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ABSTRACT

We study the multi-objective minimum weight base problem, an abstraction of classical NP-hard
combinatorial problems such as the multi-objective minimum spanning tree problem. We prove
some important properties of the convex hull of the non-dominated front, such as its approximation
quality and an upper bound on the number of extreme points. Using these properties, we give
the first run-time analysis of the MOEA/D algorithm for this problem, an evolutionary algorithm
that effectively optimizes by decomposing the objectives into single-objective components. We
show that the MOEA/D, given an appropriate decomposition setting, finds all extreme points within
expected fixed-parameter polynomial time in the oracle model, the parameter being the number of
objectives. Experiments are conducted on random bi-objective minimum spanning tree instances,
and the results agree with our theoretical findings. Furthermore, compared with a previously studied
evolutionary algorithm for the problem GSEMO, MOEA/D finds all extreme points much faster
across all instances.

Keywords minimum weight base problem, multi-objective optimization, evolutionary algorithm

1 Introduction

Evolutionary algorithms have been widely used to tackle multi-objective optimization problems in many areas such as
robotics, pattern recognition, data mining, bioinformatics, scheduling and planning, and neural network training [32].
Their population-based search operators make them a natural choice for simultaneously handling several possibly
conflicting objectives. Many generic evolutionary multi-objective frameworks have been developed to supply basic
implementations for any problem, and to provide templates that can be fine-tuned for specific applications (we refer
to [27] for an overview of common approaches). Such features, along with their strong empirical performances in
challenging applications, have led them to becoming one of the most attractive topics to researchers and practitioners
alike.

Among evolutionary multi-objective algorithms (EMOs), arguably the most exemplary are dominance-based ap-
proaches such as GSEMO and NSGA variants, with the former often being considered a baseline. Another popular
technique for multi-objective optimization is to decompose the multiple objectives into a single-objective subproblem.
The MOEA/D algorithm is a state-of-the-art application of this technique in evolutionary computation [26, 28].

Despite the prevalence of EMOs on practical applications, rigorous analyses of their runtime behavior on meaningful
problems are scarce. Nevertheless, these kinds of analyses are critical for (1) providing performance guarantees and
guidelines to practitioners who use and develop these techniques in the field, and (2) promoting the explainability of
heuristic search and optimization techniques by clarifying their working principles through a careful mathematical
analysis. Run-time analyses on the performance of evolutionary algorithms have been provided for simple algorithms
such as GSEMO in both artificial benchmark problems [1, 5] and others such as bi-objective minimum spanning tree
[15, 25] and constrained submodular optimization [3, 18–20]. In recent years, theoretical analyses of state of the art
approaches such as NSGA-II and MOEA/D have been conducted [2, 4, 9–11, 31]. Most of these run-time results are
on artificial benchmark problems, and the one for NSGA-II on bi-objective minimum spanning tree proves promising.

http://arxiv.org/abs/2306.03409v1
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In this paper, we present for the first time rigorous results on MOEA/D for a classical multi-objective optimization prob-
lem, namely the multi-objective minimum weight base problem. This problem, falling under the matroid optimization
category, is a significant generalization of the previously studied bi-objective minimum spanning tree problem. In this
work, we focus on approximating the non-dominated front, as determining whether the front is reached is EXPSPACE.
In particular, we show that MOEA/D obtains a factor 2-approximation for two objectives in expected polynomial time.
Previous analyses for the special case of graphic matroid (i.e. spanning forests) were only able to show a pseudo-
polynomial run-time for GSEMO to obtain this approximation [15]. We further extend the analyses by deriving a
fixed-parameter polynomial expected run-time in instances with : > 2 objectives to reach a :-approximation.

Instrumental to our analyses is a deeper understanding of the problem, and as such, we formally examine certain
properties of the multi-objective minimum weight base problem. We first prove a tight approximation guarantee from
computing the convex hull of the non-dominated front, extending the known guarantee for two objectives [15]. With
this in mind, we explore insight regarding this convex hull, including its vertex complexity and the structural relation
among solutions whose weights constitute said convex hull. In addition, we briefly formulate an efficient deterministic
approach to enumerate extreme points. These findings may be of interest in areas beyond runtime analysis.

2 Preliminaries & Problem

First, we give an overview of relevant matroid theory concepts, with terminologies adopted from the well-known text
book [17] on the subject.

Definition 1. A tuple " = (�,I ⊆ 2�) is a matroid if a) ∅ ∈ I, b) ∀G ⊆ ~ ⊆ �,~ ∈ I =⇒ G ∈ I, c) ∀G,~ ∈ I,
|G | < |~ | =⇒ ∃4 ∈ ~ \ G, G ∪ {4} ∈ I. The set � is the ground set, and I is the independence collection. A base of "
is a maximal set in I.

Definition 2. Given a matroid " = (�,I), its rank function, A : 2+ → ℕ, is defined as A (G) = max{|~ | : ~ ∈ 2G ∩ I},
and the rank of " is A (�). A matroid is completely characterized by its rank function.

To give examples, a  -rank uniform matroid over � admits the independence collection I = {G ⊆ � : |G | ≤  },
characterizing a cardinality constraint. In linear algebra, a representable matroid describes linear independence among
a vector set. In graph theory, given an undirected graph � = (+ , �), a graphic matroid " = (�,I) defined by � is
such that I contains all edge sets G forming a forest subgraph in � . A base of a graphic matroid is a spanning forest,
which itself is an object of much interest. Dual to the graphic matroid, the bond matroid "∗ = (�,I∗) is such that
I∗ contains all edge sets G whose removal from � preserves every pairwise connectivity in � . The matroid properties
emerge in many combinatorial structures of various optimization problems [17].

A classical application of matroids in optimization is in the minimum weight base (MWB) problem. Given a weighted
matroid (�, A ,F), this problem asks to find a base in this matroid minimizing F . The most arguably well-known
special case of MWB problem is the minimum spanning tree (MST) problem. It is known that the classical Greedy
algorithm minimizes (and maximizes) arbitrary weight over a base collection of any matroid [6, 7, 21]. From the
exchange property between independent sets, we see that Greedy can also enumerate all minimum weight bases, thus
characterizes the optimality of any MWB instance.

The multi-objective minimum weight base (MOMWB) is a natural multi-objective extension to MWB. Given a :-

weighted1 matroid (�, A ,F ∈ (ℕ∗):×|� | ) where � is the ground set, A is the rank function of the matroid, and the

weight vector of a solution G ∈ {0, 1} |� | is FG (also called the image of G under F), the multi-objective problem
asks to find a non-dominated set of bases in (�, A ) minimizing F . Let < := |� |, = := A (�), for G,~ ∈ {0, 1}< and a

function 5 : {0, 1}< → ℝ
: , G dominates ~, denoted with G �5 ~, iff 5 (~) − 5 (G) ∈ ℝ

:
≥0

. We see that G �5 ~ iff

min_∈[0,1]: _
⊺ (5 (~) − 5 (G)) ≥ 0, i.e. ~ has greater scalarized objective value than G across all linear trade-offs. We

denote the set of images of non-dominated solutions with � , and vertices of its convex hull Conv(� ) are called extreme
points. For convenience, let Conv(� ) contain only points in � and that its faces be conventionally defined, i.e. as
continuous Euclidean subspaces.

Since � can be exponentially large, we consider instead approximating it by finding solutions mapped to Conv(� ).
Such a set is known to guarantee a 2-approximation of the non-dominated set for : = 2 [15] under the following
definition.

Definition 3 (Minimization). Given : non-negative objective functions 5 := (58 )
:
8=1

, a solution G 2-approximates a

solution ~ for some 2 ≥ 0 if 2 5 (~) − 5 (G) ∈ ℝ
:
≥0

. A solution set - 2-approximates (or is a 2-approximation of) a
solution set . if every ~ ∈ . is 2-approximated by at least a G ∈ - .

1The integrality does not affect the algorithms’ behaviors. This assumption is used to ease the analysis. The positivity assumption
ensures that approximation factors are meaningful.
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We formally describe categories of solutions of interest. Here, we only consider feasible solutions, e.g. bases in a

MWB or MOMWB instance. Furthermore, a subset of � is characterized by a bit-string in {0, 1} |� | , so both set and bit
operations on solutions are well-defined, and we use both representations throughout the paper.

Definition 4. A solution G is a supported solution to an instance with objective functions 5 = (58 )
:
8=1

and a solution

set ( if there is a linear trade-off _ ∈ [0, 1]: \ {0} where G ∈ argmin~∈( _
⊺ 5 (~). A trade-off set Λ is complete if

⋃

_∈Λ argmin~∈( _
⊺ 5 (~) contains all supported solutions. A supported solution I is extreme if there is _′ ∈ [0, 1]:

where for all G ∈ argmin~∈( _
′⊺ 5 (~), 5 (I) = 5 (G). A set containing a trade-off for each extreme solution is called

sufficient.

We see that supported solutions are precisely the solutions whose images lie on Conv(� ). Intuitively, a complete
trade-off set decomposes the multi-objective instance in such a way to allow enumerating all supported solutions via
exactly solving scalarized instances. Since supported solutions that are not extreme are mapped to points on the faces
of Conv(� ), we have the following observation.

Observation 1. For each supported solution minimizing _⊺ 5 , there is an extreme solution minimizing _⊺ 5 . For every

_ ∈ [0, 1]: , there is an extreme solution minimizing _⊺ 5 .

However, for linear functions, the number of supported solutions can be very large, so we also consider finding a
representative subset which, as we will show, is sufficient to give an approximation guarantee.

Definition 5. A solution set - is sufficient to an instance with objective functions 5 if for every extreme solution ~,
there is G ∈ - where 5 (G) = 5 (~). The analogy for supported solutions is called a complete solution set.

With this definition, the set of solutions that are mapped to the extreme points is sufficient. In fact, the size of a minimal
sufficient set is exactly the number of extreme points. Note that while the set of all supported solutions is unique, there
can be multiple distinct minimal sufficient sets due to duplicate images. We briefly prove an approximation factor by
any sufficient set, which is not restricted to MOMWB.

Theorem 1 (Minimization). Given : ≥ 1 and a :-objective instance admitting a non-negative feasible minimum in
each objective and a sufficient solution set % , % :-approximates all solutions. This factor is tight for all :, even if % is
a complete solution set.

Proof. Let 5 := (58)
:
8=1

be the objective function vector, I be any solution, / = {8 : 58 (I) = 0}, if |/ | = : then I is an
extreme solution, so % 1-approximates I. Assume otherwise, let X8 be the minimum positive 58 value of solutions, we

define _ ∈ (0, 1]: where _8 := 2n/X8 if 8 ∈ / and _8 := n/[(: − |/ |) 58 (I)] otherwise for some sufficiently small n > 0.
By definition of sufficient solution set and Observation 1, there is G ∈ % minimizing _⊺ 5 , i.e. _⊺ 5 (G) ≤ _⊺ 5 (I) = n.

If 58 (G) > 0 for some 8 ∈ / or 58 (G) > (: − |/ |) 58 (I) for some 8 ∉ / , then since 5 (G) ∈ ℝ:
≥0

, we have _⊺ 5 (G) > n, a

contradiction. Therefore, G , and by extension % , (: − |/ |)-approximates I. Since I can assume positive values in all
objectives2, this factor simplifies to :.

We show tightness by construction. Let n ∈ (0, :), < := :2, \8 :=
∑:−1

9=0 48:− 9 for 8 = 1, . . . , : where 4 9 is the 9 th unit

vector in ℝ
< , we define a non-negative :-objective instance over {0, 1}<: minG {5 (G) := (\

⊺

8 G − n
∏:−1

9=0 G8:− 9 )
:
8=1

:

|G | ≥ :}. We see that the set of all supported solutions is precisely ( := {\8 }
:
8=1

. Let I :=
∑:−1

8=0 48:+1 be a solution, for
all 8 = 1, . . . , :, 58 (\8 ) = : − n ≥ (: − n) 58 (I) (equality holds if : > 1). This means ( fails to (: − n − Y)-approximate I
for any Y > 0, and n can be arbitrarily small. Since ( is a complete solution set, the claim follows. �

We denote the weight scalarization with trade-off _ withF (_) := _⊺F , so (�, A ,F (_) ) is a scalarized instance at _.

3 Properties of Conv(� ) in multi-objective minimum weight base problem

Here, we derive various properties of Conv(� ) with implications on the problem’s approximation complexity. Since
these solutions are optima of scalarized instances, we use the properties of the Greedy algorithm, known to guarantee
and characterize optimality in linear optimization over a matroid.

The Greedy algorithm starts from an empty set and adds elements to it in increasing weight order while maintaining
its independence, until a base is reached. In essence, Greedy operates on a permutation over � and produces a unique
solution so we can characterize its outputs via permutations. We say a permutation g over � sorts the weightF if, for

2If |/ | ≥ :′ for all solutions I, the instance is reducible to (: − :′)-objective instances, and the guarantee factor is likewise tight.
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all 8 = 1, . . . ,< − 1,Fg (8 ) ≤ Fg (8+1) . As mentioned, Greedy run on a permutation that sorts the weight to be minimized
returns a minimum weight base. More importantly, all minimum weight bases can be obtained by running Greedy
on all sorting permutations. This allows us to derive properties of any solution mapped onto Conv(� ) using Greedy’s
behaviors. In particular, we can circumvent the difficulty of examining weights by examining permutations instead,
essentially looking at the weights’ rankings rather than the weights themselves.

To simplify analysis, we restrict the trade-off space to non-negative !1-normalized vectors * =
{

0 ∈ [0, 1]: :
∑:

8=1 08 = 1
}

, let c_ be a permutation sorting F (_) for _ ∈ * . For each 8 ∈ �, let w8 = (F 9,8 )
:
9=1

,

and for each pair 8, 9 ∈ �, let X8, 9 = w8 −w9 and Δ8, 9 =

{

0 ∈ * : X
⊺

8, 90 = 0
}

be the (: − 2)-dimensional set characterized

by the fact that for all _ ∈ * , F
(_)
8 = F

(_)
9 iff _ ∈ Δ8, 9 . Finally, let � be the multiset of non-empty Δ8, 9 where X8, 9 ≠ 0,

�� be the multiset of convex (: − 1)-polytopes in * defined by intersections of half-spaces bounded by hyperplanes
in � and the boundary of * , and �′ be the set of points in * where each point lies in the interior of a polytope in
��, we show that � and �′ encompass complete solution set and sufficient solution set, respectively. Note that if
X8, 9 = w8 − w9 = 0, the inclusion of either 8 or 9 in a solution does not change its image underF .3

Lemma 1. For any& ∈ ��, the set of all bases minimizingF (_) remains constant for all _ ∈ Int(&)4, and these bases
share an image underF . Furthermore, they also minimize F (_) for all _ ∈ & .

Proof. Let 2 be any point in Int(&), by definition of �, F
(2 )
8 = F

(2 )
9 iff X8, 9 = 0, and F (2 ) admits multiple minima iff

they contain different elements among those sharing weights in F (2 ) , while sharing all other elements. Indeed, let G
and ~ be a pair of minima violating this condition, they must contain different sets of weights so for all bijection W

between G \ ~ and ~ \ G , there is D ∈ G \ ~ where F
(2 )
D ≠ F

(2 )

W (D )
; this leads to a contradiction when combined with the

base exchange property. This means these optima share image under F , and bases not having the same image do not

minimizeF (2 ) .

Let 1 be any point on the boundary of & and ! be the set of points between 1 and 2 excluding endpoints, we show

that c2 also sorts F (1 ) . Let 8 . 9 ∈ � where F
(2 )
8 < F

(2 )
9 , then F

(1 )
8 > F

(1 )
9 implies F

(3 )
8 = F

(3 )
9 for some 3 ∈ !,

meaning ! meets a hyperplane in �, a contradiction as ! ⊆ Int(&). For all pairs 8, 9 ∈ � whereF
(2 )
8 = F

(2 )
9 , X8, 9 = 0 so

F
(1 )
8 = F

(1 )
9 . With this, every pair is accounted for, so c2 sorts F (1 ) . Therefore, since Greedy guarantees optimality,

any base minimizingF (2 ) also minimizesF (1 ) , yielding the claim. �

This immediately gives the upper bound on the number of extreme points, which is the maximum the number of space
partitions by hyperplanes; the formula for this is given in [29].

Corollary 1. The size of a minimal sufficient solution set is at most
∑:

8=1

(< (<−1)/2
8−1

)

, and �′ is a sufficient trade-off
set.

Proof. We see that |�′ | = |�� |, which is upper bounded by the number of half-space intersections from hyperplanes

in �. Since these are (: − 2)-dimensional hyperplanes, applying the formula in [29] gives |�� | ≤
∑:

8=1

( |� |
8−1

)

which is
increasing in |�|, so the claim follows from |�| ≤ <(< − 1)/2. We have �′ is a sufficient trade-off set following from
Lemma 1 and

⋃

&∈��
& = * . �

We remark that we deliberately choose each trade-off in �′ from the interior of each polytope. This is because if a
zero trade-off coefficient is assigned to an objective, then bases minimizing the weight scalarized by such a trade-off
may not be non-dominated. Furthermore, such scalarized weights admit optima whose images under F are identical,
which is necessary to ensure that the first optimum an optimization algorithm finds using these trade-offs is an extreme
solution. Moreover, this trade-off selection scheme also guarantees that said algorithm does not discard vertices of
Conv(� ) over time, unless it stores all found optima.

Given a solution set ( , the ;-Hamming neighborhood graph of ( is an undirected graph �; = ((, {{0, 1} : |0 ⊗ 1 | ≤
;}), and ( is ;-Hamming connected if �; is connected. Neumann [15] proved for spanning trees that given the non-
dominated front being strongly convex, the set of supported solutions is 2-Hamming connected. We show that this

3We include polytopes with empty interiors in �� to account for overlapping hyperplanes in �. Furthermore, we assume these
hyperplanes are ordered arbitrarily along their normal direction for the purpose of defining interior-free polytopes: ℎ such hyper-
planes form ℎ − 1 polytopes.

4Given a set � in a metric space, Int(�) is the set of its interior points.
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even holds for matroid bases without the convexity assumption. For simplicity, we assume, for the rest of the analysis,
fixed orderings among each class of elements 8 ∈ � sharing w8 . We will see that the existence of such elements does
not affect the 2-Hamming connectivity among supported solutions.

We first show that as the trade-off moves continuously within * , the permutation sorting the scalarized weight is
transformed incrementally by exchanging two adjacent positions, which we call an adjacent swap.

Lemma 2. For any 0, 0′ ∈ * , let �∗ = {08 }
ℎ
8=1

be the multiset of intersections between the line segment connecting 0
and 0′ and hyperplanes in �, indexed in the order from 0 to 0′, there is a shortest sequence of adjacent swaps from
c0 to c0′ , (c0, g1, . . . , gℎ, c0′ ), where for all 8 = 1, . . . , ℎ, g8 sorts F (08 ) . If F (0) or F (0

′ ) can be sorted by multiple
permutations, the claim holds assuming that c0 and c0′ have maximum Kendall distance5.

Proof. Let 0 < _2 , < _3 < 1 such that 1 := (1 − 1)0 + 10′ ∈ �∗ and for all _ ∈ [_2 , _1), (1 − _)0 + _0
′
∉ �∗, and let

2 := (1− _2 )0 + _20
′, then elements sharing weight inF (1 ) must be mapped to consecutive positions in c2 . Indeed, let

?,@ ∈ � (c2 (?) < c2 (@)) where F
(1 )
? = F

(1 )
@ , if there is > ∈ � where c2 (>) ∈ (c2 (?), c2 (@)) and F

(1 )
> ≠ F

(1 )
? , then

since the former impliesF
(2 )
> ∈ (F

(2 )
? ,F

(2 )
@ ), we haveF

(3 )
> = F

(3 )
? orF

(3 )
> = F

(3 )
@ for some 3 in the open line segment

connecting 1 and 2 which implies 3 ∈ �∗, a contradiction. Each such consecutive sequence of ; positions contains
; (; − 1)/2 pairs. From here, we consider two cases:

• If such a sequence contains no pair (8, 9 ) where X8, 9 = 0, then the aforementioned pairs correspond to ; (; − 1)/2
duplicates of 1 in �∗. Furthermore, since the weights are transformed linearly w.r.t. trade-off, for all sufficiently
small n > 0, these sequences are reversed between c2 and c1+n (1−2 ) , whereas positions not in these sequences are
stationary. Reversing ; consecutive positions requires ; (; − 1)/2 adjacent swaps, so the Kendall distance between c2
and c1+n (1−2 ) equals the multiplicity of 1 in �∗.

• If such a sequence containsℎ > 1 elements with the same weight at all trade-off, then these must occupy consecutive
positions in c2 . As we assumed, the relative ordering among these elements is fixed, so exactly ℎ(ℎ − 1)/2 swaps
are saved. Furthermore, any pair (8, 9 ) among these elements is such that Δ8, 9 ∉ �, meaning these ℎ(ℎ − 1)/2 pairs
are already subtracted from �∗.

In any case, we can assign to each duplicate of 1 in �∗ a permutation sorting F (1 ) so that these form a sequence of
adjacent swap from c2 to c1+n (1−2 ) including c1+n (1−2 ) and not c2 . This directly yields the claim if 0 and 0∗ are not in
�∗.

Assume otherwise, then for all hyperplanes Δ8, 9 containing 0, F
(0)
8 = F

(0)
9 , so for every such pair (8, 9 ), we arrange c0

so that their pairwise ordering in c0 is the reverse of that in c0′ . We likewise give 0′ the same treatment6. With this,
the Kendall distance between c0 and c0′ is maximized and equal to |�∗ |. �

Next, we show that an adjacent swap on the sorting permutation incurs an at most 2-bit change in the minimum weight
base.

Lemma 3. Let g and g ′ be permutations over � that are one adjacent swap apart, and G and G ′ are Greedy solutions
on them, respectively, then |G ⊗ G ′ | ≤ 2. Furthermore, let D, E ∈ � where g (E) = g (D) + 1 and g ′(E) = g ′ (D) − 1,
|G ⊗ G ′ | = 2 iff {D} = G \ G ′ and {E} = G ′ \ G .

Proof. Let �> := {0 ∈ � : g (0) < g (>)} be the set of elements Greedy considers adding to G before > ∈ � when run on
g , we have G ∩ �D = G ′ ∩ �D . If E ∈ G or E ∉ G ′ or D ∉ G or D ∈ G ′ then G = G ′, as can be seen from how Greedy selects
elements:

• If E ∈ G , then E ∈ G ′ since Greedy considers E before D when run on g ′. Whether Greedy adds D to G only depends
on whether there is a circuit in (G ∩ �D ) ∪ {D} = (G

′ ∩ �D) ∪ {D}, so it makes the same decision when run on g ′.
Afterwards, it proceeds identically on both permutations, leading to the same outcome, so G = G ′. By symmetry, the
same follows from D ∈ G ′.

• If D ∉ G , then there is a circuit in (G ∩ �D ) ∪ {D} = (G
′ ∩ �D) ∪ {D}, so D ∉ G ′. By the same argument, Greedy makes

the same decision regarding E on both permutations, leading to G = G ′. By symmetry, the same follows from E ∉ G ′.

5Kendall distance between two permutations equals the minimum number of adjacent swaps needed to transform one into the other
[14].

6This is also done for any Δ8, 9 containing both 0 and 0′.
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Assume otherwise, it is a known property of bases [17] that G ∪ {E} contains a unique circuit� and that E ∈ �. Greedy
not adding E to G implies that� ⊆ (G ∩ �E) ∪ {E} = (G

′ ∩ �E) ∪ {D, E}. Let E ′ be the first element after E that G and G ′

differ at and assume w.l.o.g. E ′ ∈ G \ G ′, we have (G ′ ∩ �E′) ∪ {D} = (G ∩ �E′) ∪ {E} and since E ′ is not added into G ′

before Greedy terminates, there must be another circuit in (G ′ ∩ �E′) ∪ {E
′} ⊂ G ∪ {E} containing E ′, which is distinct

from the unique circuit�. The contradiction implies that G and G ′ do not differ after E , so G ⊗ G ′ = {D, E}. �

Lemma 2 and 3 indicate that there is a sequence of 2-bit flips between any pair of supported solutions such that
every step also gives a supported solution. Therefore, starting from a supported solution, we can compute the rest of

Conv(� ) with 2-bit variations. Note that for a supported solution G minimizingF (_) , if there is a class of equal-weight

elements / partially intersecting G , then all supported solutions minimizing F (_) containing different elements in /
can be reached from G by a sequence of 2-bit flips, whose each step produces a supported solution also minimizing

F (_) . This is because / is located consecutively in c_ and can be arranged arbitrarily (leading to the Greedy solution

minimizingF (_) ), and there is a sequence of adjacent swaps between any two permutations.

Corollary 2. Given solutions G and ~ where FG,F~ ∈ Conv(� ), there is a non-empty set of solutions {I8 }
ℎ
8=1

where

G = I1, ~ = Iℎ , |I8 ⊗ I8+1 | = 2 for all 8 = 1, . . . , ℎ − 1 and {FI8 }
ℎ
8=1
⊆ Conv(� ).

Lemma 3 also lets us derive a stronger bound on the number of distinct Greedy solutions as the trade-off moves in a
straight line, giving an upper bound on the number of extreme points in case : = 2.

Theorem 2. Given = ≥ 1, 0, 1 ∈ * and - is a minimal set of extreme solutions such that for each \ ∈ [0, 1], -

contains a solution minimizingF ( (1−\ )0+\1 ) , |- | ≤ ℎ< − ℎ(ℎ + 1)/2 + 1 where ℎ :=
⌈

√

2 min{=,< − =} − 1
⌉

.

Proof. We define ;2 := (1 − 2)0 + 21 for 2 ∈ [0, 1], let 0 ≤ \ ≤ \ ′ ≤ 1 where c;\ and c;\ ′ are an adjacent swap

apart7 and the Greedy solutions on them, G and G ′, are such that |G ⊗ G ′ | = 2. Let D, E ∈ � where G ∩ {D, E} = {D}
and G ′ ∩ {D, E} = {E}, Lemma 3 implies c;\ (D) < c;\ (E) and c;\ ′ (D) > c;\ ′ (E), so c0 (D) < c0 (E). This means as the
trade-off moves from 0 to 1, the Greedy solution minimizing the scalarized weight changes incrementally by having
exactly one element shifted to the right on c0 (to a position not occupied by the current solution). Since at most
ℎ<−ℎ(ℎ+1)/2 such changes can be done sequentially, Greedy produces at most ℎ<−ℎ(ℎ+1)/2+1 distinct solutions
in total across all trade-offs between 0 and 1.

To show this upper bound, we keep track of the following variables as the trade-off moves from 0 to 1. Since each
solution contains = elements, let ?8 be the 8th leftmost position on c0 among those occupied by the current Greedy
solution for 8 = 1, . . . , =, we see that upon each change, there is at least a 9 ∈ {1, . . . , =} where ? 9 increases. Further-
more, for all 8, ?8 can increase by at most< − = since it cannot be outside of [8,< −= + 8], so the quantity ? :=

∑=
8=1 ?8

can increase by at most =(< − =). We see that ? increases by ; when the change is incurred by a swap in the Greedy
solution such that the added element is positioned ; to the right of the removed element on c0 , we call this a ;-move.
Furthermore, each element pair participates in at most one swap, so ? can be increased by at most< − ; ;-moves for
every ; = 1 . . . ,< − 1. Therefore, to upper bound the number of moves, we can assume smallest possible distance in

each move, and the increase in ? from using all possible ;-moves for all ; = 1, . . . , ℎ is
∑ℎ

9=1 9 (< − 9 ) ≥ =(< −=). This

means no more than
∑ℎ

9=1(< − 9 ) = ℎ< − ℎ(ℎ + 1)/2 moves can be used to increase ? by at most =(< − =). �

Corollary 3. A bi-objective MWB instance (i.e. : = 2) admits at most $ (<
√

min{=,< − =}) extreme points.

We remark that aside from the trivial case = = 1, we did not find an instance where this bound is tight. As far as we
are aware, it is an open question whether this bound is optimal.

4 Exact computation of extreme points

In this section, we describe a deterministic framework that finds a solution for each extreme point, as well as a
complete trade-off set. This framework, modified from the algorithm proposed in [8] for bi-objective MST, is outlined
in Algorithm 1. It calls another algorithm (e.g. Greedy) to find MWB to scalarized weights, and iteratively computes
new extreme points based on information from previous ones. Intuitively, each subset of extreme points / is such that
its convex hull is “inside” Conv(� ) and contains, for each extreme point ~ ∉ / , a facet separating / from ~. This
means ~ can be discovered by minimizing the weight scalarized along the normal direction of this facet, essentially
expanding Conv(/ ) to “touch” ~. This iterative process begins with an optimum in each objective, and ends when all
new normal vectors are duplicates of ones found previously, indicating that the current convex hull cannot be expanded

7If \ = \ ′ , we assume c;\ is closer to c0 in Kendall distance.
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Algorithm 1: Finding extreme points and a complete trade-off set (adapted from [8])

Input: Multi-weighted matroid (�, A ,F)
Output: ( , Λ

1 (,Λ′ ← ∅;

2 Λ← {48 }
:
8=1

;

3 % ← all permutations over {1, . . . , :};
4 while Λ \ Λ′ ≠ ∅ do
5 for _ ∈ Λ \ Λ′ do

6 ∀? ∈ %, 0? ← base minimizingF (_) prioritizing weights ranked by ?;
7 ( ← ( ∪ {0? }?∈% ;

8 Λ
′ ← Λ

′ ∪ Λ;
9 Λ← non-negative normal vectors to facets of Conv({FG : G ∈ (});

Algorithm 2: Special case of Algorithm 1 for : = 2

Input: Bi-weighted matroid (�, A ,F1,F2)
Output: ( , Λ

1 (,Λ′ ← ∅;
2 Λ← {0, 1};
3 while Λ \ Λ′ ≠ ∅ do
4 for _ ∈ Λ \ Λ′ do
5 0, 1 ← bases minimizing (1 − _)F1 + _F2 prioritizingF1 andF2, respectively;
6 ( ← ( ∪ {0, 1};

7 Λ
′ ← Λ

′ ∪ Λ;
8 Λ← ∅;
9 c ← element indexes of ( in increasingF1(·) order;

10 for 8 ∈ {1, . . . , |( | − 1} do
11 X1, X2 ← F1(c (8+1) −F1(c (8 ) ,F2(c (8 ) −F2(c (8+1) ;
12 Λ← Λ ∪ {X1/(X1 + X2)};

further and equals Conv(� ). The special case of this algorithm for : = 2 is given in Algorithm 2 which treats trade-offs
as scalars.

Algorithm 1 requires $ (#(poly(:) + :!< log<)) operations and $ (:!#<) calls to the matroid rank oracle where # is
the number of extreme points. Each iteration in the main loop adds at least one extreme point, and redundant points
are excluded from future iterations via Λ

′. Here, we assume updating trade-off for each new vertex takes poly(:)
operations. Note that exhaustive tie-breaking over all objectives is done at line 6 to ensure that the computed points
are the vertices of Conv(� ) instead of interior points of its faces, and that all extreme points are accounted for when the
termination criterion is met. Furthermore, if the trade-off assigns zero value to some objectives, this also guarantees
that the resulted solutions are non-dominated.

5 MOEA/D with weight scalarization

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), introduced in [30], is a co-evolutionary
framework characterized by simultaneous optimization of single-objective subproblems in a multi-objective problem.
While there are many approaches to decompose the multi-objective into single-objectives, we consider the classical
approach that is weight scalarization [13], as hinted in preceding sections. This simple scheme is sufficient in approx-
imating � and even enumerating Conv(� ).

5.1 Description

MOEA/D uses two fitness functions, a scalar function formulated by the decomposition scheme and a vector function
for dominance checking [30]. To account for the matroid base constraint, we use the penalty term formulated in [23],
which was adapted from prior work on MST [16]. Letting F<0G := max(8,4 ) ∈{1,...,: }×� F8,4 , we have the fitness 5_ of

7
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Algorithm 3: MOEA/D for MOMWB

Input: A MOMWB instance, trade-off set Λ, neighborhood size # ≥ 1
Output: (

1 ∀_ ∈ Λ, �_ ← # nearest neighbors of _ in Λ (Euclidean distance);
2 ∀_ ∈ Λ, %_ ← a random sample from {0, 1}<;
3 ( ← ∅;
4 while stopping conditions not met do
5 for _ ∈ Λ do
6 G ← uniformly sampled from %_ ;
7 ~ ← independent bit flips on G with probability 1/<;
8 � ← {; ∈ �_ : ∀I ∈ %; , 5; (~) < 5; (I)};
9 ) ← {; ∈ �_ : ∀I ∈ %; , 5; (~) = 5; (I)};

10 ∀; ∈ �, %; ← {~};
11 ∀; ∈ ) , %; ← %; ∪ {~} removing solutions with duplicate images;
12 ( ← non-dominated individuals in ( ∪ {~} under relation �6;

G ∈ {0, 1}< at trade-off _, and the fitness vector 6 for dominance checking where 1 is the one vector.

5_ (G) :=<(= − A (G))F<0G +F
(_)G, 6(G) :=<(= − A (G))F<0G1 +FG (1)

The MOEA/D for the MOMWB problem is outlined in Algorithm 3. The fitness functions defined in Eq. (1) and the
input trade-off set realize the decomposition, and the algorithm evolves a population for each scalarized subproblem
with potential neighborhood-based collaboration. During the search, it maintains a non-dominated solution set ( ,
which does not influence the search and is returned as output. An optimum to each scalarized subproblem is a supported
solution. Note in this formulation, MOEA/D keeps ties in each subproblem, allowing all found optima to participate
in mutation operations. This is to avoid having to flip more than two bits to jump from a supported solution to an
uncollected point in Conv(� ). We will see that while this may increase the population size, it does not affect the
run-time to reach optimality in each subproblem.

5.2 Expected time to minimize scalarized weights

In the following, we do not assume a particular value of # , and the results hold for any # ≥ 1. Furthermore, we
exclude the trivial instances with = =< and = = 0, which admit exactly one base each.

Lemma 4. MOEA/D working ontrade-off set Λ finds a base’s superset for each _ ∈ Λ within $ (|Λ|< log=) expected
search points.

Proof. First, we observe that a set supersets a base iff its rank is =. We see that for all _ ∈ [0, 1] and G,~ ∈ {0, 1}< ,
A (G) > A (~) implies 5_ (G) < 5_ (~). Thus, for each _ ∈ Λ, MOEA/D performs (1+1)-EA search toward a base’s
superset with fitness 5_ , which concludes in $ (< log=) expected steps [23]. The claim follows from the fact that
MOEA/D produces |Λ| search points in each step. �

Let $%)_ be the optimal value to (�, A ,F (_) ), we have the following drift argument proven in [23] for the standard bit
mutation in the MWB problem.

Lemma 5 ([23], Proposition 9). Given a trade-off _ ∈ [0, 1] and G ∈ {0, 1}<, if G supersets a base, then there are =
2-bit flips and< − = 1-bit flips on G reducing 5_ (G) on average by (5_ (G) −$%)_ )/<.

We use the same ideas as the proof of Theorem 2 in [23], while sharpening an argument to derive a slightly tighter
bound.

Theorem 3. MOEA/D working ontrade-off set Λ finds MWBs to instances scalarized by trade-offs in Λ in
$
(

|Λ|< log= +
∑

_∈Λ<
2(log(< − =) + logF<0G + log3_)

)

expected search points where 3_ := min{0 > 0 : 0_, 0(1 −
_) ∈ ℕ}.

Proof. We assume each solution in %_ supersets a base for all _ ∈ Λ; this occurs within expected time $ (|Λ|< log=),
according to Lemma 4. Since for each _ ∈ Λ, the best improvement in 5_ is retained in each step, the expected number
of steps MOEA/D needs to minimizes 5_ is at most the expected time (1+1)-EA needs to minimizes 5_ . We thus fix

8
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a trade-off _ and assume the behaviors of (1+1)-EA. Note that we use 3_ · F
(_) in the analysis instead for integral

weights; we scale 5_ and$%)_ accordingly.

We call the bit flips described in Lemma 5 good flips. Let B be the current search point, if good 1-bit flips incur larger
total weight reduction than good 2-bit flips on B, we call B 1-step, and 2-step otherwise. If at least half the steps from
B to the MWB I are 1-steps, Lemma 5 implies the optimality gap of B is multiplied by at most 1 − 1/2(< − =) on
average after each good 1-bit flip. Therefore, from 5_ (B) ≤ 3_ (< − =)F<0G +$%)_ , the expected difference �! after
! good 1-bit flips is � [�!] ≤ 3_ (< − =)F<0G (1 − 1/2(< − =))!. At ! = ⌈(2 ln 2) (< − =) log(23_ (< − =)F<0G + 1)⌉,
� [�!] ≤ 1/2 and by Markov’s inequality and the fact that �! ≥ 0, Pr[�! < 1] ≥ 1/2. Since weights are integral,
�! < 1 implies that I is reached. The probability of making a good 1-bit flip is Θ((<−=)/<), so the expected number
of steps before ! good 1-bit flips occur is$ (!</(< −=)) = $ (<(log(< −=) + logF<0G + log3_)). Since 1-steps take
up most steps between B and I, the bound holds.

If at least half the steps from B to I are 2-steps, Lemma 5 implies the optimality gap of B is multiplied by at most
1 − 1/2= on average after each good 2-bit flip. Repeating the argument with ! = ⌈(2 ln 2)= log(23_ (< − =)F<0G + 1)⌉
and the probability of making a good 2-bit flip beingΘ(=/<2), we get the bound$ (<2(log(<−=)+logF<0G +log3_)).
Summing this over all _ ∈ Λ gives the total bound. �

In order for MOEA/D to reach :-approximation and not lose it afterward, it suffices that Λ is sufficient and each
scalarized subproblem admits optima with a unique image. As mentioned and from Lemma 1, this can be obtained
by sampling from the interiors of convex polytopes in ��. For : = 2, this can be done by taking a complete scalar
trade-off set � (e.g. as returned by Algorithm 2) and include (0 + 1)/2 (which is an interior point) for each non-empty
interval (0, 1) bounded by consecutive elements in�∪{0, 1}. Under the integer weights assumption, this method gives
rational trade-offs whose integral denominators are$ (F2

<0G ), so we have the following bound from Corollary 3.

Corollary 4. For a bi-objective instance, MOEA/D working on a minimal sufficient trade-off set finds a sufficient

solution set within $ (<2
√

min{=,< − =}(<(log(< − =) + 3 logF<0G ) + log=)) expected number of search points.

This method can be generalized to higher dimensions. Instead of taking an average of two consecutive elements,
we can take the average of the vectors normal to : facets (i.e. (: − 1)-dimensional faces) of Conv(� ) that meet at
an extreme point. Since each facet is determinable by : points with integral coordinates, each such (!1-normalized)
vector admits rational coordinates with denominator at most :F<0G . Therefore, the trade-offs derived by this method
admit rational representations whose denominators are$ (::+1F:

<0G ), giving the run-time upper bound from Corollary
1 under the assumption that : is sufficiently small.

Corollary 5. Given a :-obbjective instance where : ∈ > (<) and : ∈ > (F<0G ), MOEA/D working on a minimal
sufficient trade-off set guarantees:-approximation within$ (<2:−1 (<(log(<−=) + (:+1) logF<0G ) + log=)) expected
number of search points.

As a side note, since MOEA/D uses standard bit mutation, we can replaceF<0G with<< and remove log3_ from the
bound in Theorem 3 to arrive at weight-free asymptotic bounds [24].

5.3 Expected time to enumerate Conv(� )

We see from Corollary 2 that MOEA/D with a complete trade-off set can collect all points in Conv(� ) with 2-bit flips
starting from an optimum to each subproblem. As mentioned, this is afforded by allowing all found optima to undergo
mutation.

Theorem 4. Assuming distinct supported solutions have distinct images under F , MOEA/D working on a minimal
complete trade-off set Λ, and starting from an optimum for each _ ∈ Λ enumerates � := Conv(� ) in $ (|Λ| |� |2<2)
expected number of search points.

Proof. From Corollary 2, to collect a new point in �, it is sufficient to perform a 2-bit flip on some supported solution.

In worst-case, there can be only one trade-off _ ∈ Λ such that all non-extreme supported solutions minimize F (_) ,
so the correct solution is mutated with probability at least 1/; in each iteration, where ; is the number of already
collected points. Since |Λ| search points are generated in each iteration, the expected number of search points required

to enumerate� is $ (|Λ|<2
∑ |� |

;=1
;) = $ (|Λ| |� |2<2). �

With this, Theorem 3 and Corollary 3 and 1, we have the following expected run-time bounds under the distinct image
assumption. Note this assumption can be removed by having MOEA/D keep duplicate images at line 11.

Corollary 6. For a bi-objective instance, MOEA/D working on a minimal complete trade-off set enumerates � :=

Conv(� ) in expected time $ (<2
√

min{=,< − =}(<(log(< − =) + 3 logF<0G + |� |
2) + log=)).

9
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Corollary 7. Given a :-objective instance where : ∈ > (<) and : ∈ > (F<0G ), MOEA/D working on a minimal
complete trade-off set enumerates� := Conv(� ) in expected time$ (<2:−1 (<(log(< − =) + (: + 1) logF<0G + |� |

2) +
log=)).

6 Experimental investigation

In this section, we perform computational runs of MOEA/D on various bi-objective minimum spanning tree instances.
Spanning trees in a connected graph � = (+ , �) are bases of the graphic matroid defined by � admitting the ground
set �. The rank of such a matroid (i.e. the size of the spanning tree) equals |+ | − 1 and its rank function is defined with
A (G) = |+ | − 22 (G) where 22 (G) is the number of connected components in (+ , G). In notations, we have = = |+ | − 1
and< = |� |. We use simple undirected graphs in our experiments, and the edge-set representation of solutions in the
implementations of the algorithms [22].

6.1 Setting and performance metrics

We uniformly sample graphs with |+ | ∈ {26, 51, 101} and |� | ∈ {150, 300}. In this procedure, edges are added
randomly into an empty graph up to the desired edge count, and this is repeated until a connected graph is obtained.
Each edge weight is an integer sampled independently fromU(1, 100). We generate two weighted graphs with each
setting, making 12 instances in total.

With this experiment, we aim to measure the algorithms’ performances in finding solutions mapped to all extreme
points, we denote this set of target points with '. We compare MOEA/D against GSEMO, previously studied for its
performance in bi-objective MST [15]. For GSEMO, we use the fitness function 6 defined in Eq. (1). Since GSEMO
checks for dominance in each iteration across its entire population, we set # := |Λ| for MOEA/D to match. Here,
the input Λ to MOEA/D is derived from a complete trade-off set output by Algorithm 2 in the manner described in
Section 5.2. The points given by Algorithm 1 are the target points ', and each run is terminated if all target points
are hit. Additionally, each run is terminated after at most ⌈3|' |<2 log(< − =)⌉ evaluations (each evaluation is a call to
function 6). Each algorithm is run on each instance 10 times. Their performances are measured with the followings ((
is the final population returned by the algorithm):

• Success rate: The number of runs where all target points are hit within the evaluation budget.

• Cover rate: The proportion of hit target points after termination, |' ∩ {FG : G ∈ (}|/|' |. A run is successful if this
reaches 100%.

• Modified inverted generational distance (IGD+): The distance between the output and the target points [12],
∑

~∈' minG ∈(

√

∑:
8=1(max{(FG)8 − ~8 , 0})2/|' |. A run is successful if this reaches 0.

• T: The number of evaluations until all target points are hit.

We remark that the fitnesses 5_ can be quickly computed alongside 6, incurring minimal overheads. In fact, the run-
time bottleneck is in checking the number of connected components.

6.2 Experimental results

The results are shown in Table 1, with IGD+ and cover rate from MOEA/D omitted due to them being 0 and 100%
across all instances, respectively. These are contextualized by the listed instance-specific parameters. Of note is the
number of target points |' | which is smaller than the upper bound in Theorem 2 in all instances.

Immediately, we see the GSEMO failed to hit all target points within the evaluation budget in most runs, while
MOEA/D succeeded in every run. In most cases, GSEMO hit at most one target point. Inspecting the output points
and IGD+ reveals that its population converged well to the non-dominated front, yet somehow misses most extreme
points. In contrast, MOEA/D hit all target points within up to 92% of the evaluation budget, though there are significant
relative variances in the run-times.

Inspecting the run-times of MOEA/D in relation to the evaluation budgets, we see that the means of ratios remain fairly
stable across instances. This suggests the asymptotic bound in Theorem 3 is not overly pessimistic. Instances 5 and 6
are particularly interesting as they are ostensibly the easiest due to the small number of extreme points, yet MOEA/D
seems to require the most fractions of the budget. Given that these instances exhibit the smallest < − =, this can be
explained by the interference of lower-order terms in the asymptotic bound, which are not counted in the budgets.

10
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Table 1: Means and standard deviations of performance statistics from GSEMO and MOEA/D on bi-objective MST
instances. Means and standard deviations of) are computed over successful runs only. All differences are statistically
significant.

Id < = |' | max eval.
GSEMO MOEA/D

Suc. rate Cover rate IGD+ T/max eval. Suc. rate T/max eval.

1 150 25 39 12710536 2/10 2.5±0.06% 0.13±0.11 79±11% 10/10 50±15%
2 150 25 31 10103247 0/10 3.1±0.14% 0.25±0.32 N/A 10/10 43±11%
3 150 50 45 13988205 0/10 1.9±0.1% 1.7±0.7 N/A 10/10 52±11%
4 150 50 45 13988205 0/10 2±0.083% 0.92±0.23 N/A 10/10 47±12%
5 150 100 35 9242155 0/10 2.5±0.13% 2.6±1.2 N/A 10/10 63±15%
6 150 100 36 9506216 0/10 2.2±0.21% 3.7±2.3 N/A 10/10 58±11%
7 300 25 45 68243769 3/10 2.2±0.031% 0.06±0.072 86±13% 10/10 41±11%
8 300 25 49 74309882 1/10 2±0.031% 0.076±0.083 94±0% 10/10 40±8.1%
9 300 50 66 98392434 0/10 1.4±0.048% 0.49±0.13 N/A 10/10 50±11%
10 300 50 63 93920051 0/10 1.5±0.045% 0.8±0.24 N/A 10/10 60±15%
11 300 100 79 113013110 0/10 1.1±0.043% 2±0.53 N/A 10/10 60±8.3%
12 300 100 80 114443656 0/10 1.1±0.072% 3.1±1 N/A 10/10 58±11%

7 Conclusion

In this study, we contribute to the theoretical analyses of evolutionary multi-objective optimization in the context of
non-trivial combinatorial problems. We give the first run-time analysis of the MOEA/D algorithm for a broad problem
class that is multi-objective minimum weight base problem. In particular, we show a fixed-parameter polynomial
expected run-time for approximating the non-dominated front, simultaneously extending existing pseudo-polynomial
bounds for GSEMO to arbitrary number of objectives and broader combinatorial structures. Our experiments in
random bi-objective minimum spanning tree instances indicate that MOEA/D significantly outperforms GSEMO in
the computing extreme points under an appropriate decomposition. Along the way, we prove properties that give
further insight into the problem of interest.
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