
RIKE: Using Revocable Identities to Support

Key Escrow in PKIs

Nan Zhang1,2, Jingqiang Lin1,�, Jiwu Jing1, and Neng Gao1

1 State Key Lab of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100195, China

{zhangnan,linjq,jing,gaoneng}@lois.cn
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Public key infrastructures (PKIs) are proposed to provide
various security services. Some security services such as confidentiality,
require key escrow in certain scenarios; while some others such as non-
repudiation, prohibit key escrow. Moreover, these two conflicting require-
ments can coexist for one user. The common solution in which each user
has two certificates and an escrow authority backups all escrowed pri-
vate keys for users, faces the problems of efficiency and scalability. In this
paper, a novel key management infrastructure called RIKE is proposed
to integrate the inherent key escrow of identity-based encryption (IBE)
into PKIs. In RIKE, a user’s PKI certificate also serves as a revocable
identity to derive the user’s IBE public key, and the revocation of its IBE
key pair is achieved by the certificate revocation of PKIs. Therefore, the
certificate binds the user with two key pairs, one of which is escrowed
and the other is not. RIKE is an effective certificate-based solution and
highly compatible with traditional PKIs.

Keywords: Certificate, identity-based encryption, key escrow, key man-
agement, public key infrastructure, revocation.

1 Introduction

Public key infrastructures (PKIs) are proposed to publish public keys. In PKIs,
the public key of a user1 is bound to its identity in a certificate, signed by a
certification authority (CA). After querying and validating a certificate, every-
body can use the contained public key for authentication, confidentiality, data
integrity and non-repudiation.

Key escrow is required or prohibited in different security services, even for
one user. On one hand, if a key pair is used for data encryption and decryption,
key escrow is usually needed. A typical example is that, in a corporation, the

� Corresponding author: The authors were partially supported by National Natural
Science Foundation of China grant 70890084/G021102, 61003273 and 61003274, and
Strategy Pilot Project of Chinese Academy of Sciences sub-project XDA06010702.

1 In this paper, “user” may refer to a person, a device, an application process or any
equivalent entity.

F. Bao, P. Samarati, and J. Zhou (Eds.): ACNS 2012, LNCS 7341, pp. 48–65, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 49

backups of all employees’ private keys are stored in a trusted party, called the es-
crow authority (EA) or the key management center (KMC); so the corporation
can decrypt all encrypted data in case the employee’s private key is unavail-
able. On the other hand, if the key pair is used to sign and verify messages for
non-repudiation, key escrow is usually prohibited. For example, key escrow is
forbidden or unrecommended in the digital signatures laws and the guidelines of
several countries and organizations [3,11,16,17].

To satisfy the conflicting requirements of key escrow, a common solution is
to let each user hold two key pairs and accordingly two PKI certificates. The
key pair and the certificate used for non-repudiation, don’t support key escrow;
while the others do. An instruction (called the key usage extension) is embedded
in each certificate to indicate the purpose of the key pair [13]. In this two-
certificate solution, every user generates its own key pair for non-repudiation and
the EA generates the user’s key pair for other purposes. The two public keys are
contained separately in two certificates. As a result, more resources are needed
to sign, publish and revoke certificates. Moreover, the EA faces the problem of
scalability: as new key pairs are generated to replace expired certificates and
new users join the system, the task of maintaining the great amount of escrowed
private keys becomes very heavy.

Identity-based encryption (IBE) is a special type of public key algorithms,
with the feature of inherent key escrow. In IBE, a trusted private key generator
(PKG) initializes a secret master key and publishes the corresponding pubic pa-
rameters. A user’s public key can be calculated from its identity (and the pubic
parameters) by other users. Thus, certificates are not needed. When receiving
messages encrypted by its public key (or its identity), the user asks the PKG to
generate the private key corresponding to its identity. As for key recovery, the
PKG only needs to hold and protect the secret master key, to regenerate private
keys for all identities (or users). However, key revocation (when a private key is
compromised) is a problem in IBE, since the public key are bound to identities
automatically and users are not willing to change their identities. One the con-
trary, there are various certificate revocation mechanisms in PKIs, applicable to
different scenarios.

The above observation that IBE and PKIs have complementary advantages
gives us the motivation to integrate IBE and PKIs. In this paper, we propose
RIKE, using Revocable Identities of IBE to support Key Escrow in PKIs. RIKE
doesn’t invent any new public key algorithm; instead, it is an innovative key
management infrastructure assembling the advantages of both these two cryp-
tosystems. Each RIKE user has one certificate and the public key in it is only
used for the security services prohibiting (or not requiring) key escrow. The
other security services requiring key escrow, are achieved through IBE; however,
the IBE public key is derived from the user’s certificate, not from its real iden-
tity. Compared with traditional PKIs, RIKE provides security services with the
conflicting requirements of key escrow, while each user has only one certificate.
Moreover, supporting key escrow in RIKE is much easier than that in PKIs, due
to the inherent key escrow of IBE.



50 N. Zhang et al.

RIKE also solves the key revocation problem of IBE, by utilizing the certifi-
cate revocation mechanisms of PKIs. Unlike deriving the public key from the
receiver’s unchangeable identity in IBE, the RIKE user derives the IBE pub-
lic key from the receiver’s certificate after validating that certificate (including
checking its revocation status). If the receiver’s IBE private key is compromised,
the CA will revoke its certificate and then the corresponding IBE public key
shall not be used. If a new certificate is issued, a new IBE key pair is available
automatically while the receiver’s identity keeps constant. Therefore, in RIKE,
a certificate works as a “revocable identity”.

Another advantage of RIKE is the high compatibility with PKIs. RIKE is
implemented on the prevailing X.509-based PKIs, with new-designed certificate
extensions (see Section 4). So the existing PKIs can be smoothly transferred to
RIKE. If some users receive a certificate contained such extensions and do not
understand the extensions or support IBE, they just ignore these extensions and
process it as a common X.509 PKI certificate.

This paper is organized as follows. Section 2 surveys the related work. Section
3 presents the detailed architecture and the analysis of RIKE. Section 4 discusses
how to implement RIKE using X.509 PKI certificates. Finally, Section 5 draws
the conclusion.

2 Related Work

How to perfectly support key escrow in PKIs is still an open problem. The
common and prevailing approach is to store the backup of a user’s private key
in a centralized component [15,32]. This solution is compatible with traditional
PKIs, but lacks of scalability because more and more private keys are stored
as the number of users increases and certificates expire. Self-escrow PKIs (SE-
PKIs) are proposed [9,31] to embed the public part of trapdoor information
when users generate private keys. The key recovery agent (KRA), holding the
secret part of trapdoor information, can recover users’ private keys. However,
the specifically-designed public key algorithms are not supported by most users
and then obstruct the adoption of SE-PKIs. In this work, we try to provide a
solution supporting efficient key escrow and compatible with traditional PKIs.

The concept of IBE originally proposed by Shamir [33]. Boneh et al. [7] and
Cocks [12] invented secure IBE algorithms, in which an arbitrary bit-string can
be used as a public key. Hierarchical IBE [20,21] is designed to reduce the work-
load of the centralized PKG. All these algorithms have two basic features: (a) a
user’s identity known by others are used as the user’s public key, so the certifi-
cate is eliminated; and (b) IBE inherently supports key escrow because all users’
private keys are generated by PKGs and can be recovered by PKGs.

The inherent key escrow is usually considered as a drawback of IBE in many
scenarios, because of the risk that the users’ private keys may be disclosed or
maliciously used by the PKG. [18,23] proposed to generate the private keys by
distributed PKGs, so that the keys are still secure when the PKGs are par-
tially compromised. Alternatively, the privilege of PKGs can be constrained. In



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 51

certificate-based encryption (CBE) [19], a user’s non-escrowed secret key and a
certificate from its CA are both needed to decrypt messages; and [34] designed a
CBE-based proxy cryptosystem with revocable proxies. In certificateless public
key cryptography (CL-PKC) [2], the private key is generated by a user and a key
generating center (KGC) cooperatively. However, the feature of key escrow can
be leveraged in the scenarios where key escrow is necessary, and the inherence
makes the key-escrow design of RIKE concise and efficient.

The inherent binding of identities and public keys becomes a problem in IBE
when the user’s public key needs to be revoked (e.g., the private key is com-
promised), because identities are usually expected to remain constant. To deal
with the revocation problem, the user’s identity and a period of validity can be
combined together to derive its public key [7]. Once the period expires, the key
pair becomes invalid automatically; however, if the private key is compromised
during the period, the key pair can not be revoked in this way. So, the period
of validity shall be very short for high security, and the PKG shall generate
and users shall apply for private keys very frequently. Another approach is the
security mediator (SEM) architecture [5,6,26], in which an online SEM keeps a
partition of each user’s private key and every decryption operation requires the
SEM’s help. Revocation is achieved as long as the SEM stops helping the user to
decrypt messages. But an always-online SEM service faces more risks, so more
expensive protections are needed in practical deployment.

On the contrary, a public key (or a certificate) in PKIs is used only after
its revocation status is checked. Lots of approaches are proposed to revoke PKI
certificates, such as certificate revocation lists (CRLs) [13], redirect CRLs [1],
the online certificate status protocol (OCSP) [29], NOVOMODO [27], certificate
revocation trees (CRTs) [25] and authenticated dictionaries [30]. These revoca-
tion mechanisms have advantages in different environments, and all can be used
in RIKE to revoke certificates. More detailed comparisons and evaluations of
revocation mechanisms can be found in [22,28].

Some schemes are proposed to provide benefits similar to IBE, focusing on the
compatibility and interoperability issues. In the RSA-based schemes [14,24], a
user can encrypt messages to another user by its identity (without a certificate);
or, the identity-to-key binding is implemented by online query [10]. Key escrow
is not considered in these schemes. Our solution applies IBE to support key
escrow in PKIs, keeping the complete compatibility with PKI certificates. For
those users that do not support IBE algorithms, they can still use a certificates
with the RIKE-parameter extension as a common PKI certificate.

3 RIKE: Supporting Key Escrow in PKIs

In this section, we firstly describes the background of PKIs and IBE, and the
basic architecture of RIKE. Then, we extend this basic architecture to work
with hierarchical PKIs and cross certification. Finally, we present the features
of RIKE and the comparison with other schemes.



52 N. Zhang et al.

3.1 Background

PKIs are built based on traditional public key algorithm. A CA signs certificates,
each of which binds a user’s identity and its public key. Trusting the CA, a user
verifies the CA’s signature on a certificate and obtains another’s identity and
public key. Then, these certified information is used for various security services.

The notations and conceptions about PKIs are listed as follows. The super-
script P indicates the key pairs in PKIs (to distinguish with those key pairs in
IBE, for which the superscript I is used).

– IDU , IDCA: the identities of a user U and the CA, respectively.
– PKP : a public key of traditional public key algorithms.
– SKP : a private key of traditional public key algorithms.
– Cert(U [, e]) = SignSKP

CA
(IDCA, IDU |PKP [, e]): the certificate signed by

the CA, binding IDU and PKP , with an optional extension e. The CA and
U are called the issuer and the subject of Cert(U [, e]), respectively.

IBE is a special type of public key algorithms, where a public key is derived from
the user’s identity. A PKG firstly generates a master key and public parameters.
The public parameters are publicly known, then a user can calculate another’s
public key based on its identity and the public parameters. Only the PKG can
calculate the corresponding private key by the secret master key. The notations
and conceptions about IBE are listed as follows:

– PM : the public parameters generated by the PKG.
– MK: the PKG’s master key.
– PKI(IDU ) = GenPK(IDU , PM): the public key derived from the identity

of U and PM . It can be calculated by any user.
– SKI(IDU ) = GenSK(IDU ,MK): the private key generated by the PKG

for U . Only the PKG can calculate it.

3.2 Basic RIKE

The basic idea of RIKE is to use (the hash value of) a user’s PKI certificate as its
identity to generate the IBE public key, used for the security services requiring
key escrow. Then, each RIKE user has two key pairs but only one certificate.
The basic architecture of RIKE is composed of a CA and an arbitrary num-
ber of users. The component responsible for signing certificates and generating
escrowed private keys in RIKE, is still called the CA, to emphasizing its high
compatibility with PKIs. Different from that in PKIs, the CA in RIKE owns a
PKG agent, holding the IBE master key and generating escrowed private keys
for users. Nevertheless, when RIKE is deployed, the PKG agent and the CA can
be managed by two departments or implemented in one system.

We can easily implement the basic RIKE as follows, and H(·) is a collision-free
hash function.

Initialization. The CA generates (PKP
CA, SK

P
CA) and (PM,MK), and signs a

self-signed certificate Cert(CA,PM)=SignSKP
CA

(IDCA, IDCA|PKP
CA,PM).



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 53

Then, the certificate is delivered to all users in out-of-band means, as it is
done in traditional PKIs; while SKP

CA and MK are known only to the CA.
PM is embedded in the CA’s certificate as an extension. See Section 4 for
more details about the extension.

Certificate and Key Application. A user U generates (PKP
U , SKP

U ), and
then applies Cert(U) = SignSKP

CA
(IDCA, IDU |PKP

CA) and SKI
U =

SKI(H(Cert(U))) from the CA. Cert(U) is published publicly by the CA,
and the user keeps SKP

U and SKI
U secret. (PKP

U , SKP
U ) is called the non-

escrowed key pair of U , and (PKI
U , SK

I
U) is called the escrowed key pair of

U , where PKI
U = PKI(H(Cert(U))).

Signing and Verification. U signs a message by SKP
U . Everybody can query

and validate Cert(U) to obtain PKP
U , and verify the signed message. Here,

the validation of Cert(U) includes checking the period of validity, the CA’s
signature on it, and its revocation status, as it does in PKIs.

Encryption and Decryption. Another user that wants to send encrypted
data to U , firstly queries and validates Cert(U), and calculates PKI

U based
on Cert(U) and PM extracted from the CA’s certificate. Then, data are en-
crypted by PKI

U and sent to U . When receiving encrypted data, U decrypts
them by SKI

U .

3.3 Certificate Renewal and Revocation in Basic RIKE

Before using either the public key in a certificate or the IBE public key derived
from it, a user shall check the CA’s signature, the certificate’s period of validity
and its revocation status. All certificate revocation mechanisms in PKIs can be
used in RIKE. If the certificate expires or is revoked, the two public key shall
not be used any more. The two key pairs may change or not after certificate
renewal and revocation.

A user’s certificate can be renewed when it expires. In the new certificate, the
period of validity is updated, so the escrowed key pair changes automatically. But
the non-escrowed key pair contained in the certificate will be either regenerated
or kept unchanged (if it is still considered as secure).

A user’s certificate is revoked and a new one with valid information is usually
signed, when (a) the information in the certificate becomes invalid (e.g., its
affiliation changes), or (b) the non-escrowed key pair or the escrowed key pair is
(suspected to be) compromised.

– If a certificate is revoked due to the invalid information, the user’s non-
escrowed key pair may keep unchanged in the new certificate, but the es-
crowed key pair derived from the new certificate becomes different.

– If the certificate is revoked due to the compromise of the non-escrowed key
pair, both the two key pairs will change even if the escrowed key pair is not
compromised.

– If the certificate is revoked due to the compromise of the escrowed key pair,
the user’s non-escrowed key pair may keep unchanged in the new certificate
(but at least one bit in the certificate shall be modified, e.g., the period of
validity, so the escrowed key pair will change).



54 N. Zhang et al.

In summary, the non-escrowed key pair does not change unless it needs to change,
while the escrowed key pair always changes once the certificate is replaced by a
new one. But the sender who uses another user’s IBE public key doesn’t need to
know whether the key pair has changed or not, it only validates the recipient’s
certificate (just as what they do in traditional PKIs) and derives the IBE public
key from it. There is no extra burden for RIKE users to deal with certificate
renewal and revocation.

3.4 Hierarchical RIKE

PKIs are usually built hierarchically [13], as a user applies its certificate from
another user. For example, a CA (called the root CA in hierarchical PKIs) gen-
erates the self-signed certificate, and signs certificates for the 2nd-level users,
some of which sign certificates for other users. The user that signs certificates
for others, is also called a subordinate CA. In this paper, we call it a user or a CA
alternatively according to the context. This structure can be easily extended to
support more levels, where each user applies for a certificate from an upper-level
user or the root CA.

The following new notations are used in a hierarchical PKI:

– Uj,k: the kth jth-level user.
– Cert(Uj,k) = SignSKP

U
j−1,k′

(IDIsr, IDUj,k
|PKP

Uj,k
): the certificate of Uj,k

signed by Isr, which is another user Uj−1,k′ or the root CA (when j = 2).

In order to validate Cert(Uj,k), a vector of certificates (called the certificate

chain) are needed:
−−→
Cert(Uj,k) = (Cert(U2,k2 ), · · · , Cert(Uj−1,kj−1 ), Cert(Uj,k)),

where the issuer of each certificate is the subject of the preceding one and
Cert(U2,k2) is signed by the root CA. Every user has been already configured
with the root CA’s self-signed certificate and uses it to validate Cert(U2,k2), and
then repeatedly uses a validated certificate to validate the next one in the vector
until Cert(Uj,k) is validated.

The hierarchical structure brings benefits. The root CA’s workload is dis-
tributed among lower-level CAs, and users can apply for certificates locally. The
root CA serves only a few users (or CAs) and then works off-line in most time to
reduce attack risks. If a lower-level CA is compromised, only a limited number
of users are impacted.

To build RIKE on hierarchical PKIs, we need to find a compatible way to man-
age IBE key pairs (or escrowed key pairs). Two intuitive and simple approaches
are listed as follows:

– Only the root CA owns the PKG agent, which generates the escrowed private
keys for all users. The IBE public parameters are embedded only in the root
CA’s self-signed certificate. Or,

– Each CA owns its PKG agent, which generates the escrowed private keys for
its users only. Then, each CA’s certificate contains the IBE public parameters
of its own PKG agent.



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 55

However, neither of these simple approaches works well. In the first approach,
the root CA takes the workload of generating escrowed private keys for all users,
which violates the intentions of hierarchical PKIs. In the second one, an upper-
level PKG agent cannot recover the private keys generated by the lower-level
PKG agents, while sometimes centralized key escrow is needed.

We propose to build RIKE by combining hierarchical PKIs and hierarchical
IBE [20,21]. Hierarchical IBE works as follows. For example, a PKG (called
the root PKG) generates its master key and the public key parameters, and
generates IBE private keys for the 2nd-level users, some of which generate IBE
private keys for other users. The user that generates IBE private keys for others is
called a subordinated PKG. In this paper, we call it a user or a PKG alternatively
according to the context. The structure can be easily extended to support more
levels, where each user applies its IBE private key from an upper-level user or the
root PKG. Note that all users’ private keys are generated by the secret master
key directly or indirectly, so the root PKG can recover any user’s private key.

In hierarchical IBE, each user’s public key is derived from its identity chain,
and the following new notations are introduced:

– IDUj,k
: the identity of the kth jth-level user Uj,k; particularly, the root PKG

can be denoted as U1,1 and its identity is null.

–
−→
IDUj,k

= (
−→
ID�, IDUj,k

): the identity chain of Uj,k, where
−→
ID� is (a) the

identity chain of another user Uj−1,k′ if Uj,k applies its IBE private key from
Uj−1,k′ , or (b) null if Uj,k applies it from the root PKG (i.e, the root PKG’s
identity chain is also null).

Thus, the identity chain of IDUj,k
is (IDU2,k2

, · · · , IDUj−1,kj−1
, IDUj,k

), and its

private key is generated by Uj−1,kj−1 as follows:

– PKI(−→IDUj,k
) = GenPK((IDU2,k2

, · · · , IDUj−1,kj−1
, IDUj,k

), PM): the pub-

lic key of Uj,k derived from
−→
IDUj,k

and PM .

– SKI(−→IDUj,k
) = GenSK(IDUj,k

, SKI(−→IDUj−1,kj−1
)): the private key of Uj,k

generated by Uj−1,kj−1 . Note that SKI(−→IDU1,1) = MK is the root PKG’s
master key.

Finally, hierarchical RIKE is built on hierarchical PKIs, where each CA owns
its PKG agent and these PKG agents work as the PKGs of hierarchical IBE.
Only the root PKG agent publishes the IBE public parameters in the root CA’s
self-signed certificate (See Section 4 for details). With the same IBE public pa-
rameters, the hash values of a user’s certificate chain are used to generate its
IBE public key. Here, we firstly define H(

−−→
Cert(Uj,k)) =

(H(Cert(U2,k2 )), · · · , H(Cert(Uj−1,kj−1 )), H(Cert(Uj,k))).

– The root CA generates (PKP
CA, SK

P
CA) and (PM,MK), and signs a self-

signed certificate Cert(CA,PM) = SignSKP
CA

(IDCA, IDCA|PKP
CA, PM).

– A 2nd-level user U2,k generates (PKP
U2,k

, SKP
U2,k

), and applies Cert(U2,k) =

SignSKP
CA

(IDCA, IDU2,k
|PKP

U2,k
) and SKI

U2,k
= SKI(H(

−−→
Cert(U2,k))) from



56 N. Zhang et al.

the root CA. (PKP
U2,k

, SKP
U2,k

) is the non-escrowed key pair of U2,k, and

(PKI
U2,k

, SKI
U2,k

) is the escrowed key pair of U2,k, where

PKI
U2,k

= PKI(H(
−−→
Cert(U2,k))).

– A 3rd-level user U3,k generates (PKP
U3,k

, SKP
U3,k

), and applies Cert(U3,k) =

SignSKP
U
2,k′

(IDU2,k′ , IDU3,k
|PKP

U3,k
) and SKI

U3,k
= SKI(H(

−−→
Cert(U3,k)))

from a 2nd-level user U2,k′ .
– Any user can follow the process above to generate its non-escrowed key pair

and apply its certificate and escrowed key pair.

Hierarchical RIKE has both the features of distributed workload and centralized
key escrow. Hierarchical RIKE distributes the workload among subordinate PKG
agents of all levels. Each subordinate PKG agent is responsible for generating
the escrowed private keys of only the users directly subordinated to it. At the
same time, hierarchical RIKE gives the root PKG agent the ability to recover the
escrowed key pairs of all users. Given a user’s certificate chain, its IBE private
key can be regenerated by the root PKG agent’s master key.

3.5 Hierarchical RIKE with Cross Certification

Theoretically, one hierarchical PKI (and then hierarchical RIKE) with one root
CA can serve all users in the world. However, there are lots of root CAs with
different self-signed certificates in the real world. Usually, a user is configured
with a certificate trust list (CTL), a limited set of self-signed certificates. Users
apply for certificates from different root CAs (directly or indirectly) and have

different CTLs. Thus, if a user U receives
−−→
Cert(U ′) which is signed by a root

CA not in the CTL of U , it cannot validate Cert(U ′) and communicate with
U ′ securely. Note that self-signed certificates shall be delivered in out-of-band
means and be configured carefully, so a user doesn’t change its CTL rashly.

Cross certification [13] helps a user validate certificates signed by a root CA
not in its CTL. As shown in Figure 1, Cert(U ′) is signed by RootCA2 (indi-
rectly), while the CTL of U contains the self-signed certificate of RootCA1 only.
To help U validate Cert(U ′), RootCA1 signs a cross certificate CrsCert(CA′) =

RootCA2

CA'

U' CA''

RootCA1

CA

U

CA or User

Certificate

Cross Certificate

Fig. 1. Cross Certification and Cross Certificate



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 57

SignSKP
RootCA1

(IDRootCA1 , IDCA′ |PKP
CA′), so U can validate Cert(U ′) using the

certificate chain (CrsCert(CA′), Cert(U ′)).
A cross certificate is the same as a common certificate signed to a CA, except

that the subject of the cross certificate is a CA which (a) already has a valid
certificate and (b) has signed certificates for users. On receiving a certificate, a
user cannot distinguish whether it is a cross certificate or not. Moreover, the
subject (or the issuer) of a cross certificate may be a root or non-root CA, and
cross certification may be bidirectional or not. For example, in Figure 1, CA′

may also sign a cross certificate for RootCA1 or not.
When cross certificates are issued, a user will have multiple certificate chains.

For example, in Figure 1, U ′ has two certificate chains (Cert(CA′), Cert(U ′))
and (CrsCert(CA′), Cert(U ′)): one is validated by Cert(RootCA2) and the
other is done by Cert(RootCA1).

The coexisting multiple certificate chains lead to two problems, if the method
in Section 3.4 is directly used to derive a user’s IBE public key. Firstly, different
certificate chains result in different escrowed key pairs, all users (and CAs) sub-
ordinated to the subject of the cross certificate have to apply new IBE private
keys after each cross certification happens. Secondly, given a user, some of its
private keys are escrowed in PKI components managed by other organizations.
The consequence is that the user’s own organization can not recover those pri-
vate keys. For example, in Figure 1, the private key that decrypts the encrypted
data sent from U to U ′ will be escrowed only in the PKG agent of RootCA1.
Note that U ′ is a user of RootCA2, but RootCA2 can not recover this private
key.

The solution is to always derive user’s IBE public key from the same certificate
chain. We choose the one in which there is no cross certificate and name it
the primary certificate chain of a user. The user’s escrowed private key is only
generated based on the primary certificate chain.

To achieve this aim, the cross certificate carries the information of (a) the
IBE public parameters of the root CA (or the PKG agent) in the subject’s
primary certificate chain and (b) the primary certificate chain of the subject
(i.e., the hash values of certificates from the 2nd-level CA to the certificated
subject, called the ID-prefix in this paper). The above information is embedded
in the cross certificate2 as an extension called the RIKE-parameter extension
(see Section 4 for details). The verifier can use the above information to derive
the same IBE public key as that from the primary certificate chain.

For example, in Figure 1, (Cert(CA′), Cert(U ′)) is the primary certificate
chain of U ′, and the cross certificate CrsCert(CA′) contains the IBE public

parameters of RootCA2 and the ID-prefix of CA′ (i.e., H(
−−→
Cert(CA′))). So the

IBE public key of U ′ is always derived from (H(Cert(CA′)), H(Cert(U ′))) and
PMRootCA2, even if U validates the certificate chain (CrsCert(CA′), Cert(U ′))
of U ′ by Cert(RootCA1), because H(

−−→
Cert(CA′)) and PMRootCA2 are embedded

in CrsCert(CA′) as a certificate extension.

2 In RIKE, before a CA signs a cross certificate to another CA, it needs to query the
primary certificate chain of the subject CA, to obtain the information.



58 N. Zhang et al.

In particular, Algorithm 1 is used to derive the IBE public key of U ′, when a
verifier U receives a certificate chain

−−→
Cert(U ′) different from the primary certifi-

cate chain of U ′. U can reassemble (the hash values of) the primary certificate

chain of U ′, when validating
−−→
Cert(U ′). During this process, if Certi is a cross

certificate (containing the IBE public parameters PM and the ID-prefix), the
IBE public parameters used by the verifier is substituted by PM and the ID-
prefix is used to reassemble the identity chain of U ′. Note that the algorithm
works even when there are multiple cross certificates in

−−→
Cert(U ′).

Algorithm 1. The Derivation of IBE Public Key

Input: The certificate chain of U ′, −−→Cert(U ′) = (Cert2, Cert3, · · · , Certj);
The self-signed certificate in the CTL of U , Cert1;

Output: The IBE public key of U ′, PKI
U′ ;

PM = PMField(RikeParamExt(Cert1));
// PM is set to the IBE public parameters in Cert1.−→
ID = null;
IsrCert = Cert1;
for (i = 2; i ≤ j; i++) do

if V erify(IsrCert,Certi) then
// Certi is verified by IsrCert.
if e = RikeParamExt(Certi) then

// Certi contains a RIKE parameter extension e.
PM = PMField(e); // PM is set to the IBE public parameters in Certi.−→
ID = IDPrefixF ield(e); //

−→
ID is set to the ID-prefix in Certi.

else
// No RIKE parameter extension in Certi.−→
ID = AppendID(

−→
ID,Hash(Certi));

end if
IsrCert = Certi; // To verify the next certificate.

else
return null;

end if
end for
return PKI

U′ = GenPK(
−→
ID, PM);

In Section 3.4, to guarantee the root CA (or the PKG agent) can recover all
users’ private keys, we required that the IBE public key parameters are only
embedded in the root CA’s self-signed certificate. However, with the RIKE-
parameter extension in cross certificates, the IBE public key parameters may
actually be obtained from a non-self-signed cross certificate. A new risk appears
that some subordinate CA may maliciously embed different IBE public param-
eters when signing certificates for users. Note that a verifier cannot distinguish
such certificates from a cross certificate. Thus, the root PKG agent can not re-
cover the users’ IBE private keys and the centralized key escrow is undermined.



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 59

Another certificate extension called the RIKE-parameter-lock extension, is
proposed to avoid the above risk. Once this extension is set in a certificate, the
subject CA and all its (directly and indirectly) subordinated CAs shall not issue
a certificate with different IBE public parameters; otherwise, such a certificate
is considered as invalid. Of course, those CAs are deprived of the privilege to
issue cross certificates. It is reasonable, because the potentially malicious CAs
should not be granted this privilege.

3.6 Certificate Renewal and Revocation in Hierarchical RIKE

In hierarchical RIKE, certificate renewal and revocation are somehow more com-
plicated than those in basic RIKE. If the renewed (or revoked) certificate is held
by a bottom-level user, the cases are the same as in basic RIKE discussed in
Section 3.3.

However, if the renewed (or revoked) certificate is held by a CA, the two key
pairs of the CA may change (as discussed in Section 3.3) and then impact the
users subordinated to the CA. If the non-escrowed key pair of the CA (i.e., the
key pair to sign and verify certificates) is changed, the CA needs to revoke all
certificates it signed before. It is the same as in hierarchical PKIs, so we do not
discuss this case here. The escrowed key pair of the CA may change, when the
CA’s certificate is renewed or revoked. Three cases are analyzed as follows:

Case 1. The renewed (or revoked) certificate is not a cross certificate, and nei-
ther the CA nor its (directly and indirectly) subordinate CAs hold cross cer-
tificates. The subordinate CAs’ primary certificate chains changes because
the CA’s certificate changes. So all their escrowed key pairs are changed.

Case 2. The renewed (or revoked) certificate is not a cross certificate, but the
CA or its (directly or indirectly) subordinate CA holds a cross certificate. In
addition to all these CAs’ escrowed key pairs are changed as in Case 1, the
cross certificate shall be revoked and a new cross certificate shall be signed,
because the ID-prefix in it needs to be updated.

Case 3. The renewed (or revoked) certificate is a cross certificate signed to the
CA. Since the CA’s is primary certificate chain doesn’t depend on any cross
certificate, its escrowed key pair is kept unchanged. So the escrowed keys of
its subordinate CAs are also kept unchanged.

3.7 Features of RIKE

In RIKE, each user holds two key pairs but only one certificate: the non-escrowed
key pair (PKP

U , SKP
U ) is used in security services (e.g., non-repudiation) where

key escrow is prohibited, and the escrowed key pair (PKI
U , SK

I
U ) is used in secu-

rity services (e.g., confidentiality) where key escrow is required. We summarize
the features of RIKE as follows.

Inherent Key Escrow. RIKE carries forward the inherent-key-escrow feature
of IBE, in which all users’ private keys are generated by the PKG with the



60 N. Zhang et al.

secret master key. Therefore, unlike the EA in PKIs that stores all users’s
private keys, the CA (or the PKG agent) in RIKE only stores the secret
master key itself and avoids the problem of scalability when the user amount
becomes enormous.

Effective Certificate-Based Solution. RIKE extends traditional PKIs by cre-
atively leveraging the PKI certificates as revocable identities to support both
key escrow and non-repudiation without coming into conflict. For each user,
PKP

U and PKI
U are published together in one certificate. These two public

keys’ integrity and validity are guaranteed simultaneously by validating this
certificate. In this way, RIKE does not bring extra communications and val-
idations to obtain PKI

U . Therefore, RIKE is an effective solution, especially
in the environments where resources are limited.

Compatibility with Traditional PKIs. RIKE is completely compatible with
all policies and procedures in traditional PKIs to create, manage, distribute,
use, store and revoke certificates. As a result, for the security services with-
out key escrow, RIKE and PKIs work with thorough interoperability. The
transfer from a traditional PKI to RIKE is very simple and straightforward:
the root CA (or the PKG agent) generates (PM,MK) and signs a new self-
signed certificate containing the essential extensions (details in Section 4),
and then generates escrowed key pairs for users and subordinate CAs.

Revocable Identities. Although RIKE borrows the key generation mechanism
of IBE, RIKE does not suffer from the key revocation problem as IBE does.
The reason is that PKI

U is not derived from the user’s real identity, but from
the user’s PKI certificate. When the certificate has been revoked and replaced
by a new one, PKI

U will change automatically. Therefore, the revocation of
the escrowed key pair is implemented easily by certificate revocation, for
which there are already abundant approaches. In this way, RIKE supports
the “revocable identity” of the user (not the real identity, but the “identity”
in the perspective of IBE).

Algorithm-Independency. RIKE combines the advantages of PKIs and IBE
and does not pose any additional requirements on the cryptographic algo-
rithms. Any algorithm applicable in traditional PKIs and IBE can be used
in RIKE for signature and encryption, respectively. In a word, RIKE is an
algorithm-independent framework and the algorithms can be adaptively cho-
sen in different implementations.

3.8 Comparisons with other Schemes

RIKE vs. PKI. The most straightforward way to satisfy the conflicting key
escrow requirements in PKIs is to use two key pairs and two certificates in
parallel. One of the two key pairs is generated and escrowed by the EA, and
can be recovered by it when needed. A key usage extension is embedded in each
certificate to indicate the key pair’s purpose.

We compare RIKE with PKIs in three aspects as follows, showing that RIKE
is more efficient than PKIs in both client-side and server-side. Firstly, to satisfy



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 61

the conflicting key escrow requirements, almost all the components in PKIs need
to be scaled up. The CA shall have the ability to sign twice as many certificates
as before. Resources of certificate distribution and revocation shall also increase
twofold. In contrast, RIKE supports two key pairs implicitly in only one certifi-
cate. Almost no extra resource pressure is applied on PKI components and no
additional certificate distribution is needed.

Secondly, in PKIs, both the two certificates of each user shall be obtained
by (or transmitted to) other users. So the communication cost doubles, which
impedes this solution in bandwidth-limited applications. In RIKE, no additional
certificates of users are needed by encrypted-message senders.

Finally, the EA in PKIs needs to appropriately store all users’ escrowed keys
in a well-protected repository. In practise, besides currently valid keys, the EA
also needs to store all historical keys (out-of-date keys and revoked ones), which
are still useful to decrypt the old ciphertexts created when those keys were
valid. As time goes on, more and more historical keys will be accumulated.
Furthermore, all these private keys should be well protected with confidentiality.
In RIKE, the PKG agent only stores the IBE master key in stead of all users’
private keys. Whenever a specific private key shall be recovered, the PKG agent
regenerates it by the IBE master key and the corresponding certificate chain.
Since all the current and historical certificates are stored in plaintext, only one
secret master key needs to protect, which is much simpler and more trustworthy
than protecting a huge and accumulating set of private keys.

RIKE vs. SE-PKI. SE-PKIs enable PKIs to recover the private keys of all
users. All the users’ private keys are escrowed by the KRA which is independent
from the CA. The KRA generates its own key pair (the private key SKKRA and
the pubic key PKKRA) and provides PKKRA as a parameter for users to gener-
ate their key pairs. In this way, a trapdoor is placed in the user key generation
process. The user’s private key can be calculated by the KRA with SKKRA, so
key escrow is achieved without storing and managing all users’ private keys.

However, SE-PKIs also have limitations where RIKE has advantages. SE-
PKIs escrow all users’ private keys without differentiation, so it can not solve
the conflict between key escrow and non-repudiation requirements. If SE-PKIs
are adopted in traditional PKIs, each user still needs to apply for and hold two
certificates. But each RIKE user only holds one certificate. Moreover, in a system
with a huge amount of users, the centralized KRA in SE-PKIs undergoes a heavy
workload, whereas the distributed PKGs in hierarchical RIKE (or hierarchical
IBE) share the workload.

SE-PKIs depend on specially-designed algorithms, and the key generation
and encryption algorithms are not compatible with the current widely-adopted
PKIs’. On the contrary, RIKE is an algorithm-independent framework and could
be smoothly transferred from the existing PKI systems.

Therefore, compared with SE-PKIs, RIKE is more suitable for large-scale
cases and more compatible with legacy PKI systems.



62 N. Zhang et al.

RIKE vs. IBE As described above, the key idea of RIKE is the integration
of PKIs and IBE by using the PKI certificate (actually, its hash value) as the
“identity” in IBE. IBE provides the good feature that the sender can obtain the
recipient’s public key from the recipient’s identity (an arbitrary bit-string, e.g.
name or email address), without an online lookup. RIKE inherits this feature.
So the sender obtains the recipient’s escrowed public key from the recipient’s
PKI certificate, eliminating the additional certificate to carry it.

The major obstacle for IBE to become a fully-blown public key cryptosystem
is its lack of key revocation mechanism which is necessary in practice. In IBE,
the key pair is hard to revoke, because the public key is one-to-one bound with
a user’s identity and changing identity brings unacceptable inconvenience to the
user. In contrast, RIKE supports key revocation without changing the user’s
identity. By leveraging the revocation mechanism of PKIs, RIKE converts PKI
certificates into revocable identities.

Strictly speaking, RIKE borrows the IBE’s spirit of using an arbitrary bit-
string as a public key, and uses a PKI user’s certificate as its identity. Email
address is usually accepted as an IBE identity, because it is already commonly
held and easy for human to remember and input. When RIKE is deployed for cur-
rent PKI users, they have already held others’ certificates and these certificates
are used as IBE public keys automatically by the client applications. Therefore,
although the revocable identity of RIKE is much longer than the identity of IBE,
its usability is not reduced.

4 X.509-Based RIKE

In this section, we discuss how to use X.509 PKI certificates to implement RIKE,
by defining two new certificate extensions, namely, the RIKE-parameter exten-
sion and the RIKE-parameter-lock extension.

The descriptions in ASN.1 syntax are as follows.

-- The RIKE-parameter extension

RIKEParameters ::= SEQUENCE {

ibeAlgorithm OBJECT IDENTIFIER,

ibePublicParameterData OCTET STRING,

hashAlgorithm OBJECT IDENTIFIER,

idPrefix IDPrefix OPTIONAL }

IDPrefix ::= SEQUENCE SIZE (1..MAX) OF OCTET STRING

-- The RIKE-parameter-lock extension

RIKEParamLock ::= BOOLEAN

The RIKE-parameter extension RIKEParameters can be used in two kinds of
certificates: self-signed certificates and cross certificates. The first three fields
are mandatory. The field ibeAlgorithm and the filed ibePublicParameterData

describe the IBE algorithm and its detailed public parameters, and the structure
of ibePublicParameterData depends on which algorithm is used [4,8]. The



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 63

field hashAlgorithm specifies the hash function to convert a certificate into
a revocable identity. The field idPrefix, which is a sequence of hash values
corresponding to the certificates in the subject’s primary certificate chain, only
exists in cross certificates.

The RIKE-parameter-lock extension RIKEParamLock is a boolean value to
indicate whether the RIKE parameters are locked or not. When this extension
is set to true in a certificate, any other certificate following the certificate in a
certificate chain, is considered invalid if it has the RIKE-parameter extension
(with different RIKE parameters).

With the above extensions, a PKI can be transferred to RIKE simply and
smoothly. In particular, to deploy hierarchical RIKE, the root PKG agent gen-
erates (PM,MK) and signs a new self-signed certificate with a RIKE-parameter
extension. After updating this certificate in their CTLs, all the users supporting
IBE algorithms can encrypt messages by the recipients’ IBE public keys derived
from their existing PKI certificates.

5 Conclusions

In this paper, we integrate PKIs and IBE into a novel key management scheme
called RIKE, which leverages revocable identities to support key escrow in PKIs.
As an innovative key management infrastructure, RIKE satisfies the conflicting
requirements of key escrow, and reduces the cost of managing key pairs and
certificates. Each RIKE user holds two key pairs, one of which is escrowed and
the other is non-escrowed, with only one certificate. This efficient scheme assem-
bles the advantages of both the two cryptosystems and compatibly works with
hierarchical PKIs.

References

1. Adams, C., Zuccherato, R.: A general, flexible approach to certificate revocation.
Technical report, Entrust (1998)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In:
Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer,
Heidelberg (2003)

3. Asia-Pacific Economic Cooperation (APEC). Guidelines for schemes to issue cer-
tificates capable of being used in cross jurisdiction ecommerce (2004)

4. Appenzeller, G., Martin, L.: IETF RFC 5408: Identity-based encryption architec-
ture and supporting data structures (2009)

5. Baek, J., Zheng, Y.: Identity-Based Threshold Decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004)

6. Boneh, D., Ding, X., Tsudik, G., Wong, M.: A method for fast revocation of public
key certificates and security capabilities. In: 10th USENIX Security Symposium,
pp. 297–308 (2001)

7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidel-
berg (2001)



64 N. Zhang et al.

8. Boyen, X., Martin, L.: IETF RFC 5091: Identity-based cryptography standard
(IBCS) #1: Supersingular curve implementations of the BF and BB1 cryptosys-
tems (2007)

9. Brown, J., Gonzalez Nieto, J., Boyd, C.: Efficient and secure self-escrowed public-
key infrastructures. In: 2nd ACM Symposium on Information, Computer and
Communications Security, pp. 284–294 (2007)

10. Callas, J.: Identity-based encryption with conventional public-key infrastructure.
In: 4th Annual PKI Workshop, pp. 98–111 (2005)

11. China. Electronic signature law (2004)
12. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues.

In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–
363. Springer, Heidelberg (2001)

13. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: IETF
RFC 5280: Internet X.509 public key infrastructure certificate and certificate re-
vocation list (CRL) profile (2008)

14. Ding, X., Tsudik, G.: Simple Identity-Based Cryptography with Mediated RSA.
In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidel-
berg (2003)

15. Entrust. Entrust authority digital certificate solution (2012)
16. European Telecommunications Standards Institute (ETSI). Policy requirements

for certification authorities issuing qualified certificates (2000)
17. European Union (EU). Directive on a community framework for electronic signa-

tures (1999)
18. Geisler, M., Smart, N.P.: Distributing the Key Distribution Centre in Sakai–

Kasahara Based Systems. In: Parker, M.G. (ed.) Cryptography and Coding 2009.
LNCS, vol. 5921, pp. 252–262. Springer, Heidelberg (2009)

19. Gentry, C.: Certificate-Based Encryption and the Certificate Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

20. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y.
(ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg
(2002)

21. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Hei-
delberg (2002)

22. Iliadis, J., Spinellis, D., Katsikas, S., Gritzalis, D., Preneel, B.: Evaluating certifi-
cate status information mechanisms. In: 7th ACM Conference on Computer and
Communications Security, pp. 1–8 (2000)

23. Kate, A., Goldberg, I.: Distributed Private-Key Generators for Identity-Based
Cryptography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 436–453. Springer, Heidelberg (2010)

24. Khurana, H., Basney, J.: On the risks of IBE. In: International Workshop on
Applied PKC, pp. 1–10 (2006)

25. Kocher, P.C.: On Certificate Revocation and Validation. In: Hirschfeld, R. (ed.)
FC 1998. LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

26. Libert, B., Quisquater, J.-J.: Efficient revocation and threshold pairing based
cryptosystems. In: 22nd Annual ACM Symposium on Principles of Distributed
Computing, pp. 163–171 (2003)

27. Micali, S.: NOVOMODO: Scalable certificate validation and simplified PKI man-
agement. In: 1st Annual PKI Workshop, pp. 15–25 (2002)



RIKE: Using Revocable Identities to Support Key Escrow in PKIs 65

28. Myers, M.: Revocation: Options and Challenges. In: Hirschfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 165–171. Springer, Heidelberg (1998)

29. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: IETF RFC 2560:
X.509 Internet public key infrastructure online certificate status protocol - OCSP
(1999)

30. Naor, M., Nissim, K.: Certificate revocation and certificate update. In: 7th
USENIX Security Symposium, pp. 217–228 (1998)

31. Paillier, P., Yung, M.: Self-Escrowed Public-Key Infrastructures. In: Song, J.S.
(ed.) ICISC 1999. LNCS, vol. 1787, pp. 257–268. Springer, Heidelberg (2000)

32. RSA, the security division of EMC. RSA digital certificate solution (2012)
33. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,

G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

34. Wang, L., Shao, J., Cao, Z., Mambo, M., Yamamura, A.: A Certificate-Based
Proxy Cryptosystem with Revocable Proxy Decryption Power. In: Srinathan, K.,
Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 297–311.
Springer, Heidelberg (2007)


	RIKE: Using Revocable Identities to Support Key Escrow in PKIs
	Introduction
	Related Work
	RIKE: Supporting Key Escrow in PKIs
	Background
	Basic RIKE
	Certificate Renewal and Revocation in Basic RIKE
	Hierarchical RIKE
	Hierarchical RIKE with Cross Certification
	Certificate Renewal and Revocation in Hierarchical RIKE
	Features of RIKE
	Comparisons with other Schemes

	X.509-Based RIKE
	Conclusions


