead might get pinned by the wall (full contour). In such a case, the exponentialdecay-rate is in general not given by �� or �bd(�; �).allow us to extract, for each piece of the contour, the surface tension of the correspondingpart of the polygonal line. Here, however, we want to be able to extract the wall freeenergy when the curve C follows the wall. There are some complications related to this: Iftwo vertices are close to the wall, but don't belong to it11, the sum over the correspondingpiece of contour might not yield simply �� or �bd(�; �), but some complicated mixture,since typical such contours might �rst go down to the wall, then follow it on some length,and only then go up to the other vertex, see Fig. 12; this kind of behavior has been studiedin details in [PV3]. It turns out that it is possible to construct a polygonal approximationto the curve C whose surface tension is not too large in comparison with that of C, whileremoving these possible pathologies.The idea is the following. Let �N = N�1=2 logN , and setbD 2r (N) = fx 2 bD 2r : miny 62bD2r ky � xk1 > �Ng :Let V be the convex body with boundary C and set CN = @(V \ bD 2r (N)) We �rst constructa polygonal approximation for each of the components of CN \ bD 2r (N) with segments oflength �N (apart from at most 8 of them which may be shorter). Set [x; y] = fz 2 CN :z(2) = �Ng. If [x; y] 6= ?, we connect the two corresponding pieces of polygonal lines by abroken line from x to (x(1); 0), then to (y(1); 0), and �nally to y; we divide the segmentbetween (x(1); 0) and (y(1); 0) into segments of length �N=2 (except possibly for the lastone which can be shorter). We repeat this construction for the three other sides of thebox. The resulting closed polygonal line is denoted by bPN (see Fig. 13). Notice that byconstruction there exists an absolute constant C such thatW�;�(C) >W�;�( bPN)� C��N ;jvol(C)� vol bPN j 6 C jbD2r j �N :We then rescale the polygonal line bPN by a factor N and if necessary move slightly therescaled vertices so that they belong to the dual lattice; the rescaled polygons is denotedby PN . We then de�ne a class G of closed contours going through the vertices of PN11Consider, for example, a family of curves C getting closer and closer to the wall; since we needestimates uniform in all such curves, one has to be able to deal with such a situation.



61
Figure 13. Left: The curve C; the shaded area represents the convex body whose bound-ary is CN and the dashed line is the boundary of bD2r (N). Right: The polygonal approxi-mation bPN , the dots representing its vertices.(in the right order), and staying in some small boxes along its edges. For all edges oflength smaller than N�N , as well as for the (up to 8) pieces we added above to joinCN to the boundary, we impose that the corresponding piece of the contour is a �xedlength-minimizing path between the vertices.The rest of the argument proceeds in a similar way as in the standard case. Theestimates in the phase of small contours carry over without any problems since in thatcase the e�ect of the boundary �eld cannot propagate far away from the wall.We still have to explain how one can extract the correct surface tension for bPN fromthe sum over contours in the class G introduced above. To do this, we use several resultsabout the random-line representation, proved in [PV2, PV3]. To lighten the notation, wesimply write q��;��N instead of q��;��D?N;rN ; �� and �� are the dual of � and �, see (1.2.5). The�rst inequality is just the analogue of (3.4.6) in our case, which turns out to be valid forarbitrary ferromagnetic coupling constants: The weight of any high-temperature contour 2 G satis�es ([PV2], Lemma 5.4)q��;��N () > Y q��;��N (k)where k denotes the piece of the contour  between the kth and k + 1th vertices of PN .The next step is to replace q��;��N (k) by the corresponding in�nite-volume quantity. First,for any k joining vertices not belonging to �?N �= fi 2 DN;rN � : i(2) = �12g (note that kstays necessarily at a distance O(N�N) from �?N )q��;��N (k) > (1� e�O(N�N)) q��(k) ;second, for the pieces k joining two sites of �?N , we useq��;��N (k) > q��;��Ld? (k) ;where Ld? �= fi 2Zd? : i(2) > � 12g (both results are proved in [PV2], Lemma 5.3). Finally,the remaining pieces have a length at most 8N�N , so that their total weight is larger thane�CO(N�N ).



62 T. BODINEAU, D. IOFFE, AND Y. VELENIKThe last step is to extract the surface free energy. The basic tool to do this is, as in theproof of Theorem 3.4.4, concentration properties for open contours between 2 �xed dualsites. For the pieces k not touching the boundary, we can use the usual in�nite volumeresults based on (5.2.12), setting s = N�N . For the pieces along the boundary, one canuse the following statement ([PV3], Lemma 6.10):X�: i!j��NK(i;j)\Ld? q��;��Ld? (�) > h�i�ji��;��Ld? (1 + o(1)) ; (4.4.1)whereNK(i; j) is de�ned in Appendix B (with s = N�N). (In fact, (4.4.1) can be strength-ened when � < �w(�): in this case, the set NK(i; j)\Ld? can be replaced by the set ([PV3],Lemma 6.13)fk 2 Ld? : (i(1)^ j(1))�K log �N 6 k(1) 6 (i(1)_ j(1)) +K log �N ; k(2) 6 K log �Ng ;which is compatible with our picture of partial wetting.)The result then follows from lower bounds on the corresponding 2-point functions. Theonly new inputs are the following lower bounds on the boundary 2-point function,h�i�ji��;��Ld� > C expf��bd(�; �)kj� ikgkj � ik3=2 8� > �w(�) ; (4.4.2)h�i�ji��;��Ld� > C expf��bd(�; �)kj� ikg 8� < �w(�) ; (4.4.3)for any i; j 2 �� �= fk 2 Ld? : k(2) = �12g. (4.4.3) is proved in [PV2], Prop. 7.1, while(4.4.2) follows from exact computations in the case �� = 1 [MW], and [PV2], Prop. 7.1,h�i�ji��;��Ld� > (tanh��)2 h�i�ji��;1Ld� ; 8� > 0 :Second case: � = 0This is a somewhat marginal case. The apparent di�culty is that in this case �� =1. However, this does not create any real complications. One just has to modify theconstruction of the �rst case as follows: We replace the polygonal line bPN by the (possiblyopen) polygonal line bPN n fu 2 R2 : u(2) = 0g; we then sum over contours going throughthe vertices of this polygonal line (contours which are open if the polygonal line is open).This does not give any contribution for the part of C along the wall, which is what wewant since �bd(�; 0) = 0.Third case: � < 0This is slightly more tricky. In this situation, one may be even more pessimistic, since theduality is simply not de�ned when non-ferromagnetic interactions are present! However,this turns out to be a false problem. Indeed, we can use the following obvious identity torecover ferromagnetic interactions (see footnote 9, p. 52),��;�N;+ = ��;j�jN;� ;where � correspond to the boundary condition �i = 1 if i(2) > 0 and �i = �1 otherwise.We then construct bPN as in the �rst step and set I = bPN \ fx 2 bD2r : x(2) = 0g.If I = ?, then we subdivide the set fx 2 bD 2r : x(2) = 0g into segments of length �N=2(except possibly for the last one, which might be shorter); this de�nes a second (open)polygonal line bP 0N (with all its vertices along the wall) (see Fig. 14). We then introduce aclass of pair of contours (;  0),  going through the vertices of PN and de�ned as before,and 0 following the wall, going through the vertices of P 0N and staying inside small boxes
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Figure 14. The construction for � < 0. Left: I = ? (two polygonal lines: one open andone closed. Right: I 6= ? (one open polygonal line).along its edges, similarly as for the other one (0 is open). By construction  and 0 aredisjoint. Duality then implies the following identity��;j�jN;�(f;  0g � ( � )) = (Z�;j�jN;�)�1 w()w(0) X�:(�;;0) ��-comp.w(�)= (1� e�O(N)) Z�;j�jN;+Z�;j�jN;� q��;j�j�N (;  0) : (4.4.4)The factor (1 � e�O(N)) comes from the fact that we can apply duality only to simplyconnected sets, and the exterior of  is not simply connected. We must therefore forbidfamilies � for which duality does not hold; since such families must contain at least onecontour surrounding , we get the above correction.We can now proceed as in the �rst case. The only additional work to do is to analyzethe ratio of partition functions in (4.4.4), but this is easy, since by dualityZ�;j�jN;+Z�;j�jN;� = �h�tl�tri��;j�j�D?N;rN ��1 > e�bd(�;j�j)(2N+1) ; (4.4.5)where tl = (�L� 12 ;�12) and tr = (L+ 12 ;�12) are the two dual sites at the lower left andlower right corners of D?N;rN , and the last inequality follows from the upper bound (see[PV2] for example) h�i�ji��;j�j�D?N;rN 6 e��bd(�;j�j)kj�ik ; (4.4.6)valid for any i; j 2 �?N . We then see that the ratio of partition function cancels thecontribution from the sum over the open contour 0, up to an error term expfO(N�N )g.If I 6= ?, the situation is simpler. Let's write I = [x; y]; then we de�ne a new polygonalline bP�N : bP�N goes from the lower right corner of bD 2r to a along the wall, then it followsbPN n fx 2 bD 2r : x(2) = 0g up to b and �nally goes from b to the lower right corner of bD 2r(see Fig. 14). We subdivide as usual the part of bP�N along the wall into segments of length
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s(N)v1 v2 v2mFigure 15. Left: A contour touching the wall and the family (v1; : : : ; v2m). Right: Ans-skeleton for the contour.�N=2 and proceed as in the �rst case, with bP�N replacing bPN , using (4.4.4). Summing overthe open contour going through the vertices of P�N produces (up to the usual error term)a term expf�W�;j�j( bP�N)Ng. Combining this with (4.4.5) and observing thatexpf2�bd(�; j�j)Ng expf�W�;j�j( bP�N)Ng = expf�W�;�( bPN)Ng ;the conclusion follows as in the usual situation.The upper bound. Let us now turn our attention to the proof of the upper bound. Thebasic strategy is completely similar to that of the standard case, see Subsection 3.5.2. Theonly serious modi�cation concerns the energy estimate, which should now associate thefunctional W�;� to the probability of skeletons. Again, the case � > 0 is somewhat simplerthan the other, so we start with this one.First case: � > 0The basic problem we encounter when trying to make the energy estimate is the samewe met in the proof of the lower bound. Summing over an open contour connecting twodual sites i and j might not yield a decay of order expf���(j�i)g or expf��bd(�; �)kj�ikgif i and j are close enough to the wall but not on it (see [PV3]). However, the followingbound, proven in [PV2], Lemma 5.1, is su�cient to derive the energy estimate,X�: i!j�\E(�?N)=? q��;��N (�) 6 expf���(j � i)g ; (4.4.7)for any � > 0; E(�?N) = fe� � �?Ng. The de�nition of skeletons will be done in such a wayas to ensure that the additional constraint � \ E(�?N ) = ? is automatically satis�ed, seebelow. We also need to extract the wall free energy when summing over contours joiningtwo dual sites belonging to �?N ; this however is nothing else as (4.4.6).Let us now describe the construction of a skeleton S = (u1; : : : ; un) of a closed contour. Remember that we have to de�ne the skeletons in such a way as to ensure that 1) thepiece of the contour between two dual sites not both on the wall must be edge-disjointfrom the wall, and 2) the Hausdor� distance between the contour  and the polygonal linePol(S) is smaller than the cuto� parameter s(N).For contours  which do not touch the wall, the de�nition of skeletons is the same asin Part 3. Suppose  \ E(�?N) 6= ?. Let us de�ne (v1; : : : ; v2m) as the minimal family ofdual sites satisfying the following properties:
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Figure 16. Left: The family of polygonal lines associated to S�. Right: The family ofclosed polygonal lines associated to S.1. vk 2 �?N \  for k = 1; : : : ; 2m and vk(1) < vk0(1) if k < k0;2. (v1; : : : ; vm) split  into pieces 1 : v1 ! v2; : : : ; 2m : v2m ! v1, such that� 2k \ E(�?N) = ? for all k = 1; : : : ; m.� dH(2k; fx 2 R2 : x(2) = �1=2g) > s(N) for all k = 1; : : : ; m.� dH(2k+1; fx 2 R2 : x(2) = �1=2g) 6 s(N) for all k = 1; : : : ; m.We then say that S = (u1; : : : ; un) is an s-skeleton of  if� All vertices of S belong to .� v1; : : : ; v2m are vertices of S.� The only vertices of S along 2k+1 are v2k+1 and v2k+2, for all k = 1; : : : ; m.� The distance between any successive pair of vertices ul; ul+1 of S along 2k satis�ess(N)=2 6 kul � ul+1k1 6 2s(N), for all k = 1; : : : ; m.� dH(;Pol(S)) 6 s(N).This de�nition has the nice property that either ul and ul+1 both belong to �?N , or thepart of  between these two sites is edge-disjoint from �?N (see Fig. 15). This allows us touse the estimates (4.4.6) and (4.4.7). This yields the following extension of (3.4.2) [PV2]���;��D?N;rN (S) 6 expf�W�;�(S)g : (4.4.8)The analogue of the energy estimate (3.4.3) then follows easily, since �bd(�; �) > 0 when� > 0 and therefore it is still possible to control the number of vertices of S in terms ofW�;�(S). This gives���;��D?N;rN (W�;�(S) > r) 6 expn�r(1� C logNs(N) )o : (4.4.9)Using this and the estimates in the phase of small contours, which still hold in the presenceof a boundary �eld, the upper bound follows easily.Second case: � < 0As for the lower bound, we have to deal with the fact that, for � < 0, the duality is notde�ned. The solution is the same as there: We just change boundary conditions, i.e. welook at the measure ��;j�jN;� , which was de�ned when we dealt with the lower bound.Once we have done this, the main di�erence is that the family of low-temperature con-tours of any con�gurations compatible with these boundary conditions contains exactlyone open contour, with endpoints tl = (�N � 12 ;�12) and tr = (N + 12 ; 12). It is straightfor-ward to generalize the notion of skeleton introduced in the preceding case to the presentsituation. What we get by this procedure is a family of skeletons S� = (S0; S1; : : : ; Sn)containing exactly one skeleton, S0, with Pol(S0) open with endpoints tl and tr.



66 T. BODINEAU, D. IOFFE, AND Y. VELENIKSince we want to compare the corresponding families of polygonal lines with the solutionof the variational problem, i.e. with the boundary of a convex body in bD2r , it is convenientto introduce another family S of skeletons whose associated polygonal lines are closed; Spossesses the same set of vertices (except for tl and tr, but with a di�erent set of edges,which is such that its associated family of polygonal lines satis�esPol(S) = Pol(S�)4fx 2 R2 : �N=2� 12 6 x(1) 6 N=2 + 12 ; x(2) = �12gwhere 4 denotes symmetric di�erence (see Fig. 16).One then has the following relationW�;�(S) = W�;j�j(S�)� (2N + 1) �bd(�; j�j) :In particular, the following version of (4.4.8) holds [PV2]��;j�jN;�(S�) 6 K1 expf�W�;�(S)g � > ��w(�) (4.4.10)��;j�jN;�(S�) 6 K2N3=2 expf�W�;�(S)g � 6 � �w(�) (4.4.11)The energy estimate (4.4.9) is slightly more delicate now, since the wall free energy isnegative. It turns out however that in the partial wetting regime, � > ��w(�), it is easyto reduce ourselves to a situation similar to the case �bd(�; �) > 0. The case � 6 � �w(�),i.e. complete wetting, is more subtle, but happens not to give too much problems aslong as we consider volume-order large deviations (or, in fact, deviations close enough tovolume order).Let us �rst consider the case of partial wetting; this regime is characterized by j�bd(�; �)j<��� . Let us write W�;�(S) = T+ + T�, where T+ (T�) is the positive (negative) part ofthe functional. Then, since T+ > (���=�bd(�; �))T� and the number of vertices along thewall is at most two-third of the total number #(S), we have#(S) 6 Ks(N)(��� + �bd(�; �)) W�;�(S) ;for some absolute constant K. This allows to prove that��;�N;�(W�;�(S) > r) 6 expn�r(1� C logNs(N) )o : (4.4.12)When � 6 � �w(�), one cannot establish so good an upper bound. The best we can do isto use the fact that T� > (2N + 1) �bd(�; �), which turns out to be enough to prove thefollowing, weaker, version of the energy estimate��;�N;�(W�;�(S) > r) 6 expn�r(1� C logNs(N) ) + C 0N logNs(N) o : (4.4.13)The reason why such an estimate is still su�cient to get the desired result is that therelevant values of r are also of order N , so that the �rst term can always be made todominate the second one.Once we have (4.4.12) and (4.4.13), the proof is concluded as usual, after observing thatthe estimate in the phase of small contours still applies in the presence of the boundary�eld j�j.



674.4.2. Ising model in D > 3. The proof of Theorem 4.3.3 is based on the L1-Theoryintroduced in Part 2. We simply explain how the main ingredients of the proof should bemodi�ed and refer to [BIV] for details.The arguments of geometric measure Theory can be extended easily to this new set-ting. In particular, it is straightforward to check that the functional W�;� is lower semi-continuous and that the approximation Theorems 2.5.1 and 2.6.1 hold.The main problem is to de�ne proper mesoscopic phase labels for the measures with aboundary magnetic �eld. If � > 0, then the mesoscopic phase labels introduced in Part 2satisfy the Assumptions A and B, as well as Conditions C1-C3 under the measure ��;�N;+.Instead if � < 0, some problems occur because the FK measure looses its ferromagneticproperties and the random coloring measures are more complicated to deal with. Never-theless, it is still possible to de�ne mesoscopic phase labels and to derive estimates as inSection 2.2.Other di�culties have to be overcomed in order to implement the general philosophy ofthe L1-Theory. In the case of a negative boundary magnetic �eld, the interface inducedby the �eld prevents us from applying directly the techniques developed to prove the ex-ponential tightness Theorem 2.1.1. Therefore an alternative approach similar to the onedescribed in Subsection 4.4.1 is required. The analysis of the surface tension needs alsosome care. We recall that the computation of surface tension is based on a localizationprocedure along the boundary of functions of bounded variation. For a given test functioneither locally its boundary is in the bulk and we recover the usual surface tension term orit intersects the wall and arguments similar to those used in the bulk enable us to derivethe wall free energy. In this way the complexity of the problem is reduced because thedi�cult analysis of the uctuations of the microscopic interface between the wall and thebulk is replaced by soft L1 estimates.4.5. Open problemsAs in the previous parts, there are still a lot of open problems. Most of those pre-sented before have natural analogues in the present situation. In the following, we restrictourselves to problems intrinsically related to the topics discussed in this part.2D nearest-neighbors Ising model. The fact that one is still unable to analyze non-pertur-batively the uctuations of the phase separation line is only strengthened when we wouldlike to study boundary e�ects. Indeed, a general analysis of typical open paths withendpoints at general positions with respect to the wall has not been done even at lowtemperature. Problems related to this are the following:1. Give a non-perturbative proof that the probability measure of a suitably rescaled ver-sion of an open contour with endpoints on the wall converges weakly to the measureof Brownian excursion when � 6 � �w(�) (as was sketched in the low-temperaturecase for � = �1 in [D]). This would provide a way of analyzing the typical uc-tuations of magnetization in the complete wetting regime, and would complete theheuristic picture of the wetting transition in the Grand-Canonical Ensemble.2. Establish Ornstein-Zernike behavior for the boundary 2-point function without hav-ing recourse to explicit computations. Even weaker lower bounds, like those given in[Al], have not been proved in such a constrained geometry.



68 T. BODINEAU, D. IOFFE, AND Y. VELENIKAnother open problem is to investigate the full range of moderate deviations. This mayrequire an understanding of point 1. above.Higher dimensional nearest-neighbors Ising models. If uctuations of phase separationlines are not yet understood, the situation is only much worse when considering their higherdimensional counterparts; in fact, even perturbative results are not always available. Hereis a far from exhaustive list of related open problems.1. Give a microscopic description of the behavior of phase boundaries in the partial andcomplete wetting regimes in the Grand-Canonical Ensemble to put some esh on theheuristics given above.2. Decide whether �w(�) = 1 or not. The corresponding results for the SOS model [Ch]suggest that �w(�) < 1 in any dimension; numerical investigations con�rm this indimension 3 [BL].In fact, even much simpler problems related to behavior of higher dimensional interfacesare still open: proof of the existence of a roughening transition in d = 3, proof of theunstability of the (1; 1; 1) interface, ...In some simpler models of the SOS type some (but not all!) of these problems can besolved, but this does not seem to help in solving the original ones.The wall. Another type of problems concerns properties of the wall. In particular, it mightbe interesting to answer the following questions.1. What happens if the interaction with the wall is more complicated (say, non-nearestneighbor).2. What happens if the boundary �eld is not homogeneous (for example, is a \random"con�guration of �1 and �2 macroscopically equivalent to some well-chosen homoge-neous boundary �eld � = �?).



69Part 5. Appendix5.1. Appendix A : Proof of Theorem 2.2.1Assumption A controls the number of zero uk-blocks, whereas Assumption B is used tocontrol the geometry of the mesoscopic phase labels. The dependence of k0 on � could bedescribed as follows: we choose k0 so large that�k 6 1C(d)� for every k > k0; (5.1.1)where C(d) is a large enough �xed constant. Three terms on the left hand side on (2.2.3)correspond to three di�erent exponential estimates:5.1.1. Estimate on the volume of zero uk-blocks. The domination by Bernoulli mea-sure (2.2.2) implies thatPN #fx 2 bTdn�k : uk(x) = 0g > � �N2k�d! 6 c2 exp(�� �N2k�d log ��k) : (5.1.2)Each realization of the phase label function uk splits bTd into the disjoint union of threemesoscopic regions:bTd = fx : uk(x) = 1g _ fx : uk(x) = �1g _ fx : uk(x) = 0g �= A+ _A� _A0:By the choice of the scale k0 in (5.1.1) the estimate (5.1.2) is non-trivial for every k > k0,and, in view of the target claim (2.2.3), we can restrict attention only to such realizationsof uk for which jA0j = ZbTd 1fuk(x)=0gdx < �: (5.1.3)This has the following important implication: if uk 2 V (Ka; 2�)c, the area of the boundaryof any regular set A such that A+ � A � bTd nA� is bounded below asj@Aj > a: (5.1.4)Using the Assumption B of the Theorem we are going to construct such sets A on the�nite k0 scale; A 2 Fn�k0 , and in such a fashion that all the boundary k0-blocks of A willnecessarily have zero uk0 -labels. This reduction enables a uniform treatment of all coarserscales k > k0.So let k > k0, and assume that (5.1.3) holds. We denote by A� (resp. A+) the set of allboxes bBn�k0 in A� (resp A+). We say that x 2 bTdn�k0 is �� connected to A�; x �� ! A�,if there exists a �-connected chain of \�" uk0 blocks leading from bBn�k0 (x) (and includingit) to A�. De�ne now the complement Ac as follows:Ac = A� [x �� !A� bBn�k0 (x):By the virtue of the Assumption B, A+ � A. Moreover, by construction all the k0-blocksof A attached to the boundary @Ac have zero uk0 -labels. With a slight abuse of notationwe proceed to denote this collection of boundary k0-blocks as @A. By (5.1.4) the numberof k0-blocks in @A is bounded below by#k0 (@A) > c(d)a2(d�1)k0Nd�1: (5.1.5)



70 T. BODINEAU, D. IOFFE, AND Y. VELENIKSince, however, the total number of k0-blocks in the corresponding decomposition of bTdequals to Nd=2dk0 the estimate (5.1.5) alone is not su�cient for giving the desirable upperbound on the probability PN (uk 2 V(Ka; 2�)c). The required entropy cancelation stemsfrom the fact that small connected contours of @A cannot surround too much volume.Let us decompose A to the disjoint union of its maximal connected components:A = l_i=1Ai respectively @A = l_i=1 @Ai:We shall quantify contours @Ai according to the size (or the number of k0-blocks ) in Ai.Namely, the contour @Ai is called small, if#k0 (Ai) 6 K(d) logN or jAij 6 K(d)2dk0Nd logN; (5.1.6)where K(d) is a su�ciently large constant. Otherwise, the contour @Ai is called large.We claim that under (5.1.3) the following inclusion is valid:fuk 2 V(Ka; 2�)cg � 8<: X@Ai�small jAij > �9=;[8<: X@Ai�large j@Aij > a9=; : (5.1.7)Indeed, if the total volume inside small contours is less than �, then repainting all thesmall components Ai into \�1" and all the large components Aj into \+1" we produce af�1g-valued function which is at most at the L1-distance 2� from uk and which, thereby,cannot belong to Ka.5.1.2. Peierls estimate on the size of large contours.PN0@ X@Ai�large j@Aij > a1A = PN0@ X@Ai�large#k0(@Ai) > c(d)a2(d�1)k0Nd�11A6 expn�c3(d) a2(d�1)k0Nd�1o : (5.1.8)This immediately follows from Assumption A, once the constant K(d) in (5.1.6) has beenproperly chosen.5.1.3. Estimate in the phase of small contours. The volume of small components Aiis related to the total number of k0-blocks in these components asX@Ai�small jAij = � N2k0 ��d X@Ai�small#k0(Ai):On the other hand, for every l 2 [1; :::; n� k0];X@Ai�small#k0(Ai) = Xx2bTdn�k0 X@Ai�small 1fx2Aig= Xt2[0;:::;2l)d Xx2bTdn�k0�l X@Ai�small1f�t�0x2Aig;



71where �0 �= 2k0�n is the step size on the embedded torus bTdn�k0, and �� is the shift onthis torus. Consequently,PN0@ X@Ai�small jAij > �1A 6 maxt2[0;:::;2l)dPN0B@ Xx2bTdn�k0�l X@Ai�small 1f�t�0x2Aig > � � N2k0+l�d1CA :(5.1.9)If, however, 2l > K(d) logN , then no two distinct points on the torus bTdn�k0�l (or anyshift of it) can belong to the same small component Ai. This, in view of the dominationby the independent Bernoulli site percolation (Assumption A), suggests an application ofthe B-K inequality. Since, by the choice of the scale k0 in (5.1.1);�k0 �= P�k0perc (9 a closed surface of zero uk0 -blocks around x) < �;for every x 2 bTdn�k0, we readily obtain that the right hand side of (5.1.9) is bounded aboveby c4(d)exp(��� N2k0+l�d log� ��k0 �) :The proof of Theorem 2.2.1 is concluded.5.2. Appendix B : Proof of the three-point lower bound Lemma 3.4.3The proof of Lemma 3.4.3 is based on the following positive sti�ness property of thesurface tension [AA]:min�2[0;2�]� d2d�2 �� (~n(�)) + �� (~n(�))� = min�2[0;2�]R� (~n(�)) > 0: (5.2.10)where the unit normal ~n(�) is de�ned via ~n(�) = (cos �; sin �), and R� (~n) is the radiusof curvature of @K at the point supporting the tangent line orthogonal to ~n. An integralversion of (5.2.10) is the sharp triangle inequality [I1], [V]: For any u; v 2 R2:�� (u) + �� (v)� �� (u+ v) > c1(�) (kuk2 + kvk2 � ku+ vk2) : (5.2.11)The latter inequality is used to control the uctuations of the microscopic phase boundaries(in their random line representation of Section 3.4).Let now an (s; ")-compatible triple of points (u; w; v) be given. Fix K = K(�) largeenough and de�ne the \oval" neighborhood NK(u; w) of fu; vg asNK(u; w) �= �z 2 R2 : �� (z � u) + �� (w � z)� �� (w � u) 6 K log s	 :The oval neighborhood NK(w; v) is de�ned exactly in the same fashion. Relations (3.4.8)and (3.4.11) readily imply that that the main contribution to h�u�wi��f (respectively toh�w�vi��f ) comes from the paths �1 (respectively �2 ) which stay in NK(u; w) (respectivelyNK(w; v)). More precisely,X�1:u!w�2NK(u;w) q�� (�1) > h�u�wi��f (1 + o(1)) ; (5.2.12)



72 T. BODINEAU, D. IOFFE, AND Y. VELENIKuniformly in all (s; ")-compatible triples. Any such path �1 = (�1(0); :::; �1(n1)) could bedecomposed as follows: De�nenw = max fk : �k 2 NK(u; w) nNK(w; v)g ;and set �u1 = (�1(0); :::; �1(nw)), �w1 = (�1(nw + 1); :::; �1(n1)); �1 = �u1 _ �w1 . The de-composition �2 = �u2 _ �w2 is de�ned in a completely symmetric way. Notice that, by theconstruction, the paths �u1 and �v2 are disjoint and compatible, and, by (5.2.11),max fk�1(nw)� wk2; k�2(nw)� wk2g 6 c2(") log s:The claim of the lemma follows now from (3.4.6) and (3.4.7).
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