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Abstract: One of the central challenges in the study of quantum many-body systems
is the complexity of simulating them on a classical computer. A recent advance (Lan-
dau et al. in Nat Phys, 2015) gave a polynomial time algorithm to compute a succinct
classical description for unique ground states of gapped 1D quantum systems. Despite
this progress many questions remained unsolved, including whether there exist efficient
algorithms when the ground space is degenerate (and of polynomial dimension in the
system size), or for the polynomially many lowest energy states, or even whether such
states admit succinct classical descriptions or area laws. In this paper we give a new algo-
rithm, based on a rigorously justified RG type transformation, for finding low energy
states for 1D Hamiltonians acting on a chain of n particles. In the process we resolve
some of the aforementioned open questions, including giving a polynomial time algo-
rithm for poly(n) degenerate ground spaces and an nO(log n) algorithm for the poly(n)

lowest energy states (under a mild density condition). For these classes of systems the
existence of a succinct classical description and area laws were not rigorously proved
before this work. The algorithms are natural and efficient, and for the case of finding
unique ground states for frustration-free Hamiltonians the running time is Õ(nM(n)),
where M(n) is the time required to multiply two n × n matrices.

1. Introduction

One of the central challenges in the study of quantum systems is their exponential com-
plexity [14]: the state of a system on n particles is given by a vector in an exponentially
large Hilbert space, so even giving a classical description (of size polynomial in n) of
the state is a challenge. The task is not impossible a priori, as the physically relevant
states lie in a tiny corner of the Hilbert space. To be useful, the classical description of
these states must support the efficient computation of expectation values of local observ-
ables. The renormalization group formalism [35] provides an approach to this problem
by suggesting that physically relevant quantum states can be coarse-grained at different
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length scales, thereby iteratively eliminating the “irrelevant” degrees of freedom. Ide-
ally, by only retaining physically relevant degrees of freedom such a coarse-graining
process successfully doubles the length scale while maintaining the total description
size constant. This idea lies at the core of Wilson’s numerical renormalization group
(NRG) approach that successfully solved the Kondo problem [35]. The approach was
subsequently improved by White [33,34], to obtain the famous Density Matrix Renor-
malization Group (DMRG) algorithm [33,34], which is widely used as a numerical
heuristic for identifying the ground and low energy states of 1D systems.

Formally understanding the success of DMRG (and NRG) has been extremely chal-
lenging, as it touches on deep questions about how non-local correlations such as entan-
glement arise from Hamiltonians with local interactions. A major advance in our under-
standing of these questions came through the landmark result by Hastings [16] bounding
entanglement for gapped 1D systems with unique ground state. Hasting’s work was fol-
lowed by a sequence of results substantially strengthening the bounds (see e.g. the review
article [12]). In addition to the succinct classical description guaranteed by these results,
a recent advance [22] gave a polynomial time algorithm to efficiently compute such a
description. While the primary goal of this paper is to present rigorous new results about
the nature of entanglement in low-energy states of 1D systems, along with efficient clas-
sical algorithms for solving such systems, we believe that the techniques we introduce
also shed new light on the Renormalization Group (RG) framework.

We let H = (Cd)⊗n denote the Hilbert space of n particles of constant dimension d
arranged on a line. We consider the class of local Hamiltonians H = ∑

i Hi where each
Hi is a positive semidefinite operator of norm at most 1 acting on the i-th and (i + 1)-st
particles. The new algorithms apply to the following classes of 1D Hamiltonians:

1. Hamiltonians with a degenerate gapped ground space (DG): H has smallest eigen-
value ε0 with associated eigenspace of dimension r = poly(n), and second smallest
eigenvalue ε1 such that ε1 − ε0 ≥ γ .

2. Gapless Hamiltonians with a low density of low-energy states (LD): The dimension
of the space of all eigenvectors of H with eigenvalue in the range [ε0, ε0 + η], for
some constant η > 0, is r = poly(n).

For both classes of Hamiltonians, our results show the existence of succinct represen-
tations in the form ofmatrix product states (MPS; see e.g. [8,28] for backgroundmaterial
on MPS and their use in variational algorithms) for a basis of (a good approximation to)
the ground space (resp. low energy subspace) of the Hamiltonian. The bond dimension
of the MPS is polynomial in r and n and exponential in γ −1 (under assumption (DG))
or η−1 (under assumption (LD)). The algorithms return these MPS representations in
polynomial time in case (DG), and quasi-polynomial time in case (LD). For the special
case of finding unique ground states for frustration-free Hamiltonians the algorithm is
particularly efficient, with a running time of Õ(nM(n)), whereM(n) is the time required
to multiply two n × n matrices.

Our assumptions are relatively standard in the literature on 1D local Hamiltonians.
For an example of the first case, where the system has a spectral gap but the ground space
is degenerate with polynomially bounded degeneracy, see e.g. [6,11], who consider a
wide class of “natural” frustration-free localHamiltonians in 1D forwhich the dimension
of the ground space scales linearly with the number of particles. It is also interesting
to consider the case of systems that display a vanishing gap (as the number of particles
increases), while still maintaining a polynomial density of low-energy eigenstates (see
for instance [19]). The assumptionof polynomial density arises naturally as one considers
local perturbations of gapped Hamiltonians: while conditions under which the existence
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of a spectral gap remains stable are known [7], it is expected that as the perturbation
reaches a certain constant critical strength the gap will slowly close; in this scenario
it is reasonable (though unproven) to expect that low-lying eigenstates should remain
amenable to analysis.

Our results should be understood in the context of a substantial body of prior work
studying ground state entanglement in 1D systems. The techniques employed in this
domain typically break down for low energy and degenerate ground states, and few
results were known for these questions: Chubb and Flammia [9] extended the approach
from [22] and subsequent improvements byHuang [17] to establish an efficient algorithm
(and area law) for gapped Hamiltonians with a constant degeneracy in the ground space.
Masanes [24] proves an area law with logarithmic correction under a strong assumption
on the density of states, together with an additional assumption on the exponential decay
of correlations in the ground state.

Our algorithm provides a novel perspective on the well known Renormalization
Group (RG) formalism within condensed matter physics [35]. Our approach is based on
the idea that if our goal is to approximate a subspace T (of low energy states, say) on
n qubits, the algorithm can make progress by locally maintaining a small dimensional
subspace S ⊂ HA on a set A consisting of k particles, with the property that T is
close to S ⊗ HB , where B denotes the remaining n − k particles. A major challenge
here is measuring the quality of this partial solution. This is accomplished by a suitable
generalization of the definition of a viable set introduced in [22] to the setting of a target
subspace T , and is one of the conceptual contributions of this paper (Sect. 2). A viable
set has two relevant parameters, its dimension s and approximation quality δ (called the
viability parameter). We introduce a number of procedures for manipulating viable sets
(see Sect. 2.2). A central procedure is random projection. This procedure drastically
cuts down the dimension of a viable set, at the expense of degrading its viability δ.
Our analysis shows that to a first order, the procedure of random projection achieves a
trade-off between sampled dimension and approximation quality that is such that the
ratio of the sampled dimension and the overlap (1 − δ) is invariant (see Lemma 5). A
second procedure, error reduction, improves the quality of the viable set at the expense
of increasing its dimension. This procedure is based on the construction of a suitable
class of approximate ground state projections (AGSPs) [3,5]—spectral AGSPs—and
improves the dimension-quality trade-off, at the cost of increasing the complexity of the
underlying MPS representations. Setting this last cost aside, the two procedures can be
combined to achieve what we call viable set amplification: a reduction in the dimension
of a viable set, while maintaining its viability parameter unchanged (Sect. 3.1). Viable
set amplification is key to both the area law proofs and the efficient algorithms given in
this paper.

In addition to its dimension as a vector space, another important measure of the
complexity of a viable set is the maximum bond dimension of MPS representations
for its constituent vectors—this may be thought of as a proxy for the space required to
actually write out a basis for the viable set. A final procedure of bond trimming helps
us keep this complexity in check (Sect. 2.2.4). Bond trimming provides an efficient
procedure to replace a viable set with another one of the same dimension and similar
viability parameter, but composed of vectors with smaller bond dimension, provided that
the target subspace T has a spanning set of vectors with small bond dimension—a fact
that will follow from our area laws.

The basic building block for the algorithms in this paper combines the above proce-
dures into a process called Merge. Merge starts with viable sets defined on adjacent
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sets of particles, and combines them into a single viable set by first taking their ten-
sor product. This has the effect of squaring the dimension and slightly degrading the
quality of the viable set. Applying viable set amplification restores both dimension and
quality (for suitably chosen parameters). Thus Merge can be used as a building block,
starting with viable sets defined on individual sites and iteratively merging results along
a binary tree. Since there are only O(log(n)) iterations, and the bond dimension may
grow exponentially with the number of iterations, this only yields an nO(log n) algorithm.
To achieve a polynomial time algorithm, each iteration of Merge is modified into a
procedureMerge’ which incorporates a step of bond trimming; we refer to Sect. 3.2 for
further discussion.

A tensor network picture of Merge is provided in the figure below.1 Beginning with
inputs representing subspaces of � qubits shown on the left, theMerge process (shown
on the right) outputs a representation of a small subspace on 2� qubits. The result is a
partial isometry that is reminiscent of a MERA [31,32], a more complex tensor network
than MPS, which can in some cases arise as part of a renormalization procedure [13].
Completing theMerge process into the final algorithm, however, requires an additional
step of trimming which complicates the tree-like diagram shown in the figure and results
in a more complex tensor network that has no direct analogue in the literature. We also
note that whereas RG procedures can typically be realized as a tensor network on a
binary tree (where each node represents the partial isometry associated with selecting
only a small portion of the previous space), the use of the AGSP in our construction
allows for selection of the small subspace that can be outside the tensor product of the
previous two spaces (in this respect it may be interesting to contrast the advantage gained
from AGSPs to the use of disentanglers in MERA).

A major challenge in making the above sketch effective is the construction of appro-
priate AGSPs. Our new spectral AGSPs simultaneously combine the desirable proper-
ties that had been achieved previously in different AGSPs. In particular, they are effi-
ciently computable, have tightly controlled bond dimension (the parameter D) at two
pre-specified cuts, and have bond dimension bounded by a polynomial in n at every other
cut. Achieving this requires a substantial amount of technical work, building upon the
Chebyshev construction of [3], ideas about soft truncation of Hamiltonians (providing
efficient means of achieving similar effects to the hard truncation studied in e.g. [4]), a

1 We are grateful to Christopher T. Chubb for originally suggesting these pictures to us.
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series expansion of e−βH known as the cluster expansion [15,20], as well as a recent
nontrivial efficient encoding of the resulting operator due to [25]. The constructions
of spectral AGSP appear in Sect. 4 (non-efficient constructions) and Sect. 5 (efficient
constructions).

Our new algorithms could potentially be made very efficient. The main bottlenecks
are the complexity of theAGSP and theMPS bond dimension thatmust bemaintained. In
the case of a frustration-free Hamiltonian with unique ground state we obtain a running
time of O(2O(1/γ 2)n1+o(1)M(n)), whereM(n) is the matrix multiplication time. This has
an exponentially better scaling in terms of the spectral gap γ (due to avoidance of the
ε-net argument) and saves a factor of n/ log n (due to the logarithmic, instead of linear,
number of iterations) as compared to an algorithm for the same problem considered
in [18]. We speculate that it might further be possible to limit the bond dimension of
all MPS considered to no(1) (instead of n1+o(1) currently), which, if true, would imply a
nearly-linear time O(n1+o(1)) algorithm.

Subsequently to the completion of our work, a heuristic variant of the algorithm
described in this paper has been implemented numerically [27]. Although this initial
implementation typically suffers from a ∼ 5 − 10× slowdown compared to the well-
establishedDMRG, it provides encouragingly accurate results,matching those ofDMRG
in “easy” cases, but also sometimes outperformingDMRG, e.g. in caseswhere the ground
space degeneracy is high (linear in system size) or for some critical systems.

Organization. The remainder of the paper is organized as follows. In Sect. 2, we start
by introducing viable sets, and provide a comprehensive set of procedures to work
them; these procedures form the building blocks of our area laws and algorithms. With
these procedures in place, in Sect. 3, we provide an overview of our proof technique; this
sectionmay be the best place to start reading the paper for a reader new to our results. The
following three sections are devoted to a formal fleshing out of our results. In Sect. 4, we
prove our area laws by showing the existence of good AGSP constructions. In Sect. 5,
we provide efficient analogues of these AGSP constructions, which are employed in
Sect. 6 to derive our efficient algorithms. We conclude in Sect. 7 with a discussion of
our results and possible improvements.

2. Viable Sets

Our approach starts with the idea that the challenge of finding a solution—a low-energy
state—within a Hilbert SpaceH of exponential size can be approached by starting with
“partial solutions” on small subsystems, and gradually combining those into “solutions”
defined on larger and larger subsystems. To implement this approach we need a formal
notion of partial solution, as well as techniques for working with them. This is done in
the next few subsections where we introduce viable sets to capture “partial solutions”,
and describe procedures to efficiently work with such viable sets.

2.1. Definition and basic properties. Given a subset A of particles, we may decompose
the full Hilbert space of the system as a tensor productH = HA ⊗HB , whereHA is the
Hilbert space associated with particles in A andHB is the Hilbert space associated with
the remaining particles in the system. Our ultimate goal is to compute (an approximation
to) some subspace T ⊂ H. Towards this we wish to measure partial progress made while
processing only particles in the subset A. This can be expressed through the sub-goal of
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finding a subspace S ⊂ HA with the guarantee that Sext := S ⊗ HB contains T . Since
we need to allow the possibility for approximation errors, we are led to the following
definition:

Definition 1 (Viable set). Given 0 ≤ δ ≤ 1 and a subspace T ⊆ H = HA ⊗ HB , a
subspace S ⊆ HA is δ-viable for T if

PT PSext PT ≥ (1 − δ)PT , (1)

where Sext := S ⊗ HB and PT (resp. PSext ) is the orthogonal projection onto T (resp.
Sext ). We refer to δ as the viability of the set, and μ = 1 − δ as its overlap.

This definition captures the notion that a reasonable approximation of T can be
found within the subspace S⊗HB . It generalizes the definition of a viable set from [22],
which was specialized to the case where T is a one-dimensional subspace containing a
unique ground state. In [9,17] the definition was extended to handle degenerate ground
spaces by explicitly requiring that the viable set support orthogonal vectors that are good
approximations to orthogonal ground states. Here we avoid making any direct reference
to a basis, or families of orthogonal vectors, and instead work directly with subspaces.

While the notion of viable set is quite intuitive for small δ, our arguments also involve
viable sets with parameter δ close to 1 (alternatively, μ = 1− δ close to 0, where μ is a
parameter we will refer to as the overlap of the viable set), a regime where there is less
intuition. A helpful interpretation of the definition is that it formalizes the fact that for a
viable set S, the image of the unit ball of Sext when projected to T contains the ball of
radius (1 − δ).

Lemma 1. If S is δ-viable for T for some 0 ≤ δ < 1 then for every |t〉 ∈ T of unit norm,
there exists an |s〉 ∈ Sext such that PT |s〉 = |t〉 and ‖|s〉‖ ≤ 1

1−δ
.

The proof of Lemma 1 follows directly from the following general operator facts:

Lemma 2. 1. If X and Y are positive operators and X ≥ Y then range (Y )⊂ range
(X).

2. If PQP ≥ cP for projections P, Q and c > 0 then for every v ∈ range(P) of unit
norm, there exists w ∈ range(Q), ||w|| = 1 such that Pw = cvv for some constant
cv with |cv| ≥ c.

Proof. For 1., suppose y ∈ range(Y ) and let y = x + x⊥, x ∈ range(X ), x⊥ ⊥ range(X )
be the orthogonal decomposition. Since 〈Xx⊥, x⊥〉 = 0 it follows that 〈Y x⊥, x⊥〉 = 0
and thus x⊥ ⊥ range(Y ) as well and hence x⊥ = 0 and y = x ∈ range(X ).

For 2., it follows from 1. that if PQP ≥ cP then for any v ∈ range(P) there exists an
r ∈ range(P) such that PQPr = PQr = v. So then 〈PQPr, r〉 ≥ c〈Pr, r〉 = c||r ||2.
But 〈PQPr, r〉 = 〈v, r〉 ≤ ||r ||||v||. Putting these two inequalities together along with
the assumption that ||v|| = 1 yields ||r || ≤ 1/c. �

We introduce a notion of proximity between subspaces:

Definition 2 (Closeness). For 0 ≤ δ ≤ 1, a subspace T is δ-close to a subspace T ′ if

PT ′ PT PT ′ ≥ (1 − δ)PT ′ ,

where PT and PT ′ are the orthogonal projections on T and T ′ respectively. We say that
T and T ′ are mutually δ-close if each is δ-close to the other, and denote by � m(T, T ′)
the smallest δ such that T, T ′ are mutually δ-close.
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Closeness of subspaces is approximately transitive in the following sense:

Lemma 3 (Robustness). If T is δ-close to T ′ and T ′ is δ′-close to T ′′ then T is 2(δ + δ′)-
close to T ′′. Consequently if S is δ-viable for T and T is δ′-close to T ′ then S is
2(δ + δ′)-viable for T ′.

Proof. Notice that PAPB PA ≥ (1−δ)PA is equivalent to the statement that ‖PB |a〉‖2 ≥
(1−δ) for all |a〉 ∈ Awith ‖|a〉‖ = 1. It follows for |t ′′〉 ∈ T ′ of unit norm, |t ′〉 = PT ′ |t ′′〉
has the property that ‖|t ′〉‖2 ≥ (1−δ′) and thus ‖|t ′〉−|t〉‖ ≤ √

δ′. Similarly |t〉 = PT |t ′〉
has the property that ‖|t〉‖2 ≥ ‖|t ′〉‖2(1 − δ) and thus ‖|t ′〉 − |t〉‖ ≤ ‖|t ′〉‖√δ. By the
triangle inequality, ‖|t ′′〉 − |t〉‖ ≤ √

δ′ +
√

δ and since |t〉 ∈ T , this implies that the
distance between |t ′′〉 and T is at most

√
ν +

√
δ, i.e. ‖PSext |t〉‖2 ≥ 1 − (

√
ν +

√
δ)2 ≥

1− 2(ν + δ). As mentioned, this last statement is equivalent to T being a 2(ν + δ) close
to T ′′. �

2.2. Procedures. We introduce a set of procedures that can be performed on viable sets.
These procedures will allow us to build viable sets on larger and larger subsystems,
while keeping the complexity and size of the viable sets small. They will serve as the
core operations for both our area law proofs and our algorithms.

2.2.1. Tensoring. The next lemma summarizes the effect of tensoring two viable sets
supported on disjoint subsystems.

Lemma 4 (Tensoring). Suppose S1, S2 are δ1-viable and δ2-viable for T respectively,
defined on disjoint subsystems. Then the set S := S1 ⊗ S2 is (δ1 + δ2)-viable for T .

Proof. Since S1, S2 are defined on disjoint subsystems, it follows that PS(ext) =
P
S(ext)
1

P
S(ext)
2

, and so

PT PS(ext) PT = PT PS(ext)
1

P
S(ext)
2

PT = PT PS(ext)
1

PT − PT PS(ext)
1

(
1 − P

S(ext)
2

)
PT .

The definition of a viable set implies that PT PS(ext)
1

PT ≥ (1 − δ1)PT . In addition,

PT PS(ext)
1

(
1 − P

S(ext)
2

)
PT ≤ PT

(
1 − P

S(ext)
2

)
PT ≤ δ2PT .

Therefore, PT PS(ext) PT ≥ (1 − δ1 − δ2)PT . �

2.2.2. Random sampling. The following lemma establishes how viability of a set is
affected when sampling a random subset.

Lemma 5 (Random sampling). Let T ⊆ H = HL ⊗ HM ⊗ HR be an r-dimensional
subspace, and W a q-dimensional subspace ofHM that is δ-viable for T . Then a random
s-dimensional subspace W ′ of W is (1− δ′)-viable for T with probability 1− η, where

δ′ = (1 − δ)

8

s

q
and η =

(
1 + 4

√
q

(1 − δ)s

)r
qe−s/16.
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Proof. Let |v〉 in T such that ‖|v〉‖ = 1, and |w〉 = PWext |v〉 ∈ Wext . Using that W is
δ-viable for T it follows that ‖|w〉‖2 ≥ 1−δ. SinceW ′

ext ⊆ Wext , PW ′
ext

|v〉 = PW ′
ext

|w〉.
By a standard concentration argument based on the Johnson-Lindenstrauss lemma (see
e.g. [10, Theorem 2.1]) it holds that ‖PW ′

ext
|v〉‖2 ≥ (1 − δ) s

2q with probability at least

1−qe−s/16. Let ν = √
(1 − δ)s/8q . By a volume argument (see e.g. [29, Lemma 5.2]),

there exists a subset S of the Euclidean unit ball of T such that |S| ≤ (1 + 2/ν)r and for
any unit |t〉 ∈ T , there is an |v〉 ∈ S such that ‖|s〉 − |t〉‖ ≤ ν. Applying the preceding
argument to each |v〉 in the net, by the union bound the choice of η made in the theorem
is with probability at least 1 − η, ‖PW ′

ext
|v〉‖2 ≥ (1 − δ)s/(2q) for all |v〉 in the net;

hence ‖PW ′
ext

|v〉‖2 ≥ (1 − δ)s/(8q) for all |v〉 in the unit ball of T . �

2.2.3. Error reduction using approximate ground state projections. We address the
question of how to improve the viability parameter δ for a given viable set. In previous
work this questionwas addressed for the case of the target space T being one dimensional
by introducing the key tool of Approximate Ground State Projections (AGSPs) [3,5].
AGSPs have been used in the context of proofs of the 1D area law for Hamiltonians with
a unique ground state as well as in algorithms for finding the ground state of a gapped
1D system [22].

Whereas in previous works an AGSP was primarily constructed to approximate the
projector on a unique ground state, here our main focus is on the case of a degenerate
ground space and low-energy states. We therefore introduce a more general definition
of an AGSP as a local operator that increases the norm of eigenvectors in the low part
of the spectrum of H , while decreasing the norm of eigenvectors in the high energy part
of the spectrum. We refer to this object as a spectral AGSP.

Definition 3 (Spectral AGSP). Given H = HL ⊗ HM ⊗ HR , H a Hamiltonian on H
and η0 < η1, a positive semidefinite operator K on H is a (D,Δ)-spectral AGSP for
(H, η0, η1) if the following conditions hold:

– K has a decomposition K = ∑D2

i=1 Li ⊗ Ai ⊗ Ri ,
– H and K have the same eigenvectors,
– Eigenvalues of H smaller than η0 correspond to eigenvalues of K that are larger than

or equal to 1,
– Eigenvalues of H larger than η1 correspond to eigenvalues of K that are smaller than√

Δ.

The advantage of an AGSP, compared to an exact projection operator, lies in the fact
that one can often construct a much more local operator, i.e., an operator with a much
smaller Schmidt rank compared to the exact projector. The existence of an AGSP of
small Schmidt rank which greatly shrinks the high energy part of the spectrum can be
viewed as a strong characterization of the locality properties of the low-energy space.
A favorable scaling between these two competing aspects (in the case of unique ground
states) was the key feature in recent proofs of the 1D area law [3,5] via the bootstrapping
lemma. The following lemma establishes a lower bound on the quantitative improvement
in viability that a spectral AGSP can achieve on a viable set.

Lemma 6 (Error reduction—Spectral AGSP). Let H = HL ⊗ HM ⊗ HR, H a Hamil-

tonian on H, η0 < η1, and K = ∑D2

i=1 Li ⊗ Ai ⊗ Ri a (D,Δ)-spectral AGSP for
(H, η0, η1) where H has ground state energy ε0 and has no eigenvalues in the interval
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(η0, η1). Let S ⊆ HM be a δ-viable set for T = H[ε0,η0] of dimension s. Then the space
V = Span{Ai S : 1 ≤ i ≤ D2} has dimension at most D2s and is δ′-viable for T with

δ′ = Δ

(1 − δ)2
.

Proof. The bound on the dimension of V is straightforward. To show V is δ′-viable for
T , begin with an arbitrary unit norm vector |v〉 ∈ T . Set |v′〉 = 1

‖K−1|v〉‖K
−1|v〉, where

K−1 is the pseudo-inverse. Then |v′〉 is also an element of T . Since S is δ-viable for
T , applying Lemma 1 there exists an |u〉 ∈ HL ⊗ S ⊗ HR whose projection onto T
is, up to scaling, precisely |v′〉; thus |u〉 = α|v′〉 + √

1 − α2|v⊥〉 for some α ≥ 1 − δ

and unit |v⊥〉 that is orthogonal to T . In particular |v⊥〉 is supported on the span of all
eigenvectors of H with eigenvalue outside of [ε0, η1) = [ε0, η0) ∪ [η0, η1) and thus by
the property of K , ‖K |v⊥〉‖2 ≤ Δ.

Applying K to |u〉 yields K |u〉 = α′|v〉+ K |v⊥〉 with α′ = α 1
‖K−1|v〉‖ ≥ α (since |v〉

is supported on eigenvectors of K with corresponding eigenvalue at least 1). Thus

∣
∣
∣
〈 Ku

‖K |u〉‖
∣
∣
∣v

〉∣
∣
∣
2 ≥ α′2

α′2 + (1 − α′2)Δ

≥ 1 − 1

(1 − δ)2
Δ.

�

2.2.4. Complexity reductionusing trimming. For a viable set to be efficiently represented
it must not only have small dimension but also a basis of states that can be efficiently
described, say by polynomial-bondmatrix product states.Anatural question is, assuming
that the target subspace T has a basis of vectors of small bond dimension, whether it is
possible to efficiently “trim” any sufficiently good viable set for T into another almost-
as-good viable set specified by vectors with comparably small bond dimension.

To achieve this goalwe introduce amodified trimming procedure to that of [22]. There
the trimming procedure is based on the observation that given a good approximation
to a target vector |v〉 of low bond dimension, trimming the approximating vector by
dropping Schmidt vectors associated with the smallest Schmidt coefficients at each
cut yields an almost-as-good approximation to |v〉 with lower bond dimension. In the
present scenario the approximating vector is not known: instead we are given a basis
for a subspace that contains the approximating vector. A natural idea would be to trim
the MPS representations for the basis vectors in a way that guarantees that |v〉 is still
closely approximated by some vector in the span of the resulting set. However, it is
not clear if independently trimming each of the basis vectors, as done in [22], works—
indeed, the basis vectors themselves could a priori have a very flat distribution of Schmidt
coefficients, so that trimming could induce large changes.

We provide a modified procedure which starts with a basis for the viable set and trims
the basis vectors collectively at each cut, from the leftmost to the rightmost, as follows
(informally): for each cut, project each element of the basis onto the span of the left
Schmidt vectors of any basis element that is associated with a large Schmidt coefficient.

Definition 4 (Trimming). Let S ⊆ HA be a δ-viable set for T ⊆ HA ⊗ HB specified
by an orthonormal basis {|ui 〉, i = 1, . . . s}. Suppose HA = H1

A ⊗ · · · ⊗ H�
A for some
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� ≥ 2. Let |ψ〉 = ∑
i |ui 〉|i〉 ∈ HA ⊗C

s . For j from 1 to (�− 1) define P j
≥ξ inductively

as the projection on the subspace of P j−1
≥ξ ⊗1H j

A
spanned by the left Schmidt vectors of

P j−1
≥ξ ⊗1H j

A···H�
A
⊗1Cs |ψ〉 across the cut ( j : j +1)with associated Schmidt coefficient

at least ξ .2 Then the ξ -trimmed set is

Trimξ (S) := Span
{(

(P1≥ξ ⊗1H2
A⊗···⊗Hk

A
) · · · (P�−1

≥ξ ⊗1H�
A
)
)|ui 〉, i = 1, . . . , s

}
. (2)

With this notion of trimming, we show that if a set S is a good viable set for a set T
whose elements are guaranteed to have low bond dimension then the result of trimming
the set S does not degrade the quality of the viable set too much.

Lemma 7 (Trimming). Let S ⊆ HA be a δ-viable set of dimension s for T ⊆ HA ⊗HB.
SupposeHA = H1

A ⊗· · ·⊗H�
A for some � ≥ 2. Let b be an upper bound on the Schmidt

rank of any vector in T across any cut ( j : j + 1) for j = 1, . . . , � − 1. Then the
ξ -trimmed set Trimξ (S) is a δ′-viable set for T for δ′ ≤ δ +

√
�bsξ .

Furthermore, a spanning set for Trimξ (S) containing at most s vectors of Schmidt
rank at most sξ−2 across any cut can be computed in time O(�M(dsq)), where q is an
upper bound on the bond dimension of MPS representations for a basis of S and M(·)
denotes matrix multiplication time.

Proof. Let {|ui 〉, i = 1, . . . , s} denote an orthonormal basis for S, and |v〉 ∈ T a unit
vector. Let |u〉 = ∑

i μi |ai 〉|bi 〉 ∈ HA ⊗HB be a unit vector such that |〈u|v〉|2 ≥ 1− δ.
For j = 0, . . . , �, let

|u′
j 〉 = (P1≥ξ ⊗ 1H2

A···H�
A

⊗ 1HB ) · · · (P j
≥ξ ⊗ 1H j+1

A ···H�
A

⊗ 1HB )|u〉,

and for i ∈ {1, . . . , s},

|a j
i 〉 = (P1≥ξ ⊗ 1H2

A···H�
A

⊗ 1HB ) · · · (P j
≥ξ ⊗ 1H j+1

A ···H�
A

⊗ 1HB )|ai 〉.

By definition of the P j
≥ξ (Definition 4), the Schmidt coefficients of the vector

(P1≥ξ · · · P j−1
≥ξ (1 − P j

≥ξ ) ⊗ 1)|ψ〉,
where |ψ〉 = ∑ |ai 〉|i〉, across the cut ( j, j+1) are all at most ξ . Since actingwith a local
projection (here, |i〉〈i | onHB) cannot increase the largest Schmidt coefficient, the same
holds of the vector ((1− P j

≥ξ ) ⊗ 1)|a j−1
i 〉. Based on these observations we may upper

bound, for any i, j , and unit |c〉 ∈ H1
A ⊗ · · · ⊗ H j

A and |d〉 ∈ H j+1
A ⊗ · · · ⊗ H�

A ⊗ HB ,

∣
∣〈a j−1

i |〈vi |((1 − P j
≥ξ ) ⊗ 1H j+1

A ⊗···⊗H�
A

⊗ 1HB )|c〉|d〉∣∣ ≤ ξ,

where the inequality follows sincewe are taking the inner product of a vector with largest
Schmidt coefficient at most ξ with another vector of Schmidt rank 1. Using the promised
bound on the Schmidt rank of |v〉 we deduce

2 Note that we do not re-normalize vectors.
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∣
∣(〈u′

j | − 〈u′
j−1|)|v〉∣∣ = ∣

∣〈a j−1
i |〈bi |((1 − P j

≥ξ ) ⊗ 1|v〉∣∣
≤ ξ

√
bs

∥
∥(1 − P j

≥ξ ) ⊗ 1|v〉∥∥.

Using a telescopic sum, and orthogonality of the projections (1− P j
≥ξ )⊗1 for different

values of j , we get

∣
∣(〈u′

1| − 〈u′
�|)|v〉∣∣2 ≤ ξ2bs

( �∑

j=1

∥
∥(1 − P j

≥ξ ) ⊗ 1|v〉∥∥
)2

≤ ξ2�bs,

and the claimed bound on δ′ follows.
For the “furthermore” part, note that |ψ〉 has at most s/ξ2 Schmidt coefficients larger

than ξ across any cut ( j : j + 1). Thus each P j
≥ξ has rank at most s/ξ2, so that its

application reduces the Schmidt rank across the cut ( j : j +1) to at most s/ξ2, while not
increasing it to a larger value at any of the previously considered cuts. The left Schmidt
vectors of

(P1≥ξ ⊗ 1H2
A⊗···⊗H�

A
) · · · (P�−1

≥ξ ⊗ 1H�
A
)
)|ψ〉

across the cut specified by the divisionH = HA⊗HB form a spanning set for Trimξ (S).
In order to compute canonical MPS representations for a basis of Trimξ (S) we first

create an MPS representation for |ψ〉 and reduce it to canonical form (we refer to e.g.
the survey [30] for a discussion of basic operations on MPS and their computational
efficiency). This costs O(�M(dsq)) operations, where M(·) is matrix multiplication
time, and M(dsq) is the time required to perform required basic operations on tensors
of bond dimension O(dsq), such as singular value decompositions. Proceeding from
the cut (� − 1, �) to the (1, 2) cut from right to left, we then set the coefficients of the
diagonal tensor matricesΛ j from theMPS representation that are smaller than ξ to zero.
The resulting re-normalized state is automatically given in canonical MPS form, and a
spanning set for Trimξ (S) can be obtained by cutting the last bond. �

3. Overview

In this sectionwe provide an outline of how the procedures introduced in the two previous
sections can be put together to yield area laws and efficient algorithms. Our results hinge
on our ability to construct AGSPs with good trade-offs between D and Δ. Our goal in
this section is to provide a high level picture of how the pieces fit together. For this we
assume a very simple, approximate picture of an AGSP. The rigorous results are more
intricate, and will be described in the remaining sections of the paper.

Let H be aHamiltonian with ground state energy ε0 and no eigenvalues in the interval
(η0, η1). We assume that H comes with an associated spectral AGSP K (Definition 3)
that satisfies the conditions of Lemma 6. We further assume that the parameters (D,Δ)
associated with K satisfy a sufficiently good trade-off between D and Δ.3 Our goal is
to approximate the low-energy subspace T = H[ε0,η0], assumed to be of polynomially
bounded dimension.

3 For our purposes, a tradeoff of the form DcΔ < 1
2 , for a large enough constant c, will suffice; we refer

to later sections for concrete parameters.
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3.1. Viable set amplification and area laws. As a first step we compose the procedures
of random sampling (Lemma 5) and error reduction (Lemma 6) to obtain a procedure
that improves the quality of a viable set without increasing its dimension:

Viable Set Amplification:
Given is a δ-viable set W of dimension q.

1. Generate a random sample, as in Lemma 5, to obtain S ⊂ W of dimension s with
viability parameter δ′ > δ.

2. Apply error reduction to S, as in Lemma 6, using the AGSP K , to produce a
δ-viable set W ′ of dimension q ′.
For a δ-viable setW , we refer to μ = 1− δ as its overlap. Random sampling reduces

the dimension of the viable set but also proportionately reduces its overlap. The second
step (AGSP) increases the overlap at the cost of a comparatively smaller increase in
dimension — a favorable trade-off due to the favorable D − Δ trade-off of the AGSP.
With proper setting of parameters, the viable set amplification procedure above reduces
the dimension of the viable set while leaving the overlap (and δ) unchanged, as long as
the viable set dimension q > q0, for some q0 determined by δ as well as the parameter
D of the AGSP (itself related to parameters of the initial Hamiltonian, including the
spectral gap above the low-energy space T ).

Reasoning by contradiction, the argument implies the existence of a δ-viable set W0
for T of dimension atmost q0. The existence of such aW0 in turn implies that any element
of T has a δ-approximation by a vector with entanglement rank no larger than q0. An
area law follows easily using standard amplification arguments; we give the details in
Sect. 4.

3.2. Merge process and algorithms. In the argument described in the previous section
the parameters were chosen such that a δ-viable set of dimension q was “amplified” to a
δ-viable set of dimension q ′ < q. With a slightly more demanding choice of parameters
viable set amplification can bemade to reduce both the dimension q → q ′ = √

q and the
viability parameter δ → δ′ = δ

2 . This only requires a slightly more stringent condition
on the D − Δ trade-off provided by the underlying AGSP.

We now explain how viable set amplification can be folded within a larger procedure
that we call Merge. Assume given a decomposition H = HL ⊗ (HA ⊗ HB) ⊗ HR of
the n-particle Hilbert space.Merge starts with two viable sets V1 ⊆ HA and V2 ⊆ HB
and returns a viable set V ⊆ HA ⊗ HB . It does so in a way such that all parameters
of the viable set V , namely the viability δ, the dimension, and its description complex-
ity, are comparable to those of the original two sets. We proceed to describe Merge;
for expository purposes we set aside considerations on the complexity of representing
elements of the viable sets (these will be made formal in subsequent sections).

MERGE:
Given are two δ-viable sets V1 ⊂ HA and V2 ⊂ HB of dimension q.

1. Tensor the two sets, as in Lemma 4, to obtain a 2δ-viable set W = V1 ⊗ V2 of
dimension at most q2.

2. Perform viable set amplification to yield a δ-viable set V ⊂ H1⊗H2 of dimension
at most q.

Our algorithm starts with (easily generated) viable sets defined over small subsets of
particles, and iteratesMerge in a tree-like fashion to eventually generate a single viable
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set defined over the entire space. With this final viable set in hand, it is not difficult to
find low-energy states within the viable set, providedwe are able to describe its elements
using low-complexity representations (e.g. low bond dimension matrix product states).
This will not be the case unless explicit constraints are enforced on the complexity
of the operators used in the error reduction step of viable set amplification, where the
complexity can blow up rapidly due to the application of the AGSP K .

To maintain the desired low complexity MPS representations and complete the algo-
rithm we make two modifications toMerge. The first is within the AGSP construction,
where a procedure of soft truncation (Sect. 5.1) leads to the operators used in error
reduction having matrix product operator (MPO) representations with polynomial bond
dimension. Since these operators are applied a large number of times, however, the com-
plexity of theMPS representations manipulated could still increase to super-polynomial.
In order to keep that complexity under control we perform a second modification, which
decomposes the viable set amplification procedure into smaller steps of viable set ampli-
fication followed by a trimming procedure. The result is the following modified proce-
dure:

MERGE’ (informal):
Given are δ-viable sets V1 ⊂ HA and V2 ⊂ HB of dimension q, each specified by MPS
with polynomial bond dimension.

1. Tensor the two sets, as in Lemma 4, to obtain a 2δ-viable set W = V1 ⊗ V2 of
dimension at most q2.

2. Perform viable set amplification followed by trimming on the viable set to produce
a δ-viable set of smaller dimension, again specified by MPS with polynomial bond
dimension. Repeat this step until the resulting δ-viable set has dimension q.

We note that the correctness of the trimming procedure employed in the second step
of Merge’ relies on the area law established usingMerge, as described in the previous
section.

The overview given in this section provides an accurate outline of how viable sets
can be put together into an efficient algorithm for mapping out the low-energy subspace
of a local Hamiltonian. The most important technical ingredient that we have set aside
so far is the creation of AGSP with the required parameter trade-off between D and Δ.
In Sect. 4 we establish existence of the desired AGSP, which lets us formally implement
the first part of our results, area laws for local Hamiltonians satisfying assumptions (DG)
and (LD) described in the introduction. In order to obtain algorithms we will need to
make the AGSP constructions efficient: this is achieved in Sect. 5, with the resulting
algorithms described in Sect. 6.

4. Area Laws

In this section we establish area laws for the ground space and low-energy space of
Hamiltonians satisfying assumptions (DG) and (LD) respectively. The proofs are based
on the non-constructive bootstrapping argument outlined in Sect. 3.1, which relies on a
sufficiently good construction of AGSP. We first review the general Chebyshev-based
AGSPconstruction from [3] in Sect. 4.1.We introduce a schemeof hard truncation for the
norm of a Hamiltonian in Sect. 4.2. In Sect. 4.3 we apply the Chebyshev construction
to the truncated Hamiltonian to obtain our main AGSP constructions. The AGSP are
applied to the proof of the area law under assumption (DG) in Sect. 4.4 and assumption
(LD) in Sect. 4.5.
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4.1. The Chebyshev polynomial AGSP. Given a Hamiltonian H with ground energy ε0
and a gap parameter γ , a natural way to define an approximate ground state projection
is by setting K := Pk(H), where Pk is a polynomial that satisfies Pk(ε0) = 1 and
|Pk(x)|2 ≤ Δ for every ε0 + γ ≤ x ≤ ‖H‖. Clearly, K preserves the ground space
and reduces the norm of any eigenstate |φ〉 of H with eigenvalue at least ε0 + γ as
‖K |φ〉‖2 ≤ Δ. Moreover, the lower the degree of Pk , the lower the Schmidt rank of K at
every cut. Following [3] we construct such a polynomial based on the use of Chebyshev
polynomials. The construction is summarized in the following definition.

Definition 5 (The Chebyshev-based AGSP). Let H be a Hamiltonian and η0 < η1 two
parameters.4 For any integer k > 0, let Tk be the k-th Chebyshev polynomial of the first
kind, and Pk the following rescaling of Tk :

Pk(x) := 1

P̃k(η0)
P̃k(x) , where P̃k(x) := Tk

(

2
x − η1

‖H‖ − η1
− 1

)

. (3)

The Chebyshev AGSP of degree k for H is K := Pk(H).

The properties of the Chebyshev AGSP are given in the following theorem. Here and
throughout we use the convention that a 1D local Hamiltonian on n qudits numbered
1, . . . , n decomposes as H = ∑n−1

i=1 hi , where 0 ≤ hi ≤ 1 is the local term acting on
qudits {i, i + 1}.
Theorem 1. Let H be a Hamiltonian on n qudits, η0 < η1 two parameters and γ =
η1 − η0. Suppose that for some i1 < i2 ∈ {1, . . . , n} and 3 ≤ � ≤ (i2 − i1)/2, H can be
written as

HL + hi1−� + · · · + hi1 + · · · + hi1+�−1

+ HM + hi2−� + · · · + hi2 + · · · + hi2+�−1 + HR, (4)

where each hi is a 2-local operator on qudits {i, i + 1} and HL, HM and HR are defined
on qudits JL = {1, . . . , i1 − �}, JM = {i1 + �, . . . , i2 − �} and JR = {i2 + �, . . . , n}
respectively. For any integer k > 0 let

Δ := 4e
−4k

√
γ

‖H‖−η0 .

Then the degree-k Chebyshev AGSP K is a (D,Δ) spectral AGSP for (H, η0, η1) such
that:

1. For any eigenvector |ψ〉 of H with associated eigenvalue λ, |ψ〉 is an eigenvector of
K with associated eigenvalue Pk(λ).

2. If λ ≤ η0 then Pk(λ) ≥ 1, Pk(η0) = 1, and if λ ≤ η0 + γ /k then

Pk(λ) ≥ 1 − O
(k|λ − η0|

γ ‖H‖
√

Δ
)
.

3. If λ ≥ η1 then Pk(λ) ≤ √
Δ.

4. The Schmidt rank of K at all cuts in the region JM (resp. JL , JR) satisfies B ≤ B̃O(k),
where B̃ is an upper bound on the Schmidt rank of HM (resp. HL , HR) at every cut.

4 η0 and η1 may be chosen as the ground state energy and first excited energy of H respectively, but they
need not.
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5. The Schmidt rank of K with respect to the cuts (i1, i1 + 1) and (i2, i2 + 1) satisfies
D ≤ (dk)O(�+k/�).

Proof. Item 1. follows from the definition of K = Tk(H) as a polynomial in H (see
Definition 5). For item 2. and item. 3 we use the following properties of Tk (see e.g. [3]
and [21, Lemma B.1] for a proof):

|Tk(x)| ≤ 1 for |x | ≤ 1, (5)

|Tk(x)| ≥ 1

2
exp

(

2k

√
|x | − 1

|x | + 1

)

for |x | ≥ 1, (6)

Tk(x) = 1

2

(
x +

√
x2 − 1

)k +
1

2

(
x −

√
x2 − 1

)k for |x | ≥ 1. (7)

The fact that eigenvectors with eigenvalue η0 are mapped to fixed points of K follows
from Pk(η0) = 1. Next suppose |ψ〉 is an eigenvector of H with eigenvalue η0 +δ where
|δ| < η1−η0. From (7) we see |Tk(x +δ)−Tk(x)| = O(kδ/min(x2−1, x±√

x2 − 1))
as long as x, x + δ ≤ −1. Taking into account the scaling used to define Pk ,

|Pk(η0 + δ) − Pk(η0)| = O
( 1

P̃k(η0)

kδ

γ ‖H‖
)

= O
( δ k

γ ‖H‖
)
e
−2k

√
γ

‖H‖−η0 ,

where the last inequality uses (6). Item 3 follows by combining (5) and (6).
Item 4. is immediate since K is computed as a linear combination of j-th powers of

H for j ≤ k.
Finally, for a proof of item 5 we refer to Proposition 4 in Sect. 5.2 below. �
Theorem 1 provides us with a powerful recipe for constructing good AGSP. To min-

imize the Schmidt rank at a cut (i, i + 1) for i ∈ {i1, i2} we should take k = Θ
(
�2

)
,

which gives a bound of D ≤ (dk)O(
√
k), a much better bound than the naive dO(k).

To guarantee a small Δ we should choose k large enough to ensure that e−4k
√

γ /‖H‖
remains small, which requires the Hamiltonian to have a small norm. This is the role of
the truncation scheme presented in the following section.

4.2. Hard truncation. We introduce a scheme of hard truncation that is appropriate
(though not efficient) for truncating the norm of an arbitrary local Hamiltonian in a
certain region J , while preserving its low-energy eigenspace H[ε0,ε0+η]. The basic idea
is to replace H �→ HΠ≤ε0+t + (ε0 + t)Π>ε0+t , where Π≤t projects onto the span of
eigenvectors of H with eigenvalue less than t , Π>ε0+t := 1 − Π≤ε0+t , and t is chosen
to be large enough with respect to η.

Definition 6 (Hard truncation). Let t > 0, H = HJ +HJ where HJ = h j0 +h j0+1+· · ·+
h j1−1 is a local Hamiltonian acting on a contiguous set of qudits J = { j0, j0+1, . . . , j1},
and let εJ be the ground energy of HJ . Let Π− be the projector onto the span of all
eigenvectors of HJ with eigenvalue less than εJ + t , and Π+ := 1− Π−. Then the hard
truncation of HJ is given by

H̃J := HJΠ− + (t + εJ )Π+ (8)

and the hard-truncated Hamiltonian H̃t associated to the region J is

H̃t = H̃J + HJ .
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We now show that truncating a n-qubit Hamiltonian on a subset J of the qubits
leads to a truncated Hamiltonian whose low-energy space is close to that of the original
Hamiltonian. The main tool in proving this result is Theorem 2.6 of [4], a generalization
and strengthening of the truncation result that appeared in [3]. Adapted to the current
setting it can be formulated as follows.

Proposition 1 (Adapted from Theorem 2.6 in [4]). For any η > 0 let Π≤η denote the
projector on the span of all eigenvectors of H with eigenvalue at most η, and similarly
Π̃≤η for H̃t . Let ε0 ≤ ε1 ≤ ε2 ≤ . . . and ε̃0 ≤ ε̃1 ≤ ε̃2 . . . be the sorted eigenvalues of
H and H̃t respectively, where eigenvalues appear with multiplicity. For any η > 0, let

ξ = e(t−η)/8+24. (9)

Then the following hold:

1. ‖(H − H̃t )Π≤ε0+η‖ ≤ ξ and ‖(H − H̃t )Π̃≤ε0+η‖ ≤ ξ ,
2. For all j for which ε j ≤ ε0 + η, we have ε j − ξ ≤ ε̃ j ≤ ε j .

Proof. The proposition follows from Theorem 2.6 in Ref. [4] by using λ = 1
8 and the

fact that ε0 ≤ ε̃0 + 2 to bound Δε̃ by Δε + 2. Here we can take |∂L| = 2 since there are
two boundary terms connecting the truncated region J and the rest of the system. �

The following lemma summarizes the approximation properties of the hard truncation
procedure that will be important for us.

Lemma 8. For any η > 0, let Tη = H[ε0,ε0+η] be the low-energy eigenspace of H,
J = { j0, . . . , j1} a contiguous subset of qudits and H̃t the associated hard-truncated
Hamiltonian, with corresponding low-energy eigenspace T̃η = H̃[ε̃0,ε̃0+η]. Let ξ be as
defined in (9). Then the following hold for any t > η:

1. The ground energy ε̃0 of H̃t satisfies ε0 − Ce−c(t−η) ≤ ε̃0 ≤ ε0 for some universal
constants C, c.

2. For any δ > 0 there is

η′ = η +

√
η

δ
e−Ω(t−η)

such that the subspace T̃η′ is δ-close to Tη, and Tη′ is δ-close to T̃η.

Proof. The first item follows directly from the second item in Proposition 1. For the
second item, we prove that T̃η′ is δ-close to Tη, the proof of the second relation being
identical. Fix a smallwidth parameter h (to be specified later) and let |ψ〉 = ∑

i βi |ψi 〉 be
supported on eigenvectors |ψi 〉 of H with eigenvalueμi ∈ [λ−h, λ+h]with λ ≤ ε0 +η.
Then ‖H |ψ〉 − λ|ψ〉‖ ≤ h. Decompose |ψ〉 = ∑

αi |φi 〉, where for each i , |φi 〉 is an
eigenvector of H̃t with associated eigenvalue λ̃i . Using the first item in Proposition 1,

∑

i

|αi |2|λ − λ̃i |2 ≤ (‖(H − H̃)|ψ〉‖ + ‖(H − λ1)|ψ〉‖)2

≤ (
e−Ω(t−η) + h

)2
.
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By Markov’s inequality it follows that for any δ > 0

∥
∥Π̃>λ+δ|ψ〉∥∥ ≤ e−Ω(t−η) + h

δ
.

Any |ψ〉 in Tη can be written as a linear combination |ψ〉 = ∑
j β j |h j 〉 with each |h j 〉

supported on eigenvectors of H with eigenvalue in a small window of width 2h, and the
number of terms at most � η−ε0

2h �. Thus
∥
∥Π̃>ε0+η′ |ψ〉∥∥ ≤

∑

j

|β j |
∥
∥Π̃>ε0+η′ |h j 〉

∥
∥

≤
√

η

2h

e−Ω(t−η) + h

η′ − η
.

Choosing h = e−Θ(t), we see that the choice of η′ made in the statement of the lemma
suffices to ensure that this quantity is at most

√
δ, as desired. �

4.3. The AGSP constructions. The combination of Theorem 1, Proposition 1, and
Lemma 8 yield a construction that starts with a local Hamiltonian H , produces a trun-
cated Hamiltonian H̃ with low energy space close to that of H along with a spectral
AGSP K for H̃ with a good trade-off between the parameters D and Δ.

Corollary 1. Let H be a 1D local Hamiltonian with ground energy ε0, andH = HL ⊗
HM ⊗HR a decomposition of the n-qudit space in contiguous regions. For any integer
� ≥ 1 and t > 0 there exists a Hamiltonian H̃ such that for any ε0 < η0 < η1 there is
a (D,Δ) spectral AGSP K for (H̃ , η0, η1) with the following properties.

1. D = (d�)O(�) and Δ = e
−Ω( �2√

t+�

√
η1−η0),

2. There are universal constants C, c > 0 such that for i ∈ {0, 1}
0 ≤ εi − ε̃i ≤ Ce−c(t−ε0) (10)

where εi , ε̃i are the i-th smallest (counted with multiplicity) eigenvalues of H, H̃
respectively.

3. The space H[ε0,η1] is δ-close to H̃[ε̃0,η0] and H̃[ε̃0,η1] is δ-close to H[ε0,η0], for

δ = Θ
( η0 − ε0

(η1 − η0)2

)
e−Ω(t−(η0−ε0)). (11)

Proof. Let L = {1, . . . , i1}, M = {i1 + 1, . . . , i2} and R = {i2 + 1, . . . , n} be the set of
qudits contained inHL ,HM andHR respectively. We define the truncated Hamiltonian
H̃ by applying the hard truncation transformation described in Definition 6 thrice, to
the regions JL = {1, . . . , i1 − � − 1}, JM = {i1 + � + 1, . . . , i2 − � − 1} and JR =
{i2 + � + 1, . . . , n} respectively (provided each region is non-empty). The resulting
truncated Hamiltonian H̃ = H̃t has norm O(� + t).

Applying Lemma 8 thrice in sequence, for the three truncations performed, it follows
that the sorted eigenvalues of H̃ satisfy (10). Eq. (11) similarly follows from item 2. in
Lemma 8.

Finally we define the AGSP K by applying the Chebyshev polynomial construction
from Definition 5 to H̃ with a choice of k = �2. The bounds on Δ and D follow directly
from item 3. and 5. from Theorem 1 respectively. �
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From the corollary follow our two main AGSP contructions, which hold under
assumptions (DG) and (LD) respectively.

Theorem 2 (Existence of AGSP, (DG)). Let H be a local Hamiltonian satisfying
Assumption (DG), and H = HL ⊗ HM ⊗ HR a decomposition of the n-qudit space
in three contiguous blocks. There exists a collection of D2 operators {Ai }D2

i=1 acting on
HM along with a subspace T̃ ⊆ H such that:

– H[ε0,ε0+η0] and T̃ are mutually .005-close;

– D = eÕ
(
1
γ
log3 d

)

,
– There is Δ > 0 such that D12Δ ≤ 10−5 and whenever S ⊆ HM is δ-viable for T̃

then S′ = Span{∪i Ai S} is δ′-viable for T̃ , with δ′ = Δ
(1−δ)2

.

Proof. Let η0 = ε0 + γ /10 and η1 = ε0 + 9γ /10. Provided the implied constants are
chosen large enough, setting � = Θ(γ −1 log γ −1), t = Õ(�) and t > Õ( 1

γ
log2(d/γ ))

in Corollary 1 gives D12Δ < 10−5. Due to the gap assumption it holds that T =
H[ε0,η0] = H[ε0,η1]. The choice of t above also ensures that the right-hand side of (10)
is smaller than 1

10γ and the right hand side of (11) is smaller than .005, in which case
H̃ has a spectral gap between η0 and η1, so that H̃[ε̃0,η0] = H̃[ε̃0,η1]. Then item 2 in the
corollary implies that H̃[ε̃0,η0] and T are mutually .005-close, giving the first condition
in the theorem with T̃ = H̃[ε̃0,ε̃0+ 1

10 γ ].

The operators {Ai } are defined from a decomposition K = ∑D2

i=1 Li ⊗ Ai ⊗ Ri
associated to the factorization H = HL ⊗ HM ⊗ HR of the AGSP from Corollary 1.
Lemma 6 gives the desired quantitative tradeoff between the increase in dimension of a
viable set and its increase in overlap, when acted upon by the {Ai }. �
Theorem 3 (Existence of AGSP, (LD)). Letμ > 0 be a constant, H a local Hamiltonian
satisfying Assumption (LD), andH = HL ⊗HM ⊗HR a decomposition of the n-qudit
space in three contiguous blocks. For any η ≥ η1 ≥ 2 μ

log n there exists a collection of

D2 operators {Ai }D2

i=1 acting onHM along with two subspaces T̃− ⊆ T̃ ⊆ H such that:

– H[ε0,ε0+η1] is .005-close to T̃ ,
– T̃− is .005-close to H[ε0,ε0+η1− μ

log n ],

– D = eÕ
(
log n
μ

log3 d
)

,
– There is a Δ > 0 such that D12Δ < 10−5 and for any S ⊆ HM that is δ-viable for

T̃ it holds that S′ = Span{∪i Ai S} is δ′ -viable for T̃− with δ′ = Δ
(1−δ)2

.

Proof. The main difference with the proof of Theorem 2 is that the parameter corre-
sponding to the gap γ is replaced by the quantity μ

log n . The proof of the first two items
claimed in the theorem then closely mirrors that of Theorem 2.

It only remains to verify the third item. Despite having the desired AGSP, unlike
in the gapped case we cannot hope to improve the quality of the viable set S for all
of T̃ = H̃[0,η′− μ

3 log n ] by the application of the AGSP Kk . However, if we view S as a

viable set for the smaller T̃− = H̃[0,η′− 2μ
3 log n ] ⊆ T̃ , we now have an effective AGSP with

respect to T̃− and the orthogonal complement of the larger T̃ and we can proceed as if
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in the presence of a small spectral gap of μ
3 log n . To see this, fix any vector |ψ〉 ∈ T̃−.

Lemma 1 shows that there exists a |w〉 ∈ S such that |w〉 = c|ψ〉 + |ψ⊥〉 for some |ψ⊥〉
orthogonal to T̃ , and c ≥ (1− δ). This brings us in line with the proof of Lemma 6 and
we can use the same analysis to show that applying K improves the parameter of the
viable set S from δ to the desired δ′ = Δ

(1−δ)2
. �

4.4. Area law for degenerate Hamiltonians.

Theorem 4 (Area law for degenerate gappedHamiltonians). Let H be a 1D local Hamil-
tonian acting on n qudits of local dimension d such that H satisfies Assumption (DG). For
any fixed cut and any δ = poly−1(n), for every unit |ψ〉 ∈ T there is an approximation
|ψ ′〉 such that |〈ψ |ψ ′〉| ≥ 1 − δ and |ψ ′〉 has Schmidt rank no larger than

s(δ) = r e
Õ
(
1
γ
log3 d+ 1

γ 1/4
log3/4( 1

δ
) log d

)

at that cut, and an MPS representation with bond dimension bounded by

r e
Õ
(
1
γ
log3 d+ 1

γ 1/4
log3/4( n

δ
) log d

)

.

Moreover, every state |ψ〉 ∈ T has entanglement entropy

S(|ψ〉〈ψ |) ≤ ln r + Õ
( 1

γ
log3 d

)
.

The proof of the theorem proceeds in two steps. First we use a “bootstrapping argu-
ment” to show the existence of a viable set of constant error for the ground space, such
that all states in the viable set have low Schmidt rank. The existence of arbitrarily good
approximations with increasing Schmidt rank, as well as the bound on the entanglement
entropy, follow by the application of a suitable AGSP. We state the bootstrapping step as
the following proposition. The proposition can be understood as an analysis of the effect
of a single application of the Merge procedure introduced in Sect. 3.2 with the initial
tensoring step omitted. (The connection will be made more formal once we analyze
algorithms in Sect. 6.)

Proposition 2. Let H be a local Hamiltonian satisfying assumption (DG), and J ⊆
{1, . . . , n}. Then there exists a subspace W ⊆ HJ of dimension q = reÕ

(
1
γ
log3 d

)

that
is .015-viable for the ground space T of H.

Proof. Let W ⊆ HJ be a subspace of minimal dimension q among all .015-viable
subspaces for T . Let {Ai }D2

i=1 be AGSP operators guaranteed by Theorem 2 for the
Hamiltonian H and region M = J , and T̃ the associated subspace. The first condition
in the theorem together with Lemma 3 establishes that W is .04-viable for T̃ . Let s =
q/(2D2) andW ′ ⊆ W a random subspace of dimension s. By Lemma 5,W ′ is (1− δ′)-
viable for T with δ′ = s/(16q) = 1/(32D2) with positive probability provided

s = Ω
(
log q + r log

(q

s

))
(12)

for a large enough implied constant, as this will suffice to guarantee that η stated in the
lemma is strictly less than 1.
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Let S = ∪D2

i=1AiW ′. Then given our choice of s, S has cardinality at most q/2,
and by Lemma 6 is (32D2)2Δ-viable for T̃ . The condition D12Δ < 10−5 implies
(32D2)2Δ + 0.005 ≤ 0.1 ≤ 0.15, giving a contradiction with the minimality of q. The
contradiction holds as long as the condition (12) holds, which given the bound on D

fromTheorem 2will be the case as long as q = reΩ̃(γ −1 log3 d) for a large enough implied
constant in the exponent. �

Given the proposition, the proof of Theorem 4 follows by application of an AGSP
derived from Corollary 1.

Proof (of Theorem 4). Fix a cut H = HL ⊗ HR as in the theorem. Let VL and VR be
0.015-viable sets of minimal dimension for regions J = L and J = R respectively, and
let q be an upper bound on their dimension. Proposition 2 guarantees that we may take

q = reÕ
(
1
γ
log3 d

)

. By Lemma 4 the set W = VL ⊗ VR is .03-viable for T . The tensor
product structure ensures that every element of W has Schmidt rank no larger than q.
Apply Corollary 1 to H , with η0 = ε0 + γ /10, η1 = ε0 + 9γ /10, t = Θ(γ −1/4 log δ−1)

and � = Θ(t3/4). This gives a spectral AGSP K with

D = eÕ
(
γ −1/4 log3/4( 1

δ
) log d

)

and Δ ≤ δ/2,

for a Hamiltonian H̃ such that T̃ = H̃[ε̃0,ε̃0+ 1
10 γ ] and T are mutually (δ/2)-close. Apply-

ing Lemma 6 the set W ′ = KW is (δ/2)-viable for T̃ and every element within it has
Schmidt rank no larger than qD. Since T̃ and T are (δ/2)-close, W ′ is δ-viable for T .

This proves the first statement in the theorem. The second follows by setting δ = δ′/n
in the above and noticing that the error made at each cut will add up linearly. The proof
of the last statement is standard and follows from the bound on s(δ) as in [3]: we bound

S
(|ψ〉〈ψ |) ≤ ln

(
reÕ

(
1
γ
log3 d

))
+

∞∑

i=3

2−i log
(
s(2−(i+1))

)
,

which is dominated by the first term. �

4.5. Area law for low-density Hamiltonians.

Theorem 5 (Area law for low-density Hamiltonians). Let H be a 1D local Hamiltonian
acting on n qudits of local dimension d such that H satisfies Assumption (LD), μ <

η log n any positive constant and T = H[ε0,ε0+η−μ/ log n]. For any fixed cut and any δ =
poly−1(n), for every unit |ψ〉 ∈ T there is an approximation |ψ ′〉 such that |〈ψ |ψ ′〉| >

1 − δ and |ψ ′〉 has Schmidt rank no larger than

s(δ) = r eÕ
(
log n
μ

log3 d+(
log n
μ

)1/4 log3/4( 1
δ
) log d

)

at that cut, and |ψ ′〉 has an MPS representation with bond dimension bounded by

r eÕ
(
log n
μ

log3 d+(
log n
μ

)1/4 log3/4( n
δ
) log d

)

.

Moreover, every state |ψ〉 ∈ T has entanglement entropy

S(|ψ〉〈ψ |) ≤ ln r + Õ
( log n

μ
log3 d

)
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As for Theorem 4, the proof of Theorem 5 follows from a bootstrapping argument.
We establish the analogue of Proposition 2 below. Just as for Theorem 4, the theorem
then follows by application of a suitable AGSP, and we omit that part of the proof.

Proposition 3. Let H be a local Hamiltonian satisfying assumption (LD), for some η >

0. Let J ⊆ {1, . . . , n} and μ > 0. Then there exists a subspace W ⊆ HJ of dimension

q = reÕ
(
log n
μ

log3 d
)

that is .015-viable for the low-energy space Tμ = H[ε0,ε0+η−μ/ log n].

Proof. For fixed d and n, let C = C(d, n) be a constant such that the bound D ≤
eC

log n
μ

logc( log n
μ

) holds in Theorem 3 for all μ > 0, where c > 0 is a universal constant
implied by the Õ notation. For any μ > 0 let q(μ) be the smallest dimension of a
subspace Wμ ⊂ HJ that is .015-viable for Tμ. Note that q(μ) is a non-increasing

function of μ. For μ > 0, let r(μ) = reC
′ log n

μ
log(log n/μ), where C ′ = 3C . For any μ,

let i0 be the smallest power of two such that q(μ/2i0) ≤ r(μ/2i0). Note that i0 is finite
as q(μ) ≤ dn for all μ > 0. If i0 = 0 then the proposition is proven. Suppose i0 > 0,
and let μ0 = μ/2i0−1. LetW = Wμ0/2 be a subspace of dimension q = q(μ0/2) that is

0.15-viable for Tμ0/2. Let {Ai }D2

i=1 be AGSP operators guaranteed by Theorem 3 for the
Hamiltonian H , region M = J , and parameters η1 = η − μ0/(2 log n) and μ = μ0/2.
Let T̃ and T̃− be the resulting subspaces. The first condition in the theorem, together
with Lemma 3, establishes that W is .04-viable for T̃ .

Let s = q(μ0)/D2 and W ′ ⊆ W a random subspace of dimension s. By Lemma 5
and the definition of i0, W ′ is (1 − δ′)-viable for T̃ with

δ′ = s

16q
= q(μ0)

16q(μ0/2)D2 ≥ r(μ0)

16r(μ0/2)D2 (13)

with positive probability provided

s = Ω
(
log q + r log

(q

s

))
(14)

for a large enough implied constant, as this will suffice to guarantee that η stated in the
lemma is strictly less than 1.

Let S = ∪D2

i=1AiW ′. Then S has cardinality at most q(μ0), and by Lemma 6 is
Δ/(δ′)2-viable for T̃−, itself 0.005-close toWμ0 . The condition D12Δ < 10−5, together
with (13) implies

Δ

(δ′)2
< 162 · 10−5D−8

(r(μ0/2)

r(μ0)

)2 ≤ 10−2e
(2C ′−8C)

log n
μ0

logc
(
log n
μ0

)

.

Provided C ′ ≤ 4C this is at most 10−2, leading to a contradiction with the minimality
of i0. The contradiction holds as long as the condition (14) holds, which will be the case
provided C ′ > 2C . Choosing C ′ = 3C satisfies both conditions. �

5. Efficient AGSP Constructions

This section is devoted to the construction of efficiently computable, and efficiently
implementable [as polynomial-size matrix product operators (MPO)], analogues of the
existential AGSP constructions obtained in Sect. 4. The first step in obtaining efficient
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constructions consists in replacing the method of hard truncation considered in Sect. 4.2
with a method of “soft truncation”. This method, described in Sect. 5.1, is somewhat
less effective than hard truncation, but has the advantage that it can be made efficient;
this is essential for its use in the algorithms presented in Sect. 6. In Sect. 5.2 we show
that the Chebyshev polynomial AGSP introduced in Sect. 4.1 can also be made efficient.
Our efficient AGSP constructions for the (DG) and (LD) cases are provided in Sect. 5.3.
We conclude in Sect. 5.4 with a more efficient construction specialized to the (FF) case;
this last construction replaces the intricate AGSP constructions with a much simpler one
based on the detectability lemma [1]. (The reader new to AGSP constructions may wish
to start with the latter section.)

5.1. Soft truncation. We introduce a scheme of soft truncation that reduces the norm
of a local Hamiltonian H in a certain region J in a way that the truncated operator
can be well-approximated by an MPO with small bond dimension. In hard truncation
(Definition 6) the operator Π≤ε0+t H + (ε0 + t)Π>ε0+t ) is used. This can be written as
gt (H), where gt (x) is defined by gt (x) := x for x ≤ ε0 + t and gt (x) := t for x > ε0 + t .
The main idea of soft truncation is to replace this non-smooth function by the infinitely
differentiable function

ht ′,t (x) := t
(
ft (x) +

ft (x)2

2
+ · · · + ft (x)t

′

t ′
)
, where ft (x) := 1 − e−x/t , (15)

which results in an operator ht ′,t (H) that closely approximates the hard-truncatedHamil-
tonian. Moreover, ht ′,t (H) can be given an efficient representation as an MPO by lever-
aging the truncated cluster expansion [15,20] and its matrix product operator (MPO)
representation from [25, Section IV].

The following are basic properties of ht ′,t .

Lemma 9. For any integers t ′, t ≥ 1 and x ≥ 0,

∣
∣ht ′,t (x) − x

∣
∣ ≤ t

t ′
( x

t

)t ′
, and

∣
∣ht ′,t (x)

∣
∣ ≤ t ln(t ′).

Proof. Let gt (y) = −t ln(1−y), so that gt ( ft (x)) = x for any x ∈ [0,∞). The function
ht ′,t contains the first t ′ terms of the Taylor expansion of gt around 0, applied to ft (x),
and the first inequality follows from Taylor’s theorem and ft (x) ≤ x for all x . The
second inequality follows since ft (x) ≤ 1 for all x . �

Recall our convention that a 1D local Hamiltonian acting on n qudits numbered
1, . . . , n decomposes as H = ∑n−1

i=1 hi , where 0 ≤ hi ≤ 1 is the local term acting
on qudits {i, i + 1}. In addition to the truncation parameters t and t ′ the soft truncation
construction is parametrized by a region J ⊆ {1, . . . , n} which specifies the set of local
terms on which truncation is to be performed, and an energy ε′

J which is meant to be an
approximation to the ground state energy of the restriction HJ of H to J .

Definition 7 (Soft truncation). Let H = HJ + HJ be a 1D Hamiltonian, where HJ =
h j0 + · · · + h j1−1 acts on a contiguous set J = { j0, . . . , j1} of qudits. Let εJ be the
ground energy of HJ , and ε′

J an approximation to εJ satisfying εJ − 10 ≤ ε′
J ≤ εJ .

For given truncation parameters t ≥ t ′ ≥ 1, the soft truncation of HJ is given by

H̃J := ε′
J1 + ht ′,t (HJ − ε′

J1),
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and the soft-truncated Hamiltonian H associated to region J is

H̃t ′,t := H̃J + HJ .

The following lemma shows that for sufficiently large t and t ′, H̃t ′,t provides a good
approximation to the lower part of the spectrum of H .

Lemma 10. Let H = HJ +HJ be a local 1DHamiltonian. Given truncation parameters
t ≥ t ′ ≥ 2, the soft-truncated Hamiltonian H̃t ′,t satisfies H̃t ′,t ≤ H and for any
eigenvector |ψ〉 of H with energy λ (resp. |φ〉 of H̃ with energy μ ≤ t) it holds that

λ − O
( (λ − ε)t

′

t ′t t ′−1

)
≤ 〈ψ |H̃t ′,t |ψ〉 ≤ λ and μ ≤ 〈φ|H |φ〉 ≤ μ + O

( (2(μ − ε))t
′

t ′t t ′−1

)
,

(16)
where ε = εJ + ε′

J . In addition, if H is gapped with gap γ then provided t = Ω(γ −1),
H̃t ′,t is gapped with gap γ /2 ≤ γ̃ ≤ 2γ .

For η > 0 let Tη = H[ε0,ε0+η] (resp. T̃η = H̃[ε̃0,ε̃0+η]) be the span of all eigenvectors of
H (resp. H̃t ′,t ) with associated eigenvalue in the indicated range. Then for any η, δ > 0
there is

η′ = η + O
((η + 10

t

)t ′−1 1

t ′
√

δ

)

such that the subspace T̃η′ is δ-close to Tη and Tη′ is δ-close to T̃η.

Proof. From Definition 7,

H̃t ′,t − H = ht ′,t (HJ − ε′
J1) − (HJ − ε′

J1). (17)

Using the first bound from Lemma 9, we get that for any vector |ψ〉,
∣
∣〈ψ |H̃t |ψ〉 − 〈ψ |H |ψ〉∣∣ ≤ 1

t ′t t ′−1
〈ψ |(HJ − ε′

J1)t
′ |ψ〉. (18)

Furthermore,

HJ − ε′
J1 ≤ HJ − εJ1 + HJ − ε′

J1

= H − (εJ + ε′
J )1,

which combined with (18) and HJ − ε′
J1 ≥ 0 proves the first two inequalities in (16);

the other two are obtained in the sameway using in addition x ≤ 2ht ′,t (x) for 0 ≤ x ≤ t .
The relations between the spectral gaps of H and H̃t ′,t follow from these inequalities.

Starting from (17), squaring both sides and using (the square of) the first bound from
Lemma 9 we get the operator inequality

(H̃t ′,t − H)2 ≤ 1

(t ′)2t2t ′−2
(HJ − ε′

J1)2t
′
. (19)

Let H̄J = HJ − h j0−1 − h j1 , so that H̄J and HJ commute. Using H̄J + (2− εJ )1 ≥ 0,
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(HJ − ε′
J1)2t

′ ≤ (HJ − ε′
J1 + H̄J + (2 − εJ )1)2t

′

≤ ((H − ε)1 + 101)2t
′
. (20)

Let |ψ〉 be supported on eigenvectors of H with eigenvalues in the range [λ − h, λ + h]
with λ ≤ ε0 + η and h a small width parameter. Decompose |ψ〉 = ∑

i αi |φi 〉, where
for each i , |φi 〉 is an eigenvector of H̃t ′,t with associated eigenvalue λ̃i . Thus

( ∑

i

|αi |2|λ − λ̃i |2
)1/2 ≤

∥
∥
∥

∑

i

αi (λ − λ̃i )|φi 〉
∥
∥
∥ + h

= ∥
∥(H̃t ′,t − H)|ψ〉∥∥ + h

= 〈ψ |(H̃t ′,t − H)2|ψ〉1/2 + h

≤ 1

t ′t t ′−1
〈ψ |((H − ε)1 + 101)2t

′ |ψ〉1/2 + h

≤ 1

t ′t t ′−1
(η + 10)t

′
+ h,

where the inequality before last follows by combining (19) and (20). ApplyingMarkov’s
inequality it follows that for any δ > 0

∥
∥Π̃>λ+δ|ψ〉∥∥ ≤

1
t ′t t ′−1 (η + 10)t

′
+ h

δ
.

Any |ψ〉 in Tη can be written as a linear combination |ψ〉 = ∑
j β j |h j 〉 with each |h j 〉

supported on eigenvectors of H with eigenvalue in a small window of width 2h, and the
number of terms is at most � η−ε0

2h �. Thus
∥
∥Π̃>ε0+η′ |ψ〉∥∥ ≤

∑

j

|β j |
∥
∥Π̃>ε0+η′ |h j 〉

∥
∥

≤
√

η

2h

1
t ′t t ′−1 (η + 10)t

′
+ h

η′ − η
.

Chosing h = 1
t ′t t ′−1 (η + 10)t

′
, we see that the choice of η′ made in the statement of the

lemma suffices to ensure that this quantity is at most δ, as desired. �
We end this section by showing that the soft-truncated Hamiltonian H̃t ′,t can be

approximated by an operator with polynomial bond dimension which can be computed
efficiently. Our construction is based on the cluster expansion from [15,20] in the 1D
case, with some small adjustments. We first state the result.

Lemma 11. Let t and t ′ < (ln(2)/2)t be truncation parameters and H a n-qudit local
Hamiltonian. For any ξ > 0 there is anMPO representation H̃ ′ for the truncated Hamil-
tonian H̃ = H̃t,t ′ such that ‖H̃ − H̃ ′‖ ≤ ξ and H̃ ′ has bond dimension poly(t ′2t ′n/ξ)

across all bonds. Such an MPO can be constructed in time polynomial in its size.

Proof. The truncation ht ′,t (H) can be expressed as a linear combination of O(t ′2t ′)
terms of the form e−βH for values of β in {1/t, . . . , t ′/t}; moreover the coefficients of
the linear combination are at most O(t ′2t ′) each. Using Theorem 6 and the assumption
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t ′/t ≤ ln(2)/2 each e−βH can be approximated, in the operator norm, by an MPO of
the form Mr (H) with error less than ξ/(t ′2t ′)2 as long as r = Ω(ln((t ′)222t ′n2/ξ)).
Finally, Theorem 7 states that such an MPO with the claimed bond dimension can be
found efficiently. �

Let H = ∑n−1
i=1 hi be a 1D, 2-local Hamiltonian on n qudits of dimension d, with

‖hi‖ ≤ 1 (but the hi are not necessarily non-negative), and let β > 0 be an inverse
temperature. We write the cluster expansion e−βH = ∑

w f (w), where w runs over all

words on {1, . . . , n − 1} and f (w) := (−β)|w|
|w|! hw with hw := ∏

i∈w hi . For an integer
r > 0, let S<r be the set of all those w such that the support of w, the set of qudits on
which hw acts non-trivially, consists of connected components of size smaller than r . Let
Mr (H) := ∑

w∈S<r
f (w) be the “truncated cluster expansion” of e−βH . The following

theorem follows from the proof of Lemma 2 in [20]; we give the proof in Appendix 7.

Theorem 6. Let β be such that eβ − 1 < 1. Then the following approximation holds in
the operator norm:

‖e−βH − Mr (H)‖ ≤ en
2(eβ−1)r − 1.

The next theorem states that the operator Mr (H) can be written efficiently as an
MPO. This encoding also shows that the operator Mr (H) has a low Schmidt rank. The
proof, which is given in Appendix 7, follows very closely the ideas of [25, Section IV].

Theorem 7. The rth order cluster expansion Mr (H) of the operator e−βH can bewritten
as an MPO of bond dimension ≤ r2dr which can be computed in time ndO(r).

5.2. TheChebyshev polynomial. For algorithmic purposes it is important that theCheby-
shev AGSP can be constructed efficiently once one is givenMPO representations for the
truncated part of the Hamiltonian. The following proposition states that this is possible.

Proposition 4. Let H be a Hamiltonian having a decomposition of the form described
in (4), k an integer, and K = Pk(H) the associated degree-k Chebyshev AGSP as defined
in Definition 5. Assume that HM (but not necessarily HL or HR) is specified by an MPO
with bond dimensions at most B̃.

Then there exists D ≤ (dk)O(�+k/�) such that a family of D2 MPO {A1, . . . , AD2} of
bond dimension at most B̃k each such that there exists B1, . . . , BD2 with K = ∑

Ai ⊗Bi
can be computed in time nD2 B̃O(k). Here the Ai act on qudits {i1, i1 + 1, . . . , i2} and
the Bi on the remaining qudits. This computation does not require knowledge of η0, η1.

Furthermore, if HL and HR are also given as MPO with bond dimension at most B̃
then the Bi can be computed as well.

Proof. The proof follows from a close examination of the proof of [3, Lemma 4.2].5

Adapting to our setting (where there are two cuts to consider simultaneously) the
argument made in [3] shows that in order to obtain an MPO for K it suffices to
include in the set {A1, . . . , AD2}MPOrepresentations for operators Pu1u2,k j1 j2(Z)where
u1 ∈ {i1 − �, . . . , i1 + � − 1}, u2 ∈ {i2 − �, . . . , i2 + � − 1}, j1, j2 ∈ {0, . . . , k + 2� − 2}

5 To follow the ensuing argument it may be helpful to translate the notation used for the indices in [3,
Lemma 4.2] to the notation used here as follows: s → 2� − 2, � → k, k → j .
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and Z is an (4� − 4)-tuple of complex variables which takes on
(k− j1+2�−2

2�−2

)(k− j2+2�−2
2�−2

)

possible values. For our purposes, a random choice of such values, e.g. distributed
uniformly on the unit circle, will lead to a correct construction with probability 1
(i.e. only depending on the number of digits of accuracy). We argue below that for
each Pu1u2,k j1 j2(Z) one can efficiently construct an explicit set of MPO {Aα}, where
1 ≤ i ≤ (k+ j1+1

2 j1+1

)(k+ j2+1
2 j2+1

)
d2( j1+ j2)+4�, such that there exists Bi for which

∑
Ai ⊗ Bi is

an MPO for Pu1u2,k j1 j2(Z). This will lead to the claimed bounds as

i1+�−1∑

u1=i1−�

i2+�−1∑

u2=i2−�

�k/2��∑

j1, j2=0

d2( j1+ j2)+4� ·
(
k − j1 + 2� − 2

2� − 2

)(
k − j2 + 2� − 2

2� − 2

)

·
(
k + j1 + 1

2 j1 + 1

)(
k + j2 + 1

2 j2 + 1

)

can be crudely bounded by (dk)O(�+k/�).
Fix u1, u2 and recall that Pu1u2,k j1 j2(Z) is defined as the sum of those terms in the

expansion of (HL + · · · + Hi1 + · · · + Hi2 + · · · + HR)k which contain exactly j1 (resp.
j2) occurrences of Hu1 (resp. Hu2 ). There are

(r+ j1+1
2 j1+1

)(r+ j2+1
2 j2+1

)
such terms. By cutting to

the left of u1 and right of u2 we can efficiently construct at most d2( j1+ j2) MPO which,
properly combined, would give an MPO for the corresponding product. Finally we cut
these MPO further so as to make the separation be to the left of i1 and right of i2 (or
complete them appropriately, depending on whether u1 ≤ i1 or u1 > i1, and similarly
for u2 with respect to i2). This last step multiplies the number of MPO by at most d4�

(where we use |i1 − u1|, |i2 − u2| ≤ �), giving the claimed bound. �

5.3. Efficient AGSP constructions. We combine the soft truncation scheme with the
Chebyshev polynomial AGSP to show that matrix product operator representations for
operators {Ai } satisfying the conditions of Theorem 2 and Theorem 3 can be computed
efficiently (in polynomial and quasi-polynomial time respectively). The same proce-
dure, Generate, underlies both constructions, merely requiring a different choice of
parameters in the two cases. The procedure is summarized in Fig. 1 (it is implicit that
the procedure is passed as an argument which assumption H satisfies). We state its
properties for the (DG) case in Theorem 8, and for the (LD) case in Theorem 9. For the
case of a Hamiltonian satisfying assumption (DG) with a ground energy ε0 and a unique
ground state (assumption (FF) of frustration-freeness) the procedure can be made even
more efficient, and the result is stated in Theorem 11.

Theorem 8 (EfficientAGSP, (DG)).Let H be a localHamiltonian satisfyingAssumption
(DG), {1, . . . , n} = L ∪ M ∪ R, where L = {1, . . . , i1}, M = {i1 + 1, . . . , i2}, and
R = {i2 +1, . . . , n}, a partition of the n-qudit space, and ε′

M an estimate for the minimal
energy εM of the restriction of H toHM such that |εM − ε′

M | ≤ 10. Then the procedure
Generate(H, M, ε′

M ) described in Fig. 1 returns

– MPO representations for a collection of D2 operators {Ai }D2

i=1 acting onHM and of

bond dimension at most nÕ(γ −2) such that there exists a subspace T̃ for which the
conclusions of Theorem 2 are satisfied;

– An MPO for an operator H̃M such that ‖H̃M‖ = O(γ −1 log γ −1) and the minimal
energy ε̃M of H̃M restricted to T̃ satisfies |εM − ε̃M | < 1/2.
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GENERATE(H, M, ε′
M , (η1, μ)): H a Hamiltonian, M = {i1 + 1, . . . , i2} a subset of qudits, ε′

M an
energy estimate for HM , and (η1, μ) energy parameters used only in the (LD) case.
1. Soft truncation: Set � as in (34) in case (FF), (22) in case (DG), and (28) in case (LD). Set JM as in (23).

In case (FF), construct an MPO for the truncated Hamiltonian as in Definition 8. In case (DG) and (LD),
construct an MPO for the soft-truncated Hamiltonian H̃M via the cluster expansion (see Definition 7 and
Lemma 11).

2. Chebyshev polynomial: Compute MPO representations for operators {Ai} acting on M using the de-
composition of the Chebyshev polynomial provided in Proposition 4, using energy parameters specified
in (35) in case (FF), (25) in case (DG), and (29) in case (LD).

Return the MPO representations for H̃M and for the {Ai}.

Fig. 1. The Generate procedure

Moreover, Generate(H, M, ε′
M ) runs in time nÕ(γ −2).6

Proof. We construct an AGSP K from which the operators {Ai } claimed in the theorem
will be derived. The construction follows very closely the one employed in the proof of
Theorem 2, replacing the use of hard truncation by soft truncation.

The first step in Generate consists in truncating the Hamiltonian associated to each
of the three regions. For this, introduce truncation parameters

t = Θ(�), t ′ = 4, (21)

a width parameter

� = Θ(γ −1 log γ −1), (22)

and define a Hamiltonian H̃ = H̃t ′,t by applying the soft truncation transformation
described in Definition 7 thrice, to the regions

JL = {1, . . . , i1 −�−1}, JM = {i1 +�+1, . . . , i2 −�−1}, JR = {i2 +�+1, . . . , n}
(23)

respectively (provided each region is non-empty). The resulting truncated Hamiltonian
H̃ has norm O(� + t log t ′) = O(�). Note that the computation of the complete Hamil-
tonian H̃ requires estimates for the ground energies of the restriction of H to each of the
three regions that are being truncated. We will only need to efficiently compute an MPO
for H̃M , for which a rough estimate for the ground state energy of HM , as provided as
input to Generate, will be sufficient.

The second step is to apply the Chebyshev polynomial from Definition 5 to H̃ to
obtain the AGSP K . For this we make a choice of degree

k = �2 (24)

and set the energy parameters η0 and η1 to

η0 = ε0 + γ /10, η1 = ε0 + 9γ /10. (25)

6 Here and in all our estimates on running times we suppress dependence on the local dimension d, which
is treated as a constant.
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We first verify that K as defined is a spectral AGSP with the required properties, and
then we show how it can be computed efficiently. By item 2. from Theorem 1 the scaling
parameter Δ is given by

Δ := 4e
−4k

√
8γ

10(‖H̃‖−(ε0+γ /10)) = e
−Ω

(
k
√

γ
(�+t)

)

. (26)

Furthermore, applying Theorem 1 twice, once for the region centered at i1 and once for
the region centered at i2, the bond parameter D of K across each of the cuts (i1 : i1 + 1)
and (i2 : i2 + 1) is bounded by

D ≤ (dk)O(�+k/�) = eÕ
(
1
γ
log3 d

)

, (27)

as desired. Moreover,

D12Δ = eγ −1 Õ(log(γ −1))e−Ω(γ −1 log3/2(γ −1))

can be made smaller than 10−5 by choosing the implicit constants appropriately.
Nextwe apply Lemma10 to evaluate the closeness between the low-energy subspaces

of H and H̃ . Since H has a spectral gap the subspace Tγ /20 = H[ε0,ε0+γ /20] is the ground
space T of H . Setting δ = 0.05 the lemma implies that H̃[ε̃0,ε̃0+γ /10] is δ-close to T as
long as the constant implied in the definition (21) of the truncation parameter t is large
enough. Conversely, we can write T = Tγ /2 = H[ε0,ε0+9γ /10], in which case the lemma
implies that T is δ-close to H̃[ε̃0,ε̃0+γ /10]. Thus the two spaces are δ-close. The claim
on the ground state energies of HM and H̃M follows directly from Lemma 10 and our
choice of t .

Finallywe turn to efficiency, andverify that in timenO(k) = nÕ(γ −2) one can construct
a set of at most D2 MPO A1, . . . , AD2 acting onHM such that there exists B1, . . . , BD2

acting onHL⊗HR such that theAGSP K can be represented as K = ∑
Ai⊗Bi . For this

wefirst need to constructMPOrepresentations for the truncated terms in theHamiltonian.
This is provided by Lemma 11 (applied to HM − ε′

M1), which given our choice of
parameters t, t ′ guarantees that an MPO providing inverse polynomial approximation
(in the operator norm) to H̃M can be efficiently computed that has polynomial bond
dimension across all cuts. Proposition 4 shows that an efficient construction of MPO for
the Ai follows. �
Theorem 9 (EfficientAGSP, (LD)).Let H be a localHamiltonian satisfying Assumption
(LD), parameters η1 ≤ η and μ > 0, {1, . . . , n} = L ∪ M ∪ R, where L = {1, . . . , i1},
M = {i1 + 1, . . . , i2}, and R = {i2 + 1, . . . , n}, a partition of the n-qudit space, and
ε′
M an estimate for the minimal energy εM of the restriction of H to HM such that

|εM − ε′
M | ≤ 10. Then the procedure Generate(H, M, ε′

M , (η1, μ)) described in
Fig. 1 returns

– MPO representations for a collection of D2 operators {Ai }D2

i=1 acting on HM and

of bond dimension at most eÕ(log3 n) each such that there exists subspaces T̃ , T̃− for
which the conclusions of Theorem 3 are satisfied;

– An MPO for an operator H̃M such that ‖H̃M‖ = Õ(log(n)/μ) and the minimal
energy ε̃M of H̃M restricted to T̃− satisfies |εM − ε̃M | < 1/2.

Moreover, Generate(H, M, ε′
M , (η1, μ)) runs in time eÕ(log3 n).
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Proof. The proof is similar to Theorem 8, and the construction of H̃ and K are the same
except for a different choice of parameters. Here we choose

� = Θ
( log n

μ
log

log n

μ

)
, k = �2 and t = Θ(�), t ′ = 4. (28)

The truncated Hamiltonian H̃ = H̃t,t ′ is obtained as in the proof of Theorem 8, by
applying the soft truncation transformation described in Definition 7 thrice. The AGSP
K is obtained by applying the Chebyshev polynomial from Definition 5 to H̃ , with the
energy parameters η′

0 and η′
1 defined as

η′
0 = ε0 + η1 − μ

2 log n
, η′

1 = ε0 + η1 (29)

respectively. As a result the parameters D and Δ satisfy

D12Δ = e
log n
μ

Õ
(
log log n

μ

)

e−Ω
(
log n
μ

log1.5( log n
μ

)
)

= o(1),

which can bemade less than 10−5 by a proper choice of implied constants. The conditions
on closeness of T , T− and T̃ , T̃− follow from an application of Lemma 10, observing
that our choice of truncation parameters t, t ′ is sufficient to conclude closeness of the
appropriate subspaces. The claim on the ground state energies of HM and H̃M follows
directly from Lemma 10 as well.

Finally, applying Proposition 4 and Lemma 11 we see that an MPO for the part of K
acting on region M can be computed in time nO(k) = eÕ(log2 n). �

5.4. The frustration-free case. In this section we give a simpler construction of AGSP
specialized to the case of a local Hamiltonian H = ∑

i hi that is frustration-free with a
spectral gap γ > 0 and a unique ground state |Γ 〉. Replacing each hi by the projection
on its range preserves the ground state and, given our usual normalization assumption
0 ≤ hi ≤ 1, can only increase the spectral gap; thus we may without loss of generality
assume that each hi is a projection.

We define a truncated version of H based on the detectability lemma from [1] as
follows.

Definition 8 (TruncatedHamiltonian in the frustration-free case). Suppose given a local
Hamiltonian H such that H = HJ + HJ where HJ = h j0 + h j0+1 + · · ·+ h j1−1 is a local
Hamiltonian acting on a contiguous set of qudits J = { j0, j0 + 1, . . . , j1}. Let Je (resp.
Jo) denote the subset of indices i ∈ J that are even (resp. odd). Define HJ,e := ∑

i∈Je hi
and HJ,o := ∑

j∈Jo hi . Then the truncation of HJ is given by H̃J := H̃J,e + H̃J,o, where

H̃J,e := 1 − ⊗i∈Je (1 − hi ) , H̃J,o := 1 − ⊗i∈Jo(1 − hi ). (30)

The truncated Hamiltonian H̃ associated to region J is given by

H̃ := H̃J + HJ . (31)
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Clearly, H̃J,e and H̃J,o are projectors and hence their norm is 1. In addition, they are
the sum of the identity operator and a product of non-overlapping local terms, and as
such, their Schmidt rank is at most d2 + 1 across any cut. We show that H̃ has the same
ground state as H , as well as a large spectral gap. This is done through the detectability
lemma and its converse stated below.

Definition 9 (The detectability lemma operator in 1D). Let H = h1 + · · · + hn−1 be a
1D nearest-neighbor Hamiltonian such that each hi is a projector. Then theDL operator
of H is defined by

DL(H) := ⊗i (1 − h2i ) ⊗i (1 − h2i+1).

Note that the operator DL(H) is in general not Hermitian. The usefulness of the
definition comes primarily from the detectability lemma:

Lemma 12 (The detectability lemma). Let h1, . . . , hm be projectors such that each hi
commutes with all but at most g other h j , and let H := ∑

i hi . For any state |ψ〉 let
|φ〉 := ∏

i (1 − hi )|ψ〉, where the product is taken in any order. Then

‖|φ〉‖2 ≤ 1

εφ/g2 + 1
, where εφ := 1

‖|φ〉‖2 〈φ|H |φ〉. (32)

The version of the detectability lemma stated above is stronger and more general
than the one appearing in [1]. It also has a much simpler proof, which is given in [2].
In addition to the detectability lemma, we will use a converse statement which gives a
lower bound on the norm of DL(H)|ψ〉. The converse, and its proof, appear in [2].

Lemma 13 (Converse of detectability lemma). Let H = ∑n−1
i=1 hi be a 1D nearest-

neighbor Hamiltonian such that each hi is a projector. Then for any eigenvector |ψ〉 of
H,

‖DL(H)|ψ〉‖2 ≥ 1 − 4ε′
ψ , where ε′

ψ := 〈ψ |H |ψ〉. (33)

With these two lemmas at hand we show the following.

Theorem 10. The truncated Hamiltonian H̃ from Definition 8 satisfies the following:

1. H̃ is frustration free and has the same ground state |Γ 〉 as H.
2. The Schmidt rank of H̃ at every cut is at most d2 + 2.
3. H̃ has a spectral gap γ̃ = Ω (γ ).

Proof. Property 1. follows from the definition. For property 2. note first that the Schmidt
rank of every operator on two d-dimensional qudits is at most d2. This implies that the
Schmidt rank of H̃ at every cut in J is at most d2 + 2: we get a d2 contribution from the
local term that is defined on the cut and the extra 2 comes from terms to the right/left
of the cut. Consider now a cut between i, i + 1 for an even i that is in J . Since i is even
H̃J,e will contribute at most d2, and H̃J,o at most 1. The terms in HJ contribute at most
1 as well, giving the claimed bound of d2 + 2.

To prove 3. let |ψ〉 be orthogonal to |Γ 〉. By the detectability lemma applied to
H , ‖DL(H)|ψ〉‖ ≤ 1

γ /4+1 . By the converse of the detectability lemma applied to H̃ ,

‖DL(H̃)|ψ〉‖ ≥ 1 − 4γ̃ . Since by construction DL(H) = DL(H̃), this implies

γ̃ ≥ 1

4

(
1 − 1

γ /4 + 1

)
,

from which the claim follows. �
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The following is an analogue of Theorem 8 which provides a more efficient construc-
tion for the frustration-free case.

Theorem 11 (Efficient AGSP, (FF)). Let H be a local Hamiltonian satisfying Assump-
tion (FF) and {1, . . . , n} = L ∪ M ∪ R, where L = {1, . . . , i1}, M = {i1 + 1, . . . , i2},
and R = {i2 + 1, . . . , n} a partition of the n-qudit space. Then the procedure
Generate(H, M) returnsMPOrepresentations for a collection of D2 operators {Ai }D2

i=1
acting on HM such that the following hold:

– D = 2Õ(γ −1 log3 d);
– There is Δ > 0 such that D12Δ < 10−5 and for any S ⊆ HM that is δ-viable for

{|Γ 〉} it holds that S′ = Span{∪i Ai S} is δ′-viable for T with δ′ = Δ
(1−δ)2

;

– Each Ai has bond dimension at most 2Õ(γ −2 log5 d).

Moreover, for constant d and γ > 0 the procedure Generate(H, M) runs in time
n(1+o(1)).

Proof. We construct a suitable AGSP K from which the operators Ai will be derived.
The first step consists in truncating the Hamiltonian associated to each of the three
regions. For this, introduce a width parameter

� = Θ̃(γ −1 log2 d), (34)

and define a Hamiltonian H̃ by applying the truncation scheme described in Definition 8
thrice, to the regions JL = {1, . . . , i1 − � − 1}, JM = {i1 + � + 1, . . . , i2 − � − 1} and
JR = {i2 + � + 1, . . . , n} respectively (provided each region is non-empty). Based on
Theorem 10 the resulting truncated Hamiltonian H̃ has norm O(1), the same ground
state as H , and a spectral gap γ̃ = Θ(γ ).

K is obtained by applying Definition 5 to H̃ with

η0 = 0, η1 = γ̃ (35)

and k = Θ(�2). The bound on D follows from Theorem 1, using which one can also
verify that the desired trade-off D12Δ < 10−5 will be achieved provided the right choice
of constants is made in the choice of �.

By Theorem 10 H̃ can be represented as an MPO with bond dimension O(d2), from
which it follows that we can compute a decomposition K = ∑

Li ⊗ Ai ⊗ Ri where

each Ai has bond dimension O(dk) = eΘ̃(γ −2 log5 d).
The claim on the running time follows from the estimates provided in Proposition 4.

�

6. Algorithms

Equipped with the efficient construction of AGSP described in Sect. 5, we are ready
to turn Merge into an efficient algorithm. The algorithm, Low- Space, follows the
outline given in Sect. 3.2, but requires additional ingredients. The first is the use of the
procedure Generate described in Fig. 1, which creates MPO representations for the
spectral AGSP required to perform error reduction. The second is an additional step of
energy estimation, which computes an energy estimate required by Generate.
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LOW-SPACE(H, δ, (η, μ)): H a local Hamiltonian acting on ⊗n
i=1C

d, n a power of two; δ an accuracy
parameter; (η, μ) energy parameters for the (LD) case.
1. Initialization: For j ∈ {1, 2, . . . n} let V 0

j contain a family of MPS representations for an (arbitrary)
basis of Cd, and ε′

0,j = 0.
2. Iteration: For i from 1 to logn do:

For all j ∈ {1, . . . , n/2i} do:
– Generate: Let M = {(j − 1)2i, (j − 1)2i + 1, . . . , j2i − 1} and ε′

M = ε′
i−1,2j−1 + ε′

i−1,2j .
Set ({Ai}, H̃M )= GENERATE(H, M, ε′

M ) in the (FF) and (DG) cases, and ({Ai}, H̃M )= GEN-
ERATE(H, M, ε′

M , η − (i − 1)μ/ logn, μ) in the (LD) case.
– Merge: Set V i

j = MERGE′(V i−1
2j−1, V i−1

2j , {Ai}, s, (k, ξ)) ⊆ H[(j−1)2i+1,j2i], where (s, k) are
specified in (36) and ξ should satisfy (37) for the case (DG) and (FF); in case (LD) the procedure
MERGE can be used instead.

– New Energy Estimation: Form the subspace V = {Ai}t · (V i−1
2j−1 ⊗ V i−1

2j ), where t =

4�log γ−1�. Compute the smallest eigenvalue ε′
i,j of the restriction of H̃M to V . (This step is

not needed in case (FF).)
3. Final step: Set K = ( − H/‖H‖) and τ = 10‖H‖γ−1 log(1/δ). Choose an orthonormal basis

{|y(0)
i 〉} for V log n

1 . Repeat for t = 1, . . . , τ :
– Set {|y(t)

i 〉} = Trimξ(Span{K|y(t−1)
i 〉}),

where ξ is as previously in cases (DG) and (FF), and as in (38) in case (LD).

Return {|zi〉}, the smallest r eigenvectors of H restricted to W = Span{|y(τ)
i 〉}.

Fig. 2. The Low- Space algorithm

The complete algorithm is described in Fig. 2. It takes as input a local Hamiltonian
satisfying assumptions (FF), (DG) or (LD) (we assume the algorithm is told which
assumption holds) and a precision parameter δ, and returns MPS representations for a
viable set that is δ-close to the low-energy space T of H .7

We note that the Low- Space algorithm described in Fig. 2 already incorporates
the modified procedure Merge’ sketched in Sect. 3.2. As described in that section,
Merge’ differs from Merge by adding a step of bond trimming. The reason for the
modification is that due to the logarithmic number of iterations, successive applications
of Merge may, even if the {Ai } can be applied efficiently, lead to MPS whose bond
dimension eventually becomes super-polynomial. The procedure Merge’ is described
and analyzed in detail in Sect. 6.1. In Sects. 6.2, 6.3 and 6.4 we build on the analysis
of Merge’ and the efficient AGSP constructions from the previous section to show that
Low- Space leads to an efficient algorithm under assumptions (DG), (FF) and (LD)
respectively.

6.1. A modified Merge procedure. The procedure Merge’ is described in Fig. 3. It
takes additional trimming parameters k and ξ as input (k and ξ will usually be of order
log(n) and poly−1(n) respectively).

Correctness of Merge’ (for an appropriate choice of ξ ) relies on the area laws proven
in Sect. 4 and on the analysis of the trimming procedure given in Sect. 2.2.4. We give the
analysis for the case of Hamiltonians satisfying assumption (DG) in the next section, for
frustration-free Hamiltonians in Sect. 6.3, and for Hamiltonians satisfying assumption
(LD) in Sect. 6.3.

7 The algorithm should also be provided a lower estimate for the gap γ . If not, it can iterate for different
values and return the lowest-energy states found.
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MERGE’ (V1, V2, {Ai}, s, (k, ξ)): Subsets V1 ⊆ HA, V2 ⊆ HB of vectors (represented as MPS), opera-
tors Ai acting on H1 ⊗ H2 (represented as MPO), s a dimension bound, k ∈ and ξ > 0 parameters for
the trimming subroutine.
1. Tensoring: Set W to be a set of MPS representations for an orthonormal basis for the space Span{V1 ⊗

V2}.
2. Random Sampling: Let W ′ ⊆ W be a random s-dimensional subspace of W obtained by applying a

random orthogonal transformation to the vectors in W and returning the first s vectors obtained.
3. Error Reduction: Set V = W ′. Repeat k times:

– Set V = Trimξ(Span{∪iAiW
′}), where the trimming procedure Trim is described in Defini-

tion 4.
Return MPS representations for the vectors in V .

Fig. 3. The Merge’ procedure

6.2. Degenerate Hamiltonians. The following theorem proves the correctness of algo-
rithm Low- Space for the case where the input Hamiltonian satisfies assumption (DG).

Theorem 12. Let H be a local Hamiltonian satisfying Assumption (DG), T its ground
space, r = dim(T ) and δ ≥ poly−1(n). Then with probability at least 1 − 1

n the set
of MPS returned by Low- Space(H, δ) is δ-viable for T .8 The running time of the

algorithm is nÕ(γ −2).

Proof. The proof is based on the same ingredients as the proof of the area law given
in Theorem 4. There are two main differences: we must show that the addition of the
trimming step in Merge’ does not affect the quality of the viable set returned, and we
must verify that the energy estimation step is sufficiently accurate.

We show by induction on i = 0, . . . , log n that for all j ∈ {1, . . . , n/2i }, (i) the set
V i−1
j is .015-viable for T and satisfies |V i−1

j | ≤ Ds2, for D and s to be specified below,
and (ii) ε′

i−1, j is within an additive ±3 of its true value (the ground state energy of the
restriction of H to the corresponding spaces).

Both conditions are satisfied for i = 0: for each j ∈ {1, . . . , n}, V 0
j is 0-viable

for T with |V 0
j | = d, and the energy estimate is accurate since the restriction of the

Hamiltonian to a single qudit is identically 0.
Suppose the induction hypothesis verified for i − 1, fix j ∈ {1, . . . , n/2i }, and let

M be the region defined in the algorithm. Correctness of the energy estimates ε′
i−1,2 j−1

and ε′
i−1,2 j at step (i − 1) implies that ε′

M is within ±7 of the correct value εM . By

Theorem 8, Generate returns a set of D2 operators {Ai } with the properties stated in
Theorem 2.

At this stage we are exactly in the same setting as for the proof of Proposition 2,
except for the additional trimming step in Merge’. Following that proof we conclude
that, prior to the trimming step, the merged set V i

j is .01-viable for T with probability

1 − e−Ω(s) ≥ 1 − 1
n2

provided s = Ω(r log(q/s) + log n). We choose

s ≥ 1600r(log r + 1) and k = 1

2
�logD(s)�. (36)

8 The probability of success can be improved to 1 − poly−1(n) by scaling the parameter s used in the
algorithm by an appropriate constant.
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This choice of k ensures s2 ≤ D2ks ≤ Ds2, so that the bound on the dimension of V i
j

required to establish the induction hypothesis holds.
It remains to verify the quality of V i

j as a viable set. Note first that Theorem 4 allows
us to bound the bond dimension b of any vector in T by a polynomial, at the expense
of replacing T by a set that is 10−4-close to T . Then the analysis given in Lemma 7
shows that the effect of the trimming can be incorporated by replacing the error reduction
parameter Δ associated with the {Ai } by (Δ +

√
nrbξ). Choosing ξ such that

√
nrbξ < 10−4δD−12, (37)

the remaining calculation applies and yields that V i
j is .015-viable for T .

Once this has been established, an application of the third item from Theorem 2
shows that given the choice of t made in the algorithm the subspace V obtained after
the energy estimation step is O(γ 2)-viable for T̃ . Using that ‖H̃M‖ = O(γ −1 log γ −1)

it follows that ε′
i, j is within an arbitrarily small constant of the minimal energy of H̃M

restricted to T̃ . Using the guarantee from Theorem 8, ε′
i, j is within

3
2 of the minimal

energy εM of the restriction of H toHM . This completes the inductive step.
We have shown that the iterative step succeeds with probability at least 1 − 1/n2;

since there are a total of n such merging steps, applying a union bound the set V log n
1 is

.015-viable with probability at least 1 − 1
n .

To conclude it remains to analyze the final error improvement step. Let |ψ〉 be
an eigenvector of H with eigenvalue ε0, and |v〉 ∈ V log n

1 such that |v〉 = α|ψ〉 +√
1 − |α|2|v⊥〉, where α ≥ 0.9 and |v⊥〉 is supported on eigenvectors of H with eigen-

value at least ε + γ . Following the same analysis as given in the proof of Lemma 6 it
follows that after renormalization the overlap of K |v〉/‖K |v〉‖ with |v〉 has improved
from α to

α2

α2 + (1 − α2)(1 − γ /‖H‖) = α2

1 − γ (1 − α2)/‖H‖ ≥ α2
(
1 +

γ

2‖H‖
)
.

Thus the set K {|y(1)
i 〉} is 0.9(1 + γ /(2‖H‖))-viable for T . Assuming ξ is chosen

small enough (satisfying (37) suffices), by Lemma 7 the set {|y(2)
i 〉} will remain

0.9(1 + γ /(3‖H‖))-viable for T . Repeating this procedure τ times yields a set W that
is δ-viable for T . Finally, each of the r vectors |zi 〉 returned by the algorithm must have
energy at most ε0 + δγ , which using the spectral gap condition implies that Span{|zi 〉}
and T are mutually δ-close.

The algorithm requires only a polynomial number of operations on MPS represen-
tations of vectors. Due to trimming, all these vectors have polynomial bond dimension
and thus each operation can be implemented in polynomial time. The complexity is
dominated by the complexity of the procedure Generate and the application of the
operators Ai , which is nÕ(γ −2). �

6.3. Frustration-free Hamiltonians with a unique ground state. The most computation-
intensive step of the Low- Space algorithm is the construction, via Generate, and
subsequent application in Merge’, of the set of operators {Ai }. In the special case
where the Hamiltonian H satisfies Assumption (FF), i.e. H is frustration-free and has a
spectral gap, the operators {Ai } can be constructed very efficiently, yielding improved
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bounds on the running time. The overall algorithm remains as described in Fig. 2, with
Generate instantiated with the efficient procedure described in Theorem 11.

Theorem 13. Let H be a local Hamiltonian satisfying Assumption (FF), |Γ 〉 the unique
ground state of H, and δ = n−ω(1). With probability at least 1− 1

n the lowest-energy vec-
tor |z〉 returned by Low- Space(H, δ) satisfies |〈z|Γ 〉| ≥ 1−δ. Moreover the algorithm
runs in time O(n1+o(1)M(n)), where M(n) = O(n2.38) denotes matrix multiplication
time.

Proof. The proof follows very closely the proof of Theorem 12, and we only indicate
the main differences. To ensure the algorithm is efficient, it is important to choose the
trimming parameter ξ to be as large as possible. It follows from the area law for 1D
gapped systems [3] (see also Theorem 4 for r = 1) that the ground state |Γ 〉 of H can
be approximated up to accuracy poly−1(n) by a matrix product state with sub-linear
bond dimension. Thus by Lemma 7, using that r, s are both constant, and treating d, γ

as constants, a choice of ξ = n−(1/2+ω(1)) satisfying (37) will suffice to ensure the
error remains negligible, while also maintaining the property that all MPS manipulated
have quasi-linear bond dimension. The essential operations on such vectors required
in the algorithm, such as multiplication by an MPO Ai of constant bond dimension, or
writing in canonical form, can all be computed in time Õ(nM(B))whereM(B) is matrix
multiplication time for B × B matrices and B is an upper bound on the bond dimension
of the MPS being manipulated; M(B) corresponds to the cost of performing individual
singular value decompositions on the tensors that form each of the MPS. The claim on
the running time follows since the number of iterations of the algorithm is logarithmic.

�

6.4. Gapless Hamiltonians. We extend the analysis of the Low- Space algorithm to
the case of gapless Hamiltonians satisfying the (LD) assumption. The main obstacle, of
course, consists in dealing with a gapless system. What makes it possible to tackle this
case are the strong properties of a viable set. Suppose that S is a viable set for T , the set
of states of energy at most η. Then S is also a viable set for T ′, the set of states of energy
at most η − μ for an arbitrary choice of μ. Now, if we apply an AGSP which amplifies
the norm of states with energy less than η − μ, and decreases the norm of states with
energy greater than η, this is guaranteed to improve the quality of the viable set. This is
because by Lemma 1, for each state in T ′ the viable set S contains an approximation to
that state that is guaranteed to have no projection onto the orthogonal complement of T ′
in T . In this sense, regarding S as a viable set for T ′ creates a virtual spectral gap μ > 0.

Due to the absence of a constant spectral gap, and our introduction of an “artificial”
gap of order 1/ log n, the procedure now runs in quasipolynomial time eÕ(log3 n). The
result is stated in the following theorem.

Theorem 14. Let H be a local Hamiltonian satisfying Assumption (LD), η > 0 the
associated energy parameter, μ = Ω(1/ log n) and δ ≥ poly−1(n). With probability at
least 1 − 1

n the set {|zi 〉} returned by Low- Space(H, δ, (η, μ)) is an orthonormal set
of r states each having energy at most ε0 + η − μ + δ with respect to H. The algorithm
runs in time 2poly log(n).

Proof. The proof follows closely that of Theorem 12 with the following simple modi-
fications: Theorem 8 is replaced by Theorem 9, there is no need to introduce Merge’
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(since the final running time we are obtaining is already npoly log n anyways), and finally
Theorem 4 is replaced by Theorem 5; as a consequence any choice of ξ for the final step
that is of order

ξ = e− log1+ω(1) n (38)

will suffice to guarantee that trimming induces an error that is negligible compared to
δ = poly−1(n). �

We note that we cannot make the stronger conclusion that the r vectors |zi 〉 returned
by the algorithm are low-energy eigenstates; while it does hold that each must have
energy at most ε0 + η − μ + δ (since the closest vectors to H[ε0,ε0+η−μ] in W will have
this property), in the absence of a spectral gap for H the |zi 〉 may still be constituted of
a mixture of low-energy eigenstates with energy slightly higher than ε0 + η − μ + δ.

7. Discussion

We have introduced a framework for designing algorithms (and proving area laws) by
combining procedures for efficiently manipulating viable sets. The scope and efficiency
of the resulting algorithms depend upon the efficiency of these procedures. The central
limiting component is the efficiency of the underlying AGSP constructions: any sub-
stantial improvement of the parameters of our constructions would almost automatically
lead to improved area laws, faster algorithms, possibly for scenarios that we are currently
unable to handle. This naturally leads to a program of determining the ultimate limits
for these parameters and efficiency bounds, and in particular to the following questions:

1. What is the best D−Δ trade-off achievable for an AGSP, depending on assumptions
placed on the local Hamiltonian from which it originates? Currently our trade-offs
take the form 2log

3/2−μ DΔ < 1 for arbitrarily small constant μ. Is a better tradeoff
achievable, with a larger exponent than 3/2? Note that currently we only make
use of trade-offs of the form DcΔ < 1 for constant c, which is already implied
by the above with exponent 1 instead of 3/2. Improving the exponent could help
make progress towards an area law for 2D systems. For a given trade-off, a related
question asks for the smallest value of D for which DΔ < 1: this value is important
for the efficiency of the algorithm, and also directly enters the parameters obtained
for the area law by the bootstrapping argument. Currently, our constructions achieve
D � exp(log3 d/γ ).

2. The soft truncation procedure used for the AGSP construction for our algorithms
achieves a poly(n) bond dimension at all cuts. Could that dimension be lowered,
perhaps to polylogarithmic at all cuts?

3. Is it possible to construct an AGSP with a favorable D − Δ trade-off, not only at
one, two, or a constant number of pre-specified cuts, but simultaneously at every (or
a constant fraction of) cut?

4. Our trimming procedure for viable sets is not completely satisfactory, and its depen-
dence on the number of cuts as well as on the viable space dimension could poten-
tially be improved.Could themore simple trimmingprocedure of [22] also be applied
in this setting?

5. For the case of anMPS approximation to a unique ground state, the parallel trimming
procedure used in [22] yields a bound on the trimmed bond dimension that depends
inverse-linearly on the desired approximation error, multiplied by the number of
bonds trimmed. It is not impossible that the same procedure would be more effective
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than proven, with a cost that does not scale with the number of bonds. Such a
procedure could yield a nearly-linear time algorithm for the frustration-free case.

6. What implications can be drawn from our results for the challenging scenario of
ground states of local Hamiltonians in higher dimension—e.g. on 2D lattices? Dif-
ficulties such as the efficiency of contracting 2D PEPS networks present significant
obstacles to any algorithmic procedure; nevertheless, it could be that our bootstrap-
ping arguments could be ported to yield mild area laws in higher dimensions.

7. The tensor network picture of our algorithmmay have an interesting interpretation in
terms of the bulk-boundary correspondence in AdS/CFT (see e.g. [23,26]). Specifi-
cally, the physical qubits would constitute the “boundary”, and are acted on directly
by the AGSP, while the bulk degrees of freedom are the ones that are subject to the
random sampling.
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Appendix A: Constructing an MPO for the cluster expansion

In this appendix we provide the proof of Theorem 6 and Theorem 7 from Sect. 5.1.

Proof (Proof of Theorem 6). For an integer m ≥ 1 we let ρm be the summation of f (w)

over all wordsw such that there existsm disjoint intervals, each of length at least r , such
that the support of w contains each interval but does not contain the two qudits that lie
immediately to the left and right of the interval (we call these two qudits the “boundary”
of the interval). Using the inclusion-exclusion principle one can verify that

e−βH − Mr (H) = −
∞∑

m=1

(−1)mρm . (39)

We bound the operator norm of each ρm individually. Write ρm = ∑
I={I1,...,Im } ρI ,

where the summation is over all m-tuples of disjoint intervals I1, . . . , Im of length at
least r , and each ρI contains all those hw for which the support of w contains each
of the intervals Ii but not its boundary and is arbitrary everywhere else. Very roughly,
the summation is over at most n2m/(m!) terms. Using that the boundaries are excluded,
it is not hard to see that ρI = e−βHI

∏m
j=1 η(I j ), where HI contains all terms in the

Hamiltonian that do not act on the qudits in the boundary of I j and η(I j ) is the sum of
all f (w) such that the support of w is exactly I j . Using ‖e−βHI ‖ ≤ 1 we can bound

‖ρI ‖ ≤
∏

j

‖η(I j )‖

http://creativecommons.org/licenses/by/4.0/
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≤
∏

j

( ∑

w: supp(w)=I j

(−β)|w|

|w|!
)

= (
eβ − 1

)∑
j |I j |.

Combining with (39),

‖e−βH − Mr (H)‖ ≤
∞∑

m=1

‖ρm‖

≤
∞∑

m=1

∑

I={I1,...,Im }
‖ρI ‖

≤
∞∑

m=1

n2m

m!
(
eβ − 1

)mr

= en
2(eβ−1)r − 1 ,

where for the third line we used that β is such that eβ − 1 < 1. �
Proof (Proof of Theorem 7). The r th expansion of e−βH is given by

Mr (H) :=
∑

w∈Sr

(−β)|w|

|w|! hw ,

where w is a word on the alphabet of local Hamiltonian terms {1, . . . , n − 1}, hw :=∏
i∈w hi , and Sr is the set of words in which all connected components have a support

of size at most r − 1. Let I = (I1, I2, . . . , Im) be a collection of disjoint segments on
the line, and max(I ) denote the length of the largest segment in I . We write w ∈ I to
mean that the connected components of w matches the segments specified by I . Using
this notation, Mr (H) can be rewritten as

Mr (H) =
∑

max(I )<r

∑

w∈I

(−β)|w|

|w|! hw.

A rather straightforward combinatorial argument shows that for a given I =
(I1, . . . , Im),

∑

w∈I

(−β)|w|

|w|! hw =
m∏

j=1

∑

w∈I j

(−β)|w|

|w|! hw ,

where the notation w ∈ I j means that the support of the word w has a single connected
component whose support is I j . Therefore, if we define for each segment I

ρI :=
∑

w∈I

(−β)|w|

|w|! hw , (40)

then

Mr (H) =
∑

max(I )<r

ρI1 ⊗ ρI2 ⊗ · · · ⊗ ρIm . (41)

We use (41) as the basis for an efficient MPO representation of Mr (H).
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Fig. 4. An example of the (�, k) indices that give rise to the configuration of segments I1 = (1, 2, 3); I2 =
(5, 6); I3 = (7, 8)

1st step: creating a table of ρI . The first step is a pre-processing step, which can be
run performed before the start of the algorithm. Its goal is to create a table of MPO
representations of all ρI that appear in (41). This can be done in ndO(r) time. Indeed,
note first that the total number of intervals I to consider is at most nr . The associated
MPO can be computed iteratively, starting with I = ∅ for which ρ∅ = 1. Assuming
all ρI with |I | < s have been determined, compute an MPO for ρI , for any I such that
|I | = s, as follows. Clearly,

ρI = e−βHI −
∑

I ′
ρI ′

1
⊗ ρI ′

2
· · · ⊗ ρI ′

m
,

where the summation runs over all disjoint subsets I ′ = (I ′
1, I

′
2, . . . I

′
m) included in I

andwithm ≥ 2. AnMPO for the first term can be obtained in time dO(s) by direct matrix
exponentiation. The second term is expressed as the sum of most 2s terms, for each of
which an MPO was computed in a previous iteration. Altogether ρI can therefore be
computed in time dO(s) and stored in memory as anMPO of bond dimension at most dr .

2nd step: creating the MPO of Mr (H). We follow the expansion (41), using a signaling
mechanism through which every site tells the site to its right to which ρI it belongs.
This ensures that every non-vanishing contraction of the virtual indices corresponds to
exactly one product ρI1 ⊗ ρI2 ⊗ · · · from (41).

Virtual bonds are indexed by triples (�, k, α). The virtual bond across sites a, a+1
describes the segment I to which a belongs: � ∈ {0, 1, . . . , r − 1} denotes the width of
I , k ∈ {1, . . . , r − 1} denotes the position of the site a within I , and α corresponds to
the index of the virtual bond in the MPO expansion of ρI . For example, suppose that site
a is in third position in the support of ρI , where |I | = 8. Then it transmits to site a + 1
the indices � = 8, k = 3. Site a + 1 will then transmit to a + 2 the indices � = 8, k = 4
and so on. When the last site in ρI is reached, in our example site a + 5, it transmits to
a + 6 the indices (k = 8, � = 8). Then a + 6 could either be an empty site, transmitting
� = k = 0 to the right, or start a new segment I with any � > 0. See Fig. 4 for an
illustration of this signaling mechanism.

To write a formal definition of the MPO, let us use [A(a)(I )]i, jα1,α2 to denote the
tensor associated with ρI at site a ∈ I . In order to simplify notation, when the site a
is the left-most (resp. right-most) site in I we use the convention that [A(a)(I )]i, jα1,α2 is
non-vanishing only when α1 = 1 (resp. α2 = 1). Finally, we denote each segment I by
I (�, a) where � is the width of the segment and a is its first site. For a non-extremal site
a, the tensor A(a) of Mr (H) is given by
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[A(a)]i, j(�1,k1,α1),(�2,k2,α2)

:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
A(a)

(
I (�1, a − k1 + 1)

)]i, j
α1,α2

for k1 < �1 and �1 = �2, and k2 = k1 + 1,
[
A(a)

(
I (�2, a)

)]i, j
α1,α2

for k1 = �1 and 0 < �2 ≤ n − a + 1 and k2 = 1,

δi, j for k1 = �1 and �2 = k2 = 0 and α1 = α2 = 1,

0 otherwise.
(42)

The first case corresponds to a site a in the interior of the segment I = I (�1, a− k1 +1).
The second case corresponds to an a that is the first site of a new segment I = I (�2, a).
Note that the condition �2 ≤ n − a + 1 guarantees that this segment does not exceed the
right side of the chain. Finally, the third case corresponds to an empty site a.

To complete the definition it remains to specify A(1) and A(n). Just as the tensors
for ρI , we keep both left and right indices but make them non-zero only when � = k = 0
and α = 1. Then A(1) is defined as A(a) with the additional requirement that it is non-
vanishing only when �1 = k1 = 0 and α1 = 1. The tensor A(n) is defined directly by
(42). In that case, for every (�1, p1, α1) there is at most one triple (�2, p2, α1) for which
A(n) is non-vanishing, and so without loss of generality we can map it to �2 = k2 = 0
and α2 = 1.

To finish the proof note that the virtual bond dimension is bounded by r(r − 1)dr <

r2dr , and therefore the second step can be done in time ndO(r) since it only involves
local assignments. �
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