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Abstract

A rigorous QCD analysis of the inclusive annihilation decay rates of heavy

quarkonium states is presented. The effective-field-theory framework of non-

relativistic QCD is used to separate the short-distance scale of annihilation,

which is set by the heavy quark mass M , from the longer-distance scales asso-
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ciated with quarkonium structure. The annihilation decay rates are expressed

in terms of nonperturbative matrix elements of 4-fermion operators in non-

relativistic QCD, with coefficients that can be computed using perturbation

theory in the coupling constant αs(M). The matrix elements are organized

into a hierarchy according to their scaling with v, the typical velocity of the

heavy quark. An analogous factorization formalism is developed for the pro-

duction cross sections of heavy quarkonium in processes involving momentum

transfers of order M or larger. The factorization formulas are applied to the

annihilation decay rates and production cross sections of S-wave states, up

to corrections of relative order v3, and of P-wave states, up to corrections of

relative order v2.
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I. INTRODUCTION

Calculations of the decay rates of heavy quarkonium states into light hadrons and into

photons and lepton pairs are among the earliest applications of perturbative quantum chro-

modynamics (QCD) [1,2,3,4]. In these early analyses, it was assumed that the decay rate

of the meson factored into a short-distance part that is related to the annihilation rate of

the heavy quark and antiquark, and a long-distance factor containing all the nonpertur-

bative effects of QCD. The short-distance factor was calculated in terms of the running

coupling constant αs(M) of QCD, evaluated at the scale of the heavy-quark mass M , while

the long-distance factor was expressed in terms of the meson’s nonrelativistic wavefunction,

or its derivatives, evaluated at the origin. In the case of S-waves [5,6] and in the case of

P-wave decays into photons [7], the factorization assumption was supported by explicit cal-

culations at next-to-leading order in αs. However, no general argument was advanced for

its validity in higher orders of perturbation theory. In the case of P-wave decays into light

hadrons, the factorization is spoiled by logarithmic infrared divergences that appear in the

QQ annihilation rates at order α3
s [7,8]. Logarithmic infrared divergences also appear in

relativistic corrections to the annihilation decays of S-wave states [8]. These divergences

cast a shadow over applications of perturbative QCD to the calculation of annihilation rates

of heavy quarkonium states.

In this paper, we present a rigorous QCD analysis of the annihilation decays of heavy

quarkonium. We derive a general factorization formula for the annihilation rates of S-wave,

P-wave, and higher orbital-angular-momentum states, which includes not only perturbative

corrections to all orders in αs, but relativistic corrections as well. Factorization occurs in

the annihilation decay rates because the heavy quark and antiquark can annihilate only

when they are within a distance of order 1/M , where M is the heavy-quark mass. Since,

in the meson rest frame, the heavy quark and antiquark are nonrelativistic, with typical

velocities v � 1, this distance is much smaller than the size of the meson, which is of order

1/(Mv). Factorization involves separating the relativistic physics of annihilation (which
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involves momenta p ∼M) from the nonrelativistic physics of quarkonium structure (which

involves p ∼Mv). A particularly elegant approach for separating relativistic from nonrela-

tivistic scales is to recast the analysis in terms of nonrelativistic quantum chromodynamics

(NRQCD) [9], an effective field theory designed precisely for this purpose. NRQCD con-

sists of a nonrelativistic Schrödinger field theory for the heavy quark and antiquark that

is coupled to the usual relativistic field theory for light quarks and gluons. The theory is

made precisely equivalent to full QCD through the addition of local interactions that sys-

tematically incorporate relativistic corrections through any given order in the heavy-quark

velocity v. It is an effective field theory, with a finite ultraviolet cutoff of order M that

excludes relativistic states — states that are poorly described by nonrelativistic dynamics.

A heavy quark in the meson can fluctuate into a relativistic state, but these fluctuations are

necessarily short-lived. This means that the effects of the excluded relativistic states can

be mimicked by local interactions and can, therefore, be incorporated into NRQCD through

renormalizations of its infinitely many coupling constants. Thus, nonrelativistic physics is

correctly described by the nonperturbative dynamics of NRQCD, while all relativistic effects

are absorbed into coupling constants that can be computed as perturbation series in αs(M).

The main advantage offered by NRQCD over ordinary QCD in this context is that it is

easier to separate contributions of different orders in v in NRQCD. Thus, we are able not

only to organize calculations to all orders in αs, but also to elaborate systematically the rel-

ativistic corrections to the conventional formulas. Furthermore, we provide nonperturbative

definitions of the long-distance factors in terms of matrix elements of NRQCD, making it

possible to evaluate them in numerical lattice calculations. Analyzing S-wave decays within

this framework, we recover, up to corrections of relative order v2, the standard factorization

formulas, which contain a single nonperturbative parameter. At relative order v2, the decay

rates satisfy a more general factorization formula, which contains two additional indepen-

dent nonperturbative matrix elements. Our results for P-wave decays into light hadrons are

even more striking, as we have discussed in Ref. [10]. Up to corrections of relative order v2,

the factorization formula for these decay rates is the sum of two terms. In addition to the
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conventional term, which takes into account the annihilation of the QQ pair from a color-

singlet P-wave state, there is a second term that involves annihilation from a color-octet

S-wave state. The infrared divergences encountered in previous calculations are absorbed

into the matrix element of the color-octet term.

Our presentation is organized as follows. In Section II, we first review NRQCD in gen-

eral, emphasizing the velocity-scaling rules, which are used in separating contributions of

different orders in v. We then discuss the space-time structure of the annihilation of heavy

quarks and antiquarks and explain how the effects of annihilation can be taken into account

in NRQCD by adding local 4-fermion operators to the effective lagrangian. In Section III,

we analyze the matrix elements of the 4-fermion operators. We discuss their scaling with

v, the constraints on them that follow from heavy-quark spin symmetry, their relations to

Coulomb-gauge wavefunctions, and their dependences on the factorization scale. In Sec-

tion IV, we apply our formalism to the annihilation decays of S-wave quarkonium states, up

to corrections of relative order v3, and to P-wave decays, up to corrections of relative order

v2. In Section V, we sketch the derivation of our results in a more conventional perturbative

approach to factorization. In Section VI, we develop an analogous factorization formalism

for calculating the production cross sections of heavy quarkonium. In the concluding section,

we compare our formalism with previous approaches to the annihilation and production of

heavy quarkonium, and we summarize the current status of calculations of annihilation and

production rates.
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II. NRQCD

We begin this section with a brief discussion of the various momentum scales involved

in heavy quarkonia. Nonrelativistic QCD (NRQCD) [9] is our major tool for resolving the

different momentum scales involved in their annihilation decays. We review this effective

field theory and its application to heavy-quarkonium physics. Then we discuss the space-

time structure of the QQ annihilation process and develop a general factorization formula

for the annihilation decay rates of heavy quarkonia in terms of matrix elements of NRQCD.

A. Energy Scales in Heavy Quarkonium

In a meson containing a heavy quark and antiquark, there are several different momentum

scales that play important roles in the dynamics. The most important scales are the mass M

of the heavy quark, its typical 3-momentum Mv (in the meson rest frame), and its typical

kinetic energy Mv2. The heavy-quark mass M sets the overall scale of the rest energy of the

bound state and also provides the short-distance scale for annihilation processes. The size

of the bound state is the inverse of the momentum Mv, while Mv2 is the scale of the energy

splittings between radial excitations and between orbital-angular-momentum excitations.

Spin splittings within a given radial and orbital-angular-momentum excitation are of order

Mv4, but this scale plays no significant role in the dynamics.

The typical velocity v of the heavy quark decreases as the mass M increases. If M is

large enough, v is proportional to the running coupling constant αs(M), and it therefore

decreases asymptotically like 1/ log(M). Thus, if M is sufficiently large, the heavy quark and

antiquark are nonrelativistic, with typical velocities v � 1. We assume in this paper that

the mass M is heavy enough that the momentum scales M , Mv and Mv2 are well-separated:

(Mv2)2 � (Mv)2 �M2. Quark potential model calculations indicate that the average value

of v2 is about 0.3 for charmonium and about 0.1 for bottomonium [11], and these estimates

are confirmed by lattice QCD simulations. Thus, the assumption (Mv2)2 � (Mv)2 � M2

6



is very good for bottomonium, and reasonably good even for charmonium. For lighter

quarkonium states, such as the ss̄ system, our analysis does not apply.

Another momentum scale that plays a role in the physics of heavy quarkonium is ΛQCD,

the scale associated with nonperturbative effects involving gluons and light quarks. It de-

termines, for example, the long-range behavior of the potential between the heavy quark

and antiquark, which is approximately linear, with a coefficient of (450 MeV)2 [11]. We

can use this coefficient as an estimate for the nonperturbative scale: ΛQCD ≈ 450 MeV.

For both charmonium and bottomonium, the first radial excitation and the first orbital-

angular-momentum excitation are both about 500 MeV above the ground state. Taking this

value as an estimate for the scale Mv2, we see that ΛQCD and Mv2 are comparable for both

charmonium and bottomonium.

Our analysis of heavy quarkonium annihilation is based on separating the effects at

the momentum scale M from those at the lower momentum scales Mv, Mv2 and ΛQCD.

The effects at the scale M are taken into account through the coupling constants of 4-

fermion operators in the lagrangian for NRQCD. We assume that αs(M)� 1, so that these

coupling constants can be calculated using perturbation theory in αs(M). The assumption

that αs(M)� 1 is well-satisfied for bottomonium, for which αs(M) ≈ 0.18, and reasonably

well-satisfied for charmonium, for which αs(M) ≈ 0.24.

The effects of the lower momentum scales Mv, Mv2, and ΛQCD are factored into matrix

elements that can be calculated using nonperturbative methods, such as lattice-QCD simu-

lations. These matrix elements are organized into a hierarchy in terms of their dependence

on v. Our final expression for the annihilation rate therefore takes the form of a double

expansion in αs(M) and v. These expansion parameters are not independent for quarko-

nium. The typical velocity v of the heavy quark is determined by a nonperturbative balance

between its kinetic energy Mv2/2 and the potential energy, which, for sufficiently large M ,

is dominated by a color-Coulomb term proportional to αs(1/r)/r. Setting r ∼ 1/(Mv) in

the potential and equating it with the kinetic energy, we obtain the identification
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v ∼ αs(Mv). (2.1)

This equation can be solved self-consistently to obtain an approximate value for the typical

velocity v. The identification (2.1) has a simple, but important, implication for calculations

of annihilation rates. Since the running coupling constant in QCD decreases with the mo-

mentum scale, v is greater than or of order αs(M). Thus relativistic corrections of order

(v2)n can be expected to be more important than perturbative corrections of order α2n
s (M).

In particular, there is little to be gained by calculating perturbative corrections at next-to-

next-to-leading order in αs(M), unless relativistic corrections through relative order v2 are

included as well.

B. The NRQCD Lagrangian

The most important energy scales for the structure and spectrum of a heavy quarkonium

system are Mv and Mv2, where M is the mass of the heavy quark Q and v � 1 is its average

velocity in the meson rest frame. Momenta of order M play only a minor role in the complex

binding dynamics of the system. We can take advantage of this fact in our analysis of heavy-

quark mesons by modifying QCD in two steps.

We start with full QCD, in which the heavy quarks are described by 4-component Dirac

spinor fields. In the first step, we introduce an ultraviolet momentum cutoff Λ that is of

order M . This cutoff explicitly excludes relativistic heavy quarks from the theory, as well as

gluons and light quarks with momenta of order M . It is appropriate to our analysis of heavy

quarkonium, since the important nonperturbative physics involves momenta of order Mv

or less. Of course, the relativistic states we are discarding do have some effect on the low-

energy physics of the theory. However, any interaction involving relativistic intermediate

states is approximately local, since the intermediate states are necessarily highly virtual

and so cannot propagate over long distances. Thus, generalizing standard renormalization

procedures, we systematically compensate for the removal of relativistic states by adding

new local interactions to the lagrangian. To leading order in 1/Λ or, equivalently, 1/M , these
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new interactions are identical in form to interactions already present in the theory, and so

the net effect is simply to shift bare masses and charges. Beyond leading order in 1/M , one

must extend the lagrangian to include nonrenormalizable interactions that correct the low-

energy dynamics order-by-order in 1/M . In this cutoff formulation of QCD, all effects that

arise from relativistic states, and only these effects, are incorporated into renormalizations

of the coupling constants of the extended lagrangian. Thus, in the cutoff theory, relativistic

and nonrelativistic contributions are automatically separated. This separation is the basis

for our analysis of the annihilation decays of heavy quarkonia.

The utility of the cutoff theory is greatly enhanced if, as a second step, a Foldy-

Wouthuysen-Tani transformation [12] is used to block-diagonalize the Dirac theory so as

to decouple the heavy quark and antiquark degrees of freedom. Such a decoupling of parti-

cle and antiparticle is a familiar characteristic of nonrelativistic dynamics and is quite useful

in our study of heavy quarkonium. The net effect is that the usual relativistic field theory of

four-component Dirac spinor fields is replaced by a nonrelativistic Schrödinger field theory,

with separate two-component Pauli spinor fields for the heavy quarks and for the heavy

antiquarks. This field theory is NRQCD [9]. The lagrangian for NRQCD is

LNRQCD = Llight + Lheavy + δL. (2.2)

The gluons and the nf flavors of light quarks are described by the fully relativistic lagrangian

Llight = −1

2
trGµνG

µν +
∑

q̄ i6Dq, (2.3)

where Gµν is the gluon field-strength tensor expressed in the form of an SU(3) matrix, and q

is the Dirac spinor field for a light quark. The gauge-covariant derivative is Dµ = ∂µ+ igAµ,

where Aµ = (φ,A) is the SU(3) matrix-valued gauge field and g is the QCD coupling

constant. The sum in (2.3) is over the nf flavors of light quarks. The heavy quarks and

antiquarks are described by the term

Lheavy = ψ†
(
iDt +

D2

2M

)
ψ + χ†

(
iDt −

D2

2M

)
χ, (2.4)
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where ψ is the Pauli spinor field that annihilates a heavy quark, χ is the Pauli spinor field

that creates a heavy antiquark, and Dt and D are the time and space components of the

gauge-covariant derivative Dµ. Color and spin indices on the fields ψ and χ have been

suppressed. The lagrangian Llight +Lheavy describes ordinary QCD coupled to a Schrödinger

field theory for the heavy quarks and antiquarks. The relativistic effects of full QCD are

reproduced through the correction term δL in the lagrangian (2.2).

The correction terms in the effective lagrangian for NRQCD that are most important for

heavy quarkonium are bilinear in the quark field or the antiquark field:

δLbilinear =
c1

8M3

(
ψ†(D2)2ψ − χ†(D2)2χ

)

+
c2

8M2

(
ψ†(D · gE− gE ·D)ψ + χ†(D · gE− gE ·D)χ

)

+
c3

8M2

(
ψ†(iD× gE− gE× iD) · σψ + χ†(iD× gE− gE× iD) · σχ

)

+
c4

2M

(
ψ†(gB · σ)ψ − χ†(gB · σ)χ

)
, (2.5)

where Ei = G0i and Bi = 1
2
εijkGjk are the electric and magnetic components of the gluon

field strength tensor Gµν . By charge conjugation symmetry, for every term in (2.5) involving

ψ, there is a corresponding term involving the antiquark field χ, with the same coefficient ci,

up to a sign. The operators in (2.5) must be regularized, and they therefore depend on the

ultraviolet cutoff or renormalization scale Λ of NRQCD. The coefficients ci(Λ) also depend

on Λ in such a way as to cancel the Λ-dependence of the operators. Renormalization theory

tells us that NRQCD can be made to reproduce QCD results as accurately as desired by

adding correction terms to the lagrangian like those in (2.5) and tuning the couplings to

appropriate values [13].

Mixed 2-fermion operators involving χ† and ψ (or ψ† and χ) correspond to the annihila-

tion (or the creation) of a QQ pair. Such terms are excluded from the lagrangian as part of

the definition of NRQCD. If such an operator annihilates a QQ pair, it would, by energy con-

servation, have to create gluons (or light quarks) with energies of order M . The amplitude

for annihilation of a QQ pair into such high energy gluons cannot be described accurately

in a nonrelativistic theory such as NRQCD. Nevertheless, as is discussed in Section II E, the
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effects of such annihilation processes on low energy amplitudes can be reproduced by adding

4-fermion operators such as ψ†χχ†ψ to the effective lagrangian.

Operators containing higher-order time derivatives, such as ψ†D2
tψ, are also omitted

from the effective lagrangian as part of the definition of NRQCD. These operators can be

eliminated by field redefinitions that vanish upon use of the equations of motion. Because

of these field redefinitions, the off-shell Green’s functions of NRQCD need not agree with

those of full QCD, but the two theories are equivalent for on-shell physical quantities.

The coefficients ci in (2.5) must be tuned as functions of the coupling constant αs,

the heavy-quark mass parameter in full QCD, and the ultraviolet cutoff Λ of NRQCD, so

that physical observables are the same as in full QCD. The coefficients are conveniently

determined by matching low-energy scattering amplitudes of heavy quarks and antiquarks

in NRQCD, calculated in perturbation theory in αs and to a given precision in v, with the

corresponding perturbative scattering amplitudes in full QCD. It is necessary to use on-shell

scattering amplitudes for this purpose, because the equations of motion have been used to

simplify the effective lagrangian for NRQCD by eliminating terms with more than one power

of Dt. The scattering amplitudes can be calculated using perturbation theory in αs, since

the radiative corrections to the coefficients in the NRQCD lagrangian are dominated by

relativistic momenta. These coefficients therefore have perturbative expansions in powers of

αs(M) [9,14]. The coefficients in (2.5) are defined so that ci = 1 +O(αs).

The explicit factors of M in (2.5) were introduced in order that the coefficients ci be

dimensionless. These coefficients therefore depend on the definition of the heavy-quark

mass parameter M . Our definition of M is specified by the lagrangian (2.4): 1/(2M) is the

coefficient of the operator ψ†D2ψ. If a different prescription is adopted for M , then all the

ci’s must be changed accordingly. The simplest way to determine the mass parameter M is to

match the location of the pole in the perturbative propagator for a heavy quark in NRQCD

with that in full QCD. In both NRQCD and full QCD, the kinetic energy for a heavy quark of

momentum p in perturbation theory has the form E = p2/(2Mpole)−p4/(8M3
pole)+. . ., where

Mpole is the perturbative pole mass. In Appendix B 1, the self-energy of the heavy quark
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is calculated in NRQCD to order αs and to leading order in v. If we use a regularization

scheme in which power divergences are subtracted, then the energy-momentum relation gives

M = Mpole(1+O(α2
s)). The corresponding calculation using a lattice regularization has been

carried out by Morningstar [15]. The perturbative pole mass can be related to any other

definition of the heavy-quark mass by a calculation in full QCD.

C. Velocity-scaling Rules

In principle, infinitely many terms are required in the NRQCD lagrangian in order to

reproduce full QCD, but in practice only a finite number of these is needed for precision

to any given order in the typical heavy-quark velocity v. We can assess the relative im-

portance of various terms by using velocity-scaling rules that were derived in Ref. [14] and

are summarized in Table I. This table lists the fields and operators from which terms in

the NRQCD action are built, together with the approximate magnitude of each for matrix

elements between heavy quarkonium states that are localized in space. The scaling rules

were derived in Ref. [14] by analyzing the equations of motion for the quantum field opera-

tors of NRQCD. The typical heavy-quark velocity v is determined dynamically by a balance

between the kinetic and potential terms in the equation of motion for the heavy-quark field,

and v can be used as an expansion parameter in order to analyze the importance of other

terms. The scaling rules are certainly correct within perturbation theory in αs, but, since

they are based on the self-consistency of the field equations, they should also be valid in the

presence of nonperturbative effects.

There is an important caveat to the velocity-scaling rules that involves ultraviolet-

divergent loop corrections. Loop corrections to an operator give rise to power ultravio-

let divergences, as well as to logarithmic divergences. The logarithmic divergences modify

the scaling rules by factors of log(Λ/Mv). The power divergences can contribute factors of

1/vn, and the scaling rules apply only after such 1/vn divergences have been subtracted. The

subtracted expression is the relevant one for the following reason. The power-divergent con-
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tributions to a given operator O that yield factors of 1/vn have the form of renormalizations

of lower-dimension operators. When the coefficients of NRQCD are tuned so as to repro-

duce full QCD, the coefficients of the lower-dimension operators are adjusted so that their

contributions to physical quantities cancel the contributions of the 1/vn power-divergent

loop corrections to the operator O. Consequently, the inclusion of a given operator in the

NRQCD lagrangian yields a net correction to any physical quantity that is in accordance

with the velocity-scaling rules, up to logarithmic corrections.

The estimates for the magnitudes of gφ and gA in Table I hold in Coulomb gauge.

Coulomb gauge is a natural gauge for analyzing heavy quarkonium, because it avoids spu-

rious retardation effects that are present in covariant gauges, but cancel out in physical

quantities [16]. Coulomb gauge is also a physical gauge, that is, a gauge with no negative

norm states. Thus, it allows a sensible Fock-state expansion for the meson. The dominant

Fock state is of course |QQ〉, but the meson also contains the Fock state |QQg〉, which

includes a dynamical gluon, and higher Fock states as well.

The estimates in Table I were derived assuming that one can do perturbation theory in

the typical heavy-quark velocity. This perturbation theory relies on the fact that soft gluons

have a weak coupling to heavy quarks, not because the coupling constant αs is small, but

because the interaction is proportional to the heavy-quark velocity v. In the derivation of

the magnitude of gA in Ref. [14], dynamical gluons were assumed to have typical momenta

of order Mv, which is the inverse size of the quarkonium. The perturbative estimate for the

magnitude of the operator gA is αs(k)vk for a dynamical gluon of momentum k. For k of

order Mv, we can set αs ∼ v and recover the estimate Mv3 given in Table I. For k of order

Mv2, we can set αs ∼ 1, and we again obtain the estimate Mv3. This estimate relies on

perturbation theory, which may be suspect because of the strong coupling between gluons

with momenta on the order of Mv2. However such gluons necessarily have wavelengths of

order 1/(Mv2) or larger, which is much larger than the typical size 1/(Mv) of the quarko-

nium. For such long-wavelength gluons, the multipole expansion, whose validity transcends

that of perturbation theory in the coupling constant, can be used to justify the estimate for
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gA in Table I [17].

The velocity-scaling rules in Table I show that the terms in δLbilinear in (2.5) all give con-

tributions that are suppressed by O(v2) relative to those from the leading lagrangian Lheavy.

Recalling that mixed 2-fermion operators, such as ψ†(D2)2χ, and operators involving higher

time derivatives, such as ψ†D2
tψ, are omitted as part of the definition of NRQCD, we see that

δLbilinear contains all the 2-fermion NRQCD operators of relative order v2. The lagrangian

Llight + Lheavy + δLbilinear can therefore be used to calculate NRQCD matrix elements be-

tween heavy-quarkonium states with an error of order v4. If an error of order v2 is sufficiently

accurate, then the matrix elements can be calculated by using the lagrangian Llight +Lheavy.

It is instructive to contrast the relative magnitudes of the NRQCD operators in the case

of a heavy quarkonium with the relative magnitudes of the same operators in the case of

a heavy-light meson. (In the meson rest frame, the lagrangian for NRQCD is identical to

that for Heavy Quark Effective Theory, which is the standard formalism for treating heavy-

light mesons [18].) In a heavy-light meson, the typical 3-momentum of the heavy quark is

of order ΛQCD, and is independent of the heavy-quark mass. The binding energy is also

of order ΛQCD, and is much larger than the heavy-quark kinetic energy, which is of order

Λ2
QCD/M . Thus, in a heavy-light meson, the 3-momentum and the energy of the heavy-quark

are both of order ΛQCD, in contrast with the situation in a heavy quarkonium, in which the

3-momentum is of order Mv and the energy is of order Mv2. Consequently, in a heavy-light

meson, the effects of operators of dimension d are of order (ΛQCD/M)d−4 relative to the

effects of the dimension-4 operator ψ†iDtψ. The leading term ψ†iDtψ describes a static

heavy quark acting as a source of gluon fields. All effects of relative order ΛQCD/M can be

taken into account by adding the dimension-5 operators ψ†D2ψ and ψ†gB · σψ.

D. Quarkonium in NRQCD

Several qualitative features of heavy quarkonium can be inferred directly from the

NRQCD lagrangian by exploiting the heavy-quark velocity v as an expansion parameter.
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Expansions in powers of v are possible in ordinary QCD, but they are complicated by the

need to make a nonrelativistic expansion of each individual Lorentz-invariant operator in

order to separate the various powers of v. Relativistic effects have been unraveled to a large

extent in NRQCD, with the leading v-dependence of each operator being specified by the

velocity-scaling rules in Table I.

The most distinctive phenomenological feature of heavy quarkonium is that, for many

purposes, it is accurately described by the quark potential model, in which the heavy quark

and antiquark are bound by an instantaneous potential. This model is a tuned phenomenol-

ogy, rather than a theory, but it is far simpler than a full field-theoretic description based

on NRQCD or QCD. Its validity rests upon two essential ingredients of heavy-quarkonium

physics. The first is that the dominant effect of the exchange of gluons between the heavy

quark and antiquark is to produce an instantaneous interaction. The reason for this is that

the most important gluons have momenta of order Mv and energies of order Mv2. Such

gluons are off their energy shells by amounts of order Mv, which are much greater than the

typical kinetic energy Mv2 of the heavy quark. Consequently, the interaction times of the

gluons are shorter by a factor of 1/v than the time scale associated with the motion of the

heavy quarks, and the gluons’ interactions are, therefore, instantaneous as far as the heavy

quarks are concerned.

The second essential ingredient underlying the quark potential model is that the prob-

ability of finding dynamical gluons (those that are not part of the potential) in the meson

is small. This is important because dynamical gluons with very low energy produce effects

that are not instantaneous and are not readily incorporated into the quark potential model.

In particular, gluons with energies of order Mv2 have interaction times comparable to that

of the heavy quarks, and their exchange therefore leads to significant retardation effects.

The probability for the Fock state |QQg〉 of the meson can be estimated by considering the

energy shift of a quarkonium state |H〉 that is due to the presence of a Fock-state component

|QQg〉. In Coulomb gauge, the only terms that connect the dominant Fock state |QQ〉 to

the Fock state |QQg〉 are terms that involve the vector potential A. At leading order in v,
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the contributions to the energy shift come from the term igA · ψ†∇ψ/M in Lheavy:

∆E = − 1

M
〈H|

∫
d3x igA · ψ†∇ψ |H〉. (2.6)

Using the velocity-scaling rules in Table I and taking into account the relevant integration

volume 1/(Mv)3, we obtain the estimate ∆E ∼ Mv4. This energy shift can be written

in a different way — as the product of the probability PQQg for the QQg state multiplied

by the energy EQQg of that state. For gluons with momenta k of order Mv, the energy

of the QQg state is dominated by the energy of the gluon, and we find that PQQg ∼ v3.

For dynamical gluons with very low energies of order Mv2 or less, the energy of the QQg

state is of order Mv2 and we obtain the estimate PQQg ∼ v2. For heavy quarkonium, QQg

states are therefore suppressed relative to the dominant QQ state by a factor of order v2

in the probability. Hence, for most quantities, effects due to Fock states like |QQg〉 that

contain dynamical gluons are suppressed by powers of v. This might be expected from the

phenomenological successes of the quark potential model. However, there are quantities,

such as the decay rates of P-wave states into light hadrons [10], for which the effects of the

Fock state |QQg〉 are of leading order in v and the quark potential model fails completely.

The above estimates for the probabilities of |QQg〉 Fock states apply if the spin state of

the QQ pair is the same as in the dominant |QQ〉 Fock state. If the spin state is different,

we must replace gA ·∇ in (2.6) with gB · σ to obtain a nonzero matrix element. Using

the velocity-scaling rules of Table I, we again obtain an estimate ∆E ∼Mv4 for the energy

shift, implying that the probability for a |QQg〉 state containing a gluon with momentum

on the order of Mv is PQQg ∼ v3. However, in the derivation of the velocity-scaling rules in

Ref. [14], it was assumed that dynamical gluons have momenta of order Mv. If the gluon has

a much smaller momentum k, then the estimate M 2v4 for the operator gB in Table I should

be replaced with k2v2. Using this to estimate the energy shift from a |QQg〉 Fock state

containing a gluon with momentum of order Mv2, we obtain ∆E ∼ Mv6 and PQQg ∼ v4.

Thus, gluons with very low momenta exhibit the suppression that is characteristic of the

multipole expansion. We conclude that a |QQg〉 Fock state that can be reached from the
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dominant |QQ〉 Fock state by a spin-flip transition is dominated by dynamical gluons with

momenta of order Mv and that the probability of such a Fock state is PQQg ∼ v3.

Another important feature of quarkonium structure is its approximate independence

of the heavy-quark spin. This feature follows immediately from the structure of the

NRQCD lagrangian, which exhibits an approximate heavy-quark spin symmetry. The lead-

ing term Lheavy is completely independent of the heavy-quark spin. With just this term,

states that differ only in the spins of the heavy quark and antiquark have identical proper-

ties; heavy-quark spin is conserved and can be used to label the energy eigenstates. Spin-

dependence enters first through the bilinear terms in (2.5) that contain Pauli matrices, and

they give corrections that are of relative order v2.1 Thus, spin splittings for quarkonia should

be smaller than splittings between radial and orbital-angular-momentum excitations, with

the ratios of these splittings scaling roughly as v2. This familiar feature of the spectra of

charmonium and bottomonium reinforces our confidence in the power-counting rules and in

the utility of a nonrelativistic framework for studying quarkonium.

The total angular momentum J , the parity P , and the charge conjugation C are exactly

conserved quantum numbers in NRQCD, as well as in full QCD. Thus, the energy eigenstates

|H〉 of heavy quarkonium can be labelled by the quantum numbers JPC . By the arguments

given above, the dominant component in the Fock state expansion of |H〉 is a pure quark-

antiquark state |QQ〉. The Fock state |QQg〉, in which a dynamical gluon is present, has a

probability of order v2, and higher Fock states have probabilities of order v4 or higher. Since

our primary interest is in processes in which the Q and Q in the quarkonium annihilate,

1In perturbation theory, ladder-like Coulomb-gluon exchanges between the quark and antiquark

give a factor of order αs/v for each ladder rung. The spin-flip contribution is down by v2 relative

to this Coulomb-ladder contribution. For example, in a two-loop calculation, the Coulomb ladder

gives a factor of order (αs/v)2, while the ladder with one Coulomb exchange and one spin-flip

exchange gives a factor of order v2(αs/v)2 = α2
s .
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we concentrate on the state of the QQ pair in the various Fock-state components. For a

general Fock state, the QQ pair can be in either a color-singlet state or a color-octet state.

Its angular-momentum state can be denoted by the spectroscopic notation 2S+1LJ , where

S = 0, 1 is the total spin of the quark and antiquark, L = 0, 1, 2, . . . (or L = S, P,D, . . .)

is the orbital angular momentum, and J is the total angular momentum. A QQ pair in a

2S+1LJ state has parity P = (−1)L+1; if it is in a color-singlet state, it has charge-conjugation

number C = (−1)L+S.

In the Fock state |QQ〉, the QQ pair must be in a color-singlet state and in an angular-

momentum state 2S+1LJ that is consistent with the quantum numbers JPC of the meson.

Conservation of JPC implies that mixing is allowed only between the angular-momentum

states 3(J − 1)J and 3(J + 1)J . For example, a 3S1 QQ state can mix with a 3D1 state.

However, such mixing is suppressed because operators that change the orbital angular mo-

mentum must contain at least one power of ∇. In general, up to corrections of order v2,

we can regard the QQ component of the meson as being in a definite angular-momentum

state 2S+1LJ . Of course, if the contribution of the dominant angular-momentum state is

suppressed in a given process, then the contribution of the subdominant states takes on

increased importance. We will present examples of this phenomenon in the discussions of

the decay and production of P-wave states.

We turn next to the Fock state |QQg〉 of the meson, which includes a dynamical gluon

and has a component whose probability is of order v2. In spite of the fact that the dynamics

of the soft gluon is nontrivial, NRQCD tells us much about the quantum numbers of the

QQ pair in the QQg component whose probability is of order v2. The pair must of course

be in a color-octet state. Heavy-quark spin symmetry implies that the total spin quantum

number S for the QQ pair is the same as in the dominant Fock state |QQ〉. But NRQCD

also tells us that the orbital state of the QQ pair is closely related to that in the Fock

state |QQ〉. The reason for this is that the coupling of the soft gluon can be analyzed

using a multipole expansion, and the usual selection rules for multipole expansions apply.
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The leading interaction that couples the dominant Fock state |QQ〉 to the state |QQg〉 is

the electric-dipole part of the operator ψ†gA ·∇ψ in Lheavy, and this changes the orbital-

angular-momentum quantum number L of the QQ pair by ±1. Higher multipoles bring in

additional powers of v, as does second-order perturbation theory. Thus, if the QQ pair in

the dominant Fock state |QQ〉 has angular-momentum quantum numbers 2S+1LJ , then the

Fock state |QQg〉 has a probability of order v2 only if the QQ pair has total spin S and

orbital angular momentum L+ 1 or L− 1. For example, if the dominant Fock state consists

of a QQ pair in a 3S1 state, then the Fock state |QQg〉 has a probability of order v2 only if

the QQ pair is in a color-octet state with angular-momentum quantum numbers 3P0, 3P1,

or 3P2. If the dominant Fock state consists of a QQ pair in a 1P1 state, then the Fock state

|QQg〉 has a probability of order v2 only if the QQ pair is in a color-octet 1S0 or 1D2 state.

The above discussion applies to Fock states |QQg〉 in which the QQ pair has the same

total spin quantum number S as in the dominant |QQ〉 state. The probabilities for Fock

states |QQg〉 that can be reached from the dominant Fock state by a spin-flip transition also

scale in a definite way with v. The probability for such a Fock state to contain a dynamical

gluon with momentum of order Mv is of order v3, just as in the case of a non-spin-flip

transition. However, in the case of a spin-flip transition, this momentum region dominates

because, as we have seen, gluons with softer momenta, on the order of Mv2, are suppressed

by the multipole expansion. Thus, if the QQ pair in the dominant Fock state has angular-

momentum quantum numbers 2S+1LJ , then the Fock state |QQg〉, with the QQ pair in a

color-octet state with the same value of L but different total spin quantum number, has a

probability of order v3. For example, if the dominant Fock state consists of a QQ pair in

a 3S1 state, then the Fock state |QQg〉 with the QQ pair in a color-octet 1S0 state has a

probability of order v3. If the dominant Fock state consists of a QQ pair in a 1P1 state, then

the Fock state |QQg〉 with the QQ pair in a color-octet 3PJ state has probability of order

v3.
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E. Space-Time Structure of Annihilation

As we will explain in this subsection, the annihilation of a heavy QQ pair into gluons

(or light quarks) occurs at distances that are typically of order 1/M , that is, at momentum

scales of order M . Because of the large momentum scales involved, the details of the annihi-

lation process cannot be described accurately within a nonrelativistic effective theory such

as NRQCD. Nevertheless, as we will argue in the next subsection, the effects of annihila-

tion can be incorporated into NRQCD through 4-fermion operators in the term δL in the

NRQCD lagrangian. To show that the required operators are local, it is sufficient to show

that the interactions they account for occur over short distances of order 1/M . Strictly local

operators are then obtained by expanding the short-distance interaction in a Taylor series

in the 3-momentum p of the heavy quark multiplied by the characteristic size 1/M .

Now we wish to argue that the annihilation process is indeed local, i.e. that the anni-

hilation does occur within a distance of order 1/M . We note that any annihilation must

result in at least two hard gluons (or light quarks), each with momentum of order M . This

has two consequences. First, the heavy quark and antiquark must come within a distance

of order 1/M in order to annihilate. That is because the emission of a hard gluon from,

say, the heavy quark puts it into a highly virtual state, which can propagate only a short

distance before the quark must annihilate with the antiquark. Thus, the total annihilation

amplitude can be expressed as the sum of point-like annihilation amplitudes, where the sum

extends over the possible annihilation points inside the meson. The annihilation rate is

the square of the total annihilation amplitude, summed over all possible final states. The

second consequence of the hard gluons is that there is no overlap between one annihilation

amplitude and the complex conjugate of another if the two annihilation points are sepa-

rated by a distance greater than about 1/M . This might seem surprising, since the gluons

are, in effect, on their mass shells (that is, they fragment into jets with invariant masses

much less than M). There is no highly virtual state to constrain the distance between the

annihilation points for two amplitudes that produce the same final-state jets. Nevertheless,
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the annihilation points must be in close proximity to each other in order for there to be an

overlap between the final states. In order to see why this is so, we note that, in classical

mechanics, we could trace the two final-state jets back to the annihilation vertex, and there

would be no ambiguity whatsoever as to its space-time position. In quantum mechanics,

the uncertainty principle tells us that we can know the position of the annihilation vertex

only to a precision of order 1/M , since the jet momenta are of order M . Hence, in quantum

mechanics, QQ annihilation is not a point-like process, but it is a localized process, with a

size of order 1/M .

In a field-theoretic calculation of the annihilation rate at leading order in αs, the local-

ization of the annihilation process would manifest itself as follows. The annihilation rate

involves the imaginary part Γ(P, p, p′) of the scattering amplitude for a QQ pair with to-

tal momentum P and initial and final relative momenta p and p′. Consider the Fourier

transform of Γ(P, p, p′) with respect to all three momentum variables:

∫
d4P d4p d4p′ eiP ·(X−X

′)eip·(x1−x2)eip
′·(x′1−x′2) Γ(P, p, p′). (2.7)

Here, x1 and x2 correspond to quark and antiquark interaction points in one annihilation

amplitude, x′1 and x′2 correspond to quark and antiquark interaction points in the complex

conjugate of a second annihilation amplitude, and X = (x1 + x2)/2 and X ′ = (x′1 + x′2)/2

are average annihilation points for the first and second amplitudes. The fact that Γ(P, p, p′)

is insensitive to changes in p and p′ that are much less than M implies that, in the Fourier

transform, x1 (x′1) is localized to within a distance of order 1/M of x2 (x′2). Similarly, the

fact that Γ is insensitive to changes in P that are much less than M implies that the first and

second amplitudes have significant overlap only if X and X ′ are separated by a distance of

order 1/M or less. Note that, if one puts a restriction in the annihilation rate on one of the

components of the jet momentum, then Γ becomes sensitive to that component of P , and

the annihilation vertices are no longer localized along that direction. This is a consequence

of the uncertainty principle, which says that knowledge of a component of the jet momentum

along a given direction reduces our potential knowledge of the position of the annihilation
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vertex along that direction.

The radiation of soft or collinear gluons might seem to violate this simple localization

picture that appears at leading order in the coupling constant. Gluon radiation from the

initial QQ pair is not a problem, since infrared divergences can be factored into the long-

distance matrix elements of the 4-fermion operators that mediate the annihilation process

in NRQCD, and collinear divergences are controlled by the heavy-quark mass. We must,

however, worry about infrared or collinear divergences from the radiation of gluons from

the final-state hard gluons. In the presence of such soft or collinear radiation, the hard

gluon can propagate almost on its mass shell from the annihilation point to the emission

vertex. The energetic final-state gluon jet points back to the emission vertex, rather than

to the annihilation point, which may be far away. In perturbation theory, infrared and

collinear divergences occur in individual Feynman diagrams and produce a sensitivity to

the heavy-quark momenta in Γ. However, the Kinoshita-Lee-Nauenberg (KLN) theorem

[19] guarantees that, when one sums over the contributions of all nearly degenerate final

states, as is done in forming the inclusive annihilation rate, the infrared divergences cancel

between diagrams involving real and virtual gluon emission. We can think of this KLN

cancellation as a consequence of a generalized form of the uncertainty principle: we can

localize the annihilation point, provided that we do not require too much knowledge about

the final state—that is, provided that we do not distinguish between the various states that

contribute to the inclusive cross section.

The locality of the annihilation process is spoiled if the final-state gluons form a narrow

resonance, such as a glueball. This is because the jets produced by the decay of the resonance

point back to the place where the resonance decayed. If the resonance is narrow, this

may be far from the point where the heavy quark and antiquark annihilated. That is why

perturbation theory cannot be applied directly to the cross section for e+e− annihilation into

hadrons in the region of the charmonium or bottomonium resonances. In a field-theoretic

calculation, the resonance partially spoils the KLN cancellation of infrared and collinear

divergences. While contributions from gluons that have exactly zero momentum or are
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exactly collinear still cancel, the real and virtual contributions no longer cancel for soft gluons

whose energy is comparable to the resonance width or collinear gluons whose transverse

momentum is comparable to the resonance width. In the case of e+e− annihilation, one can

deal with this problem by forming a suitable average of the cross section over the resonance

region [20]. In perturbation theory, the effect of this smearing is to allow virtual soft or

collinear emission at one value of the e+e− center-of-mass energy
√
s to cancel real soft or

collinear emission at a slightly higher value of
√
s, but the same value of the energy of the

resonating QQ pair. This solution of smearing in the energy is not available to us in the case

of quarkonium annihilation. Fortunately, there are no known narrow glueball resonances in

the charmonium or bottomonium region, so we do not expect the resonance issue to be a

problem in practice.

F. Annihilation into Light Hadrons

Since the annihilation of a QQ pair necessarily produces gluons or light quarks with ener-

gies of order M , the annihilation amplitude cannot be described accurately within NRQCD.

Nevertheless, the annihilation rate, which is the square of the amplitude summed over fi-

nal states, can be accounted for in NRQCD. Since the annihilation rate of the QQ pair

is localized within a distance of order 1/M , the annihilation contribution to a low-energy

QQ→ QQ scattering amplitude can be reproduced in NRQCD by local 4-fermion operators

in δL involving ψ, χ†, χ, and ψ†. The optical theorem relates QQ annihilation rates to

the imaginary parts of QQ → QQ scattering amplitudes. This relation implies that the

coefficients of the 4-fermion operators in δL must have imaginary parts. These imaginary

parts are the manifestation of annihilation in NRQCD.

The 4-fermion interactions that represent the effects of QQ annihilation in NRQCD have

the general form

δL4−fermion =
∑

n

fn(Λ)

Mdn−4
On(Λ), (2.8)
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where the On are local 4-fermion operators, such as ψ†χχ†ψ. The naive scaling dimensions

dn of the operators can be obtained by counting the powers of M using Table I. The factors

of Mdn−4 in (2.8) have been introduced so as to make the coefficients fn dimensionless. The

operators On must be regularized, and they therefore depend on the ultraviolet cutoff or

renormalization scale Λ of the effective theory. The natural scale for this cutoff is M , since

1/M is the distance scale of the annihilation process. However, all results are independent

of Λ, since the coefficients fn(Λ) depend on Λ in such a way as to cancel the Λ-dependence

of the operators. The coefficients can be computed in full QCD as perturbation series in

αs(M), in which individual terms may depend on log(M/Λ).

If the analysis of annihilation rates were carried out completely within full QCD, then

the scale Λ would arise as an arbitrary factorization scale that must be introduced in order

to separate the momentum scale M from smaller momentum scales of order Mv or less.

The factorization scale Λ should not be confused with the renormalization scale µ of the full

theory. The coefficients fn(Λ) are independent of µ if they are computed to all orders in

αs(µ), although some µ-dependence is introduced as usual by the truncation of the pertur-

bation series. Unless we explicitly specify otherwise, we always make the choice µ = M in

this paper.

The dimension-6 4-fermion terms in δL are

(δL4−fermion)d=6 =
f1(1S0)

M2
O1(

1S0) +
f1(3S1)

M2
O1(

3S1)

+
f8(1S0)

M2
O8(1S0) +

f8(3S1)

M2
O8(3S1), (2.9)

where the dimension-6 operators are

O1(
1S0) = ψ†χχ†ψ, (2.10a)

O1(
3S1) = ψ†σχ · χ†σψ, (2.10b)

O8(
1S0) = ψ†T aχχ†T aψ, (2.10c)

O8(
3S1) = ψ†σT aχ · χ†σT aψ. (2.10d)

The subscript 1 or 8 on the operators and on their coefficients indicates the color structure of
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the operator. The arguments 2S+1LJ indicate the angular-momentum state of the QQ pair

which is annihilated or created by the operator. Normal-ordering of the 4-fermion operators

On will always be understood, so that matrix elements of On receive contributions only from

annihilation of the Q and Q. The dimension-8 terms in the lagrangian for NRQCD include

(δL4−fermion)d=8 =
f1(1P1)

M4
O1(1P1) +

f1(3P0)

M4
O1(

3P0) +
f1(

3P1)

M4
O1(

3P1)

+
f1(

3P2)

M4
O1(

3P2) +
g1(1S0)

M4
P1(

1S0) +
g1(3S1)

M4
P1(

3S1)

+
g1(3S1,

3D1)

M4
P1(

3S1,
3D1) + . . . . (2.11)

The dimension-8 operators included explicitly in (2.11) are

O1(
1P1) = ψ†(− i

2

↔
D)χ · χ†(− i

2

↔
D)ψ, (2.12a)

O1(
3P0) =

1

3
ψ†(− i

2

↔
D ·σ)χχ†(− i

2

↔
D · σ)ψ, (2.12b)

O1(
3P1) =

1

2
ψ†(− i

2

↔
D ×σ)χ · χ†(− i

2

↔
D× σ)ψ, (2.12c)

O1(
3P2) = ψ†(− i

2

↔
D(iσj))χχ†(− i

2

↔
D(iσj))ψ, (2.12d)

P1(1S0) =
1

2

[
ψ†χχ†(− i

2

↔
D)2ψ + h.c.

]
, (2.12e)

P1(3S1) =
1

2

[
ψ†σχ · χ†σ(− i

2

↔
D)2ψ + h.c.

]
, (2.12f)

P1(
3S1,

3D1) =
1

2

[
ψ†σiχχ†σj(− i

2
)2
↔
D(i

↔
Dj)ψ + h.c.

]
, (2.12g)

where
↔
D is the difference between the covariant derivative acting on the spinor to the right

and on the spinor to the left: χ†
↔
Dψ ≡ χ†(Dψ)− (Dχ)†ψ. We have used the notation T (ij)

for the symmetric traceless component of a tensor: T (ij) = (T ij + T ji)/2 − T kkδij/3. For

each of the operators shown explicitly in (2.11), there is a corresponding color-octet operator

O8 or P8, which contains color matrices T a inserted between ψ† and χ and between χ† and

ψ. This exhausts the list of the dimension-8 operators that contribute at tree level to QQ

scattering in the center of momentum frame. There are other dimension-8 operators, such

as ∇(ψ†χ) · (χ†
↔
Dψ) or D(ψ†T aχ) · D(χ†T aψ), in which a derivative acts on the product

of ψ† and χ or on the product of χ† and ψ. Matrix elements of operators such as these

are proportional to the total momentum of the QQ pair, and therefore do not receive any
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contributions from the dominant Fock state |QQ〉 in the meson rest frame. They do, however,

receive contributions from higher Fock states, such as |QQg〉, in which the total momentum

of the QQ pair is nonzero.

According to the velocity-scaling rules in Table I, the dimension-6 terms in (2.9) scale

as v relative to the leading term Lheavy in the NRQCD Lagrangian. Thus, if we consider

only the dependence on v, the terms in (2.9) appear to be more important than the terms in

δLbilinear, which scale as v2 relative to the terms in Lheavy. However, the contributions from

4-fermion operators contain extra suppression factors, owing to the operator coefficients,

whose imaginary parts are of order α2
s(M) or smaller. Thus, the contributions to annihilation

widths from (2.9) are of order α2
s(M)v or smaller relative to the scale Mv2 of the splittings

between radial excitations and between orbital-angular-momentum excitations. Similarly,

the contributions to annihilation widths from the dimension-8 operators in (2.11) are at most

of order α2
s(M)v3 relative to the scale Mv2 of splittings between energy levels. Thus, the

annihilation decay rates for heavy-quarkonium states are tiny perturbations on the energy

levels. This is certainly true empirically. In the charmonium system, the ground state ηc has

the largest annihilation width, but it is less than 3% of the splitting between the ηc and the

first radial or orbital-angular-momentum excitations. For bottomonium, the annihilation

widths are always less than 1% of the corresponding splittings.

In order to obtain an expression for the annihilation rate, we recall that the decay

rate is −2 times the imaginary part of the energy of the state. The contribution to the

imaginary part of the energy that corresponds to annihilation into light hadrons comes from

the expectation value of −δL4−fermion, whose coefficients have imaginary parts. Thus, we see

that the annihilation rate of a heavy-quarkonium state H into light hadrons is

Γ(H → LH) = 2 Im 〈H|δL4−fermion|H〉, (2.13)

where LH represents all possible light-hadronic final states. The expectation value is taken

in the rest frame of the quarkonium, where its total momentum P vanishes. The state |H〉 ≡
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|H(P = 0)〉 is an eigenstate of the NRQCD hamiltonian.2 It has the standard nonrelativistic

normalization: 〈H(P′)|H(P)〉 = (2π)3δ3(P−P′). Inserting the expansion (2.8) into (2.13),

we obtain

Γ(H → LH) =
∑

n

2 Im fn(Λ)

Mdn−4
〈H|On(Λ)|H〉. (2.14)

The equation (2.14) is our central result for the annihilation decays into light hadrons. It

expresses the decay rate as a sum of terms, each of which factors into a short-distance coef-

ficient Imfn and a long-distance matrix element 〈H|On|H〉. The coefficients Im fn in (2.14)

are proportional to the rates for on-shell heavy quarks and antiquarks to annihilate from

appropriate initial configurations into hard gluons and light quarks, and can be computed

as perturbation series in αs(M). The matrix elements 〈H|On|H〉 give the probability for

finding the heavy quark and antiquark in a configuration within the meson that is suitable

for annihilation, and can be evaluated nonperturbatively using, for example, lattice simula-

tions. The dependence on the arbitrary factorization scale Λ in (2.14) cancels between the

coefficients and the operators.

2Radial and orbital-angular-momentum excitations of a quarkonium may decay through the her-

mitian part of the NRQCD lagrangian to lower-lying quarkonium states plus light hadrons. An

example is the decay of ψ(2S) into ψππ. In this example, the spectrum of states in NRQCD con-

tains a continuum of ψππ scattering states, each of which includes a small admixture of the bare

ψ(2S) state, and a discrete state, which is mostly the bare ψ(2S) state, but which also contains a

small admixture of bare ψππ scattering states. The ψ(2S) Breit-Wigner resonance in, for example,

the amplitude for e+e− → µ+µ− results from the contributions of the complete spectrum of states.

However, the resonance in the amplitude can be reproduced by a single state, with complex energy,

that is an eigenstate of the nonlocal effective Hamiltonian that one would obtain by integrating

out the light-hadron states in NRQCD. One should identify the state |H〉 in (2.14) with such an

eigenstate in applying (2.14) to an excited quarkonium state that decays through the hermitian

part of the NRQCD lagrangian into a lower-lying quarkonium state.
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In some calculations of the matrix elements in (2.14), such as lattice simulations, it may

be useful to approximate the states |H〉 by eigenstates of the hermitian part of the NRQCD

Hamiltonian. We note that corrections to this approximation first appear at third-order in

perturbation theory in Im δL4−fermion, since second-order perturbation theory does not give

an imaginary contribution to the energy. The corrections are therefore of order (Γ/Mv2)2Γ.

This is of relative order α4
s(M)v2 or smaller, since the leading terms in Γ scale like Mv3

and are multiplied by short-distance coefficients of order α2
s(M) or smaller. This level of

accuracy is sufficient for most practical purposes.

Applying the velocity-scaling rules of Table I to the matrix elements 〈H|On(Λ)|H〉, one

finds that the expression (2.14) for the annihilation decay rate can be organized into an

expansion in powers of v. Only a finite number of operators contribute to any given order

in v. The coefficients fn(Λ) can be calculated as perturbation series in αs(M), so (2.14) is

really a double expansion in αs(M) and v. The simultaneous expansion in αs(M) and v is

useful to the extent that these two parameters are both small. Of course, αs(M) and v are

not independent for heavy quarkonium. According to (2.1), v can be identified with αs(Mv),

which is larger than αs(M). This implies that it would be futile to consider corrections to

the coefficients Im fn of relative order αns (M) unless matrix elements 〈H|On|H〉 of relative

order vn have already been included.

The relation between v and αs(M) implied by (2.1) follows from the dynamics of heavy

quarkonium. The factorization formula (2.14) is actually an operator equation, and it can

equally well be applied to other problems in which the relation between v and αs(M) is

different. An example in which v and αs(M) are independent is the annihilation of a pair

of heavy-light mesons, such as D and D̄ mesons, at small relative velocity v � 1. As long

as v is much larger than ΛQCD/M , which is the typical relative velocity of a heavy quark

in the heavy-light meson, it can be identified with the velocity of the heavy quark and the

scaling rules of Table I apply.
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G. Electromagnetic Annihilation

In addition to annihilating into light hadrons, heavy-quarkonium states can also annihi-

late into purely electromagnetic final states containing only photons and lepton pairs. The

energies of the final-state photons and leptons are of order M . In NRQCD, the effects of

electromagnetic annihilation can be accounted for in the same way as the effects of annihi-

lation into light hadrons: by adding 4-fermion terms δLEM
4−fermion to the effective lagrangian.

The primary difference is that in the case of electromagnetic annihilation, the final state, as

far as the strong interactions are concerned, is the QCD vacuum state |0〉. The 4-fermion

operators that reproduce the effects of electromagnetic annihilation therefore differ from

those in (2.9) and (2.11) by the insertion of an operator |0〉〈0| that projects onto the QCD

vacuum state. The dimension-6 terms that must be added to the lagrangian are

(
δLEM

4−fermion

)
d=6

=
fEM(1S0)

M2
ψ†χ|0〉〈0|χ†ψ +

fEM(3S1)

M2
ψ†σχ|0〉 · 〈0|χ†σψ. (2.15)

Note that color-octet operators, such as ψ†T aχ|0〉〈0|χ†T aψ, are omitted because they can-

not contribute to matrix elements between color-singlet heavy-quarkonium states. The

dimension-8 terms that must be added to the lagrangian include

(
δLEM

4−fermion

)
d=8

=
fEM(3P0)

M4

1

3
ψ†(− i

2

↔
D) · σχ|0〉 〈0|χ†(− i

2

↔
D) · σψ

+
fEM(3P2)

M4
ψ†(− i

2

↔
D(iσj))χ|0〉 〈0|χ†(− i

2

↔
D(iσj))ψ

+
gEM(1S0)

M4

1

2

[
ψ†χ|0〉〈0|χ†(− i

2

↔
D)2ψ + h.c.

]

+
gEM(3S1)

M4

1

2

[
ψ†σχ|0〉 · 〈0|χ†σ(− i

2

↔
D)2ψ + h.c.

]
+ . . . . (2.16)

We have shown only four of the possible dimension-8 terms. In particular, there are terms

corresponding to each of the operators shown explicitly in (2.11). The coefficients of the

operators in (2.15) and (2.16) can be computed as perturbation expansions in αs(M).

The decay rate of a heavy quarkonium state H into electromagnetic final states (EM)

can be expressed in a factored form that is analogous to that given in (2.14) for decays into

light hadrons:
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Γ(H → EM) =
∑

n

2 ImfEM,n(Λ)

Mdn−4
〈H|ψ†K′nχ(Λ)|0〉 〈0|χ†Knψ(Λ)|H〉, (2.17)

where Kn and K′n are products of the unit color matrix, a spin matrix (the unit matrix or

σi), and a polynomial in the covariant derivative D and other fields, as in (2.15) and (2.16).

The possible electromagnetic final states EM include the multiphoton states γγ and 3γ and

the lepton pairs `+`−, where ` = e, µ, τ .

H. Computation of the Coefficients of the 4-Fermion Operators

The nonperturbative long-distance dynamics of QCD is described equally well by full

QCD and by NRQCD. The perturbation expansions for full QCD and NRQCD also give

equivalent descriptions of the long-distance dynamics, although the description is incorrect.

For example, perturbation theory allows quarks and antiquarks to appear as asymptotic

states. However, because the coefficients of the NRQCD operators are insensitive to the long-

distance dynamics, we can exploit the equivalence of perturbative QCD and perturbative

NRQCD at long distances as a device to calculate the coefficients of the four-fermion opera-

tors. We compute in perturbation theory in full QCD the annihilation part A(QQ→ QQ) of

the scattering amplitude for an on-shell quark and antiquark with small relative momenta.

Then we use perturbation theory in NRQCD to compute the matrix elements of 4-fermion

operators On between on-shell QQ states. The short-distance coefficients are determined by

the matching condition

A(QQ→ QQ)

∣∣∣∣∣
pert. QCD

=
∑

n

fn(Λ)

Mdn−4
〈QQ|On(Λ)|QQ〉

∣∣∣∣∣
pert. NRQCD

. (2.18)

By expanding the left and right sides of (2.18) as Taylor series in the relative momenta p

and p′ of the initial and final QQ pairs, we can identify the coefficients of the individual

operators. These correspond to the infrared-finite parts of the parton-level amplitudes for

QQ scattering. Because of the equivalence of NRQCD and full QCD at long distances, all

of the infrared divergences contained in A(QQ → QQ) on the left side of (2.18) reside on

the right side in the NRQCD matrix elements 〈QQ|On(Λ)|QQ〉.
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The application of the matching condition (2.18) is illustrated in Appendix A. The

imaginary parts of the coefficients fn that enter into the annihilation rates of S-wave states

through relative order v2 and the annihilation rates of P-wave states at leading order in v

are computed to order α2
s. In order to illustrate the use of the matching condition (2.18)

beyond leading order in αs, we also calculate the coefficient Im f1(
1S0) at next-to-leading

order in αs.
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III. MATRIX ELEMENTS FOR HEAVY QUARKONIUM

The factorization formula (2.14) expresses the decay rate of an arbitrary heavy quarko-

nium state H into light hadrons as a sum over all 4-fermion operators On. If we truncate

the expansion at a given order in the heavy-quark velocity v, then only finitely many of

the operators contribute. In this section, we show how the number of independent matrix

elements can be reduced further by exploiting heavy-quark spin symmetry and by using the

vacuum-saturation approximation. We identify the matrix elements that contribute to the

decays of S-wave states through relative order v2 and the matrix elements that contribute

to the decays of P-wave states at leading order in v. We also discuss the relation between

these matrix elements and Coulomb-gauge wavefunctions, as well as the dependence of the

matrix elements on the factorization scale. For the sake of clarity, we use the lowest S-wave

and P-wave states of charmonium for the purpose of illustration. However, our results apply

equally well to other sets of S-wave and P-wave states, and they can be extended readily

to higher orbital-angular-momentum states as well. The lowest-lying S-wave states in the

charmonium system are the JPC = 0−+ state ηc and the 1−− state J/ψ (henceforth referred

to simply as ψ). The lowest-lying P-wave states are the 1+− state hc and the J++ states

χcJ , J = 0, 1, 2.

A. Powers of Velocity

We wish to determine the relative importance of the matrix elements 〈H|On|H〉 of 4-

fermion operators On for a heavy quarkonium state |H〉. The velocity-scaling rules in Table I

suggest that 〈H|On|H〉 is of the same order in v for all the dimension-6 operators in (2.9), and

that all the dimension-8 operators in (2.11) are down by a power of v2. There can, however,

be additional suppression by powers of v, depending on the quantum numbers of the state

H. The velocity-scaling rules in Table I give the correct result only if the operator On

annihilates and creates a color-singlet QQ pair with the same angular-momentum 2S+1LJ as
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the QQ pair in the dominant Fock state |QQ〉 of the state |H〉. (In the notation for 4-fermion

operators used in (2.9) and (2.11), the subscript 1 or 8 and the argument 2S+1LJ indicate

the color and angular-momentum state of the QQ pair that is annihilated and created by

the operator.) The matrix element 〈H|On|H〉 is suppressed by only one additional power

of v2, relative to the velocity-scaling rules in Table 1, if On annihilates and creates QQ

pairs in the same color-spin-orbital state as appears in one of the Fock states |QQg〉 whose

probability is of order v2. In particular, if the dominant QQ component is 2S+1LJ , the QQ

pair in the component |QQg〉 must be in a color-octet state with spin quantum number S

and orbital-angular-momentum quantum number L ± 1. The matrix element is suppressed

by v3 relative to the velocity-scaling rules in Table I if On annihilates and creates QQ pairs

in the same color-spin-orbital state as appears in one of the Fock states |QQg〉 that can be

obtained from the dominant Fock state by a spin-flip transition. In such a Fock state, the

QQ pair must be in a color-octet state with the same orbital-angular-momentum quantum

number L as in the dominant |QQ〉 state, but with different total spin quantum number.

In all other cases, the matrix element is down by v4 or more relative to the velocity-scaling

result from Table I.

If perturbation theory remained accurate down to the scale Mv, then the spin-flip ma-

trix elements would be suppressed by an additional power of v. The reason for this is that

the contribution to a spin-flip matrix element that is suppressed by only v3 relative to the

velocity-scaling rules is power ultraviolet divergent. Therefore, one could carry out a renor-

malization of the matrix element in which this contribution is subtracted. The corresponding

contribution to the decay rate would then reside in the short-distance coefficient of the ma-

trix element that is associated with the dominant Fock state. (Such a subtraction is carried

out automatically if dimensional regularization is used to cut off the ultraviolet divergences

in the matrix element.) Once the subtraction has been made, the leading contribution to

the spin-flip matrix element comes from the scale Mv2. It is subject to the usual multipole

suppression and scales as v4 relative to the velocity-scaling rules. In practice, one usually
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makes such subtractions perturbatively. It is not clear, in the charmonium and bottomo-

nium systems, that perturbation theory is sufficiently accurate at the scale Mv to remove

the v3 contribution completely. Therefore, we assume in the error estimates below that the

spin-flip matrix elements scale as v3 relative to the velocity-scaling rules.

We can now identify the operators that contribute to the annihilation of the ηc into light

hadrons through relative order v2. The JPC = 0−+ state |ηc〉 consists predominantly of the

Fock state |QQ〉, with the QQ pair in a color-singlet 1S0 state, but it also contains, with

probability of order v2, the Fock state |QQg〉, with the QQ pair in a color-octet 1P1 state.

The QQ pair in the dominant Fock state |QQ〉 is annihilated and created by the leading

operator O1(1S0) = ψ†χχ†ψ, and by the operator P1(
1S0) = ψ†χχ†(− i

2

↔
D)2ψ + h.c., which

is down by v2. All other operators are suppressed by v3 or more relative to O1(
1S0). For

example, the operatorO8(
1P1) = ψ†(− i

2

↔
D)T aχ·χ†(− i

2

↔
D)T aψ scales as v2 relative toO1(1S0),

but it contributes through the Fock state |QQg〉, which gives an additional suppression by

v2. The operator O1(
3S1) = ψ†σχ · χ†σψ scales as O1(

1S0), but it contributes through the

Fock state |QQgg〉, and is therefore suppressed by an additional probability factor of v4. As

a final example, the operator∇(ψ†χ)·∇(χ†ψ) scales as v2 relative to O1(
1S0), but its matrix

element is proportional to the total momentum of the QQ pair, which vanishes for the Fock

state |QQ〉 in the meson rest frame. Thus, there are only two operators that contribute to

the decay rate of the ηc into light hadrons through relative order v2:

Γ(ηc → LH) =
2 Im f1(1S0)

M2
〈ηc|O1(

1S0)|ηc〉

+
2 Im g1(1S0)

M4
〈ηc|P1(1S0)|ηc〉 + O(v3Γ). (3.1)

The analysis of the operators that contribute to the decays of the ψ is similar to that for

the ηc. The 1−− state |ψ〉 consists predominantly of the Fock state |QQ〉, with the QQ pair

in a color-singlet 3S1 state, but it contains, with a probability of order v2, the Fock state

|QQg〉, with the QQ pair in a color-octet 3P0, 3P1, or 3P2 state. At leading order in v, only

the operator O1(3S1) contributes to the decay rate of the ψ into light hadrons. At relative

order v2, the only additional contribution comes from the operator P1(
3S1). As in the case
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of the ηc, all contributions from Fock states containing dynamical gluons, such as |QQg〉,

are of order v3Γ or higher.

We next determine the operators that contribute to the annihilation decays of the P-

wave states at leading order in v. In contrast to the S-wave states, we find that Fock

states containing dynamical gluons play an important role. The 1+− state |hc〉 consists

predominantly of the Fock state |QQ〉, with the QQ pair in a color-singlet 1P1 state, but it

has a probability of order v2 for the Fock state |QQg〉, with the QQ pair in a color-octet 1S0

or 1D2 state. The Fock state |QQ〉 is created and annihilated by the dimension-8 operator

O1(
1P1) = ψ†(− i

2

↔
D)χ · χ†(− i

2

↔
D)ψ. The Fock state |QQg〉, with the QQ pair in a color-

octet 1S0 state, also contributes to the decay at the same order in v through the operator

O8(
1S0) = ψ†T aχχ†T aψ. The operator scales as v−2 relative to O1(

1P1), but there is also

a suppression factor of v2 from the probability for the QQg state. Thus, the Fock state

|QQg〉, which contains a dynamical gluon, contributes to the decay rate into light hadrons

at the same order in v as the dominant Fock state |QQ〉. The resulting expression for the

decay rate is

Γ(hc → LH) =
2 Imf1(1P1)

M4
〈hc|O1(1P1)|hc〉

+
2 Im f8(1S0)

M2
〈hc|O8(1S0)|hc〉 + O(v2Γ). (3.2)

The analysis of the operators that contribute to the decays of the χc0, χc1, and χc2 is

similar to that for hc. The J++ state |χcJ 〉 consists predominantly of the Fock state |QQ〉,

with the QQ pair in a color-singlet 3PJ state. It also contains, with a probability of order

v2, the Fock state |QQg〉, with the QQ pair in a color-octet 3S1, 3D1, 3D2, or 3D3 state.

The Fock state |QQ〉 contributes to the annihilation at leading order in v through the

dimension-8 operator O1(3PJ ). The Fock state |QQg〉, with the QQ pair in a color-octet 3S1

state, also contributes to the annihilation rate at the same order in v, through the operator

O8(
3S1) = ψ†σT aχ · χ†σT aψ.

The analysis of the electromagnetic operators that contribute to the decays of S-wave

and P-wave states is identical to that of the operators that contribute to the decays into
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light hadrons, except that there are no color-octet operators. We find, therefore, that there

are two operators that contribute to the decay of the ηc into two photons through relative

order v2: ψ†χ|0〉〈0|χ†ψ and ψ†χ|0〉〈0|χ†(− i
2

↔
D)2ψ + h.c.. Thus, the decay rate for ηc → γγ

is

Γ(ηc → γγ) =
2 Imfγγ(1S0)

M2

∣∣∣〈0|χ†ψ|ηc〉
∣∣∣
2

+
2 Im gγγ(1S0)

M4
Re

(
〈ηc|ψ†χ|0〉〈0|χ†(− i

2

↔
D)2ψ|ηc〉

)
+ O(v4Γ). (3.3)

Here, it is expressed in terms of the vacuum-to-ηc matrix elements 〈0|χ†ψ|ηc〉 and

〈0|χ†(− i
2

↔
D)2ψ|ηc〉. Similarly the decay rate for ψ → e+e− can be computed at relative

order v2 in terms of 〈0|χ†σψ|ψ〉 and 〈0|χ†σ(− i
2

↔
D)2ψ|ψ〉. For the decay χc0 → γγ, the

only operator that contributes at leading order in v is ψ†(− i
2

↔
D · σ)χ|0〉〈0|χ†(− i

2

↔
D · σ)ψ,

so the decay rate can be expressed in terms of the single vacuum-to-χc0 matrix element

〈0|χ†(− i
2

↔
D · σ)ψ|χc0〉. Similarly the decay rate for χc2 → γγ can be calculated to leading

order in v in terms of the matrix element 〈0|χ†(− i
2

↔
D(iσj))ψ|χc2〉 only.

B. Heavy-Quark Spin Symmetry

Heavy-quark spin symmetry provides approximate relations between matrix elements for

the various spin states of a given radial and orbital excitation of heavy quarkonium. The

leading violations of heavy-quark spin symmetry come from the spin-flip terms in (2.5),

whose effects are of relative order v2. Consequently, the equalities that follow from heavy-

quark spin symmetry hold only through relative order v2. Nevertheless, these relations

can significantly reduce the number of independent matrix elements that contribute to the

decays of the various spin states.

When applied to the S-wave states, heavy-quark spin symmetry relates the ηc and the

3 spin states of the ψ. For the matrix elements that contribute to their decays into light

hadrons through relative order v2, the spin-symmetry relations are

〈ψ|O1(3S1)|ψ〉 = 〈ηc|O1(
1S0)|ηc〉

(
1 +O(v2)

)
, (3.4a)
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〈ψ|P1(
3S1)|ψ〉 = 〈ηc|P1(

1S0)|ηc〉
(

1 +O(v2)

)
. (3.4b)

The 12 spin states of the P-wave states hc, χc0, χc1, and χc2 form a spin-symmetry multiplet.

The spin-symmetry relations between the matrix elements that contribute to the decays of

the P-wave states into light hadrons at leading order in v are

〈χcJ |O1(
3PJ )|χcJ〉 = 〈hc|O1(1P1)|hc〉

(
1 +O(v2)

)
, J = 0, 1, 2, (3.5a)

〈χcJ |O8(
3S1)|χcJ〉 = 〈hc|O8(

1S0)|hc〉
(

1 + O(v2)

)
, J = 0, 1, 2. (3.5b)

Heavy-quark spin symmetry also relates the matrix elements that contribute to the

electromagnetic annihilation decay rates. For the matrix elements that contribute to the

decays of ηc and ψ, the spin-symmetry relations are

ε∗ · 〈0|χ†σψ|ψ(ε)〉 = 〈0|χ†ψ|ηc〉
(

1 + O(v2)

)
, (3.6a)

ε∗ · 〈0|χ†σ(− i
2

↔
D)2ψ|ψ(ε)〉 = 〈0|χ†(− i

2

↔
D)2ψ|ηc〉

(
1 + O(v2)

)
, (3.6b)

where the polarization vector ε satisfies ε∗ · ε = 1. For the matrix elements that contribute

to the decays of the χc0 and χc2 into two photons, the spin-symmetry relations are

εij
∗〈0|χ†(1

2

↔
D(iσj))ψ|χc2(ε)〉 =

1√
3
〈0|χ†(1

2

↔
D · σ)ψ|χc0〉

(
1 + O(v2)

)
, (3.7)

where the symmetric polarization tensor εij satisfies tr(ε) = 0 and tr(ε†ε) = 1.

C. Vacuum-Saturation Approximation

The 4-fermion operators in (2.9) and (2.11) that contribute to the decays of heavy quarko-

nium into light hadrons are distinct from those in (2.15) and (2.16) that contribute to elec-

tromagnetic annihilation. The electromagnetic matrix elements can be obtained from the

corresponding light hadronic matrix elements by making use of the “vacuum-saturation ap-

proximation”: insert a complete set of light hadronic states
∑
X |X〉〈X| between χ† and

χ and assume that the sum is “saturated” by the lowest-energy state, the QCD vacuum
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|0〉. The vacuum-saturation approximation has been used in many other contexts in parti-

cle physics, but it is usually just a simplifying assumption without any rigorous basis. In

the case of heavy quarkonium, we can show that the vacuum-saturation approximation is

actually a controlled approximation.

Consider the matrix element of a color-singlet operator of the form On = ψ†K′nχχ†Knψ,

where Kn and K′n are products of a unit color matrix, a spin matrix (the unit matrix or

σi), and a polynomial in D and other fields. The vacuum-saturation approximation to the

matrix element 〈H|On|H〉 is obtained by inserting a complete set of states |X〉 between χ

and χ†, and assuming that the sum is well approximated by the term involving the vacuum

state |0〉:

〈H|On|H〉 =
∑

X

〈H|ψ†K′nχ|X〉〈X|χ†Knψ|H〉

≈ 〈H|ψ†K′nχ|0〉〈0|χ†Knψ|H〉 (3.8)

If the last step in (3.8) is to be a controlled approximation, we must show that the contri-

butions from all other states, such as multigluon states, are suppressed by powers of v. One

example for which this can be done is the matrix element 〈ηc|ψ†χχ†ψ|ηc〉. In the vacuum-

saturation approximation, the last line of (3.8) reduces to |〈0|χ†ψ|ηc〉|2. This approximation

would be exact if the ηc were a pure 1S0 QQ state. The point-like operator χ†ψ would then

annihilate the ηc completely, leaving the vacuum state. However, the ηc also has Fock-state

components, such as |QQg〉 and |QQgg〉, which include dynamical gluons. Corrections to

the vacuum-saturation approximation can be attributed to contributions from intermedi-

ate states |X〉 containing such dynamical gluons. For the matrix element 〈ηc|ψ†χχ†ψ|ηc〉,

a single-gluon intermediate state is forbidden by color conservation, so the leading correc-

tions to the vacuum-saturation approximation come from two-gluon intermediate states |gg〉.

The leading contribution to 〈ηc|ψ†χ|gg〉〈gg|χ†ψ|ηc〉 comes from the |QQgg〉 component of

the ηc, which has a probability of order v4. Thus, the vacuum-saturation approximation for

〈ηc|ψ†χχ†ψ|ηc〉 holds up to corrections of relative order v4.

The vacuum-saturation approximation holds up to corrections of relative order v4 for
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any matrix element in which the operator creates and annihilates the dominant QQ compo-

nent of the quarkonium state. For the matrix elements that contribute to the decay rates

of the S-wave states into light hadrons through relative order v2, the vacuum-saturation

approximation gives

〈ηc|O1(
1S0)|ηc〉 =

∣∣∣〈0|χ†ψ|ηc〉
∣∣∣
2
(

1 +O(v4)

)
, (3.9a)

〈ψ|O1(
3S1)|ψ〉 =

∣∣∣〈0|χ†σψ|ψ〉
∣∣∣
2
(

1 +O(v4)

)
, (3.9b)

〈ηc|P1(
1S0)|ηc〉 = Re

(
〈ηc|ψ†χ|0〉〈0|χ†(− i

2

↔
D)2ψ|ηc〉

) (
1 +O(v4)

)
, (3.9c)

〈ψ|P1(
3S1)|ψ〉 = Re

(
〈ψ|ψ†σχ|0〉 · 〈0|χ†σ(− i

2

↔
D)2ψ|ψ〉

) (
1 +O(v4)

)
. (3.9d)

In the case of P-wave states, the vacuum-saturation approximation can be applied to the

matrix elements of the color-singlet 4-fermion operators of dimension 8:

〈hc|O1(
1P1)|hc〉 =

∣∣∣〈0|χ†(− i
2

↔
D)ψ|hc〉

∣∣∣
2
(

1 +O(v4)

)
, (3.10a)

〈χc0|O1(
3P0)|χc0〉 =

1

3

∣∣∣〈0|χ†(− i
2

↔
D · σ)ψ|χc0〉

∣∣∣
2
(

1 +O(v4)

)
, (3.10b)

〈χc1|O1(
3P1)|χc1〉 =

1

2

∣∣∣〈0|χ†(− i
2

↔
D× σ)ψ|χc1〉

∣∣∣
2
(

1 +O(v4)

)
, (3.10c)

〈χc2|O1(
3P2)|χc2〉 =

∑

ij

∣∣∣〈0|χ†(− i
2

↔
D(iσj))ψ|χc2〉

∣∣∣
2
(

1 +O(v4)

)
. (3.10d)

The vacuum-saturation approximation cannot be applied to matrix elements of color-octet

operators, such as 〈hc|ψ†T aχχ†T aψ|hc〉, because the matrix element 〈X|χ†T aψ|hc〉 vanishes

if 〈X| is the vacuum or any other color-singlet state.

D. Relation to Wavefunctions

In most previous work on the annihilation decays of heavy quarkonium, the nonperturba-

tive factors in the decay rates were expressed in terms of wavefunctions, or their derivatives,

evaluated at the origin. These “wavefunctions” were often identified with the Schrödinger
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wavefunctions calculated in potential models for heavy quarkonium. The wavefunction fac-

tors were never given rigorous field-theoretic definitions, so the accuracy of the approxima-

tions that were involved was always vague. By expressing the decay rates in terms of matrix

elements of NRQCD, we have provided a rigorous field-theoretic definition of the nonper-

turbative factors in the decay rates. Since heavy quarks and antiquarks are described in

NRQCD by a Schrödinger field theory, the nonrelativistic wavefunctions can also be given

rigorous field-theoretic definitions, and their relations to the nonperturbative factors in the

decay rates can be clarified.

Nonrelativistic Coulomb-gauge wavefunctions can be defined naturally as NRQCD

Bethe-Salpeter QQ wavefunctions, evaluated at equal time. For example, the radial wave-

function Rηc(r) for the ηc can be defined as

Rηc(r)
1√
4π
≡ 1√

2Nc

〈0|χ†(−r/2) ψ(+r/2)|ηc〉
∣∣∣∣∣
Coulomb

. (3.11)

The Pauli spinor fields ψ(r/2) and χ†(−r/2) are understood to be evaluated at the same

time t = 0. The factor 1/
√

4π on the left is the spherical harmonic Y00(r̂), while the factor of
√

2Nc on the left takes into account the traces of the spin wavefunction δm+m′ ,0/
√

2 and the

color wavefunction δij/
√
Nc of the |QQ〉 component of the ηc. In the absence of a regulator,

the wave function or its derivatives may be singular as r → 0. We can define regularized

“radial wavefunctions at the origin” Rηc(Λ) for ηc and Rψ(Λ) for ψ by

Rηc(Λ) ≡
√

2π

Nc
〈0|χ†ψ(Λ)|ηc〉, (3.12a)

Rψ(Λ) ε ≡
√

2π

Nc
〈0|χ†σψ(Λ)|ψ(ε)〉 , (3.12b)

where ε is the polarization vector of the ψ. The local operators χ†ψ(Λ) and χ†σψ(Λ) can be

defined by dimensional regularization with scale Λ, together with minimal subtraction. They

can also be defined by a lattice regulator, or any other convenient regularization scheme. As

is suggested by the overline, the intuitive interpretation of Rηc(Λ) and Rψ(Λ) is that they

are the radial wavefunctions averaged over a region of size 1/Λ centered at the origin. Note
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that the regularized matrix elements in (3.12) are precisely those that enter into the decay

rates for for ηc → γγ and ψ → e+e− at leading order in v.

The matrix element 〈0|χ†(− i
2

↔
D)2ψ|ηc〉 that contributes to the decay rate for ηc → γγ at

relative order v2 can also be related to the Coulomb-gauge wavefunction defined in (3.11).

By the velocity-scaling rules of Table I, it differs from the matrix element 〈0|χ†(− i
2

↔∇)2ψ|ηc〉

in Coulomb gauge only at relative order v2. With appropriate regularization, the latter

matrix element can be identified with the limit as r → 0 of −∇2R(r), where R(r) is the

radial wavefunction defined in (3.11). The operator χ†(1
2

↔∇)2ψ contains a linear ultraviolet

divergence proportional to χ†ψ(Λ), which we subtract, and a logarithmic divergence that is

cut off at the scale Λ. This subtraction and cutoff define a renormalized laplacian of the

radial wavefunction at the origin, which we denote by ∇2Rηc:

∇2Rηc(Λ) ≡
√

2π

Nc
〈0|χ†(1

2

↔∇)2ψ(Λ)|ηc〉
∣∣∣∣∣
Coulomb

. (3.13)

The analogous quantity ∇2Rψ for the ψ can be defined in a similar way. The corresponding

gauge-invariant matrix elements differ from ∇2Rηc and ∇2Rψ only at relative order v2:

〈0|χ†(− i
2

↔
D)2ψ(Λ)|ηc〉 = −

√
Nc

2π
∇2Rηc(Λ)

(
1 + O(v2)

)
. (3.14a)

ε∗ · 〈0|χ†σ(− i
2

↔
D)2ψ(Λ)|ψ(ε)〉 = −

√
Nc

2π
∇2Rψ(Λ)

(
1 + O(v2)

)
. (3.14b)

The intuitive interpretations of ∇2Rηc(Λ) and ∇2Rψ(Λ) are somewhat obscured by the

subtractions needed to define the renormalized matrix elements.

Heavy-quark spin symmetry implies that the wavefunctions of the ηc and ψ are identical

up to corrections of relative order v2:

Rψ(r) = Rηc(r)

(
1 + O(v2)

)
. (3.15)

It is convenient to introduce an average radial wavefunction RS(r) for the 1S states ηc and

ψ, which can be used when the differences of relative order v2 can be neglected:

RS(r) ≡ Rηc(r) + 3Rψ(r)

4
. (3.16)
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Because of the heavy-quark spin symmetry, the regularized quantities Rηc(Λ) and Rψ(Λ)

differ only at relative order v2, as do the renormalized quantities ∇2Rηc(Λ) and ∇2Rψ(Λ).

Weighted averages RS(Λ) and ∇2RS(Λ) for the S-wave states can be defined as in (3.16).

The S-wave radial wavefunction that is computed in nonrelativistic potential models can

be interpreted as a phenomenological estimate of the wavefunction (3.16). Thus, the value

RS(r = 0) that is obtained from potential models can be used as an estimate of the reg-

ularized quantity RS(Λ) at a scale Λ of order Mv. The relation between ∇2RS(Λ) and

∇2RS(r = 0) in potential models is more obscure, because of the subtraction that is re-

quired to define the renormalized matrix element in (3.13), and because ∇2RS(r) diverges

linearly as r → 0 if the potential is Coulombic at short distances.

Nonrelativistic wavefunctions for the P-wave states can be defined through matrix ele-

ments in Coulomb gauge that are analogous to (3.11). For example, the radial wavefunction

Rhc(r) for the hc can be defined as

Rhc(r)



√

3

4π
r̂ · ε


 ≡ 1√

2Nc

〈0|χ†(−r/2) ψ(+r/2)|hc(ε)〉
∣∣∣∣∣
Coulomb

, (3.17)

where the polarization vector satisfies ε · ε∗ = 1. A regularized derivative of the radial

wavefunction at the origin R′hc(Λ) can be defined by

R′hc(Λ) ε ≡
√

2π

3Nc
〈0|χ†(1

2

↔∇)ψ(Λ)|hc(ε)〉
∣∣∣∣∣
Coulomb

. (3.18)

Analogous quantities R′χcJ (Λ) can be defined for the χcJ states. Since no subtractions are

required in order to define the operator on the right side of (3.18), the quantity R′hc(Λ)

has a straightforward intuitive interpretation as the derivative of the radial wavefunction

averaged over a region of size 1/Λ centered at the origin. In the gauge-invariant analog of

the matrix element (3.18), the derivative
↔∇ is replaced by the covariant derivative

↔
D. From

the velocity-scaling rules of Table I, we see that these matrix elements differ only at relative

order v2:

〈0|χ†(1
2

↔
D)ψ(Λ)|hc(ε)〉 =

√
3Nc

2π
R′hc(Λ) ε

(
1 + O(v2)

)
, (3.19a)
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1√
3
〈0|χ†(1

2

↔
D · σ)ψ(Λ)|χc0〉 =

√
3Nc

2π
R′χc0(Λ)

(
1 + O(v2)

)
, (3.19b)

1√
2
〈0|χ†(− i

2

↔
D× σ)ψ(Λ)|χc1(ε)〉 =

√
3Nc

2π
R′χc1(Λ) ε

(
1 + O(v2)

)
, (3.19c)

〈0|χ†(1
2

↔
D(iσj))ψ(Λ)|χc2(ε)〉 =

√
3Nc

2π
R′χc2(Λ) εij

(
1 + O(v2)

)
. (3.19d)

By heavy-quark spin symmetry, R′hc(Λ) differs from R′χcJ (Λ), J = 0, 1, 2, only at relative

order v2. For applications in which v2 corrections can be neglected, these wavefunctions can

all be replaced by the average over the 16 P-wave spin states, which we denote by R′P (Λ).

The value R′P (0) for the derivative of the radial wavefunction at the origin that is obtained

from nonrelativistic potential models can be interpreted as a phenomenological estimate of

the regularized quantity R′P (Λ) at a scale Λ of order Mv.

The vacuum-saturation approximation discussed in Section III C allows the matrix ele-

ments of some 4-fermion operators to be expressed in terms of the regularized and renor-

malized wavefunction parameters defined above. Combining (3.9) with (3.12) and (3.14),

we obtain the following expressions for the matrix elements that contribute to the decays of

the ηc and the ψ into light hadrons:

〈ηc|O1(
1S0)|ηc〉 =

Nc

2π

∣∣∣Rηc

∣∣∣
2
(

1 + O(v4)

)
. (3.20a)

〈ψ|O1(
3S1)|ψ〉 =

Nc

2π

∣∣∣Rψ

∣∣∣
2
(

1 + O(v4)

)
(3.20b)

〈ηc|P1(
1S0)|ηc〉 = −Nc

2π
Re(RS

∗∇2RS)

(
1 + O(v2)

)
, (3.20c)

〈ψ|P1(
3S1)|ψ〉 = −Nc

2π
Re(RS

∗∇2RS)

(
1 + O(v2)

)
. (3.20d)

In (3.20c) and (3.20d), we have used heavy-quark spin symmetry to replace Rηc and Rψ

by their weighted average RS and to replace ∇2Rηc and ∇2Rψ by ∇2RS without any loss

of accuracy. If we were to make the same replacement in (3.20a) and (3.20b), the relative

accuracy would be decreased to v2. For the decays of the P-wave states into light hadrons

at leading order in v, the vacuum-saturation approximation together with heavy-quark spin

symmetry can be used to express all the color-singlet matrix elements in terms of the average
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regularized quantity R′P . Combining (3.10) with (3.19), we obtain the approximations

〈hc|O1(1P1)|hc〉 =
3Nc

2π

∣∣∣R′P
∣∣∣
2
(

1 + O(v2)

)
, (3.21a)

〈χcJ |O1(
3PJ )|χcJ〉 =

3Nc

2π

∣∣∣R′P
∣∣∣
2
(

1 + O(v2)

)
, J = 0, 1, 2. (3.21b)

E. Factorization-Scale Dependence

The matrix elements 〈H|On|H〉 that appear in the factorization formula (2.14) are ultra-

violet finite only if the 4-fermion operators On are properly regularized. The regularization

introduces dependence on the ultraviolet cutoff Λ of NRQCD, and this cutoff-dependence

must be understood in order to make quantitative predictions. We assume that the operator

On is normal-ordered: 〈0|On|0〉 = 0. This guarantees that in the matrix element 〈H|On|H〉,

the operator On annihilates the heavy quark and antiquark in the initial quarkonium state

|H〉. In addition to normal-ordering, regularization is needed to control power and logarith-

mic divergences. If a cutoff Λ is imposed on loop momenta, there are power divergences in

〈H|On|H〉 that are proportional to Λp, where p = 1, 2, . . .. If the operator On has dimension

dn, then the coefficient of Λp is, by dimensional analysis, the sum of matrix elements of

4-fermion operators of dimension dn−p or larger. If the dimension is larger than dn−p, the

extra dimensions are balanced by powers of 1/M . Similarly the coefficients of logarithmic

divergences are proportional to matrix elements of 4-fermion operators of dimension dn or

larger.

The power and logarithmic divergences associated with loop corrections to NRQCD

operators can be regularized by a variety of means. A convenient regularization scheme

for analytic calculations is dimensional regularization with minimal subtraction. The scale

associated with the dimensional regularization then plays the role of the NRQCD cutoff Λ.

An advantage in using a mass-independent regulator, such as dimensional regularization, is

that power divergences are automatically discarded. In other approaches, such as lattice

regularization, the regularized operator may contain divergences that are proportional to
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powers of Λ. These power divergences are simply artifacts of the regularization scheme and

have no physical content. Since physical quantities are renormalization-group invariants,

they have no dependence on Λ. Hence, any power divergences in NRQCD operator matrix

elements must ultimately be cancelled by power divergences in operator coefficients.

Once one has removed the power divergences, either by employing a mass-independent

regularization scheme or by making explicit subtractions, the 4-fermion operators satisfy

simple evolution equations of the form

Λ
d

dΛ
On(Λ) =

∑

k

γnk(Λ)

Mdk−dn Ok(Λ), (3.22)

where the sum ranges over all 4-fermion operators Ok(Λ) with dimensions dk ≥ dn. The

anomalous-dimension coefficients γnk(Λ) are computable as power series in the running cou-

pling constant αs(Λ). For dn = dk, the coefficients γnk are of order α2
s, because logarithmic

ultraviolet divergences in one-loop diagrams in NRQCD arise only from transverse gluons,

whose coupling to the heavy quark lines brings in a factor of v. The coefficients γnk for

dn = 6 and dk = 8 are computed to order αs in Appendix B.

By taking the matrix elements of (3.22) between heavy quarkonium states |H〉, we obtain

the evolution equations for the matrix elements 〈H|On(Λ)|H〉 that appear in the general

factorization formula (2.14):

Λ
d

dΛ
〈H|On(Λ)|H〉 =

∑

k

γnk(Λ)

Mdk−dn
〈H|Ok(Λ)|H〉. (3.23)

The leading v behavior of the matrix elements can be determined by using the velocity-

scaling rules developed in the previous sections. At any given order in v, there is only

a finite number of terms that contribute to the evolution equation (3.23). The evolution

equations for the dimension-6 4-fermion operators are calculated to order αs in Appendix B.

The operator evolution equations for O1(1S0) and O1(
3S1) are given in (B16) and (B19a).

Taking the matrix elements of these equations and keeping only those terms on the right

sides that are of relative order v2, we find that only the operators P1 survive, and we obtain
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Λ
d

dΛ
〈ηc|O1(

1S0)|ηc〉 = −8CFαs(Λ)

3πM2
〈ηc|P1(

1S0)|ηc〉, (3.24a)

Λ
d

dΛ
〈ψ|O1(

3S1)|ψ〉 = −8CFαs(Λ)

3πM2
〈ψ|P1(

3S1)|ψ〉, (3.24b)

where CF = (N2
c − 1)/(2Nc). If the evolution equations are truncated at leading order

in v, the right sides of (3.24a) and (3.24b) vanish and we find that the matrix elements

〈ηc|O1(
1S0)|ηc〉 and 〈ψ|O1(

3S1)|ψ〉 are renormalization-scale invariant through order αs. The

dimension-8 matrix elements 〈ηc|P1(
1S0)|ηc〉 and 〈ψ|P1(

3S1)|ψ〉 are also renormalization-

scale invariant through order αs and at leading order in v:

Λ
d

dΛ
〈ηc|P1(

1S0)|ηc〉 = 0, (3.25a)

Λ
d

dΛ
〈ψ|P1(3S1)|ψ〉 = 0. (3.25b)

Truncated at order αs, the evolution equations can be solved analytically for the Λ-

dependence of the matrix elements. For example, the solution to (3.24a) is

〈ηc|O1(1S0; Λ)|ηc〉 = 〈ηc|O1(1S0; Λ0)|ηc〉 −
8CF

3β0M2
log

(
αs(Λ0)

αs(Λ)

)
〈ηc|P1(

1S0)|ηc〉 , (3.26)

where β0 = (11Nc − 2nf )/6 is the first coefficient in the beta function for QCD with nf

flavors of light quarks: µ(d/dµ)αs = −β0α
2
s/π + . . ..

We next consider the evolution of the matrix elements that contribute to P-wave

annihilation at leading order in v. The color-singlet dimension-8 matrix elements are

renormalization-scale-invariant to this order in αs:

Λ
d

dΛ
〈hc|O1(

1P1)|hc〉 = 0, (3.27a)

Λ
d

dΛ
〈χcJ |O1(

3PJ )|χcJ〉 = 0, J = 0, 1, 2. (3.27b)

Taking the matrix elements of (B17) and (B19b) in Appendix B, we find that the color-octet

dimension-6 matrix elements have nontrivial scaling behavior at order αs:

Λ
d

dΛ
〈hc|O8(

1S0)|hc〉 =
4CFαs(Λ)

3NcπM2
〈hc|O1(

1P1)|hc〉, (3.28a)

Λ
d

dΛ
〈χcJ |O8(

3S1)|χcJ〉 =
4CFαs(Λ)

3NcπM2
〈χcJ |O1(

3PJ )|χcJ〉. (3.28b)
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To this order in αs, we find that the evolution equations can be solved analytically. For

example, the solution to (3.28a) is

〈hc|O8(
1S0; Λ)|hc〉 = 〈hc|O8(

1S0; Λ0)|hc〉 +
4CF

3Ncβ0M2
log

(
αs(Λ0)

αs(Λ)

)
〈hc|O1(

1P1)|hc〉.

(3.29)

The solution (3.29) to the evolution equation can be used to provide a crude estimate of

the color-octet matrix element 〈hc|O8(
1S0; Λ)|hc〉 in terms of the color-singlet matrix element

〈hc|O1(
1P1)|hc〉. Suppose that we approximate (3.29) by the evolution term on the right side.

The evolution term is largest, relative to the matrix element 〈hc|O8(1S0; Λ0)|hc〉, when the

scales Λ0 and Λ are as widely separated as possible. However, the logarithmic evolution

holds only down to scales of order Mv. Thus, we choose Λ0 = Mv. Then, setting Λ = M ,

neglecting the initial matrix element in (3.29), and assuming that αs(Λ0) = αs(Mv) ∼ v,

we find that (3.29) reduces to

〈hc|O8(1S0;M)|hc〉 ≈
4CF

3Ncβ0M2
log

(
v

αs(M)

)
〈hc|O1(1P1)|hc〉 . (3.30)

The same method can be used to obtain crude estimates for the corresponding matrix

elements for the χcJ states:

〈χcJ |O8(
3S1;M)|χcJ〉 ≈

4CF
3Ncβ0M2

log

(
v

αs(M)

)
〈χcJ |O1(

3PJ )|χcJ〉 . (3.31)

The terms that we have retained in obtaining these estimates are enhanced by one power

of log[v/αs(M)] relative to the terms that we have neglected. Since this is not a large

enhancement factor, particularly in the case of charmonium, these estimates should be

regarded as giving only the orders of magnitude of the matrix elements.
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IV. ANNIHILATION DECAYS OF HEAVY QUARKONIUM

In Section III, we derived a factorization formula (2.14) for the decay rates of heavy

quarkonium states into light hadrons. In this section, we apply this formula to the decays

of S-wave states, up to corrections of relative order v3, and to the decays of P-wave states,

up to corrections of relative order v2. We also treat the decays into the electromagnetic

final states by using the analogous formula (2.17). As in Section III, we use the lowest-lying

S-wave and P-wave states of charmonium for the purpose of illustration.

A. S-wave Annihilation

Most previous treatments of the annihilation rates of the S-wave states of heavy quarko-

nium have been restricted to leading order in v. In these analyses, long-distance effects were

absorbed into a nonperturbative factor |RS(0)|2, where RS(0) is the radial wavefunction at

the origin. We improve on these previous treatments by providing a rigorous definition of the

nonperturbative factor in terms of matrix elements of NRQCD. We also extend the analysis

of the decay rates to relative order v2, and show that 3 independent nonperturbative factors

are sufficient to calculate all the S-wave annihilation rates through this order.

We first consider the decays of the JPC = 0−+ state ηc and the 1−− state ψ into light

hadrons. As was shown in Section III A, there are only two operators that contribute to

each of these decay rates through relative order v2. According to (2.14), the decay rates into

light hadrons are therefore

Γ(ηc → LH) =
2 Imf1(1S0)

M2
〈ηc|O1(

1S0)|ηc〉 +
2 Im g1(1S0)

M4
〈ηc|P1(

1S0)|ηc〉

+ O(v3Γ), (4.1a)

Γ(ψ → LH) =
2 Imf1(3S1)

M2
〈ψ|O1(

3S1)|ψ〉 +
2 Im g1(3S1)

M4
〈ψ|P1(

3S1)|ψ〉

+ O(v3Γ). (4.1b)

The imaginary parts of the coefficients in (4.1) are calculated at order α2
s in Appendix A 2,

and Im f1(1S0) and Im f1(3S1) are given through next-to-leading order in αs in Appendix A 3.
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According to the factorization formula (2.17) for electromagnetic annihilation, the decay

rates for ηc → γγ and ψ → e+e− are

Γ(ηc → γγ) =
2 Imfγγ(

1S0)

M2

∣∣∣〈0|χ†ψ|ηc〉
∣∣∣
2

+
2 Im gγγ(1S0)

M4
Re

(
〈ηc|ψ†χ|0〉〈0|χ†(− i

2

↔
D)2ψ|ηc〉

)
+ O(v4Γ), (4.2a)

Γ(ψ → e+e−) =
2 Imfee(

3S1)

M2

∣∣∣〈0|χ†σψ|ψ〉
∣∣∣
2

+
2 Im gee(

3S1)

M4
Re

(
〈ψ|ψ†σχ|0〉 · 〈0|χ†σ(− i

2

↔
D)2ψ|ψ〉

)
+ O(v4Γ). (4.2b)

The decay rate for ψ → γγγ is given by an expression that is identical to (4.2b), but

with coefficients f3γ(
3S1) and g3γ(

3S1). The imaginary parts of the coefficients in (4.2) are

calculated at order α2 in Appendix A 4, and order-αs corrections are given for Imfγγ(1S0),

Im fee(
3S1), and Imf3γ(

3S1). The matrix elements in (4.1) and (4.2) can be computed using

lattice simulations of NRQCD. Since matrix elements of relative order v3 have been omitted,

there is nothing to be gained by computing the dimension-6 matrix elements to an accuracy

of better than v2. Similarly, the dimension-8 matrix elements need be computed only at

leading order in v.

At the level of accuracy in (4.1) and (4.2), the matrix elements are not all independent.

The vacuum-saturation approximation (3.9) can be used to express the 4-fermion matrix ele-

ments in (4.1) in terms of the vacuum-to-quarkonium matrix elements in (4.2). Furthermore,

the heavy-quark spin-symmetry relation (3.6) can be used to equate the matrix elements in

the second terms on the right sides of (4.2a) and (4.2b). The net result is that the 8 matrix

elements in (4.1) and (4.2) can be reduced to 3 independent nonperturbative quantities,

which we can take to be |Rηc|2, |Rψ|2, and Re(RS
∗∇2RS). The resulting expressions for the

decay rates are

Γ(ηc → LH) =
Nc Im f1(1S0)

πM2

∣∣∣Rηc

∣∣∣
2 − Nc Im g1(1S0)

πM4
Re(RS

∗∇2RS) + O(v3Γ), (4.3a)

Γ(ψ → LH) =
Nc Im f1(3S1)

πM2

∣∣∣Rψ

∣∣∣
2 − Nc Im g1(3S1)

πM4
Re(RS

∗∇2RS) + O(v3Γ), (4.3b)

Γ(ηc → γγ) =
Nc Im fγγ(

1S0)

πM2

∣∣∣Rηc

∣∣∣
2 − Nc Im gγγ(1S0)

πM4
Re(RS

∗∇2RS) + O(v4Γ), (4.3c)
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Γ(ψ → e+e−) =
Nc Im fee(

3S1)

πM2

∣∣∣Rψ

∣∣∣
2 − Nc Im gee(

3S1)

πM4
Re(RS

∗∇2RS) + O(v4Γ). (4.3d)

The quantities Rηc, Rψ, and ∇2RS are defined in Section III D in terms of vacuum-to-

quarkonium matrix elements in NRQCD, and can, therefore, be calculated using nonpertur-

bative methods, such as lattice simulations. They can also be estimated using the wavefunc-

tions that are obtained from nonrelativistic potential models of quarkonium. Alternatively,

since there are more decay rates than there are parameters, they can be treated as purely

phenomenological parameters, to be determined by experiment.

The approximations to the matrix elements that have been made in (4.3) imply restric-

tions on the order in αs(M) to which the coefficients can be included meaningfully. Because

of the identification of v with αs(Mv) in (2.1), we should consider v to be less than or of

order αs(M). There is no point in calculating the coefficients to relative order αns unless we

have included all operators whose matrix elements are of relative order vn or less. Hence,

there is no gain in accuracy if the coefficients of |Rηc|2 and |Rψ|2 are calculated beyond

relative order α3
s, or if the coefficients of Re(RS

∗∇2RS) are calculated beyond relative order

αs.

If we require accuracy only to leading order in v, then the decay rates in (4.3) can be

simplified further. The difference between Rηc and Rψ is of relative order v2, so both can be

replaced by their weighted average RS . The factor Re(RS
∗∇2RS) is of order v2 relative to

|RS|2 and can therefore be set to 0. We thereby recover the familiar factorization formulas

assumed in previous work:

Γ(ηc → LH) =
Nc Imf1(1S0)

πM2

∣∣∣RS

∣∣∣
2

+ O(v2Γ), (4.4a)

Γ(ψ → LH) =
Nc Imf1(3S1)

πM2

∣∣∣RS

∣∣∣
2

+ O(v2Γ), (4.4b)

Γ(ηc → γγ) =
Nc Imfγγ(1S0)

πM2

∣∣∣RS

∣∣∣
2

+ O(v2Γ), (4.4c)

Γ(ψ → e+e−) =
Nc Imfee(

3S1)

πM2

∣∣∣RS

∣∣∣
2

+ O(v2Γ). (4.4d)

Because corrections of relative order v2 have been neglected in (4.4), there is no point in

calculating the regularized wavefunction at the origin RS to an accuracy of relative order v2.
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Similarly, because of the identification of v with αs(Mv), there is no increase in accuracy

if the coefficients of |RS |2 in (4.4) are calculated beyond next-to-leading order in αs. The

effects of matrix elements of relative order v2 are probably more important than perturbative

corrections to the coefficients that are of relative order α2
s.

B. P-wave Annihilation

In most previous work on the annihilation decays of P-wave states, it was assumed that

long-distance effects could be factored into a single nonperturbative quantity |R′P (0)|2, where

R′P (0) is the derivative of the radial wavefunction at the origin. By explicit calculation,

Barbieri et al. [7,8] found that the coefficients of |R′P (0)|2 depend logarithmically on an

infrared cutoff on the energies of the final-state gluons. In subsequent phenomenological

applications of these calculations, the infrared cutoff has been identified with the binding

energy of the quarkonium state, which is of order Mv2, the inverse of the radius of the bound

state, which is of order Mv, or the inverse of the confinement radius, which is of order ΛQCD.

It should be clear, however, that the infrared divergence is a signal of the breakdown of the

factorization assumption upon which the calculation is based. The solution to the problem of

infrared divergences in the calculation of the P-wave decay rates into light hadrons was first

presented in Ref. [10]. We will review the resolution of this problem later in this subsection.

As was shown in Section III A, there are two 4-fermion operators that contribute to the

decay rates of any of the P-wave states into light hadrons at leading order in v. According to

our factorization formula (2.14), the decay rates of the four P-wave states into light hadrons

are

Γ(hc → LH) =
2 Im f1(1P1)

M4
〈hc|O1(

1P1)|hc〉

+
2 Imf8(1S0)

M2
〈hc|O8(

1S0)|hc〉 + O(v2Γ), (4.5a)

Γ(χcJ → LH) =
2 Im f1(3PJ )

M4
〈χcJ |O1(3PJ)|χcJ 〉

+
2 Imf8(3S1)

M2
〈χcJ |O8(

3S1)|χcJ〉 + O(v2Γ), J = 0, 1, 2. (4.5b)
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The imaginary parts of the coefficients f1(3P0), f1(3P2), f8(
1S0), and f8(3S1) are calculated

in order α2
s in Appendix A 2. The color-octet matrix elements in the factorization formulas

(4.5) represent contributions to the annihilation rates from the Fock states |QQg〉. Thus,

we see that the decays of P-wave (and higher orbital-angular-momentum states) can probe

components of the meson wavefunction that involve dynamical gluons. For the decays of the

χc0 and χc2 into two photons, there is only one operator that contributes at leading order

in v:

Γ(χc0 → γγ) =
2 Imfγγ(3P0)

M4

1

3

∣∣∣〈0|χ†(− i
2

↔
D · σ)ψ|χc0〉

∣∣∣
2

+ O(v2Γ), (4.6a)

Γ(χc2 → γγ) =
2 Imfγγ(3P2)

M4

∑

ij

∣∣∣〈0|χ†(− i
2

↔
D(iσj))ψ|χc2〉

∣∣∣
2

+ O(v2Γ). (4.6b)

The coefficients Im fγγ(
3P0) and Imfγγ(

3P2) are calculated at order α2 in Appendix A 4,

and the order-αs corrections are given as well. There is no increase in accuracy if the matrix

elements in (4.5) and (4.6) are calculated to an accuracy of relative order v2, since matrix

elements of relative order v2 have been omitted. Because of the identification (2.1) of v with

αs(Mv), there is no increase in accuracy if the coefficients in (4.5) and (4.6) are calculated

beyond next-to-leading order in αs(M). Perturbative corrections of relative order α2
s(M)

are probably less important than contributions of other matrix elements of relative order v2.

To the order in v that is being considered in (4.5) and (4.6), the matrix elements are

not all independent. The vacuum-saturation approximation (3.10) can be used to express

the matrix elements of O1(1P1) and O1(
3PJ ) in (4.5) in terms of vacuum-to-quarkonium

matrix elements. These matrix elements can be related to regularized derivatives of radial

wavefunctions at the origin by using (3.19). Because of the heavy-quark spin symmetry,

the derivatives of the radial wavefunctions at the origin can all be replaced by the average

value R′P for the 12 spin states of the P-wave system, without any loss of accuracy. The

heavy-quark spin-symmetry relation (3.5b) also implies that the matrix elements of O8(
1S0)

and O8(
3S1) in (4.5) are the same, up to corrections of relative order v2. Thus, the decay

rates (4.5) and (4.6) can all be expressed in terms of two nonperturbative quantities |R′P |2

and 〈hc|O8(
1S0)|hc〉 (or, alternatively, the average of the color-octet matrix elements for the
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12 P-wave spin states):

Γ(hc → LH) =
3Nc Im f1(1P1)

πM4

∣∣∣R′P
∣∣∣
2

+
2 Im f8(

1S0)

M2
〈hc|O8(1S0)|hc〉 + O(v2Γ), (4.7a)

Γ(χcJ → LH) =
3Nc Im f1(3PJ )

πM4

∣∣∣R′P
∣∣∣
2

+
2 Imf8(3S1)

M2
〈hc|O8(

1S0)|hc〉

+ O(v2Γ), J = 0, 1, 2, (4.7b)

Γ(χcJ → γγ) =
3Nc Im fγγ(

3PJ )

πM4

∣∣∣R′P
∣∣∣
2

+ O(v2Γ), J = 0, 2. (4.7c)

Since R′P is proportional to a vacuum-to-quarkonium matrix element, it can be calculated

more easily in lattice NRQCD simulations than can 〈hc|O8(1S0)|hc〉, which is a matrix

element between quarkonium states.

As we have already mentioned, in the calculations of Barbieri et al. of the P-wave decay

rates into light hadrons [7,8,21], a logarithmic dependence on an infrared cutoff appeared in

the coefficients of |R′P (0)|2. We now explain why this infrared-cutoff dependence is absent

in the factorization formulas (4.7). The coefficients of |R′P |2 in (4.7) depend logarithmically

on the NRQCD cutoff Λ. In these coefficients, Λ plays the same role as did the infrared

cutoff in the Barbieri et al. calculations. According to the evolution equation (3.28a),

the matrix element 〈hc|O8(1S0)|hc〉, also depends logarithmically on Λ. In this case, Λ

plays the role of an ultraviolet cutoff. Because physical quantities, such as decay rates,

are renormalization-group invariants, the Λ-dependence in 〈hc|O8(1S0)|hc〉 cancels the Λ-

dependence in the coefficients of |R′P |2 in (4.7). Thus, we see that the inclusion of the

color-octet term proportional to 〈hc|O8(
1S0)|hc〉 in the factorization formulas removes the

dependence of the decay rate on an arbitrary infrared cutoff.

The factorization formulas (4.7) for the annihilation decays of P-waves at leading order

in v were first given in Ref. [10] in the form

Γ(hc → LH) = H1 Γ̂1(QQ(1P1)→ partons) + H8 Γ̂8(QQ(1S0)→ partons), (4.8a)

Γ(χcJ → LH) = H1 Γ̂1(QQ(3PJ )→ partons) + H8 Γ̂8(QQ(3S1)→ partons),

J = 0, 1, 2, (4.8b)

Γ(χcJ → γγ) = H1 Γ̂1(QQ(3PJ )→ γγ), J = 0, 2. (4.8c)
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The coefficients Γ̂1 and Γ̂8 in (4.8) are proportional to the annihilation rates of on-shell QQ

pairs in color-singlet P-wave and color-octet S-wave states, respectively. The nonperturba-

tive parameters H1 and H8 that were introduced in Ref. [10] can be defined rigorously in

terms of matrix elements in NRQCD:

H1 =
1

M4
〈hc|O1(1P1)|hc〉 , (4.9a)

H8(Λ) =
1

M2
〈hc|O8(1S0)|hc〉 . (4.9b)

The factors of 1/M4 and 1/M2 in (4.9a) and (4.9b) were chosen in Ref. [10] so that H1

and H8 would be the combinations of NRQCD matrix elements and quark masses that are

determined in experimental measurements of the P-wave decay rates.

In retrospect, the choice made in Ref. [10] to include factors of 1/M in the definitions of

H1 and H8 in (4.9) was unfortunate. The factors of 1/M are more properly associated with

the coefficients Γ̂1 and Γ̂8, since they involve short-distance physics at scales of order 1/Λ

or less. The factorization formulas (4.7) are, therefore, to be preferred over the forms (4.8),

because they incorporate all effects of the short distance scale 1/M into the coefficients,

leaving matrix elements that depend only on physics at length scales 1/(Mv) and longer.
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V. PERTURBATIVE FACTORIZATION

In this section, we sketch the connection between the NRQCD approach and conven-

tional perturbative methods for demonstrating the factorization of cross sections involving

large momentum transfer in QCD. In perturbative proofs of factorization, the aim is to

demonstrate that, to all orders in perturbation theory, infrared and collinear divergences

either cancel or can be absorbed into well-defined nonperturbative long-distance quantities.

Some familiar examples of such nonperturbative quantities are parton distributions in the

case of deep-inelastic lepton-hadron scattering and fragmentation functions in the case of

inclusive hadron production at large transverse momentum in e+e− annihilation. The cross

sections can be written as sums of products of long-distance quantities with infrared-safe

(i.e., short-distance) parton-level cross sections. Our factorization formula for heavy quarko-

nium annihilation rates is also of this form, and it is illuminating to see how it could be

derived from a more conventional perturbative analysis.

A. Topological Factorization

We remind the reader that, in QCD, infrared (or soft) divergences are logarithmic and

arise only from the emission of a gluon for which all components of the 4-momentum are

small. Collinear divergences (or mass singularities) are also logarithmic, and arise when one

parton (gluon or light quark) splits into two or more partons and all of their 4-momenta are

parallel. Collinear divergences are cut off by quark masses, which necessarily introduce a

non-parallel component into the 4-momenta of the splitting partons.

Let us focus first on the infrared divergences that arise in the radiation of gluons from

final-state partons and on the collinear divergences that arise in the splitting of a final-state

parton into collinear partons. The Kinoshita-Lee-Nauenberg theorem [19] guarantees that

all such divergences cancel when one sums over those final-state cuts of a given diagram

that contribute to an inclusive cross section. For example, the diagram shown in Fig. 1
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has three cuts that correspond to gluonic final states, and each cut contains infrared and

collinear divergences. However, these divergences cancel when one adds the real-emission

cut of Fig. 1(b) to the virtual-emission cuts of Figs. 1(a) and 1(c). This step in the proof

of perturbative factorization is related to the localization of the annihilation vertex, which

was discussed in Section II E.

Next, let us consider the radiation of gluons from the heavy-quark lines. Such contribu-

tions are protected from collinear divergences by the heavy-quark mass, so we need consider

only the possibility of infrared divergences. One key to analyzing the infrared divergences is

the concept of a “controlling momentum”. The essential idea is that the infrared divergence

associated with an integration over propagators and vertices in some portion of a Feynman

diagram is cut off by the largest external momentum that enters the propagators. For exam-

ple, an infrared divergence could potentially arise from the square of the diagram in Fig. 4(c)

when all components of the 4-momentum of the middle gluon become small. However, be-

cause of simple kinematics, the other two final-state gluons must both carry large momenta,

some of whose components are of order M . That large momentum must flow through the

heavy-quark propagator to which the soft gluon attaches, and, consequently, it cuts off the

potential infrared divergence.

In this example, and in general, the concept of a controlling momentum tells us that an

infrared divergence can never arise from a soft gluon that attaches to a propagator that is

off-shell by order M . That means that the infrared-divergent part of a Feynman diagram

can always be separated from the “short-distance part” by cutting through heavy-quark

propagators that are off the mass shell by amounts that are much less than M . (By the

short-distance part, we mean that part of the diagram that includes the hard final-state

partons and all propagators that are off-shell by order M .) This “topological factorization”

is the crucial step in a perturbative demonstration of factorization. It implies that the

infrared divergences can be disentangled from the short-distance part of the diagram and

absorbed into the long-distance part of the diagram, which also includes the quarkonium

wavefunctions.
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The topological factorization of the annihilation rate of heavy quarkonium is represented

schematically in Fig. 2. The shaded ovals represent the wavefunction for a quarkonium state.

A typical Fock state contains a QQ pair and zero or more gluons or light quark pairs. The

short-distance part of the annihilation rate is represented by the circle labelled H (for hard).

At leading order in v, the only lines that attach to the short-distance part are the incoming

Q and Q and the outgoing Q and Q. The long-distance part includes the wavefunction of

the initial meson and its complex conjugate. These wavefunctions are connected by any

extra partons that may be present in the Fock state, which are represented in Fig. 2 by

gluon lines. The long-distance part also includes soft-gluon interactions between the extra

partons, which are represented by the circle labelled S (for soft).

Once topological factorization has been demonstrated, two additional steps are required

in order to complete the proof of perturbative factorization. First, one must decouple the

relative 4-momentum p of the heavy quark and antiquark from the short-distance part of

the amplitude by expanding the short-distance part as a Taylor series in p. Second, one

must decouple the Dirac indices and color indices that connect the short-distance part to

the long-distance part. This can be accomplished by making use of Fierz rearrangements.

In the factored decay rate, the long-distance parts correspond to the matrix elements of the

NRQCD 4-fermion operators in the quarkonium state; the short-distance parts correspond

to the imaginary parts of the coefficients of those operators in the NRQCD lagrangian.

In order to see in more detail how the perturbative analysis leads to the results that we

have obtained from NRQCD, let us consider two examples: annihilation of S-wave and P-

wave quarkonium at leading nontrivial order in v and through order α3
s in QCD perturbation

theory. We use the specific example of decays into 2 and 3 gluons in the discussions below.

However, the essential ingredients of the discussion apply also to decays into a light quark-

antiquark pair and decays into a qq̄ pair and a gluon.
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B. Annihilation of S-wave Quarkonium

The first step in the analysis of annihilation of S-wave quarkonium is to identify the short-

distance part in the topological factorization of the amplitude. The dominant component

of the bound-state wavefunction consists of a heavy quark and antiquark in a color-singlet

state. We take the QQ pair to have total 4-momentum P and relative 4-momentum 2p. We

assume that, owing to the bound-state dynamics, the Q and Q have inverse propagators

(1
2
P ± p)2−M2 of order M2v2, with v2 � 1. In the meson rest frame, the energies 1

2
P0± p0

of the Q and Q then differ from the mass M by order Mv2 and their momenta 1
2
P±p are of

order Mv. At order α2
s, the QQ pair can annihilate into two gluons through the diagrams in

Fig. 3. By energy conservation, the two gluons must both have momenta of order M . At this

order, the topological factorization of the annihilation rate is trivial. The QQ annihilation

amplitude belongs entirely to the short-distance part of the annihilation rate in Fig. 2, while

the quarkonium wavefunction belongs to the long-distance part.

We next consider the annihilation rate of the QQ pair at order α3
s. This rate has con-

tributions from the annihilation into three gluons through the diagrams in Fig. 4, and also

from the annihilation into two gluons, due to the interference between next-to-leading or-

der diagrams such as those in Fig. 5 and the leading-order diagrams in Fig. 3. We begin

by examining the infrared divergences in the diagrams for the emission of a real gluon of

4-momentum l shown in Fig. 4. As we have already explained, the diagram in Fig. 4(c)

contains no infrared divergence. For the diagrams in Figs. 4(a) and (b), we identify the

infrared contribution that is leading in v by assuming that P0 ≈ 2M , that l0 = |l|, P, and

p are of order Mv, and that p0 is of order Mv2. The emission vertex for the gluon with

momentum l and the two adjacent heavy-quark propagators can then be approximated as

follows:

(±1
2
P + p) · γ +M

(±1
2
P + p)2 −M2 + iε

γµ
(±1

2
P + p ∓ l) · γ +M

(±1
2
P + p ∓ l)2 −M2 + iε

≈ M(1 ± γ0)

(±1
2
P + p)2 −M2 + iε

γµ
M(1 ± γ0)

−2Ml0 + iε
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=
M(1 ± γ0)

(±1
2
P + p)2 −M2 + iε

(
±gµ0

−|l|

)
, (5.1)

where the upper and lower signs correspond to Fig. 4(a) and Fig. 4(b), respectively. (In

the case of the lower sign, the order of the gamma matrices should actually be reversed,

but the last line is unaffected.) The factor ±gµ0 is called the “eikonal vertex”, and the

factor 1/(−l0 + iε) = 1/(−|l|) is called the “eikonal propagator”. Their product is called the

“eikonal factor”. We see that the eikonal factor for the contribution of Fig. 4(a) is equal and

opposite in sign to the eikonal factor for the contribution of Fig. 4(b). All other propagator

and vertex factors in the two diagrams are the same. If the QQ pair is in a color-singlet state,

then the color factors in the two diagrams are also the same, and the infrared contributions

from the region |l| → 0 cancel. This cancellation is a consequence of the fact that, in the

infrared limit, the soft gluon couples to the color charges of the quark and antiquark. Since

the quarkonium is a color singlet, the quark and antiquark have opposite color charges.

Because of the infrared cancellation, the topological factorization of the real-emission

diagrams in Fig. 4 is trivial. The amplitudes for QQ→ ggg all belong to the short distance

part of the annihilation rate in Fig. 2, while the quarkonium wavefunction belongs to the

long-distance part.

Now let us turn to the virtual-gluon-emission diagrams shown in Fig. 5. Once again, we

can identify the infrared part by neglecting l and p compared to M . As in the preceding

example, the eikonal vertices are proportional to gµ0 times the quark (or antiquark) charge.

For Fig. 5(a), the eikonal propagator factors associated with the exchange of the gluon with

momentum l are [1/(−l0 + iε)][−1/(l0 + iε)]. Each of the diagrams of Figs. 5(b) and (c)

contains a mass renormalization, which we subtract. The remaining contribution is a wave-

function renormalization, half of which we absorb into the quarkonium wavefunction. The

other half yields the eikonal propagator factor (−1/2)[1/(−l0 + iε)]2. (The squared prop-

agator appears after subtraction of the mass-renormalization contribution.) The eikonal

factors from the three diagrams would cancel, were it not for the iε’s in the propagator

denominators. Instead, the eikonal factors yield
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1

−l0 + iε

−1

l0 + iε
− 1

−l0 + iε

1

−l0 + iε
= 2πiδ(l0)

1

−l0 + iε
. (5.2)

The δ(l0) contribution arises because of the pinch in the l0 integration contour in the con-

tribution of the diagram of Fig. 5(a). This δ(l0) contribution corresponds to the exchange

of a space-like gluon with temporal polarization between the quark and antiquark. That is,

it corresponds to the Coulomb scattering of the quark and antiquark. Note that the factor

multiplying δ(l0) is divergent at l0 = 0. This somewhat unexpected divergence has arisen

because we have neglected the relative momentum p of the heavy quark and antiquark.

Had we retained that momentum in the propagator denominators, we would have obtained

a 1/v singularity, where v is the relative velocity of the quark and antiquark. [This 1/v

contribution is calculated in detail in (A20)–(A22).] Ordinarily, in the absence of a collinear

singularity, the phase space for two partons to be moving with small relative velocity would

be unimportant. Here, that region of phase space is important by virtue of the quarkonium

bound state. (In fact, it is the 1/v singularity that builds up the bound-state wave function

in a perturbative analysis of the Bethe-Salpeter equation for positronium.)

At this point, the topological factorization of the virtual-emission diagrams can be carried

out. For the diagrams in Fig. 5, one factors the following contributions into the long-

distance part: the wavefunctions, with which we associate the square root of each quark

or antiquark wavefunction renormalization, and the 1/v singularity that arises from the

diagram of Fig. 5(a). The remaining contributions from these diagrams are factored into

the short-distance part.

Many discussions of perturbative factorization make use of the Grammer-Yennie tech-

nique [22] for analyzing infrared divergences. As an aside, let us indicate briefly how that

technique would apply to the example at hand. From our previous discussion, we see that,

in the infrared limit, the infrared-gluon vertex V µ is well approximated by gµ0V0. Then we

can write

V µ ≈ gµ0 V · l
l0 − iε

, (5.3)

provided that l0 is not small compared with the other components of l. This is always
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the case for real emission. For virtual emission, we can eliminate the region of small l0 by

deforming the l0 contour of integration into the lower half of the complex plane. As can

be seen from an examination of the propagator denominators, all of the singularities in the

lower half of the complex plane are order M 0 away from the origin, except in the diagram

of Fig. 5(a). This is the momentum-space manifestation of the fact that a space-like gluon

(with small l0) can be exchanged causally only between co-moving particles. In carrying out

the contour deformation for the diagram of Fig. 5(a), and only in this case, we unavoidably

pick up the residue of a pole at l0 ≈ 0. This residue yields the 1/v singularity in (5.2) that

was noted earlier. Along the deformed contours, the Grammer-Yennie approximation (5.3)

is valid. Substituting (5.3) for the infrared vertices, we can make use of Ward identities

(current conservation) to show that the contributions of the deformed contours cancel. In

order to obtain this Ward-identity cancellation, one needs, in addition to the Grammer-

Yennie contributions of Figs. 4 and 5, Grammer-Yennie contributions in which the infrared

gluon attaches to the short-distance part of the process. But, as we have already argued,

these diagrams give contributions that vanish in the infrared region, so there is no harm in

applying the Grammer-Yennie approximation to them.

After topological factorization, the short-distance and long-distance parts of the anni-

hilation rate are still tied together by integrations over the relative 4-momenta p and p′ of

the QQ pairs entering and leaving the short distance part and by sums over the color and

Dirac indices associated with the heavy-quark propagators. To complete the factorization,

we must decouple these integrals and sums.

The decoupling of the integration over p and p′ is accomplished simply by expanding the

short-distance contribution in a Taylor series in p and p′. Taking p and p′ to be of order Mv

and p0 and p′0 to be of order Mv2, we see that the Taylor expansion of the short-distance

part corresponds to an expansion in powers of v. All of the dependence on p and p′ is now

in the long-distance part and in the explicit powers of p and p′ from the Taylor expansion.

To analyze S-wave decays at leading order in v, we need keep only the zeroth order terms

in the Taylor expansion, which amounts to setting p = p′ = 0. In the meson rest frame, the
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QQ pair has total energy P0 which differs from 2M by an amount of order Mv2 , and total

momentum P of order Mv. At leading order in v, we can set P0 = 2M and P = 0 in the

short-distance part of the annihilation rate. Thus the incoming quark and antiquark can be

taken to be on their mass shells and at threshold.

The decoupling of the color indices connecting the short-distance and long-distance parts

of the annihilation rate is straightforward. The short-distance part is a color tensor Cij,kl,

with color indices i and j for the incoming Q and Q and j and k for the outgoing Q and Q.

The indices i and j can be decoupled from the tensor by using the Fierz rearrangement

δi′i δjj′ =
1

Nc
δji δi′j′ + 2 T aji T

a
i′j′. (5.4)

A similar rearrangement can be used for the indices k and l. By color symmetry, T a
ijCij,kk

must vanish and T aijCij,klT
b
lk must be proportional to the unit tensor δab. The resulting

rearrangement formula is

Cij,kl =
1

N2
c

δji (Ci′i′,j′j′) δkl +
4

N2
c − 1

T aji
(
T bi′j′Ci′j′,k′l′T

b
l′k′

)
T akl. (5.5)

The indices have been decoupled from the tensor by decomposing it into a term in which

both pairs of indices are projected onto a color-singlet state and a term in which both pairs

of indices are projected onto a color-octet state. For S-wave quarkonium, the dominant

Fock state contains a color-singlet QQ pair, so only the first term on the right side of (5.5)

contributes at leading order in v.

The Dirac indices connecting the short-distance and long-distance parts of the amplitude

can be decoupled in a similar way, although the algebra is a little more cumbersome than

it is for the color indices. Having set p = p′ = 0 and P = (2M,0) in the short-distance part

of the amplitude, we find that the numerators of the four propagators connecting it to the

long-distance part reduce to M(γ0 + 1) for the quarks and M(−γ0 + 1) for the antiquarks.

The Dirac structure of the short-distance part of the amplitude is therefore a tensor Γij,kl, in

which the Dirac indices i and k of the quarks are contracted with projectors P+ = (1+γ0)/2,

and the Dirac indices j and l of the antiquarks are contracted with projectors P− = (1−γ0)/2.

The indices i and j can be decoupled from the Dirac tensor by using the Fierz rearrangement
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(P+)i′i (P−)jj′ =
1

2
(γ5P+)ji (γ5P−)i′j′ +

1

2
(σaγ5P+)ji (σaγ5P−)i′j′ , (5.6)

where σi = (i/2)ε0ijk[γj, γk]. A similar Fierz rearrangement can be used to decouple the

indices k and l from the Dirac tensor. Since all 3-momenta have been set to 0 in the Dirac

tensor Γij,kl, there is no 3-vector on which Γij,kl can depend. Its transformation properties

under rotations then imply that the vector (σaγ5P−)ijΓij,kl(γ5P+)lk must vanish, while the

tensor (σaγ5P−)ijΓij,kl(σ
bγ5P+)lk must be proportional to the Cartesian unit tensor δab.

Consequently, one obtains the rearrangement formula

(P+)i′i (P−)jj′ Γi′j′,k′l′ (P+)kk′ (P−)l′l

=
1

4
(γ5P+)ji

[
(γ5P−)i′j′ Γi′j′ ,k′l′ (γ5P+)l′k′

]
(γ5P−)kl

+
1

12
(σmγ5P+)ji

[
(σaγ5P−)i′j′ Γi′j′,k′l′ (σ

aγ5P+)l′k′
]

(σmγ5P−)kl . (5.7)

This rearrangement of the Dirac indices corresponds to the decomposition of the Dirac tensor

into spin-singlet and spin-triplet pieces. The Dirac matrix γ5P− = P+γ5 projects a QQ pair

at rest onto a state with total spin 0, as can be seen from the identity

∑

mm′
〈0, 0|1

2
,m; 1

2
,m′〉 umv̄m′ =

1√
2

(γ5P−) , (5.8)

where um and v̄m′ are Dirac spinors evaluated at zero 3-momentum. Similarly, the Dirac

matrix σiγ5P− = P+σ
iγ5 projects a QQ pair at rest onto a state of total spin 1:

∑

mm′
〈1,M |1

2
,m; 1

2
,m′〉 umv̄m′ =

1√
2
UMi

(
σiγ5P−

)
, (5.9)

where UMi is the unitary matrix that transforms from the Cartesian basis to the basis of

angular-momentum eigenstates.

Now that we have decoupled the integrations over p and p′ and the sums over color and

Dirac indices, the factorization of the annihilation rate is complete. In the rearrangement

identity (5.7), the factors on the right side that are enclosed in square brackets belong to the

short-distance part of the annihilation rate. They correspond to the operator coefficients

in the NRQCD approach. The remaining factors to the right and to the left of the square
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brackets belong to the long-distance part. It is evident that the long-distance parts of the

annihilation rate can be reproduced by matrix elements of local operators in the quarkonium

state. The two operators that contribute to the annihilation of S-wave states at leading order

in v may be identified as

−Ψγ5P+ΨΨγ5P−Ψ ≈ O1(
1S0), (5.10a)

−Ψσγ5P+Ψ ·Ψσγ5P−Ψ ≈ O1(
3S1), (5.10b)

where Ψ is the Dirac field for the heavy quark. For matrix elements between quarko-

nium states, these operators reduce at leading order in v to the NRQCD operators

O1(
1S0) = ψ†χχ†ψ and O1(

3S1) = ψ†σχ · χ†σψ, respectively. Thus, perturbative factoriza-

tion yields the same operator matrix elements as appear in the NRQCD analysis. It should

be noted, however, that the identifications (5.10) are not unique. For example, the operator

−Ψγ5ΨΨγ5Ψ, when sandwiched between quarkonium states, also reduces at leading order

in v to O1(1S0) and both −Ψσγ5Ψ ·Ψσγ5Ψ and −ΨγΨ ·ΨγΨ reduce to O1(
3S1).

C. Annihilation of P-wave Quarkonium

Now let us analyze the annihilation of P-wave quarkonium at leading nontrivial order

in v. First we note that, because the spatial part of the P-wave quarkonium wavefunction

transforms under rotations like a vector, the p-independent part of the QQ annihilation

amplitude vanishes on carrying out the angular part of the integration over p. Thus, we

must retain terms with one factor of p in the annihilation amplitude, which means that the

leading amplitude is down by one power of v relative to the S-wave case.

At order α2
s, the annihilation proceeds through the diagrams in Fig. 3. In this case, the

factor of p in the QQ annihilation amplitude can come only from expanding the propagator

of the virtual heavy quark, which is off its mass-shell by an amount of order M . The

topological factorization is therefore trivial. The amplitude for QQ → gg belongs to the

short-distance part of Fig. 2, and the quarkonium wavefunction belongs to the long-distance

part.
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We next consider the annihilation at order α3
s, which receives contributions from the

real-emission diagrams in Fig. 4 and from the virtual-emission diagrams in Fig. 5. The

factor of p can come from one of two sources: the purely short-distance (infrared-safe) part

of the diagram, or the potentially infrared-divergent part, which consists of the soft gluon

and the heavy-quark propagators to which it attaches.

If the factor of p comes from the short-distance part of the diagram, then the analysis

of the infrared divergences goes through exactly as in the S-wave case. Infrared divergences

cancel between the real-emission diagrams, but the exchange of a virtual gluon between the

Q and Q [Fig. 5(c)] results in a 1/v singularity. Topological factorization is trivial, except

for this 1/v singularity. It must be factored into the long-distance part of the annihilation

rate.

We proceed to consider the case in which the factor of p comes from the potentially

infrared-divergent part of the diagram. We consider separately the cases of virtual-gluon

emission and real-gluon emission.

The diagrams for virtual-gluon emission are shown in Fig. 5. The potentially infrared-

divergent part of the amplitude includes the factors in the first line of (5.1). The required

factor of p can come either from a p · γ in the numerator of a propagator or from ex-

panding out the denominator. The terms with a factor of p that comes from a propagator

denominator are easily seen to be suppressed by a power of v. The terms that contain a

p · γ in the numerator are also suppressed by a factor of v because of the Dirac structure.

To see this, first consider the case of a soft gluon with temporal polarization. From the

identity P+p · γ = p · γP−, one can see that the factor p · γ connects “large” components

of Dirac matrices to “small” components. This gives rise to the suppression by a factor of

v. Now consider the case of a virtual gluon with spatial polarization vector ε. Both of the

spatial-gluon vertices bring in factors of ε · γ. The combined effect of these two factors and

the factor of p · γ is again to connect large and small components, which costs a factor of

v. Thus for virtual-gluon emission, there are no infrared divergences at leading order in

v. The topological factorization is therefore trivial. The amplitude for QQ → gg belongs
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entirely to the short-distance factor in the annihilation rate, aside from the square root of

each heavy-quark or heavy-antiquark wavefunction renormalization, which we associate with

the quarkonium wavefunction.

Finally, we consider the case of real-gluon emission through the diagrams in Fig. 4. Let

us examine the infrared limit of the diagrams in Fig. 4(a) and 4(b) for the case in which the

soft gluon with momentum l has spatial polarization vector ε. The emission vertex and the

adjacent heavy-quark propagators can be approximated as follows:

(±1
2
P + p) · γ +M

(±1
2
P + p)2 −M2 + iε

ε · γ (±1
2
P + p∓ l) · γ +M

(±1
2
P + p ∓ l)2 −M2 + iε

≈ M(1 ± γ0)− p · γ
(±1

2
P + p)2 −M2 + iε

ε · γ M(1 ± γ0)− p · γ
−2Ml0 + iε

≈ M(1± γ0)

(±1
2
P + p)2 −M2 + iε

(
2p · ε
−|l|

)
. (5.11)

The upper and lower signs apply to Figs. 4(a) and 4(b), respectively. (For the lower sign, the

order of the Dirac matrices should actually be reversed.) In the last line of (5.11), we have

retained only those numerator terms that contain one power of p. The factor 2p · ε/(−|l|)

is the infrared-emission factor. In contrast with the S-wave case, the infrared contributions

from the two real-emission diagrams add, rather than cancelling. Because we have retained

one power of p, the soft gluon couples to the color current of the heavy quark, rather than

to the color charge. Since the heavy quark and antiquark have opposite color charges and,

in the CM frame, opposite momenta, their color currents are equal. Note that, because

of the vector p in the infrared-emission factor, the emission of the soft gluon changes the

orbital-angular-momentum quantum number of the QQ pair by one unit, but it does not

flip the spin of the quark or antiquark. Thus, it converts the heavy quark and antiquark

from a color-singlet P-wave state to a color-octet S-wave state.

In the decay rate, we must integrate the infrared emission factors from the square of the

sum of the amplitudes over the phase space of the gluon. Keeping only the logarithmically

divergent part of the integral, we find the result

4
∫ M

λ

d3l

(2π)3

1

2|l|

(
2p · ε
−|l|

)(
2p′ · ε∗
−|l|

)
=

4p · εp′ · ε∗
π2

(
log

M

Λ
+ log

Λ

λ

)
, (5.12)
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where λ is an infrared cutoff of order Mv, and we have arbitrarily set the upper limit on |l|

to M . We have introduced a factorization scale Λ to separate the infrared divergence from

the short-distance part of the integral. The long-distance contribution that is proportional

to log(Λ/λ) in (5.12) can be interpreted as the probability for a heavy quark and antiquark

in a color-singlet P-wave state to make a transition to a color-octet S-wave state by radiating

a soft gluon.

We can now carry out the topological factorization of the diagrams in Fig. 4 for real gluon

emission. The square of the amplitude for QQ→ ggg, integrated over phase space, belongs

to the short-distance part of the annihilation rate in Fig. 2, except for the second term

on the right side of (5.12). This term, which contains the infrared divergent contribution

that arises from the emission of the soft gluon in Figs. 4(a) and 4(b), is included in the

long-distance part, along with the quarkonium wavefunction. The soft gluon is an example

of a light parton that connects the initial and final wavefunctions in Fig. 2. Note that, in

this contribution to the annihilation rate, the heavy quark and antiquark enter the short-

distance part in a color-octet S-wave state. We call this contribution to the annihilation rate

the “color-octet contribution”. In all the other contributions to the P-wave annihilation rate

at this order, the heavy quark and antiquark enter the short-distance part in a color-singlet

P-wave state. We refer to those contributions as the “color-singlet contribution”.

At this point, we have identified the long- and short-distance parts in the topological

factorization of the annihilation rate. It remains only to decouple the integrations over the

relative momenta p and p′ of the QQ pairs and the sums over color and Dirac indices.

We first discuss the color-singlet contribution. The color indices of the short-distance

and long-distance parts are easily decoupled by using the rearrangement identity (5.5). Only

the first term on the right side of (5.5) contributes, since the QQ pair is in a color-singlet

state. In order to decouple the integrals over the relative momenta p and p′ of the initial

and final QQ pairs, we expand the short distance part as a Taylor series in p and p′. At

leading order in v, we set p0 = p0
′ = 0 and keep only those terms linear in both p and p′.
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The resulting amplitude has the structure pmΓmnij,klp
′n, in which the Dirac indices i and k of

the quark are contracted with projectors P+ and the Dirac indices j and l of the antiquarks

are contracted with projectors P−. The Dirac indices of the initial and final QQ pair are

decoupled from the short distance factor Γmnij,kl by applying the Fierz identity (5.6) to both the

initial and final indices. The resulting rearrangement identity can be greatly simplified by

making use of the fact that the Fierz-decoupled short-distance parts transform like tensors

under rotations and the fact that there are no three-vectors on which Γmnij,kl can depend. For

example, the tensor (γ5P+)ijΓ
mn
ij,kl(γ5P+)lk must be proportional to the unit tensor δmn, and

the tensor (σaγ5P+)ijΓ
mn
ij,kl(γ5P+)lk must be proportional to the totally antisymmetric tensor

εamn. Since (σaγ5P+)ijΓ
mn
ij,kl(σ

bγ5P+)lk is a Cartesian tensor in 3 dimensions with 4 indices,

it can be decomposed into a linear combination of the three tensors δamδbn, εamxεbnx, and

1
2
(δabδmn + δanδmb) − 1

3
δamδbn, which correspond to total angular momentum 0, 1, and 2,

respectively. Consequently, one obtains the rearrangement formula

(P+)i′i (P−)jj′
(
pm Γmni′j′,k′l′ p

′n
)

(P+)kk′ (P−)l′l

=
1

12
(pmγ5P+)ji

[
(γ5P−)i′j′ Γ

aa
i′j′,k′l′ (γ5P+)l′k′

] (
p′mγ5P−

)
kl

+
1

36
(p · σγ5P+)ji

[
(σaγ5P−)i′j′ Γ

ab
i′j′ ,k′l′

(
σbγ5P+

)
l′k′

]
(p′ · σγ5P−)kl

+
1

24
((p× σ)mγ5P+)ji

[(
σ[aγ5P−

)
i′j′

Γ
b][b
i′j′ ,k′l′

(
σa]γ5P+

)
l′k′

]
((p′ ×σ)mγ5P−)kl

+
1

20

(
p(mσn)γ5P+

)
ji

[(
σ(aγ5P−

)
i′j′

Γ
b)(a
i′j′,k′l′

(
σb)γ5P+

)
l′k′

] (
p′

(m
σn)γ5P−

)
kl

− 1

24
((p ×σ)mγ5P+)ji

[
εabc (σaγ5P−)i′j′ Γ

bc
i′j′,k′l′ (γ5P+)l′k′

] (
p′
m
γ5P−

)
kl

+
1

24
(pmγ5P+)ji

[
εabc (γ5P−)i′j′ Γ

ab
i′j′,k′l′ (σ

cγ5P+)l′k′
]

((p′ × σ)mγ5P−)kl . (5.13)

We use the notation T (ab) for the symmetric traceless part of a tensor T ab and T [ab] =

1
2
(T ab − T ba) for the antisymmetric part.

At this point, the factorization of the color-singlet contribution to the annihilation rate

is complete. The factors in square brackets on the right side of (5.13) belong to the short-

distance part, while the factors to the right and to the left of the square brackets belong

to the long-distance part. It is apparent from the rearrangement identity (5.13) that the
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long-distance parts can be reproduced by matrix elements of the following local operators:

−Ψ(− i
2

↔
D)γ5P+Ψ ·Ψ(− i

2

↔
D)γ5P−Ψ ≈ O1(1P1), (5.14a)

−1
3
Ψ(− i

2

↔
D · σ)γ5P+Ψ Ψ(− i

2

↔
D · σ)γ5P−Ψ ≈ O1(3P0), (5.14b)

−1
2
Ψ(− i

2

↔
D× σ)γ5P+Ψ ·Ψ(− i

2

↔
D× σ)γ5P−Ψ ≈ O1(3P1), (5.14c)

−Ψ(− i
2

↔
D(iσj))γ5P+Ψ Ψ(− i

2

↔
D(iσj))γ5P−Ψ ≈ O1(3P2), (5.14d)

−Ψ(− i
2

↔
D)γ5P+Ψ ·Ψ(− i

2

↔
D× σ)γ5P−Ψ, (5.14e)

−Ψ(− i
2

↔
D× σ)γ5P−Ψ ·Ψ(− i

2

↔
D)γ5P+Ψ. (5.14f)

The matrix elements of the last two operators vanish for a quarkonium state that is a charge-

conjugation eigenstate. The other four operators reduce at leading order in v to the NRQCD

operators O(1P1) and O(3PJ ), J = 0, 1, 2, respectively.

Finally, we consider the factorization of the color-octet contribution to the annihilation

rate, for which the short-distance part involves the annihilation of a QQ pair in a color-

octet S-wave state. The color indices of the short-distance and long-distance parts are easily

decoupled by using the rearrangement identity (5.5). Only the second term on the right side

of (5.5) is non-vanishing for the color-octet contribution. The decoupling of the momentum

integrations and the Dirac indices proceeds along the same lines as for S-wave quarkonium,

which was discussed in subsection V B. The momentum integrations are decoupled by

Taylor-expanding the short-distance part in p and p′, and setting p = p′ = 0. The decoupling

of the Dirac indices is accomplished by using the rearrangement formula (5.7). The factors in

square brackets in (5.7) belong to the short-distance part of the annihilation rate, while the

factors to the right and to the left belong to the long-distance part. From the rearrangement

identities (5.5) and (5.7), it is evident that the long-distance parts are reproduced by matrix

elements of the operators

−Ψγ5T
aP+ΨΨγ5T

aP−Ψ ≈ O8(
1S0), (5.15a)

−Ψσγ5T
aP+Ψ ·Ψσγ5T

aP−Ψ ≈ O8(
3S1). (5.15b)

These operators reduce, at leading order in v, to the operators O8(
1S0) = ψ†T aχχ†T aψ and
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O8(
3S1) = ψ†σT aχ · χ†σT aψ in the NRQCD analysis. The matrix elements of O8(

1S0) and

O8(
3S1) include the probability factor proportional to log(Λ/λ) in (5.12). The logarithmic

dependence on Λ is reflected in the evolution of these operators, which is given in (3.28a)

and (3.28b). Thus, the factorization scale Λ in the perturbative approach can be identified

with the ultraviolet cutoff of NRQCD.
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VI. PRODUCTION OF HEAVY QUARKONIUM

In this section, we present a general factorization formula for computing inclusive heavy-

quarkonium production rates in high-energy processes that involve a momentum transfer

Q2 that is of order M2 or larger. In the case of S-wave quarkonium, our factorization

formalism coincides with the “color-singlet model” for quarkonium production [23] in the

nonrelativistic limit, but it also allows the systematic calculation of relativistic corrections

that are suppressed by powers of v. In the case of P-wave quarkonium, our formalism

reveals that the color-singlet model is incomplete, even at leading order in v, and must be

supplemented by including the “color-octet mechanism” for P-wave quarkonium production

[24].

A. Factorization of the Production Rate

Our goal, as in the discussion of heavy-quarkonium annihilation, is to express the inclu-

sive production rate for a quarkonium state in a factored form. That is, we wish to write

the production rate as a sum of terms, each of which consists of a short-distance part, which

can be calculated in QCD perturbation theory, multiplied by a long-distance part that can

be expressed as a matrix element in NRQCD. Our arguments for the factorization of the

production rate are based on the all-orders properties of QCD perturbation theory. In this

sense, the level of rigor of these arguments is comparable to that in the proofs of factoriza-

tion for the Drell-Yan process for lepton pair-production in hadron-hadron collisions [25].

These arguments are less rigorous than those that we have given for the factorization of

the quarkonium annihilation rate. The latter arguments rely only on the general space-

time structure of the annihilation process and on the validity of the effective-field-theory

approach. Their level of rigor is comparable to that in the proofs of factorization in deep-

inelastic lepton-hadron scattering, which can be formulated in terms of the operator-product

expansion.
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When a quarkonium state is produced in a process that involves momentum transfer

Q2 of order M2 or larger, the production of the QQ pair that forms the bound state takes

place at short distances of order 1/M or smaller. A simple example of such a process,

which the reader can keep in mind throughout the following discussion, is the production in

e+e− annihilation at a center-of-mass energy
√
s � M of a heavy quarkonium H, with 4-

momentum P , recoiling against two light hadron jets. At leading order in QCD perturbation

theory, the relevant parton process is e+e− → QQgg. We take the Q and Q to have momenta

P/2 + p and P/2− p. The relative 3-momentum p must be of order Mv in the P = 0 frame

in order for the QQ pair to have a significant probability for forming the bound state H.

The amplitude for the production of the QQ pair is insensitive to changes in the relative

4-momentum p that are much less than M , and therefore the quark and antiquark are

produced with a separation of order 1/M or less. Similarly, the square of the amplitude

is insensitive to changes in the the total 4-momentum P of the heavy pair that are much

less than M . Thus, the product of one amplitude and the complex conjugate of a second

will contribute significantly to the QQ-production cross section only if the corresponding

production points are separated by a distance of order 1/M or less. We therefore conclude

that the production of the QQ pair is indeed a short-distance process that takes place within

a distance of order 1/M .

In the framework of NRQCD, the effect of the short-distance part of a production ampli-

tude is simply to create a QQ pair at a spacetime point. The formation of the quarkonium

state H from the QQ pair takes place over distances that are of order 1/(Mv) or larger in the

quarkonium rest frame, so it is described accurately by NRQCD. Therefore, in NRQCD, the

production rate (the square of the amplitude summed over final states) involves the creation

of a QQ pair at a spacetime point, its propagation into the asymptotic future, where the

out state includes the quarkonium H, and, finally, the propagation of the QQ pair back in

time to the creation point. That is, the long-distance part of the production rate is given

in NRQCD by vacuum matrix elements of local 4-fermion operators. The effects of the

short-distance parts of the production rate are taken into account through the coefficients
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of the 4-fermion operators. Since the final state must include a quarkonium, the 4-fermion

operators that appear in production cross sections involve projections onto the space of

states that contain, in the asymptotic future, the quarkonium state H plus anything else.

The generic form of a production operator is

OHn = χ†Knψ
(∑

X

∑

mJ

|H +X〉〈H +X|
)
ψ†K′nχ

= χ†Knψ
(
a†HaH

)
ψ†K′nχ, (6.1)

where the sums are over the 2J + 1 spin states of the quarkonium H and over all other final-

state particles X. In the second line of (6.1), the projection has been expressed compactly

in terms of the operator a†H that creates the quarkonium H in the out state. A sum over

the angular-momentum quantum numbers mJ is implicit in a†HaH. The factors Kn and K′n
in the operator are products of a color matrix (either the unit matrix or T a), a spin matrix

(either the unit matrix or σi), and a polynomial in the covariant derivative D and other

fields. The overall operator OH
n is invariant under color and spatial rotations.3 We assume

that any matrix elements of OH
n will be evaluated in the quarkonium rest frame; otherwise

the factors Kn and K′n may depend on the 4-momentum of the quarkonium.

It is convenient to introduce notation for the production operators that is analogous

to that for the decay operators defined in (2.10) and (2.12). The production operators of

dimension 6 are

OH1 (1S0) = χ†ψ
(
a†HaH

)
ψ†χ, (6.2a)

OH1 (3S1) = χ†σiψ
(
a†HaH

)
ψ†σiχ, (6.2b)

OH8 (1S0) = χ†T aψ
(
a†HaH

)
ψ†T aχ, (6.2c)

3Here we consider explicitly only unpolarized production of heavy quarkonium. In the case of

polarized production, a†H would create a state of definite polarization, and Kn and K′n would,

in general, depend on one or more vectors associated with the incoming particles, such as the

directions of their spins and momenta.
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OH8 (3S1) = χ†σiT aψ
(
a†HaH

)
ψ†σiT aχ. (6.2d)

Some of the color-singlet production operators of dimension 8 are

OH1 (1P1) = χ†(− i
2

↔
Di)ψ

(
a†HaH

)
ψ†(− i

2

↔
Di)χ, (6.3a)

OH1 (3P0) =
1

3
χ†(− i

2

↔
D · σ)ψ

(
a†HaH

)
ψ†(− i

2

↔
D ·σ)χ, (6.3b)

OH1 (3P1) =
1

2
χ†(− i

2

↔
D× σ)iψ

(
a†HaH

)
ψ†(− i

2

↔
D×σ)iχ, (6.3c)

OH1 (3P2) = χ†(− i
2

↔
D(iσj))ψ

(
a†HaH

)
ψ†(− i

2

↔
D(iσj))χ, (6.3d)

PH1 (1S0) =
1

2

[
χ†ψ

(
a†HaH

)
ψ†(− i

2

↔
D)2χ + h.c.

]
, (6.3e)

PH1 (3S1) =
1

2

[
χ†σiψ

(
a†HaH

)
ψ†σi(− i

2

↔
D)2χ + h.c.

]
. (6.3f)

Given that the long-distance part of the production rate can be expressed in terms of

vacuum matrix elements of operators of the form given in (6.1), the inclusive production

cross section must have the form

σ(H) =
∑

n

Fn(Λ)

Mdn−4
〈0|OHn (Λ)|0〉, (6.4)

where it is understood that the matrix element is to be evaluated in the quarkonium rest

frame. The short-distance coefficients Fn depend on all the kinematic variables of the pro-

duction process, but they are independent of the quarkonium state H. Equation (6.4) is the

equivalent for production of our factorization formula (2.14) for quarkonium decay.

Beyond leading order in perturbation theory, interactions involving soft (infrared) gluons

and gluons collinear to the final-state jets potentially spoil this factorization picture, both

by making the QQ-production process long-ranged and by making connections between the

outgoing quarkonium and the final-state jets that destroy the topological factorization. In

the case of quarkonium decay, we were able to use the KLN theorem to argue that such

final-state soft and collinear interactions cancel in the inclusive decay rate. In the case of

quarkonium production, the KLN theorem does not apply directly because we have specified

that the final state contain the quarkonium: some of the cuts in the KLN sum are missing.

Cuts are missing only for diagrams in which a soft or collinear gluon attaches to one of the
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heavy Q or Q lines. If only one end of a gluon attaches to a Q or Q line and the other end

attaches to a final-state jet, then the sum over cuts along the jet line is sufficient by itself

to effect the KLN cancellation. If both ends of a soft gluon attach to a heavy Q or Q line,

then there is no KLN cancellation. However, this contribution is part of the matrix element

of the NRQCD 4-fermion operator.

In the case that OH
n is a color-octet operator, one might worry that, because the inter-

mediate states in the first line of (6.1) carry net color charge, the factorization of the cross

section in (6.4) is not valid. Owing to the property of confinement, such colored states have

infinite energy. (Their energies would be finite in a finite volume, however.) Of course,

the complete final state is color neutral and contains only color-singlet hadrons. One can

picture the color neutralization of the partons in perturbation theory as a process involving

soft-gluon exchanges between the partons. In particular, there can be color-neutralizing

soft-gluon exchanges between partons that are comoving with the quarkonium and partons

in other hadron jets produced by the short distance process. However, the KLN argument

tells us that, at least in perturbation theory, the infrared and collinear divergences from such

soft interactions cancel in the inclusive quarkonium production rate. That is, for purposes

of computing the inclusive quarkonium production rate, the colored partons can be treated

as if they were unconfined. Of course, the complete operator OH
n is invariant under color

rotations, and one can deal with it without referring to the troublesome colored intermediate

states by making use of the form given in the second line of (6.1). This approach might be

useful in lattice measurements of the production matrix elements.

If we consider production of quarkonium in hadron-induced processes, then a host of

new difficulties arise in proving that the production rate factors. These include exchanges of

soft, collinear, and Glauber (quasi-elastic) gluons involving spectator partons in the initial

state and exchanges of soft and collinear gluons involving active partons in the initial state.

Rather than discuss the resolution of these difficulties here, we will merely assume that

the Glauber divergences cancel, that the only noncancelling infrared divergences are those
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associated with the matrix elements of the 4-fermion operators, and that the noncancelling

collinear divergences can be absorbed into initial parton distributions. We refer the reader

to the proofs of factorization of the Drell-Yan cross section [25,26] for detailed discussions

of these points. Given these assumptions, the factored form (6.4) holds to all orders in

perturbation theory. It should be noted that, in the case of hadron-hadron collisions, there

is a limit to the precision of the factored form of the cross section. Generally, because of

soft exchanges between spectators, one can prove only that a factored form holds through

next-to-leading order in an expansion in inverse powers of the large momentum transfer Q2

[26]. Beyond that order, factorization is known to fail [27].

B. Relation of Production Matrix Elements to Decay Matrix Elements

The NRQCD matrix elements that appear in the production rate (6.4) are related to the

NRQCD matrix elements that appear in decay rates through a crossing of the quarkonium

from the final state to the initial state. This relation is analogous to the one between parton

distribution functions and parton fragmentation functions [28]. In general, the crossing

relation is very complicated. There are, however, two instances in which one can obtain

simple results.

Through order αs in QCD perturbation theory, the crossing relation between 〈H|On|H〉

and the corresponding production operator 〈0|OH
n |0〉 is a simple equality, up to a factor of

2J+1 for the number of spin states. Finite-order perturbation theory is usually of little help

in dealing with long-distance matrix elements. It does tell us, though, that, to leading order

in αs, the evolution equations for the production operators are the same as the evolution

equations for the corresponding decay operators. For example, the evolution equation for the

production matrix element 〈0|Ohc
8 (1S0)|0〉 in terms of 〈0|Ohc

1 (1P1)|0〉 is identical at leading

order in αs and in v to the evolution equation (3.28a) for the corresponding decay matrix

elements:

Λ
d

dΛ
〈0|Ohc8 (1S0)|0〉 =

4CFαs(Λ)

3NcπM2
〈0|Ohc1 (1P1)|0〉. (6.5)
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When OHn is a color-singlet operator, the vacuum-saturation approximation can some-

times be used to simplify the matrix element. Assuming that the sum over states in the first

line of (6.1) is dominated by the quarkonium state H plus the vacuum, we obtain

〈0|OHn |0〉 ≈ 〈0|χ†Knψ
(∑

mJ

|H〉〈H|
)
ψ†K′nχ|0〉

= (2J + 1)〈H|ψ†K′nχ|0〉〈0|χ†Knψ|H〉

≈ (2J + 1)〈H|On|H〉, (6.6)

where On = ψ†K′nχχ†Knψ. In the second line, we have used the rotational invariance of the

operator ψ†K′nχ|0〉〈0|χ†Knψ, which implies that the matrix element is identical for each of

the 2J + 1 angular-momentum states H that differ only in the quantum number mJ . In

the last line, we have used the vacuum-saturation approximation (3.8) for the decay matrix

element 〈H|On|H〉.

For the vacuum-saturation approximation to be a controlled approximation, we must be

able to show that the contributions of all the other states in the sum in (6.1) are suppressed

by powers of v. This is in fact the case if the operator OH
n creates and annihilates the QQ

pair in the angular-momentum state that corresponds to the dominant Fock state of the

meson H. In this case, the vacuum-saturation approximation result (6.6) is correct up to

an error of relative order v4.

In the case of a color-octet operator, the states |H +X〉 in the first line of (6.1) have

nonzero color, and the vacuum-saturation approximation is not applicable. In perturbation

theory, we can approximate the sum by retaining only the terms involving intermediate

states |H + g〉 that contain a single gluon. Similarly, we can approximate the sum for

the corresponding decay matrix element by retaining the terms that involve single-gluon

intermediate states |g〉. The resulting matrix elements 〈0|χ†Knψ|H + g〉 and 〈g|χ†Knψ|H〉

are related by crossing. Unfortunately the crossing relation is a simple equality only at

leading order in perturbation theory. In the absence of any rigorous relation between them,

we treat the matrix elements of the color-octet production operators and the color-octet

decay operators as independent nonperturbative quantities.
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C. Computation of the Operator Coefficients

The short-distance part of the quarkonium production rate is insensitive to the long-

distance QQ dynamics. Therefore, following the same reasoning as in Section II H, we can

exploit the equivalence of perturbative QCD and perturbative NRQCD at long distances

as a device to calculate the coefficients of the matrix elements in (6.4). We compute the

production rate for an on-shell QQ pair with small relative momentum using perturbation

theory in full QCD. Then we use perturbation theory in NRQCD to compute the matrix

elements of 4-fermion operators OQQ
n , which are analogous to those in (6.1) except that the

projection is onto on-shell QQ states. The short-distance coefficients are then determined

by the matching condition

σ(QQ)

∣∣∣∣∣
pert. QCD

=
∑

n

Fn(Λ)

Mdn−4
〈0|OQQn (Λ)|0〉

∣∣∣∣∣
pert. NRQCD

. (6.7)

By expanding the left and right sides of (6.7) as Taylor series in the relative momentum

p between the Q and Q, we can identify the coefficients of the individual operators. They

correspond to the infrared- and collinear-finite parts of cross sections for QQ production.

One useful way to evaluate the left side of (6.7) is to express the projection of the product

u(P/2 + p)v̄(P/2 − p) of the Q and Q spinors onto a particular angular momentum state

in Lorentz-invariant form. We refer the reader to Ref. [29] for examples. Then the left side

of (6.7) can be evaluated in any convenient frame, such as the CM frame of the overall

production process. It is understood, of course, that the matrix elements on the right side

of (6.7) are to be evaluated in the rest frame of the quarkonium.

D. S-wave Production

We now apply the factorization formalism to the production of S-wave quarkonium

through relative order v2. For definiteness, we use the lowest-lying S-wave levels of charmo-

nium for the purpose of illustration. Of course, the results that we give generalize imme-

diately to other S-wave quarkonium systems. According to (6.4), the cross section for the
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inclusive production of S-wave charmonium is

σ(ηc) =
F1(1S0)

M2
〈0|Oηc1 (1S0)|0〉 +

G1(1S0)

M4
〈0|Pηc1 (1S0)|0〉 + O(v3σ), (6.8a)

σ(ψ) =
F1(3S1)

M2
〈0|Oψ1 (3S1)|0〉 +

G1(3S1)

M4
〈0|Pψ1 (3S1)|0〉 + O(v3σ). (6.8b)

The vacuum-saturation approximation (6.6) can be used to reduce the 4-fermion matrix

elements to products of matrix elements between the vacuum and the quarkonium state.

These can, in turn, be related to the quarkonium wavefunctions given in Section III D.

Finally, heavy-quark spin symmetry can be used to reduce the matrix elements to the same

three nonperturbative parameters that appear in charmonium decay: |Rηc|2, |Rψ|2, and

Re(RS
∗∇2RS). Taking into account factors of 2J + 1 for the number of spin states, we find

that the cross sections are

σ(ηc) =
Nc F1(1S0)

2πM2

∣∣∣Rηc

∣∣∣
2 − Nc G1(1S0)

2πM4
Re(RS

∗∇2RS) + O(v3σ), (6.9a)

σ(ψ) =
3Nc F1(

3S1)

2πM2

∣∣∣Rψ

∣∣∣
2 − 3Nc G1(3S1)

2πM4
Re(RS

∗∇2RS) + O(v3σ). (6.9b)

If we require only accuracy to leading order in v, then we can simplify the production

rates in (6.9) further by dropping the terms proportional to Re(RS
∗∇2RS) and replacing Rηc

and Rψ by their weighted average RS. We then recover the familiar factorization formulas

used in most previous work:

σ(ηc) =
Nc F1(

1S0)

2πM2

∣∣∣RS

∣∣∣
2

+ O(v2σ), (6.10a)

σ(ψ) =
3Nc F1(

3S1)

2πM2

∣∣∣RS

∣∣∣
2

+ O(v2σ). (6.10b)

In applying the factorization formula (6.4), one should keep in mind that the short-

distance coefficients Fn(Λ) depend not only on αs(M) but also on dimensionless ratios of

kinematic variables. For example, in the case of production of heavy quarkonium at large

transverse momentum pT , the coefficients Fn(Λ) depend strongly on p2
T/M

2. In determining

the relative importance of the various terms in (6.4), one must take into account not only the

size of the matrix element and the leading power of αs(M) in the short-distance coefficient,
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but also the dependence of Fn(Λ) on dimensionless ratios of kinematic variables. The terms

given explicitly in (6.8) may not be the dominant contributions to the cross sections if the

coefficients of the matrix elements are sufficiently suppressed relative to the coefficients of

other matrix elements that are of higher order in v.

E. P-wave Production

We next apply the factorization formalism to the production of P-wave quarkonium to

leading order in v, using the lowest-lying P-wave levels of charmonium for the purpose of

illustration. According to our factorization formula (6.4), the inclusive production rates for

P-wave charmonium are

σ(hc) =
F1(

1P1)

M4
〈0|Ohc1 (1P1)|0〉 +

F8(
1S0)

M2
〈0|Ohc8 (1S0)|0〉 + O(v2σ), (6.11a)

σ(χcJ) =
F1(

3PJ )

M4
〈0|OχcJ1 (3PJ )|0〉 +

F8(3S1)

M2
〈0|OχcJ8 (3S1)|0〉

+ O(v2σ), J = 0, 1, 2. (6.11b)

The vacuum-saturation approximation (6.6) can be applied to the color-singlet matrix ele-

ments to express them in terms of vacuum-to-quarkonium matrix elements. These matrix

elements can be expressed in terms of regularized derivatives of radial wavefunctions at the

origin by using (3.19). Because of heavy-quark spin symmetry, they can all be replaced,

without loss of accuracy, by their weighted average R′P . Heavy-quark spin symmetry also

implies that the color-octet matrix elements in (6.11) are proportional to 2J + 1, up to

corrections of relative order v2. Thus, the P-wave charmonium production rates can all

be expressed in terms of the two nonperturbative parameters |R′P |2 and 〈0|Ohc8 (1S0)|0〉 (or,

alternatively, the average over the P-wave states of 3/(2J + 1) times the color-octet matrix

elements):

σ(hc) =
9Nc F1(

1P1)

2πM4

∣∣∣R′P
∣∣∣
2

+
F8(

1S0)

M2
〈0|Ohc8 (1S0)|0〉 + O(v2σ), (6.12a)

σ(χcJ) =
(2J + 1)3Nc F1(3PJ )

2πM4

∣∣∣R′P
∣∣∣
2

+
(2J + 1)F8(

3S1)

3M2
〈0|Ohc8 (1S0)|0〉

+ O(v2σ), J = 0, 1, 2. (6.12b)
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Note that the color-octet matrix element 〈0|Ohc
8 (1S0)|0〉 in (6.12) cannot be identified with

the decay matrix element 〈hc|O8(
1S0)|hc〉 in (4.7).

The first application of the factorization formulas (6.12) was to the inclusive production

of P-wave charmonium states in B-meson decay [24]. The factorization formulas were given

in the form

Γ (b→ hc +X) = H1 Γ̂1

(
b→ cc̄(1P1) +X,µ

)

+ 3 H ′8(µ) Γ̂8

(
b→ cc̄(1S0) +X

)
, (6.13a)

Γ (b→ χcJ +X) = H1 Γ̂1

(
b→ cc̄(3PJ ) +X,µ

)

+ (2J + 1) H ′8(µ) Γ̂8

(
b→ cc̄(3S1) +X

)
. (6.13b)

The coefficients Γ̂1 and Γ̂8 are proportional to the production rates for on-shell QQ pairs

in color-singlet P-wave and color-octet S-wave states, respectively. The factors H1 and H ′8

can be expressed in terms of NRQCD matrix elements divided by appropriate factors of the

heavy-quark mass:

H1 =
1

3M4
〈0|Ohc1 (1P1)|0〉, (6.14a)

H ′8(Λ) =
1

3M2
〈0|Ohc8 (1S0)|0〉. (6.14b)

The definitions (6.14a) and (6.14b) were chosen in Ref. [24] so that H1 and H ′8 would

coincide as closely as possible with the decay matrix elementsH1 and H8. Using the vacuum-

saturation approximation (6.6), we see that the definition of H1 given in (6.14a) is equal to

that given in (4.9a), up to corrections of relative order v4. A crude estimate for H8(M) in

terms of H1 is given in (3.30). A similar estimate of H ′8(M) in terms of H1 can be obtained

by solving the evolution equation (6.5) and assuming that 〈0|Ohc
8 (1S0; Λ)|0〉 can be neglected

at some initial scale Λ = Λ0. With the normalizations in (4.9b) and (6.14b), the resulting

estimates for H8(M) and H ′8(M) are equal. However, there is no apparent rigorous relation

between these two matrix elements.

As we have already remarked in connection with the decay matrix elements, the factors

of 1/M in (6.14a) and (6.14b) are more properly associated with the operator coefficients,
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since they involve short-distance physics at distance scales of order 1/Λ or less. Therefore,

the factorization formulas (6.12) are preferable to the forms given in (6.13).

In Ref. [24], which discusses the decay of a B meson into a charmonium state, the NRQCD

cutoff Λ was set equal to the scale of the large momentum transfer in the process, which

is the bottom-quark mass mb. This choice of cutoff is inappropriate because the NRQCD

evolution equation (6.5) accurately reflects the behavior of full QCD only for cutoffs Λ that

are less than M . That is, the NRQCD evolution equation cannot be used to sum logarithms

of Q2/M2, where Q2 is the large momentum transfer in a production process. Therefore,

a more appropriate choice of NRQCD cutoff for the process analyzed in [24] is Λ = mc,

where mc = M is the charmed-quark mass. Note, however, that a change of NRQCD cutoff

from mb to mc does not affect the short-distance coefficients in the leading-order calculation

presented in [24], and is, in general, insignificant numerically.
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VII. DISCUSSION AND OUTLOOK

The factorization approach that we have developed in this paper provides a systematic

theoretical framework for understanding the annihilation and production of heavy quarko-

nium. In this section, we discuss the relation between our approach and previous models

for quarkonium production and annihilation. We also summarize the current status of the-

oretical calculations of annihilation rates and production cross sections.

A. Comparison with Previous Approaches

We have presented a rigorous formalism for calculating the inclusive annihilation rates

of heavy quarkonia. It is based on the use of NRQCD to separate the annihilation rate

into short-distance parts, involving distance scales on the order of 1/M , and long-distance

parts. The short-distance parts are identified with the imaginary parts of coefficients in

the NRQCD lagrangian, and can be computed as perturbation expansions in αs(M). The

long-distance parts are expressed as matrix elements of 4-fermion operators in NRQCD and

can be computed nonperturbatively by using lattice simulations. We have also developed

an analogous formalism for computing inclusive production rates of heavy quarkonia in

processes involving large momentum transfers. The cross sections are factored into short-

distance parts, which can be computed perturbatively, and long-distance parts, which are

expressed as NRQCD matrix elements.

The factorization approach provides a firm theoretical foundation for calculations of the

annihilation and production rates for heavy quarkonium. It can be used to assess the degree

of validity and the limitations of models used in previous work on heavy quarkonium produc-

tion and annihilation. The most thoroughly developed model for the calculation of produc-

tion rates is the “color-singlet model” [30,31,32,33]. Most calculations of annihilation rates

have also been carried out within this model. In the color-singlet model, the quarkonium

state is modeled by a color-singlet QQ pair that is in the appropriate angular-momentum
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state and has vanishing relative momentum. Nonperturbative effects are assumed to fac-

tor into a single nonperturbative quantity that is proportional to the square of the radial

wavefunction, or one of its derivatives, evaluated at the origin.

The factorization formalism represents a significant advance over the color-singlet model

in several respects. First, it provides a systematic framework for calculating perturbative

corrections to the short-distance factors to arbitrarily high orders in αs. The infrared di-

vergences that are encountered at any order of the perturbation expansion can be factored

into specific nonperturbative matrix elements. Perturbative calculations in the color-singlet

model are based on the assumption that all infrared divergences can be factored into a single

nonperturbative quantity. In the case of S-waves, calculations at next-to-leading order in

αs (NLO) provide empirical support for the assumption that long-distance effects can be

factored into the quantity |RS(0)|2. Our formalism reveals that this assumption is, in fact,

correct for any specific S-wave process in the nonrelativistic limit to all orders in αs. It has of-

ten been assumed, in addition, that the same quantity |RS(0)|2 describes processes involving

both the 0−+ and 1−− S-wave states. Our formalism shows that this additional assumption

is correct only up to corrections of relative order v2. The assumption that the same quantity

|RS(0)|2 describes annihilation into light hadrons and electromagnetic annihilation also fails

at relative order v2, as does the assumption that the same quantity |RS(0)|2 describes both

annihilation and production processes. In the case of P-waves, explicit calculations of the

decay rates into light hadrons reveal that the assumption of a single long-distance factor

|R′P (0)|2 fails at leading order in αs (LO) for hc and χc1 [8] and at NLO for χc0 and χc2 [7].

In the context of our formalism, these results follow simply from the existence of a second

independent matrix element that contributes to the annihilation rates of P-wave quarkonia

in the nonrelativistic limit.

The factorization formalism also improves upon the color-singlet model by allowing the

systematic calculation of relativistic corrections to annihilation and production rates. Rela-

tivistic corrections are incorporated by including nonperturbative matrix elements that scale

as higher powers of v. In the case of S-waves, our formalism for computing the v2 corrections
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is similar at leading order in αs to a model for relativistic corrections developed by Keung

and Muzinich [34]. The major differences are that the factorization formalism provides non-

perturbative definitions for the long-distance factors, it allows the short-distance coefficients

to be calculated beyond leading order in αs, and it can be used to treat corrections of order

v3 and higher.

Another advantage of the factorization formalism is that it provides unambiguous field-

theoretic definitions of the long-distance factors in annihilation and production rates. This

allows one to compute them nonperturbatively using, for example, lattice simulations of

NRQCD. Previous approaches have relied either on determining the long-distance factors

phenomenologically or on relating them to potential-model wavefunctions. Both of these

approaches are of limited utility. The purely phenomenological approach can be applied

only in situations in which the number of accurately-measured experimental observables is

greater than the number of nonperturbative matrix elements. Potential-model estimates

can be used for color-singlet matrix elements that have simple potential-model analogs, but

they cannot be used for other matrix elements, such as the color-octet matrix elements

that contribute to the annihilation of P-wave states into light hadrons at leading order in

v. It is also difficult to gauge the accuracy of potential-model estimates in the absence

of a rigorous connection to QCD. Since our formalism provides unambiguous definitions of

the long-distance factors in annihilation and production processes, it allows us to quantify

relations between these matrix elements and Coulomb-gauge wavefunctions in NRQCD. It

also allows us to quantify the differences between matrix elements for decays into light

hadrons and matrix elements for decays into electromagnetic final states, as well as the

differences between annihilation matrix elements and production matrix elements.

A final advantage of the factorization formalism is that it takes into account the complete

Fock-space structure of the quarkonium. In the color-singlet model, the quarkonium is

assumed to be simply a QQ pair in a color-singlet state with definite angular-momentum

quantum numbers 2S+1LJ . However, a quarkonium also has a probability of order v2 to be in

a QQg Fock state, and it has probabilities of order v4 or smaller for the higher Fock states.
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In the case of P-waves, the factorization formalism reveals that the QQg component can play

just as important a role in annihilation and in production as the dominant QQ component.

In the case of S-waves, the higher Fock states can be ignored in the nonrelativistic limit, and

even at relative order v2, but the factorization formalism indicates that they do contribute

at relative order v3.

The factorization formalism for describing the annihilation of heavy quarkonia is in many

ways similar to the operator-product-expansion formalism for calculating the inclusive decay

rates of heavy-light mesons [35]. These decay rates can be factored into short distance parts,

which involve the weak decay of a heavy quark or its weak annihilation with an antiquark

in the meson, and long-distance parts, which can be expressed as NRQCD matrix elements.

The main difference between heavy-quarkonium annihilation and heavy-light meson decay

is in the relative importance of the various matrix elements. Since the typical momentum of

a heavy quark in a heavy-light meson is of order ΛQCD and is independent of M , the relative

importance of matrix elements is determined strictly by the dimension of the operator.

Operator-product-expansion methods have also been used to treat exclusive decays of

heavy quarkonium into light hadrons at leading order in v [36]. The NRQCD formalism

might prove to be useful in extending such analyses to include relativistic corrections. In

exclusive processes, a factorization theorem holds, not only for the decay rate, but also for

the decay amplitude. Thus, just as in the case of electromagnetic annihilation, the relevant

NRQCD matrix elements for exclusive decays are vacuum-to-quarkonium matrix elements

of color-singlet operators of the form χ†Knψ.

Operator-product-expansion methods have also been used in a completely different con-

text in heavy quarkonium physics [3,37]. These methods have been used to treat the in-

teractions of heavy quarkonium with light hadrons whose momenta are small compared to

the scale Mv of quarkonium structure. Voloshin [38] has used this approach to calculate

nonperturbative corrections to quarkonium annihilation rates that are proportional to the

gluon condensate. In our factorization formula, the gluon-condensate contribution would
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appear in the long-distance matrix element. In some of the cases considered by Voloshin,

the corresponding short-distance part involves the annihilation of the QQ pair in a color-

octet state. His approach can therefore be used as a framework for estimating the matrix

elements of color-octet operators.

The general factorization formula (6.4) for the production cross section of any specific

quarkonium state H takes into account the short-distance production of color-singlet QQ

pairs and color-octet QQ pairs in all angular-momentum states. In this respect, our ap-

proach has some elements in common with the “color-evaporation model” for quarkonium

production [39]. In this model, the total inclusive cross section, summed over all quarkonium

states H, is obtained by integrating the perturbative cross section for inclusive QQ produc-

tion from the quark threshold 2M up to the physical threshold for the production of a pair of

heavy-light mesons. No constraints are imposed on the color and angular momentum states

of the QQ pair. Under the hypothesis of “semilocal duality”, the nonperturbative QCD

effects that are responsible for the formation of a color-singlet bound state containing the

QQ pair are assumed to be negligible after one sums over all quarkonium states H. In the

factorization approach, the nonperturbative effects are not neglected, but are factored into

long-distance matrix elements 〈0|OH
n |0〉. In the color-evaporation model, the production

cross section for a specific quarkonium state H is obtained by multiplying the total quarko-

nium cross section by a purely phenomenological fraction fH . The relative production rates

of different quarkonium states are, therefore, not predicted. In the factorization approach,

the relative production rates can be calculated by using perturbative QCD, once the values

of the dominant matrix elements 〈0|OH
n |0〉 have been determined.

B. Present Status of Calculations

The possible applications of the factorization formalism for heavy-quarkonium annihi-

lation and production are almost limitless, since heavy quarkonia play a role in so many

high energy processes. In order to highlight some of these applications, we discuss below
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the present status of calculations of annihilation and production rates.

In the case of S-wave decays, NLO perturbative corrections have been calculated for all

the annihilation rates. In many cases, the NLO corrections are uncomfortably large. In

order to develop a better understanding of the origin of these large corrections, it would

be desirable to have calculations at NNLO, at least for the simplest processes ψ → e+e−

and ηc → γγ. Relativistic corrections to the S-wave annihilation rates have been studied

by Keung and Muzinich [34]. From their results, one can extract the coefficients of all the

matrix elements of relative order v2 at leading order in αs. A phenomenological analysis

of the decay rates of the lowest-lying S-wave states of charmonium, including the next-to-

leading order corrections in αs(M) and the corrections of relative order v2, is in progress

[40].

In the case of P-wave decays, complete NLO perturbative corrections are available only

for the electromagnetic decays χc0 → γγ and χc2 → γγ. For the decays of P-wave states

into light hadrons, complete results are known only to order α2
s [10]. The coefficients of

|R′P |2 have been calculated to order α3
s [7], but they contain logarithmic infrared divergences

that should be factored into matrix elements of the operators O8(
1S0) and O8(

3S1). There

are constants under the logarithms that should also be factored into the matrix elements.

Unfortunately, these constants cannot be determined readily from the existing calculations.

The relativistic corrections to P-wave annihilation rates have not yet been analyzed.

In the case of D-wave decays, the only complete LO calculations are those for the elec-

tromagnetic decays of the 3D1 state into e+e− and the 1D2 state into γγ [3]. For the decay

of the 1D2 state into light hadrons, the coefficient of the matrix element corresponding to

|R′′D(0)|2 has been calculated at LO [3]. For the decays of the 3DJ states into light hadrons,

only the logarithmic infrared divergence in the coefficient of |R′′D(0)|2 has been extracted

[41]. This divergence should be factored into other matrix elements that contribute to the

annihilation rate in the nonrelativistic limit. These matrix elements can be identified by

using the methods of Section III A, and their coefficients can be calculated by using the

methods illustrated in Appendix A.
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The status of calculations of the production of heavy quarkonium has been reviewed

recently in Ref. [23], although many aspects of that review are superceded by the develop-

ments described in the present paper. In the case of S-waves, most production processes

have been computed only to LO. The only processes for which complete NLO calculations

are available are ψ and ηc production in B-meson decay [42] and inclusive ηc production

in hadron collisions [43,23]. It would be desirable to have calculations of complete NLO

corrections for more production processes, in order to develop a better understanding of the

size and behavior of the perturbative corrections. It is also important to calculate the rela-

tivistic corrections, which are expected to be typically on the order of 30% for charmonium.

Relativistic corrections have been calculated for the photoproduction of the ψ [44] within

the model of Keung and Muzinich [34]. The factorization formalism can be used to express

those results in terms of well-defined NRQCD matrix elements.

For the production of quarkonia at large transverse momentum pT , the contributions

that are leading in 1/pT sometimes come from beyond leading order in the perturbation

expansion, and they can be computed without complete calculations of the NLO or NNLO

corrections. These contributions come from fragmentation and can be expressed in terms

of process-independent fragmentation functions Di→H (z, µ) for a parton i with invariant

mass µ to produce a jet containing the quarkonium H with light-cone momentum fraction

z. The fragmentation contribution to a production cross section sometimes appears in

a LO calculation, but it often appears first at NLO and sometimes even at NNLO. The

fragmentation functions for producing S-wave quarkonia from the fragmentation of gluons

[45] and heavy quarks [46] have been calculated at LO in αs.

For P-wave quarkonia, there are many production processes for which complete calcu-

lations are not even available at LO. For most processes, the coefficient of |R′P |2 has been

calculated [23]. Complete LO calculations, including the coefficient of 〈0|OH
8 |0〉, are avail-

able only for the production of P-wave charmonium in B-meson decays [24], Υ decays [47],

gluon fragmentation [48], and charm fragmentation [49]. Relativistic corrections to P-wave

production processes have not been studied.
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In the case of production of D-wave quarkonia, the only perturbative calculations that

are available are those for the coefficients of |R′′D(0)|2 in the decay rates for Z0 → Hγ, where

H represents any of the 1D2 or 3DJ states [50].

In the factorization approach, nonperturbative long-distance effects are organized system-

atically into well-defined NRQCD matrix elements. This allows one to go beyond potential

model estimates or phenomenological determinations of the long-distance factors. Instead,

they can be calculated from first principles using lattice simulations of NRQCD. Such calcu-

lations are still in their infancy. At present, the only vacuum-to-quarkonium matrix elements

that have been calculated are 〈0|χ†ψ|ηc〉, 〈0|χ†σψ|ψ〉, and 〈0|χ†
↔
Dχ|hc〉, and their analogs for

the bottomonium system [51,52]. The only 4-fermion matrix elements that have been cal-

culated thus far are 〈ηc|O1(
1S0)|ηc〉, 〈hc|O1(1P1)|hc〉, and 〈hc|O8(1S0)|hc〉 and their analogs

for the bottomonium system [52]. Thus far, all matrix elements have been calculated only

up to corrections of relative order v2 and in the absence of dynamical light quarks. Pro-

duction matrix elements are much more difficult to calculate through lattice simulations,

unless they can be related to annihilation matrix elements through the vacuum-saturation

approximation.

C. Concluding Remarks

Heavy-quark mesons have long been the best understood of hadrons. Until recently,

our understanding has been based almost exclusively on phenomenological quark potential

models that are motivated by QCD. Now, lattice QCD simulations are providing systematic

analyses that are based directly upon the QCD lagrangian [53]. Heavy-quark systems are

particularly well-suited to lattice simulations, and, consequently, they are now of central im-

portance to our exploration of nonperturbative QCD. This new role for quarkonium studies,

as a rigorous testing ground for nonperturbative QCD, demands a much higher degree of

rigor than was necessary in older phenomenological analyses. Approximations are necessary

in tackling most hard problems, but it is essential in a fundamental analysis that there be
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systematic procedures for improving the approximations. In this paper, we have developed

a formalism for studying annihilation decays of heavy-quark mesons that meets this stan-

dard. With our formalism, we can improve upon the nonrelativistic quark potential model

by including relativistic corrections in a systematic way. We can also go beyond the quark

model to include the dynamical effects of gluons. Thus, we can, for the first time, begin

to confront the full richness of nonperturbative QCD in analyses that are systematic and

rigorous.
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APPENDIX A: COEFFICIENTS OF 4-FERMION OPERATORS

The coefficients in the lagrangian for nonrelativistic QCD can be determined by match-

ing scattering amplitudes in NRQCD with those in full QCD [14]. In this Appendix, we

use these techniques to determine the coefficients for some of the 4-fermion operators that

contribute to quarkonium annihilation rates. In Section A 1, we illustrate the method by

calculating the coefficients of dimension-6 operators to order αs. In Section A 2, we apply the

method to calculate the imaginary parts of the coefficients of dimension-6 and dimension-8

operators to order α2
s. In Section A 3, we demonstrate how the imaginary parts of some of

the coefficients can be extracted at next-to-leading order from existing calculations of the

decay rates of bound states. We also record coefficients that can be extracted from existing

calculations in the literature. Finally, in Section A 4, we give the corresponding coefficients

for electromagnetic annihilation rates.

1. Coefficients at Order αs

We wish to determine the coefficients of the dimension-6 and dimension-8 4-fermion

operators at order αs by using the matching condition (2.18). We consider QQ scattering

amplitudes, with the momenta of the heavy quarks and antiquarks small compared to the

heavy quark mass M . In full QCD, there are two Feynman diagrams forQQ scattering at tree

level. The gluon exchange diagram in Fig. 6(a) is also present in NRQCD. The annihilation

diagram in Fig. 6(b) is not present in NRQCD, so its effects must be reproduced by adding

4-fermion terms to the effective lagrangian. We calculate the annihilation contribution to

the amplitude for QQ scattering in the center of momentum frame. We take the incoming

Q and Q to have momenta p and −p, while the outgoing Q and Q have momenta p′ and

−p′. By conservation of energy, we have |p′| = |p| ≡ p.

The scattering amplitude (T-matrix element) in full QCD corresponding to the diagram

in Fig. 6(b) is
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M6(b) =
παs
E2

ū(p′)γµT av(−p′) v̄(−p)γµT
au(p), (A1)

where E =
√
M2 + p2. We have suppressed the color indices on the 4-component Dirac

spinors. Following Ref. [14], we express the 4-component Dirac spinors in the Dirac repre-

sentation in terms of 2-component Pauli spinors via the substitutions

u(p) =

√
E +M

2E




ξ

p·σ
E+M

ξ


 , (A2a)

v(−p) =

√
E +M

2E




(−p)·σ
E+M

η

η


 , (A2b)

where ξ and η are 2-component spinors with suppressed color indices. The Dirac spinors

u(p′) and v(−p′) have similar expressions in terms of Pauli spinors ξ′ and η′. The spinors

(A2a) and (A2b) represent fermion states with the standard nonrelativistic normalization.

Expanding to second order in the velocity v = p/E, we find that the annihilation contribution

to the scattering amplitude (A1) from full QCD reduces to

M6(b) = −παs
M2

(
(1− v2)ξ′†σT aη′ · η†σT aξ − 1

2
(vivj + v′iv′j)ξ′†σiT aη′ η†σjT aξ

)
, (A3)

where v = p/E and v′ = p′/E. It is convenient to suppress the spinors and write the above

matrix element as a direct product of color matrices multiplied by a direct product of spin

matrices:

M6(b) = −παs
M2

(T a ⊗ T a)
[
(1− v2)σi ⊗ σi − 1

2
(vivj + v′iv′j)σi ⊗ σj

]
. (A4)

One can read off the dimension-6 term in the scattering amplitude in terms of the pa-

rameters of NRQCD by substituting ξ, ξ′†, η′, and η† for ψ, ψ†, χ, and χ† in the effective

lagrangian (2.9):

Md=6 =
1

M2
(1⊗ 1)

[
f1(1S0) 1 ⊗ 1 + f1(

3S1) σi ⊗ σi
]

+
1

M2
(T a ⊗ T a)

[
f8(

1S0) 1⊗ 1 + f8(3S1) σ
i ⊗ σi

]
. (A5)

Comparing (A4) and (A5), we find that only one of the four terms in (2.9) has a nonvanishing

coefficient at order αs:
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f8(3S1) = −παs(M). (A6)

The coefficients of the remaining three terms in (2.9) are of order α2
s.

To determine the dimension-8 coefficients, we need the scattering amplitudes from the

term (2.11) in the effective lagrangian:

Md=8 =
1

M2
(1⊗ 1)

[
f1(

1P1) v′ · v 1 ⊗ 1 +
f1(

3P1) + f1(3P2)

2
v′ · v σi ⊗ σi

+
f1(

3P0)− f1(3P2)

3
v′ ·σ ⊗ v · σ +

f1(3P2)− f1(3P1)

2
v · σ ⊗ v′ ·σ

+ g1(1S0) v2 1⊗ 1 +
3g1(3S1)− g1(3S1,

3D1)

3
v2 σi ⊗ σi

+
g1(3S1,

3D1)

2
(vivj + v′iv′j)σi ⊗ σj

]
+ . . . . (A7)

There are similar terms with color structure T a⊗ T a and coefficients f8 and g8. Comparing

with (A4), we find that

g8(3S1) =
4π

3
αs(M), (A8a)

g8(3S1,
3D1) = παs(M). (A8b)

The color-singlet coefficients g1 and the remaining color-octet coefficients vanish at this order

in αs(M).

2. Imaginary Parts at Order α2
s

We now turn to the calculation of the imaginary parts of the coefficients at order α2
s.

They can be determined by matching the imaginary parts of QQ scattering amplitudes in full

QCD and NRQCD in accordance with (2.18). In full QCD, the annihilation contributions

to the imaginary parts at order α2
s come from the one-loop diagrams in Fig. 7. We will

determine the imaginary parts of the coefficients of the dimension-6 operators in (2.9). We

will also determine the imaginary parts of the coefficients of the dimension-8 operators that

contribute to the annihilation of P-wave states at leading order in v and S-wave states

through relative order v2. The dimension-8 terms in the lagrangian are given in (2.11). To
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determine the coefficients, we consider QQ scattering in the center of momentum frame,

with the Q and Q momenta small compared to the heavy-quark mass M . We calculate the

imaginary parts of the diagrams in Fig. 7 in Feynman gauge. After making the substitutions

(A2) for the Dirac spinors, we expand in powers of the velocity v.

Below, we list the results for the imaginary parts of each of the diagrams, suppressing

the spinors as in (A4). The diagrams in Fig. 7(a) and 7(b) yield, on expansion through

second order in the velocity v,

ImM7(a) =
πα2

s

2M2
(T aT b ⊗ T bT a)

[(
1− 4

3
v2 +

1

3
v · v′

)
1⊗ 1

+
(

1

3
− 1

5
v2 +

2

5
v · v′

)
σi ⊗ σi

+
(

2

5
viv′j +

11

15
v′ivj − 11

30
(vivj + v′iv′j)

)
σi ⊗ σj

]
, (A9a)

ImM7(b) =
πα2

s

2M2
(T aT b ⊗ T aT b)

[(
1− 4

3
v2 − 1

3
v · v′

)
1⊗ 1

−
(

1

3
− 1

5
v2 − 2

5
v · v′

)
σi ⊗ σi

+
(

2

5
viv′j +

11

15
v′ivj +

11

30
(vivj + v′iv′j)

)
σi ⊗ σj

]
. (A9b)

The color matrices can be simplified as follows:

T aT b ⊗ T bT a =
CF
2Nc

1⊗ 1 +
N2
c − 2

2Nc
T a ⊗ T a, (A10a)

T aT b ⊗ T aT b =
CF
2Nc

1⊗ 1 − 1

Nc
T a ⊗ T a, (A10b)

where CF = (N2
c −1)/(2Nc) is the Casimir for the fundamental representation. The diagrams

in Fig. 7(c) and 7(d), which involve the triple-gluon vertex, yield

ImM7(c) =
Ncπα

2
s

6M2
(T a ⊗ T a)

[(
1− 11

10
v2
)
σi ⊗ σi −

(
1

5
vivj +

1

2
v′iv′j

)
σi ⊗ σj

]
,

(A11a)

ImM7(d) =
Ncπα

2
s

6M2
(T a ⊗ T a)

[(
1− 11

10
v2
)
σi ⊗ σi −

(
1

2
vivj +

1

5
v′iv′j

)
σi ⊗ σj

]
.

(A11b)
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From the gluon-loop diagram in Fig. 7(e) combined with the associated ghost loop diagram

in Fig. 7(f), we obtain

Im
(
M7(e) +M7(f)

)
= −5Ncπα

2
s

12M2
(T a ⊗ T a)

[
(1− v2)σi ⊗ σi − 1

2
(vivj + v′iv′j)σi ⊗ σj

]
.

(A12)

The quark loop diagram in Fig. 7(g) gives

ImM7(g) =
nfπα

2
s

6M2
(T a ⊗ T a)

[
(1 − v2)σi ⊗ σi − 1

2
(vivj + v′iv′j)σi ⊗ σj

]
. (A13)

Adding the amplitudes (A9), and (A11)–(A13) and comparing with (A5), we can read off

the imaginary parts of the coefficients of the dimension-6 operators:

Im f1(1S0) =
πCF
2Nc

α2
s(M), (A14a)

Im f8(1S0) =
π(N2

c − 4)

4Nc
α2
s(M), (A14b)

Im f8(3S1) =
πnf

6
α2
s(M). (A14c)

The imaginary part of the coefficient f1(3S1) vanishes at order α2
s. Comparing with (A7),

we see that the coefficients of the color-singlet dimension-8 operators are

Im f1(3P0) =
3πCF
2Nc

α2
s(M), (A15a)

Im f1(3P2) =
2πCF
5Nc

α2
s(M), (A15b)

Im g1(1S0) = −2πCF
3Nc

α2
s(M). (A15c)

The imaginary parts of the coefficients f1(1P1), f1(
3P1), g1(3S1) and g1(3S1,

3D1) vanish at

order α2
s.

3. Imaginary Parts at Higher Order in αs

According to the matching condition (2.18), the coefficients of the 4-fermion operators

can be computed at next-to-leading order in αs by calculating scattering amplitudes at next-

to-leading order in full QCD and equating them to the scattering amplitudes in NRQCD,
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calculated to next-to-leading order in αs. For some of the 4-fermion operators, the imaginary

parts of the coefficients can be extracted at next-to-leading order in αs from calculations of

heavy-quarkonium annihilation rates that already exist in the literature.

As an illustration of our factorization approach, we discuss in detail the calculation of

Im f1(
1S0) at next-to-leading order in αs. In order to determine Imf1(1S0), we consider the

matrix elementM for the forward scattering of a QQ pair above threshold in a color-singlet

spin-singlet state with relative velocity 2v. The imaginary part of M can be expressed as

a sum over cuts through the Feynman diagrams for forward scattering. The annihilation

contribution to ImM is the sum over cuts through gluon and light quark lines only. It has

been calculated in full QCD at next-to-leading order in αs and in the limit v → 0 by Barbieri

et al. [5]:

ImM =
πCFα

2
s(2M)

M2

{
1 +

[(
π2

2v
+
π2

4
− 5

)
CF +

(
199

18
− 13π2

24

)
CA −

8

9
nf

]
αs
π

}
,

(A16)

where CA = Nc is the Casimir for the adjoint representation, αs(M) is the QCD coupling

constant in the modified minimal subtraction (MS) renormalization scheme for QCD with

nf flavors of light quarks, and M is the perturbative pole mass of the heavy quark. We have

corrected apparent errors in Ref. [5] of 2/3 in the overall coefficient and 1/2 in the coefficient

of the π2/v term. The next-to-leading order correction contains a Coulomb singularity

proportional to 1/v, which gives an infrared divergence in the limit v → 0.

In order to determine Im f1(
1S0), we must calculate the corresponding contribution to

ImM in NRQCD at next-to-leading order in αs. The relevant Feynman diagrams are

shown in Fig. 8. They contain a 4-fermion vertex that corresponds to the term ψ†χχ†ψ in

the effective lagrangian. The annihilation contribution is the sum over all cuts that pass

through that vertex. The Cutkosky rules specify that a cut passing through the 4-fermion

vertex is computed by taking the imaginary part of the coefficient f1(
1S0) and complex-

conjugating the part of the diagram to the right of the cut. The incoming and outgoing

states consist of a QQ pair in a color-singlet spin-singlet state with relative velocity v→ 0.
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Explicitly, the in state is

|QQ〉 =
∑

ij

1√
Nc

δij
∑

mm′

1√
2

(iσ2)mm′ |Q(p,m, i)Q(−p,m′, j)〉 , (A17)

where p = Mv is the momentum of the quark in the center of momentum frame. The quark

states |Q(p,m, i)〉 with momentum p, spin quantum number m = ±1/2, and color i have

the standard nonrelativistic normalization:

〈Q(p′,m′, j)|Q(p,m, i)〉 = δijδmm
′
(2π)3δ3(p′ − p) . (A18)

For the leading-order diagram in Fig. 8(a), the cut through the 4-fermion vertex gives simply

the imaginary part of the coefficient f1(1S0)/M2:

ImM8(a) =
2Nc Imf1(1S0)

M2
. (A19)

It is convenient to calculate the next-to-leading order diagrams in Figs. 8(b) and 8(c) by

using Coulomb gauge, since then only Coulomb exchange contributes in the limit v → 0.

For the diagram in Fig. 8(b), we obtain

(
ImM

)

8(b)

=
2Nc Imf1(1S0)

M2
(−i4πCFαs)

∫
d4q

(2π)4

1

q2

1

E + q0 − (p + q)2/2M + iε

1

E − q0 − (p + q)2/2M + iε
, (A20)

where E = p2/2M . After using contour integration to integrate over the energy q0 of

the exchanged gluon, we find that the contribution reduces to an integral over the gluon’s

3-momentum:

(
ImM

)

8(b)

=
2Nc Imf1(1S0)

M2
4πCFαsM

∫
d3q

(2π)3

1

q2

1

q2 + 2p · q− iε . (A21)

The integral is infrared divergent, and can be regularized by using dimensional regularization.

The integral over q is analytically continued to D = 3−2εIR spatial dimensions. Evaluating

the regularized integral in (A21), we obtain

(
ImM

)

8(b)
=

2Nc Im f1(1S0)

M2

πCFαs
4v

[
1 − i

π

(
1

εIR
+ log(4π)− γ − 2 log

2Mv

µIR

)]
,

(A22)
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where γ is Euler’s constant and µIR is the arbitrary regularization scale introduced with

dimensional regularization. The logarithmic infrared divergence appears as a pole in εIR.

The subscripts IR on ε and µ serve as a reminder that they are associated with infrared

divergences. Note that (A22) is complex valued. The imaginary part of (A22) arises because

it is possible for the incoming quark and antiquark to scatter on-shell before annihilating at

the 4-fermion vertex. After summing over all diagrams, one must, of course, obtain a real

result for ImM. The diagram in Fig. 8(c) is evaluated in the same way as Fig. 8(b), except

that the Cutkosky cutting rules require the complex-conjugation of the part of the diagram

that involves the Coulomb-gluon exchange. The result is
(

ImM
)

8(c)

=
2Nc Im f1(

1S0)

M2

πCFαs
4v

[
1 +

i

π

(
1

εIR
+ log(4π)− γ − 2 log

2Mv

µIR

)]
.

(A23)

Note that the imaginary part of (A23) cancels that of (A22). Adding (A19), (A22), and

(A23), we obtain the complete result for ImM through next-to-leading order in αs:

ImM =
2Nc Im f1(1S0)

M2

[
1 +

π2

2v
CF

αs
π

]
. (A24)

Comparing (A16) and (A24), we can read off the imaginary part of f1(1S0) through

next-to-leading order in αs:

Imf1(1S0) =
πCF
2Nc

α2
s(2M)

{
1 +

[(
π2

4
− 5

)
CF +

(
199

18
− 13π2

24

)
CA −

8

9
nf

]
αs
π

}
.

(A25)

Note that the factorization approach reproduces the standard prescription of simply drop-

ping the 1/v terms in the perturbatively calculated annihilation rate [54]. The factorization

approach puts this prescription on a rigorous footing, and makes it clear how to extend the

calculation systematically to higher orders in αs and in v.

In (A25), αs(M) is the MS coupling constant with renormalization scale M . If we make a

different choice for the renormalization scale µ of αs(µ), then we must differentiate between

the MS coupling constant α
(nf+1)
s (µ) for full QCD with nf flavors of light quarks and a heavy
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quark and the corresponding coupling constant α
(nf )
s (µ) for only nf flavors of light quarks,

which is the appropriate running coupling constant below the heavy-quark threshold. These

coupling constants satisfy the matching condition [55] α
(nf )
s (M) = α

(nf+1)
s (M) + O(α3

s). If

we wish to use a different renormalization scale µ 6= M for αs in (A25), then we must make

one of the following substitutions:

αs(M) = α(nf )
s (µ)

[
1 + β0 log

µ

M

αs
π

+ O(α2
s)
]
, (A26a)

αs(M) = α(nf+1)
s (µ)

[
1 +

(
β0 −

1

3

)
log

µ

M

αs
π

+ O(α2
s)
]
, (A26b)

where β0 = (33− 2nf )/6 is the first coefficient in the beta function for QCD with nf flavors

of light quarks: µ(d/dµ)αs(µ) = −β0α
2
s/π + . . ..

The coefficient of the operator O1(
1S0) in the NRQCD lagrangian is f1(1S0)/M2, and

the perturbation series for f1(1S0) depends on the definition of the heavy quark mass M .

The order-α3
s correction in (A25) corresponds to the choice M = Mpole, where Mpole is the

perturbative pole mass, i.e., the location of the pole in the heavy-quark propagator in per-

turbation theory. An alternative choice is the running mass M(µ) in the MS renormalization

scheme. Its relation to the pole mass through order αs is [56]

Mpole = M(µ)
[
1 +

(
1 +

3

2
log

µ

M

)
CF

αs
π

+ O(α2
s)
]
. (A27)

Throughout this paper, we will adopt the choice M = Mpole for the heavy quark mass in

the coefficient fn/M
dn−4 of a 4-fermion operator with naive scaling dimension dn.

We can obtain the imaginary part of the coefficient f1(3S1) through next-to-leading order

in αs from a calculation by MacKenzie and Lepage of the annihilation decay rate of the J/ψ

or Υ [6]. Their published result is given explicitly only for Nc = 3, but one can insert the

appropriate color factors in the various classes of diagrams and obtain the result

Im f1(3S1)

=
(π2 − 9)(N2

c − 4)CF
54Nc

α3
s(M)

[
1 + (−9.46(2)CF + 4.13(17)CA − 1.161(2)nf )

αs
π

]

+ πQ2

(∑

i

Q2
i

)
α2

[
1− 13

4
CF

αs
π

]
, (A28)
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where Q is the electric charge of the heavy quark (Q = +2/3 for the charmed quark and

Q = −1/3 for the bottom quark) and the Qi, i = 1, . . . , nf , are the electric charges of the

light quarks. The perturbative correction in the first term on the right side of (A28) was

calculated by Mackenzie and Lepage [6]. The term proportional to α2 is due to annihilation

of the QQ pair into a virtual photon, which then decays into light hadrons. The order-αs

correction can be calculated as the sum of two terms: −4CFαs/π, which is the order-αs

correction to the rate for ψ → e+e−, and 3CFαs/(4π), which is the order-αs correction to

the rate for γ∗ → qq̄. For completeness, we also give the coefficient analogous to (A28) for

the decay of the ψ into a photon plus light hadrons:

Imfγ1(3S1)

=
2(π2 − 9)CFQ

2α

3Nc
α2
s(M)

[
1 + (−9.46(2)CF + 2.75(11)CA − 0.774(1)nf )

αs
π

]
. (A29)

Calculations of the annihilation rates of P-wave states were carried out through order α3
s

by Barbieri and collaborators [7,8,21]. They calculated only the coefficients of |R′P |2 in (4.7).

These coefficients contain logarithmic infrared divergences that should be factored into the

color-octet matrix elements, along with associated constants that can be determined from

calculations in NRQCD. In Ref. [7], the logarithmic infrared divergences in Imf1(3P0) and

Im f1(
3P2) were cut off by taking the heavy quark and antiquark off their mass-shells and

below threshold, in which case the infrared divergence manifests itself as a logarithm of the

binding energy. In order to extract NRQCD coefficients, it might be necessary to repeat

the next-to-leading order calculations in Ref. [7] using on-shell scattering amplitudes and

dimensional regularization of the infrared divergences in order to maintain gauge invariance.

4. Coefficients of Electromagnetic Operators

The calculation in Section A 2 can be easily modified to give the imaginary parts of the

coefficients of the electromagnetic 4-fermion operators at order α2 and at leading order in

αs. The Feynman diagrams in Figs. 9(a) and 9(b) yield imaginary parts that correspond
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to annihilation into two photons. These imaginary parts can be obtained from (A9) by

replacing the color matrices T a by the unit color matrix and by substituting αs → Q2α,

where Q is the electric charge of the heavy quark: Q = +2/3 for the charmed quark, and

Q = −1/3 for the bottom quark. The sum of the 2 diagrams yields

Im
(
M9(a) +M9(b)

)
=
πQ4α2

M2
(1 ⊗ 1)

[ (
1 − 4

3
v2
)

1⊗ 1 +
2

5
v · v′ σi ⊗ σi

+
(

2

5
viv′

j
+

11

15
v′
i
vj
)
σi ⊗ σj

]
. (A30)

Comparing to the NRQCD scattering amplitudes analogous to (A5), we find that the only

nonzero coefficient for the dimension-6 operators is

Imfγγ(1S0) = πQ4α2. (A31)

Comparing to the NRQCD scattering amplitudes analogous to (A7), we can read off the

nonzero coefficients of the dimension-8 operators:

Im fγγ(
3P0) = 3πQ4α2, (A32a)

Im fγγ(
3P2) =

4πQ4α2

5
, (A32b)

Im gγγ(
1S0) = −4πQ4α2

3
. (A32c)

The diagram in Fig. 9(c) yields an imaginary part that corresponds to the annihilation

into lepton pairs. The imaginary part can be obtained from (A13) by replacing T a by the

unit color matrix, and by substituting (nf/2)αs → −Qα. The resulting matrix element is

ImM9(c) =
πQ2α2

3M2
(1 ⊗ 1)

[
(1− v2)σi ⊗ σi − 1

2
(vivj + v′iv′j)σi ⊗ σj

]
. (A33)

Comparing to the NRQCD scattering amplitudes analogous to (A5), we find that the only

nonzero coefficient of the dimension-6 operators is

Im fee(
3S1) =

πQ2α2

3
. (A34)

Comparing to the NRQCD scattering amplitudes analogous to (A7), we can read off the

nonzero coefficients of the dimension-8 operators:
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Im gee(
3S1) = −4πQ2α2

9
, (A35a)

Im gee(
3S1,

3D1) = −πQ
2α2

3
. (A35b)

Several of the electromagnetic coefficients can be determined through next-to-leading

order in αs from calculations that are available in the literature. The annihilation rates for

ηc, χc0, and χc2 into two photons have been calculated through next-to-leading order in αs

by Barbieri et al. [5,7]. The corresponding coefficients are

Imfγγ(1S0) = πQ4α2

[
1 +

(
π2

4
− 5

)
CF

αs
π

]
, (A36a)

Im fγγ(
3P0) = 3πQ4α2

[
1 +

(
π2

4
− 7

3

)
CF

αs
π

]
, (A36b)

Im fγγ(
3P2) =

4πQ4α2

5

[
1 − 4CF

αs
π

]
. (A36c)

The rate for ψ → e+e− is known through next-to-leading order in αs [57]:

Imfee(
3S1) =

πQ2α2

3

[
1 − 4CF

αs
π

]
. (A37)

Finally, Mackenzie and Lepage [6] have calculated the rate for ψ → γγγ to next-to-leading

order in αs. The corresponding coefficient is

Im f3γ(
3S1) =

4(π2 − 9)Q6α3

9

[
1 − 9.46(2)CF

αs
π

]
. (A38)
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APPENDIX B: EVOLUTION OF 4-FERMION OPERATORS

As we mentioned in Section III E, loop corrections to the 4-fermion operators in the

NRQCD lagrangian are, in general, ultraviolet divergent, and, therefore, must be regularized.

One can remove power divergences, either by employing a mass-independent regularization

scheme, such as dimensional regularization, or by making explicit subtractions. Once this

has been done, the 4-fermion operators satisfy simple evolution equations of the form (3.22).

The evolution equation for an operator On with naive scaling dimension dn involves only

operators Ok with dimensions dk ≥ dn. The coefficients γnk in the evolution equation can

be computed as power series in αs. For dk = dn, the coefficients γnk are at most of order

α2
s, because the logarithmic ultraviolet divergences at order αs come only from corrections

of relative order v2, which correspond to operators Ok of dimension dn + 2 or larger. In this

Appendix, we compute at order αs the coefficients of the dimension-8 operators that appear

in the evolution of the dimension-6 4-fermion operators.

1. Heavy Quark Self-energy

In order to illustrate the methods that are used to calculate the coefficients in the evo-

lution equations, we first calculate the self-energy of the heavy quark in NRQCD through

order αs. From this calculation, we determine the relation between the perturbative pole

mass Mpole and the mass parameter M in the NRQCD lagrangian, and we extract the residue

Z(p) of the pole in the heavy-quark propagator through order αsv
2. The residue is given by

Z(p)−1 = 1 − ∂Σ

∂E
(E = p2/2Mpole, p) , (B1)

where Σ(E, p) is the self-energy correction. To determine Z(p) to order αs and to order v2,

we must calculate the self-energy correction Σ that arises from the one-loop diagrams in

Fig. 10. We calculate these diagrams in Coulomb gauge, because it facilitates the extraction

of the dependence on v. The seagull diagram in Fig. 10(b) gives only power ultraviolet

divergences, which are subtracted as part of the regularization scheme. Interactions from
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Lbilinear also need not be included, because the terms of order αsv
2 that they produce are all

proportional to power ultraviolet divergences.

The contribution to the self-energy from the diagram in Fig. 10(a) is

Σ(E, p) = i4πCFαs

∫
d4q

(2π)4

1

E − q0 − (p− q)2/2M + iε

(
1

q2
+

p2 − (p · q̂)2

M2(q2
0 − q2 + iε)

)
.

(B2)

The integral of the term containing 1/q2, which comes from Coulomb exchange, gives rise

to an ill-defined power divergence, which can be dropped. After using contour integration

to integrate over the energy q0 of the gluon, we find that the contribution reduces to

Σ(E, p) =
2πCFαs
M2

∫
d3q

(2π)3

1

q

p2 − (p · q̂)2

E − q − (p− q)2/2M + iε
. (B3)

In order to identify the power divergences in (B3), we expand the denominator in a Taylor

series in 1/M :

Σ(E, p) = −2πCFαs
M2

∫
d3q

(2π)3

p2 − (p · q̂)2

q2

(
1 +

E − p2/2M + (2p · q− q2)/2M

q
+ . . .

)
.

(B4)

Setting E = p2/2M , we find that every remaining term in the integrand in (B4) yields

a power divergence, which is subtracted in our regularization scheme. Thus, after regu-

larization, the self-energy vanishes on the energy shell, and there is no correction to the

energy-momentum relation E = p2/2M . In full QCD, the energy-momentum relation de-

fined by the pole in the perturbative heavy-quark propagator is E2 = p2 +M2
pole. Matching

the coefficients of p2 in these energy-momentum relations, we obtain

M = Mpole

(
1 + O(α2

s)
)
. (B5)

Thus, through order αs, the mass parameter M in the lagrangian for NRQCD can be

identified with the perturbative pole mass.

We proceed to compute the residue of the pole in the heavy-quark propagator, which is

given by (B1). After we subtract the power divergences, the only term remaining in (B4)
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that contributes at order αsv
2 is the term proportional to E − p2/2M . Consequently, the

expression for the residue is

Z(p) = 1 − 2πCFαs
M2

∫
d3q

(2π)3

p2 − (p · q̂)2

q3
. (B6)

Imposing a momentum cutoff |q| < Λ on the magnitude of the gluon momentum and keeping

only the logarithmic ultraviolet divergence at order αs, we find that the residue Z(p) is

Z(p) ≈ 1 − 2CFαs log Λ

3π
v2 , (B7)

where v2 = p2/M2.

2. One-loop Ultraviolet Divergences

The coefficients in the evolution equation for the operator O8(
1S0) = ψ†T aχχ†T aψ can

be determined at order αs by computing one-loop corrections to scattering amplitudes in

NRQCD that involve this operator. We consider the amplitude for the scattering of a QQ

pair with momenta p and −p into a QQ pair with momenta p′ and −p′. We use the

compact notation with suppressed Pauli spinors that was introduced in Eq. (A4). The

matrix element corresponding to the leading-order diagram in Fig. 8(a) is then written

M = (T a ⊗ T a) (1 ⊗ 1) , (B8)

where the first factor gives the color structure and the second factor gives the spin structure.

The one-loop correction to the matrix element is given by the sum of the contributions of the

10 diagrams in Figs. 11(a)–11(j). We wish to calculate the terms in these contributions that

are proportional to log Λ, where Λ is an ultraviolet cutoff. For higher-order calculations, it

might be wise to impose the cutoff by using dimensional regularization, in order to maintain

gauge invariance, but for our purposes it is sufficient to impose a cutoff on the magnitude

of the gluon 3-momentum: |q| > Λ.

The 4 diagrams in Fig. 11(a)–11(d) are self-energy corrections to the external quark

lines. Each diagram contributes
√
Z−1 times the leading order amplitude in (B8). Using the
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expression (B7) for the renormalization constant Z, we find that the sum of the contributions

of the 4 diagrams is

M11(a−d) ≈ −
4CFαs log Λ

3π
v2 (T a ⊗ T a) (1 ⊗ 1) . (B9)

The diagram in Fig. 11(e) represents the exchange of a transverse gluon between the incoming

quark and antiquark. (The exchange of a Coulomb gluon does not lead to an ultraviolet

divergence.) This diagram yields the contribution

M11(e) = i
4παs
M2

(
T a ⊗ T bT aT b

)
(1⊗ 1)

∫
d4q

(2π)4

p2 − (p · q̂)2

q2
0 − q2 + iε

1

E + q0 − (p + q)2/2M + iε

1

E − q0 − (p + q)2/2M + iε
, (B10)

where E = p2/2M . We integrate over the energy q0 of the exchanged gluon and identify

the power divergences by expanding the denominators in a Taylor series in 1/M . Keeping

only the term that gives a logarithmic ultraviolet divergence, we find that the contribution

reduces to

M11(e) = −2παs
M2

(
T a ⊗ T bT aT b

)
(1⊗ 1)

∫
d3q

(2π)3

p2 − (p · q̂)2

q3
. (B11)

The integral is the same as in (B6). The diagram in Fig. 11(f) gives an identical contribution:

M11(e) ≈ M11(f) ≈ −
2αs log Λ

3π
v2

(
T a ⊗ T bT aT b

)
(1⊗ 1) . (B12)

The diagrams in Figs. 11(g)–11(j) involve the exchange of a transverse gluon between

initial and final quark or antiquark lines. (The exchange of a Coulomb gluon leads to a

vanishing contribution.) These diagrams are evaluated in the same way as those in Fig. 11(e).

The results are

M11(g) ≈ M11(h) ≈
2αs log Λ

3π
v · v′

(
T aT b ⊗ T aT b

)
(1⊗ 1) , (B13a)

M11(i) ≈ M11(j) ≈
2αs log Λ

3π
v · v′

(
T aT b ⊗ T bT a

)
(1 ⊗ 1) . (B13b)
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The color factors in (B13) can be simplified by using the identities in (A10). Adding up the

results for the diagrams in (B9) and (B12)–(B13), we find that the sum of the logarithmically

divergent terms of order αsv
2 is

M8(
1S0) ≈

2αs log Λ

3πNc

(
2CF v · v′ (1⊗ 1)

+
[
(N2

c − 4) v · v′ − (N2
c − 2) v2

]
(T a ⊗ T a)

)
(1⊗ 1) . (B14)

The logarithmically divergent part of the diagrams for scattering through the color-singlet

operator O1(1S0) = ψ†χχ†ψ can be obtained from the expressions (B9) and (B12)–(B13b)

simply by replacing the color matrix T a by the unit matrix 1. Adding up these contributions,

we obtain

M1(
1S0) ≈ 8αs log Λ

3π

(
v · v′ (T a ⊗ T a) − CFv

2 (1⊗ 1)
)

(1⊗ 1) . (B15)

The ultraviolet divergent parts of the matrix elementsM8(3S1) and M1(3S1), which corre-

spond to scattering through the spin-triplet operators O8(
3S1) and O1(3S1), can be obtained

by replacing the spin factor 1 ⊗ 1 by σi ⊗ σi in (B14) and (B15), respectively.

3. Evolution Equations

The logarithmically divergent contributions to the scattering amplitudes in Section B 2

can be expressed to leading order in v as the matrix elements of dimension-8 operators.

Differentiating the operator equation corresponding to (B15) with respect to Λ, we obtain

the evolution equation for the operator O1(1S0):

Λ
d

dΛ
O1(1S0) =

8αs
3πM2

O8(1P1) − 8CFαs
3πM2

P1(
1S0). (B16)

By differentiating the operator equation corresponding to (B14) with respect to Λ, we obtain

the evolution equation for the operator O8(1S0):

Λ
d

dΛ
O8(

1S0) =
4CFαs

3πNcM2
O1(1P1) +

2(N2
c − 4)αs

3πNcM2
O8(

1P1) − 2(N2
c − 2)αs

3πNcM2
P8(

1S0) .

(B17)
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The evolution equations for the corresponding spin-triplet operators can be obtained from

(B17) and (B16) simply by inserting σi between ψ† and χ and also between χ† and ψ. It

is convenient to express the resulting operators in terms of the combinations that appear in

(2.11) by using the identity

Diσj ⊗Diσj =
1

3
D · σ ⊗D · σ +

1

2
(D×σ)i ⊗ (D× σ)i + D(iσj) ⊗D(iσj) . (B18)

The resulting evolution equations are

Λ
d

dΛ
O1(

3S1) =
8αs

3πM2

(
O8(

3P0) + O8(
3P1) + O8(

3P2)
)
− 8CFαs

3πM2
P1(

3S1), (B19a)

Λ
d

dΛ
O8(

3S1) =
4CFαs

3πNcM2

(
O1(3P0) + O1(

3P1) + O1(
3P2)

)

+
2(N2

c − 4)αs
3πNcM2

(
O8(3P0) + O8(

3P1) + O8(
3P2)

)
− 2(N2

c − 2)αs
3πNcM2

P8(3S1). (B19b)

The evolution equations for electromagnetic operators can be calculated in the same way,

except that there are no contributions from diagrams such as those in Figs. 11(g)-11(j), which

involve exchange of gluons between initial and final quark lines. The evolution equations

for the dimension-6 electromagnetic operators can be obtained from (B16) and (B19a) by

dropping the color-octet terms on the right sides and inserting vacuum projections:

Λ
d

dΛ

(
ψ†χ|0〉〈0|χ†ψ

)
= − 4CFαs

3πM2

[
ψ†χ|0〉〈0|χ†(− i

2

↔
D)2ψ + h.c.

]
, (B20a)

Λ
d

dΛ

[
ψ†σχ|0〉 · 〈0|χ†σψ

)
= − 4CFαs

3πM2

[
ψ†σχ|0〉 · 〈0|χ†σ(− i

2

↔
D)2ψ + h.c.

]
. (B20b)
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and R. Rückl, Z. Phys. C5, 117 (1980); M.B. Wise, Phys. Lett. 89B, 229 (1980).

[32] C.-H. Chang, Nucl. Phys. B172, 425 (1980); R. Baier and R. Rückl, Phys. Lett. 102B,

364 (1981).

[33] E.L. Berger and D. Jones, Phys. Rev. D23, 1521 (1981); W.-Y. Keung, in Proceedings of

the Cornell Z0 Theory Workshop, edited by M.E. Peskin and S.-H. Tye (Cornell Univer-

sity, Ithaca, 1981).

[34] W.-Y. Keung and I.J. Muzinich, Phys. Rev. D27, 1518 (1983).

[35] M.A. Shifman and M.B. Voloshin, Sov. J. Nucl. Phys. 41, 120 (1985); I.I. Bigi, M.G.

Uraltsev, and A.I. Vainshtein, Phys. Lett. B293, 430 (1992); erratum, ibid. B297, 477

(1993); B. Blok and M.A. Shifman, Nucl. Phys. B399, 441 (1993); Nucl. Phys. B399,

459 (1993).

[36] A. Duncan and A. Mueller, Phys. Lett. 93B, 119 (1980).

[37] M.E. Peskin, Nucl. Phys. B156, 365 (1979); G. Bhanot and M.E. Peskin, Nucl. Phys.

B156, 391 (1979).

[38] M.B. Voloshin, Sov. J. Nucl. Phys. 36, 143 (1982); ibid. 40, 662 (1984).

[39] H. Frizsch, Phys. Lett. 67B, 217 (1977).

112



[40] G.T. Bodwin, E. Braaten, and G.P. Lepage, in preparation.

[41] G. Bélanger and P. Moxhay, Phys. Lett. 199, 575 (1987).

[42] L. Bergström and P. Ernström, Stockholm preprint USITP-94-02.
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FIGURES

FIG. 1. Example of a diagram that contributes to the quarkonium annihilation rate at order

α3
s . The three cuts of the diagram participate in a KLN cancellation.

FIG. 2. Schematic representation of the topological factorization of the rate for quarkonium

annihilation. The short distance part is represented by the circle labelled H. The quarkonium

wavefunctions are represented by the shaded ovals. The wavefunctions can be connected by light

partons, such as the two gluons that are shown explicitly. Soft gluon interactions between the light

partons are represented by the circle labelled S.

FIG. 3. Example of a Feynman diagram for quarkonium annihilation at order α2
s . The shaded

ovals represent the quarkonium wavefunctions.

FIG. 4. Examples of real-gluon emission in quarkonium decay at order α3
s . The shaded ovals

represent the quarkonium wavefunctions.

FIG. 5. Examples of virtual-gluon emission in quarkonium decay at order α3
s . The shaded ovals

represent the quarkonium wavefunctions.

FIG. 6. Feynman diagrams for QQ scattering at leading order in αs.

FIG. 7. Feynman diagrams that contribute to the imaginary part of the amplitude for QQ

scattering at order α2
s .

FIG. 8. Feynman diagrams in NRQCD for the scattering of a QQ pair in a color-singlet 1S0

state through the operator ψ†χχ†ψ.

FIG. 9. Feynman diagrams that contribute to the imaginary part of the amplitude for electro-

magnetic QQ scattering at order α2.

FIG. 10. Feynman diagrams in NRQCD for the self-energy of a heavy quark at order αs.
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FIG. 11. Feynman diagrams in NRQCD that contribute to the evolution of an S-wave 4-fermion

operator, such as ψ†T aχχ†T aψ or ψ†χχ†ψ.
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TABLES

Operator Estimate Description

αs v effective quark-gluon coupling constant

ψ (Mv)3/2 heavy-quark (annihilation) field

χ (Mv)3/2 heavy-antiquark (creation) field

Dt (acting on ψ or χ) Mv2 gauge-covariant time derivative

D (acting on ψ or χ) Mv gauge-covariant spatial derivative

gE M2v3 chromoelectric field

gB M2v4 chromomagnetic field

gφ (in Coulomb gauge) Mv2 scalar potential

gA (in Coulomb gauge) Mv3 vector potential

TABLE I. Estimates of the magnitudes of NRQCD operators for matrix elements between

heavy-quarkonium states in terms of the heavy-quark mass M and the typical heavy-quark velocity

v. The estimates shown apply to matrix elements in a quarkonium state |H〉 whose position is

localized to a region of size 1/Mv or less. If the states are normalized to 〈H |H〉 = 1, then the

product of the magnitudes of the operators gives the magnitude of the matrix element. (In order

to obtain estimates for matrix elements between momentum eigenstates that are normalized to

〈H |H〉 = V , where V is the volume of space, one should multiply the estimates for localized states

of unit norm by (Mv)−3.)
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Erratum: Rigorous QCD Analysis of Inclusive Annihilation

and Production of Heavy Quarkonium

[Phys. Rev. D 51, 1125 (1995)]

[hep-ph/9407339]

Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage

In this erratum, we clarify the velocity-scaling rules for those NRQCD matrix elements

whose leading contributions come from |QQg〉 Fock states that can be reached through a

spin-flip transition from the dominant Fock state. A correct accounting of these spin-flip Fock

states leads to revisions of the error estimates in several equations in the paper. In addition,

we emphasize that the velocity-scaling rules should be used to estimate the probabilities of

higher Fock states, rather than their amplitudes. We also correct some typographical errors.

• Throughout the paper, phrases of the type “amplitude of order vn” should be replaced

with “probability of order v2n”. The reason is that the probability of a |QQg〉 Fock

state is the square of the amplitude integrated over the phase space of the particles.

Some of the dependence on v arises from the integration over the phase space of the

gluon.

• Throughout the paper, one should keep in mind that the velocity expansion may

contain odd, as well as even, powers of v. Thus, for example, v2 should be replaced

with v in phrases such as “expansion in powers of v2”.

• The following paragraph should be inserted after the paragraph that includes Eq. (2.6):

“The above estimates for the probabilities of |QQg〉 Fock states apply if the spin

state of the QQ pair is the same as in the dominant |QQ〉 Fock state. If the spin state is

1
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different, we must replace gA·∇ in (2.6) with gB·σ to obtain a nonzero matrix element.

Using the velocity-scaling rules of Table I, we again obtain an estimate ∆E ∼Mv4 for

the energy shift, implying that the probability for a |QQg〉 state containing a gluon

with momentum on the order of Mv is PQQg ∼ v3. However, in the derivation of the

velocity-scaling rules in Ref. [14], it was assumed that dynamical gluons have momenta

of order Mv. If the gluon has a much smaller momentum k, then the estimate M 2v4

for the operator gB in Table I should be replaced with k2v2. Using this to estimate

the energy shift from a |QQg〉 Fock state containing a gluon with momentum of order

Mv2, we obtain ∆E ∼ Mv6 and PQQg ∼ v4. Thus, gluons with very low momenta

exhibit the suppression that is characteristic of the multipole expansion. We conclude

that a |QQg〉 Fock state that can be reached from the dominant |QQ〉 Fock state by a

spin-flip transition is dominated by dynamical gluons with momenta of order Mv and

that the probability of such a Fock state is PQQg ∼ v3.”

• The following paragraph should be added at the end of Sec. IID:

“The above discussion applies to Fock states |QQg〉 in which the QQ pair has the

same total spin quantum number S as in the dominant |QQ〉 state. The probabilities

for Fock states |QQg〉 that can be reached from the dominant Fock state by a spin-flip

transition also scale in a definite way with v. The probability for such a Fock state to

contain a dynamical gluon with momentum of order Mv is of order v3, just as in the

case of a non-spin-flip transition. However, in the case of a spin-flip transition, this

momentum region dominates because, as we have seen, gluons with softer momenta,

on the order of Mv2, are suppressed by the multipole expansion. Thus, if the QQ pair

in the dominant Fock state has angular-momentum quantum numbers 2S+1LJ , then

the Fock state |QQg〉, with the QQ pair in a color-octet state with the same value of L

but different total spin quantum number, has a probability of order v3. For example,

if the dominant Fock state consists of a QQ pair in a 3S1 state, then the Fock state

|QQg〉 with the QQ pair in a color-octet 1S0 state has a probability of order v3. If the

2



dominant Fock state consists of a QQ pair in a 1P1 state, then the Fock state |QQg〉

with the QQ pair in a color-octet 3PJ state has probability of order v3.”

• In the first paragraph of Sec. IIIA, the following two sentences should be inserted just

before the last sentence of the paragraph:

“The matrix element is suppressed by v3 relative to the velocity-scaling rules in Table I

if On annihilates and creates QQ pairs in the same color-spin-orbital state as appears

in one of the Fock states |QQg〉 that can be obtained from the dominant Fock state

by a spin-flip transition. In such a Fock state, the QQ pair must be in a color-octet

state with the same orbital-angular-momentum quantum number L as in the dominant

|QQ〉 state, but with different total spin quantum number.”

• After the first paragraph of Sec. IIIA, the following new paragraph should be inserted:

“If perturbation theory remained accurate down to the scale Mv, then the spin-

flip matrix elements would be suppressed by an additional power of v. The reason for

this is that the contribution to a spin-flip matrix element that is suppressed by only

v3 relative to the velocity-scaling rules is power ultraviolet divergent. Therefore, one

could carry out a renormalization of the matrix element in which this contribution

is subtracted. The corresponding contribution to the decay rate would then reside

in the short-distance coefficient of the matrix element that is associated with the

dominant Fock state. (Such a subtraction is carried out automatically if dimensional

regularization is used to cut off the ultraviolet divergences in the matrix element.)

Once the subtraction has been made, the leading contribution to the spin-flip matrix

element comes from the scale Mv2. It is subject to the usual multipole suppression

and scales as v4 relative to the velocity-scaling rules. In practice, one usually makes

such subtractions perturbatively. It is not clear, in the charmonium and bottomonium

systems, that perturbation theory is sufficiently accurate at the scale Mv to remove

the v3 contribution completely. Therefore, we assume in the error estimates below

3



that the spin-flip matrix elements scale as v3 relative to the velocity-scaling rules.”

• In the second paragraph of Sec. IIIA, v4 should be replaced with v3 in the phrase

“suppressed by v4 or more”. In Eq. (3.1), the error estimate O(v4Γ) should be replaced

with O(v3Γ). In the third paragraph of Sec. IIIA, v4 should be replaced with v3 in the

phrase “are of order v4Γ or higher”.

• In Eqs. (4.1a), (4.1b), (4.3a), and (4.3b), the error estimates should be O(v3Γ). At

the end of the paragraph containing Eq. (4.2), “relative order v4” should be replaced

with “relative order v3”.

• In Eqs. (6.8a), (6.8b), (6.9a), and (6.9b), the error estimates should be O(v3σ).

• There is a typesetting error in Eqs. (3.19a) and (3.19b). The first factor on the

right side should be
√

3Nc/2π, just as in Eqs. (3.19c) and (3.19d). In the subsequent

sentence, “order v2” should be replaced with “relative order v2”.

• In Eq. (5.4), the last color matrix should be T a
i′j′ . In Eq. (5.5), the coefficient of the

second term on the right-hand side should be 4/(N 2
c − 1), rather than 2/(N 2

c − 1).

• In Eqs. (A16) and (A25), the running coupling constant should be αs(2M) rather than

αs(M).
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