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Abstract

Deep-learning algorithms typically fall within the domain of supervised artificial intelligence and are designed to

Blearn^ from annotated data. Deep-learning models require large, diverse training datasets for optimal model

convergence. The effort to curate these datasets is widely regarded as a barrier to the development of deep-

learning systems. We developed RIL-Contour to accelerate medical image annotation for and with deep-learning.

A major goal driving the development of the software was to create an environment which enables clinically

oriented users to utilize deep-learning models to rapidly annotate medical imaging. RIL-Contour supports using

fully automated deep-learning methods, semi-automated methods, and manual methods to annotate medical imag-

ing with voxel and/or text annotations. To reduce annotation error, RIL-Contour promotes the standardization of

image annotations across a dataset. RIL-Contour accelerates medical imaging annotation through the process of

annotation by iterative deep learning (AID). The underlying concept of AID is to iteratively annotate, train, and

utilize deep-learning models during the process of dataset annotation and model development. To enable this, RIL-

Contour supports workflows in which multiple-image analysts annotate medical images, radiologists approve the

annotations, and data scientists utilize these annotations to train deep-learning models. To automate the feedback

loop between data scientists and image analysts, RIL-Contour provides mechanisms to enable data scientists to

push deep newly trained deep-learning models to other users of the software. RIL-Contour and the AID method-

ology accelerate dataset annotation and model development by facilitating rapid collaboration between analysts,

radiologists, and engineers.

Keywords Deep-learning . Medical image annotation . Annotation by iterative deep learing (AID) . Segmentation .

Classification . Software tools

* Kenneth A. Philbrick

Philbrick.Kenneth@mayo.edu

Alexander D. Weston

Weston.Alexander@mayo.edu

Zeynettin Akkus

Akkus.Zeynettin@mayo.edu

Timothy L. Kline

Kline.Timothy@mayo.edu

Panagiotis Korfiatis

Korfiatis.Panagiotis@mayo.edu

Tomas Sakinis

Sakinis.Tomas@gmail.com

Petro Kostandy

KostandyPetro@mayo.edu

Arunnit Boonrod

Boonrod.Arunnit@mayo.edu

Atefeh Zeinoddini

Zeinoddini.Atefeh@mayo.edu

Naoki Takahashi

Takahashi.Naoki@mayo.edu

Bradley J. Erickson

bje@mayo.edu

1 Radiology Informatics Laboratory, Department of Radiology, Mayo

Clinic, Rochester, MN, USA

2 Oslo University Hospital, Oslo, Norway

3 Radiology Department, Khon Kaen University, Khon Kaen 40002,

Thailand

Journal of Digital Imaging (2019) 32:571–581

https://doi.org/10.1007/s10278-019-00232-0

The Author(s) 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-019-00232-0&domain=pdf
mailto:Philbrick.Kenneth@mayo.edu


Introduction

Deep-learning algorithms typically fall within the domain of

supervised artificial intelligence and are designed to Blearn^

from annotated data [1]. Deep-learning models require large,

diverse training datasets for optimal model convergence. The

ImageNet dataset used to train powerful general-purpose

deep-learning image classifiers contains millions of unique

images each annotated to describe the objects contained with-

in the image [2]. While usually smaller, datasets used to train

powerful medical image classifiers typically contain

hundreds-to-thousands of annotated images [3–7]. The effort

required to curate these training datasets is widely regarded as

a major barrier to the development of deep-learning systems.

Numerous software tools have been developed to annotate

medical imaging [8–18]. These tools commonly provide man-

ual, semi-automated, and fully automated methods to label

imaging. Semi-automated methods typically utilize traditional

image processing techniques such as thresholding or edge

detection [9, 10, 12, 19]. Fully automated methods are typi-

cally built upon semi-automated techniques and human-

designed algorithms which encode domain-specific knowl-

edge [13, 15, 17, 19]. Development of these algorithms is time

consuming and the computational time associated with run-

ning many of them can be substantial.

Deep-learning algorithms Blearn^ to identify objects of in-

terest in imaging data [1]. Utilizing deep-learning–based ap-

proaches for medical imaging annotation does not require the

development of traditional human engineered algorithms. In

many cases, deep-learning approaches to image analysis have

been found to meet or exceed the performance of traditional

algorithms [20, 21]. The computational time required to per-

form inference utilizing deep-learning models is often lower

than traditional approaches. This suggests that implementing a

deep-learning–based approach for dataset annotation may

meet or exceed the performance of traditional human-

designed annotation algorithms.

Medical image annotation software often does not provide

tools that standardize the annotations used across datasets.

Many annotation tools create annotations on an ad hoc basis.

These tools place the burden of maintaining consistency in

annotation labels on the analyst and have inspired efforts to

standardize annotation lexicon [22]. Errors or variability in

data annotation increases the size of the dataset required for

deep-learning model convergence to a Bcorrect^ generalizable

solution [23]. Errors specifically in the definition of the test

dataset make it difficult to determine Btrue^ model perfor-

mance as model divergence from the test dataset may be

appropriate.

Once created, annotation metadata must be associated in

some fashion with the original imaging. Errors here result in

annotation data loss and/or dataset corruption. The Digital

Imaging and Communications in Medicine (DICOM)

standard provides one solution to these challenges by enabling

annotation metadata to be non-destructively embedded direct-

ly within medical imaging. This, however, alters the imaging

files and can complicate using the same imaging for multiple

annotation projects. Alternatively, if annotation data are not

embedded within imaging then annotation metadata must be

saved and associated in some fashion with the original imag-

ing. Content management systems have historically provided

a partial solution to these data management challenges. These

systems provide database-like mechanisms to store and man-

age imaging and its associated metadata [24, 25]. However,

annotation tools are usually stand-alone and not well integrat-

ed with content management systems. This lack of integration

complicates workflows by requiring the image analyst to man-

age the movement of data between the content management

system and the annotation software. The addition of these

workflow steps results in the inability to guarantee that anno-

tationmetadata is correctly captured by a content management

system.

Software Overview

We developed Radiology Informatics Laboratory Contour

(RIL-Contour) to accelerate medical image annotation for

and with deep learning. A major goal driving the development

of the software was to create an environment which enables

clinically oriented users to focus on annotating imaging

datasets using deep-learning methods and not on the underly-

ing challenges associated with data transformation or manage-

ment. Unlike annotation tools designed to annotate single im-

ages, RIL-Contour facilitates the consistent annotation of large

medical imaging datasets required for developing deep-

learning models and promotes collaborative dataset annota-

tion by supporting concurrent multiuser workflows.

RIL-Contour defines voxel and imaging annotation defini-

tions at the Bdataset level^ to enforce consistency of annota-

tion definitions across all images in a dataset. This is similar to

the concept of annotation template definitions used in other

software [11]. RIL-Contour supports the use of deep-learning

models to automatically perform voxel and text annotation of

imaging. Additionally, RIL-Contour provides mechanisms to

perform advanced deep-learning model visualization to aid

image analysts and data scientists in understanding deep-

learning models and provides methods to automate quantifi-

cation of Dice and Jaccard metrics for deep-learning segmen-

tation models.

RIL-Contour stores annotation metadata independently

from imaging to enable imaging to be used in multiple anno-

tation projects and to guarantee that the act of annotation does

not alter image data files. RIL-Contourmanages the storage of

annotation metadata. While not common, other annotation

tools provide similar functionality [11]. For datasets stored
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on a file system, RIL-Contour automatically maintains the file

association between annotation metadata and imaging.

Alternatively, RIL-Contour can be linked with a Medical

Imaging Research Management and Associated Information

Database (MIRMAID) content management system [24]. In

this later configuration, RIL-Contour will silently retrieve im-

aging on demand and push and pull annotation metadata to

and from the content management system.

RIL-Contour User Interface

Upon loading,RIL-Contour presents twowindows, the dataset

project viewer (Fig. 1(a)) and the dataset annotation window

(Fig. 1(b)). The dataset project viewer displays a list of the

imaging files associated with a project. The project viewer is

designed to simplify the complexity of working with large

datasets. From the user’s perspective, the dataset project view-

er displays files in a hierarchy which mirror the datasets stor-

age on the file system or for a content-managed dataset in a

DICOM-inspired Patient→ Study→ Series hierarchy. The

menus shown on the dataset project viewer window broadly

provide access to dialogs which control project-wide settings

(e.g., annotation definitions) and dialogs that perform

operations across the project’s dataset (e.g., exporting data).

Series which have been edited are bolded, allowing the user to

quickly identify annotated imaging, and textual annotations

associated with imaging can be shown as optional columns.

The dataset annotation window is the primary interface

through which annotation is performed (Fig. 1(b)). RIL-

Contour supports voxel annotations to define regions of inter-

est (ROI) within images and text annotations to describe

location-independent features or observations (e.g., image

quality, presence of features, comments). RIL-Contour sup-

ports associating voxel ROI annotations with RadLex identi-

fication numbers (RadLex ID) to enable ROI definitions to be

associatedwith a universally identifiable numerical nomencla-

ture [22]. All dataset annotation operations are saved automat-

ically as they are performed. For file system–based projects,

the software supports versioning image annotations and sup-

ports common related versioning operations (e.g., viewing a

version change history and rolling back to a previous version).

To enable multiple users to utilize the same source imaging for

independent annotation projects, RIL-Contour supports sav-

ing annotation data in an independent location on the file

system or within a MIRMAID content management system

[24].

Fig. 1 Screenshot of (a) dataset project viewer and (b) dataset annotation

window. The dataset project viewer (a) shows a representative imaging

project consisting of multiple data series, each consisting of one or more

imaging exams, each further consisting of imaging series datasets.

Imaging with annotation data is bolded and the selected series is shown

in blue. The dataset annotation window (b) shows the currently selected

dataset and the selected dataset’s annotations. Dataset slices in reference

to the primary annotation view are shown in the slice viewer. Slice voxel

annotations are indicated by the presence of one or more colors within the

slice indicator. Voxel annotation along the axis perpendicular to the

annotation view is shown to the right. The axis shown in the annotation

view defaults to the projection with the greatest in slice voxel resolution

and can be manually selected using the orientation view projection drop

down.
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Voxel Annotations

RIL-Contour supports Barea^ and Bpoint^ voxel annotations

to define ROIs within images (Fig. 2). Area annotations de-

scribe multi-voxel patches that can be used to either train an

algorithm for segmentation or for classification. These anno-

tations are often defined on multiple slices, and thus can rep-

resent multi-slice volumes. Point annotations describe the lo-

cation of point(s) of interest within a series and can be used to

define anatomical locations within a series or specifying the

presence or absence of feature(s) within a slice. Descriptive

statistics for a selected annotation can be shown through the

statistics window (Fig. 3).

Manual definition of ROI is performed using the voxel

annotation tools and filters. These tools and filters support

common drawing operations (e.g., painting, erasing, filling,

dilation, erosion, and undo/redo). RIL-Contour supports label-

ing voxels with multiple annotation labels, e.g., a voxel could

be annotated as both kidney and tumor. Alternatively, the soft-

ware can be set to enforce a one ROI per voxel mapping; e.g.,

a voxel could be annotated as a kidney or tumor but not both

(Fig. 2). All manual segmentation tools support threshold-

based application to selectively perform the desired annotation

operation on voxels within a defined value range. The paint

brush and eraser tools support cross-slice painting to automat-

ically extend the operation to a predetermined number of ad-

jacent slices. The histogram shown on the statistics window

(Fig. 3) can be useful in determining the threshold range ex-

hibited by a partially annotated tissue. The combination of

threshold-based painting and multi-slice painting facilitates

rapid manual segmentation of tissues which exhibit values

which strongly differentiate them from surrounding structures.

Finally, all ROI annotations support locking to prevent the

ROI from being modified using manual, semi-automated,

and fully automated deep-learning techniques.

RIL-Contour supports semi-automated ROI generation and

edge refinement using the Minimal Interaction Rapid Organ

Segmentation (MIROS) algorithm [26]. This algorithm was

developed to refine the boundary of high-contrast organs

(Fig. 4). Semi-automated edge refinement can be performed

for a single slice using the BSnap Contour^ and for multiple

slices using the BAuto-Contouring^ or BBatch Contouring^

Fig. 2 Screenshot of (a) ROI manager dialog window and (b) ROI editor dialog window. All existing ROIs defined for a project are shown in the project

ROI editor window. ROI editor (b)—the editor window allows the user to change the name, RadLex ID, and color for any ROI.

Fig. 3 Statistics window displays descriptive statistics for the selected

ROI with reference to the entire volume or selected slice.
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user interfaces (Fig. 1(b)). Slice segmentations generated

wholly using semi-automated methods are illustrated within

the slice viewer by a lighter version of the ROI’s color to

differentiate them from user-edited annotations (Fig. 1(b)).

Text Annotations

RIL-Contour supports descriptive text annotations to capture

non-voxel-based observations. Text annotations can be re-

stricted to a predefined set of values to standardize annota-

tions. All text annotations can be shown as optional columns

in the dataset project viewer to identify images in the dataset

containing the text annotation.

Import and Exporting Annotations

RIL-Contour supports importing and exporting ROI voxel

annotation data to and from binary file masks. To define mul-

tiple overlapping ROI in a single binary voxel mask, files can

be written out as the Bbinary or^ of the overlapping ROI mask

values. For masks exported to the file system, annotation

masks are written in a hierarchy that mirrors the original

dataset. Masks exported to the file system are accompanied

by a data file describing the binary mask, e.g., mapping be-

tween the ROI mask value and a RadLex ID. Copies of the

original input imaging and original RIL-Contour annotation

data file can optionally also be written out. For content-

managed workflows, binary masks can be exported back into

a MIRMAID content management system or to the file sys-

tem. Alternatively, descriptive statistics of voxel annotations

and tables listing the text annotations associated with imaging

can be exported in Excel (Microsoft, Redmond, WA) or

comma-separated value (CSV) format.

Concurrent User Annotation andMultiuser Workflows

RIL-Contour supports concurrent dataset annotation by multi-

ple users. For datasets stored in a MIRMAID content

management system,RIL-Contour utilizes lockingmechanisms

to enable multiple users to concurrently annotate independent

imaging series. For datasets stored on the file system, RIL-

Contour supports series locking and additionally supports mul-

tiuser workflows which define series-specific user-level rights

to generate annotations for imaging and define the set of other

software users to which a user can assign image annotation

rights to. These workflows are designed to enable multiple

people to work concurrently to annotate, review, and utilize

the data for machine-learning purposes. Figure 5 illustrates an

example annotation workflow in which multiple-image ana-

lysts generate annotations, the generated annotations are

reviewed, and the resulting annotations are used by data scien-

tists to train a deep-learning model. To support these

workflows, RIL-Contour automatically versions series annota-

tions when series ownership changes. RIL-Contour multiuser

workflows are described in a YAML file which can be option-

ally embedded within a RIL-Contour project description file or

specified at run time through a command line option.

Deep-Learning Powered Annotation

RIL-Contour supports utilizing trained deep-learning models

to perform fully automated annotation. RIL-Contour utilizes a

Bno-coding^ plugin architecture to make it relatively simple to

deploy deep-learning models in the software. The plugin in-

terface is designed to run deep-learning models developed in

Keras running on Tensorflow. The plugin execution frame-

work instantiates models on demand. The time required to

load a model is related to the model complexity. Once loaded,

the computational costs associated with model inference for

most models are typically low enough that models can be run

on a standard modern CPU.

RIL-Contour defines the preprocessing operations (e.g.,

normalization, mapping model output to annotation settings)

required for model inference in metadata which it stores

alongside an HDF5 file that describes the model’s weights

and optionally architecture. To enable model metadata to be

Fig. 4 Example of semi-

automated edge refinement of the

kidney; (a) manual segmentation;

(b) segmentation following semi-

automated edge refinement.
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defined with little-to-no coding, RIL-Contour provides a mod-

el creation wizard that resides inside of a model manager

dialog that steps users through the definition of the requisite

metadata (Fig. 6).

The RIL-Contour model manager supports model

versioning and model sharing. Model versioning is designed

to enablemodels to be easily updated with a new set of learned

weights and/or architecture while maintaining a history of

Fig. 6 Importing a deep-learning model into RIL-Contour. Metadata re-

quired to load ML model is defined in the model wizard; (a) defines

model name and loads model and weights (HDF5 file) and optionally

defines custom python model loading code; (b) defines affine

transformations required to transform slice input into the model; (c) de-

fines image normalization to perform prior to model execution; and (d)

links model output with custom RIL-Contour annotations.

Fig. 5 Example collaborative multiuser annotation workflow illustrating

the controlled annotation of an individual series (red) by multiple users.

Unannotated series assigned to analyst group at the start of the project.

Analysts acquire unannotated series for annotation from the analyst pool.

Analysts can (a) return partially annotated series to the Analyst’s pool for

further editing by other analysts or (b) assign the annotated series to

Reviewer’s pool; series can no longer be acquired by an analyst. (c)

Reviewer 1 acquires the series from the Reviewer’s pool, if the

annotations look correct, (d) reviewer assigns image to Scientist pool.

Alternatively, not pictured, if the reviewer deemed the annotations poor,

they could have re-assigned the series back to the analysts pool or to a

specific analyst. (e) Scientists use available curated dataset to train deep-

learning model. (f) Trained deep-learning model pushed to analysts to

perform draft dataset annotation as an example of implementing the

AID dataset annotation methodology.
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prior model configurations. The software supports importing

and exporting models with their definition metadata and has

functions to automate model discovery to enable models to be

automatically imported into the software as they are made

available. This feature has been designed to enable data sci-

entists to Bpush^ new and updated deep-learning models to

other users of the software (Fig. 5).

Understanding Model Inference

RIL-Contour supports the interactive generation of visualiza-

tions which identify the regions of images that models identify

when performing prediction (Fig. 7) [4]. The software sup-

ports a variety of state-of-the-art visualization approaches

such as saliency maps, class activation maps (CAM), gradient

class activation maps (Grad-CAM), and saliency activation

maps (SAM) [4, 27–30]. These techniques allow analysts

without a data science background to quickly and intuitively

understand the regions of an image that a deep-learning model

responds to. Each of the model visualization techniques

employed within RIL-Contour generates an Bactivation^ met-

rics for each voxel. To enable users to rapidly focus on mean-

ingful regions of activation, RIL-Contour performs automatic

thresholding to hide low-intensity background activations;

this setting can also be dynamically adjusted by the analyst.

Deep-Learning Model Segmentation Model Metrics

RIL-Contour supports automated quantification of Dice and

Jacard segmentation metrics between a deep-learning model’s

predictions and image segmentations defined in the software.

Metrics are computed on a per-slice basis for slices selected in

the software. Slice segmentations metrics are summarized as

volume segmentation metrics.

Annotation by Iterative Deep Learning

The time required to curate large datasets is a major roadblock

to developing novel deep-learning models. RIL-Contour can

accelerate data annotation through the process of annotation

by iterative deep learning (AID). AID accelerates dataset

annotation by utilizing deep-learning models to generate

draft annotations. AID is based on the observation that it

is typically faster for humans to edit or correct a good-

but-not-perfect image annotation than to generate one en-

tirely from scratch.

Using the AID process, dataset annotation begins with an

entirely unannotated dataset. From this, a small subset of the

data is selected and annotated using traditional methods. This

initial annotated dataset is then used to train a Bdevelopment^

deep-learning model to perform the desired annotation. This

Bdevelopment^ model is then deployed from within RIL-

Contour to generate draft annotations for the next set of train-

ing data. The newly created draft annotations are then

corrected as necessary from within the RIL-Contour and the

now expanded annotated dataset is exported from the software

and used to train the next Bdevelopment^ model. This process

is repeated iteratively until the entire dataset is annotated or

until a model is created with sufficient accuracy that further

iteration is no longer required. The AID methodology is illus-

trated in Figs. 5 and 8. Conceptually, AID is described as a

cycle. However, given sufficient human resources, model

Fig. 7 Representative interactive model visualizations generated in RIL-

Contour illustrating the regions of an image that the model strongly

activated on when performing inference; (a) saliency activation map

(SAM); (b) saliency map visualizations of a deep-learning model

designed to classify CT contrast enhancement. Visualizations shown

using a rainbow color pallet; red = high, purple = low. This visualization

indicates that portions of the left and right kidney are being used by the

model to identify the imaging’s renal contrast enhancement phase.
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development and dataset annotation can be conducted concur-

rently (Fig. 5); new models can be developed as new data

becomes available and deep-learning annotation models can

be utilized as they are created.

We have utilized RIL-Contour for multiple annotation pro-

jects. These projects have used the software for annotation of

MRI, CT, and US imaging collected at the head, chest, and

abdomen to generate annotations of brain, abdominal organs,

tumors, and other tissues and to generate annotations that cat-

egorically classify the presence or absence of tumors in imag-

ing or the contrast enhancement phase of a CT series. To date,

we have used RIL-Contour to perform data annotation for

over 12 projects. We report several case studies to illustrate

how RIL-Contour can be used to accelerate medical image

annotation.

Our largest project to date involves segmenting 35 unique

organs and tissues in CT volumes of the abdomen. Project

staff consists of 17 image analysts, 5 radiologists, and 3 data

scientists who coordinate solely through RIL-Contour.

Qualitatively, AID methodology greatly decreased the human

time required to annotate new series for this project. Initially,

starting from minimal base annotations, annotators required

approximately 40 h to fully segment the abdominal organs in a

series. At present, we have 99 annotated volumes annotated.

The AID methodology has decreased average volume anno-

tation time to approximal 8 h per series, 80% reduction in

annotation time.

In another example, we created a novel dataset to train a

deep-learning model to locate the vertebral bodies. Seven an-

alysts utilized the software to define the desired anatomy. The

entire project, which involved segmentation of 132 cases, took

less than a week from conception to successful conclusion.

In another example, we utilized RIL-Contour to categori-

cally annotate the contrast enhancement phase of abdominal

CT imaging. Annotations were generated by 3 radiologists.

Three thousand images were annotated. These annotations

were used to train a contrast enhancement prediction model

[4]. A RIL-Contour plugin for this model is shared on GitLab

(see BSoftware Availability^).

We have found RIL-Contour to be a useful tool for

deploying deep-learning models to collaborators who may

have little-to-no experience with machine learning. In a recent

example, we utilized RIL-Contour to correlate body composi-

tion, in particular visceral adiposity, with waist-hip measure-

ments taken at our clinic. RIL-Contour’s no-coding interface

allowed our collaborator, who had no experience coding, to

utilize deep-learning models to perform automated segmenta-

tion after an hour of training.

Discussion

The development of deep-learning models for medical imag-

ing typically requires the annotation of hundreds-to-thousands

of images [3–7]. This process is time consuming and poten-

tially error prone. Software tools which facilitate rapid accu-

rate image annotation and annotation review are needed to

accelerate the development of deep-learning datasets and

models.

RIL-Contour has been designed with the goals of acceler-

ating the annotation of medical imaging for deep learning.

RIL-Contour contour accomplishes this by (1) providing a

tool that simplifies the challenges of working with large imag-

ining datasets in a collaborative research environment, (2) by

providing a tool that enables deep-learning models to be uti-

lized directly from within the software to perform fully auto-

mated annotation, and (3) by providing a tool that facilitates

the visualization of and understanding of deep-learning

models.

Variability or errors in dataset annotation increase the size

of the training dataset required for accurate deep-learning

model convergence [23]. A strategy utilized by other medical

imaging software has been to standardize definition of anno-

tations across the images in a dataset using templates [11].

RIL-Contour adopts a similar strategy to ensure consistency

in the definition of annotations in a dataset. This design para-

digm guarantees that a given ROI will have the same name,

RadLex ID, and voxel mask value for all images in a RIL-

Contour dataset and that text annotations will fall within a

predefined set of values.

Fig. 8 Annotation by iterative deep learning (AID).
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Few medical imaging research annotation tools are de-

signed to manage the association between imaging and anno-

tationmetadata when the metadata is not stored directly within

the source imaging. A notable expectation is the work of

Rubin et al. [11]. Content management systems such as

MIRMAID and Extensible Neuroimaging Archive Toolkit

(XNAT) provide systems to accomplish this [24, 25].

However, in working with most annotation software, these

systems typically require the data analyst to manually move

data between annotation software and the content manage-

ment system. These additional steps add workflow complexity

and are potentially error prone. RIL-Contour provides a mech-

anism to manage the association between imaging data and

annotation metadata for datasets stored on the file system or

within a MIRMAID content management system. These in-

terfaces are designed to minimize workflow complexity and

empower the data analyst to focus on data annotation and

review and not on the management of imaging and metadata.

RIL-Contour is designed to simplify the application of

deep-learning models for the purposes of medical image an-

notation. RIL-Contour utilizes a plugin engine to load and run

deep-learning models at run time. The RIL-Contour engine

supports models developed in Keras running on Tensorflow.

Future support for additional platforms is planned. To execute

a model, the plugin engine loads the model at run time, from

source or an HDF5 file, normalizes and transforms the input

imaging to match the model’s requirements, runs the model,

and, for segmentations, transforms the model output into RIL-

Contour voxel annotations. The plugin engine enables RIL-

Contour to interact directly with models. This allows RIL-

Contour to provide a graphical user interface (GUI) model

definition wizard which walks users through the process of

importing a deep-learning model based, in part, on the under-

lying architecture of the model and enables the software to

provide model visualization features which rely on the ability

to rewrite a model and compute the output and gradient of

arbitrary model layers.

To our knowledge, DeepInfer is the only other medical

image annotation tool developed to facilitate automated image

annotation using deep learning [31]. DeepInfer is a 3D Slicer

plugin which enables 3D Slicer to utilize deep-learning

models to perform fully automated image annotation [9, 31].

In terms of functionality, RIL-Contour and DeepInfer both

automate the application of deep-learning models for the pur-

poses of data annotation. DeepInfer utilizes a Docker-based

execution engine to run deep-learning models. Due to its

Docker-based design, DeepInfer does not directly interact

with models and as a result cannot directly perform the model

modifications required for the generation of advanced

visualizations.

The RIL-Contour plugin interface currently supports two-

dimensional models and patch-wise application of three-

dimensional models for segmentation or classification.

Support for whole volume three-dimensional models is

planned. The generation of CAM visualizations requires

CAM-specific model architecture, within network SAM and

Grad-CAM layer visualizations are supported for both

convolutional and activation layers with non-linear activation

functions [4, 27, 28, 30].

The effort required to curate training datasets for deep

learning is widely regarded as a major barrier to the develop-

ment of deep-learning models. Numerous groups have

attempted to accelerate machine-learning model training

through processes designed to optimize the creation of train-

ing datasets [32–34]. Deep-learning methods have been pro-

posed to accelerate interactive segmentation and to propagate

segmentations across slices [35]. Other techniques, auto-

annotation and pseudo-annotation, utilize multiple instance

learning to automatically identify meaningful annotations

from a set of predetermined noisy labels; labels that both cor-

rectly and incorrectly label data [36–38].

Here, we propose the AID methodology to accelerate

human-driven data annotation of medical imaging. AID is

an example of how artificial intelligence can be used to aug-

ment and accelerate human performance while retaining hu-

man supervision. AID methodology is similar to a

classification-based annotation system described for natural

world images [32]. The underlying premise behind AID is that

a machine-learning model can be used during the construction

of a supervised training dataset and that the amount of human

correction required following application of a model will be

approximately proportional with the overall size and diversity

of the model's training dataset. RIL-Contour is designed to

facilitate AID by (1) enabling deep-learning models to be

applied to annotation images from within the software, (2)

by providing mechanism from within the software to edit

deep-learning derived annotations, (3) by providing a mecha-

nism to export data to promote rapid model training, (4) by

supporting concurrent workflows, and (5) by providing mech-

anisms which automate the sharing of deep-learning models

between users of the software.

A limitation of RIL-Contour is the software has been de-

signed to facilitate annotation of imaging stored in the

Neuroimaging Informatics Technology Initiative (NIfTI) file

format [39]. There are numerous tools (e.g., dcm2niix,

MRIConvert) which can be used to convert DICOM imaging

to the NIfTI file format. The NIfTI file format is a simpler

format than the DICOM file format [39]. The NIfTI file format

has been designed to encapsulate multi-dimensional imaging

data within a single file. At present, there is a well-developed

Python API to reliably read and write the file format, there are

a number of medical imaging tools which read and write the

format, and the format is extensively utilized within medical

imaging research community [8–10, 12–14, 17, 24, 39]. A

major limitation of the NIfTI file format is that it fails to

capture much of the metadata commonly stored within
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DICOM files. To overcome this limitation, RIL-Contour sup-

ports the association of additional imaging metadata as a sec-

ondary CSV file and supports reading and writing this addi-

tional metadata from a MIRMAID content management sys-

tem [24]. A focus of future development efforts is to add

support in RIL-Contour to natively support datasets stored in

DICOM.

RIL-Contour exports annotated voxel data as NIfTI files

aligned to match the orientation and alignment of the source

imaging. Additional non-imaging metadata is exported as tab-

ular data in CSV and Excel format. These representations are

programmatically convenient to work with. However, they do

not facilitate broad data interoperability. The DICOM file for-

mat is capable of describing both imaging and metadata (con-

tours, points, binary masks, and non-imaging data). The

DICOM format is fully capable of encapsulating the metadata

generated using RIL-Contour. A focus of future development

efforts is to add support in RIL-Contour to export annotated

datasets in the DICOM format to facilitate the utilization of

RIL-Contour annotated datasets in other software packages.

Conclusion

Deep-learning models are widely believed to require large

training datasets for generalizable model convergence. The

time required to annotate such datasets is a major barrier to

the development of these models. We have developed the

software RIL-Contour to accelerate medical imaging dataset

annotation for deep learning. RIL-Contour provides annota-

tion mechanisms designed to standardize annotation defini-

tions and provides tools to easily apply deep-learning models

to perform fully automated text and voxel annotation. RIL-

Contour supports collaborative workflows and has been de-

signed to accelerate annotation through the process of AID—a

process through which deep-learning models are iteratively

trained and utilized to generate draft annotation for a dataset

that can then be edited as necessary.

Software Availability

The source code for RIL-Contour and example deep-learning

model plugins trained to identify the renal contrast enhance-

ment phase of CT imaging and to perform patch-based kidney

segmentation are publicly available on Gitlab at (https://gitlab.

com/Philbrick/rilcontour). The software is distributed under a

BSD style license. The software is provided Bas is^ and is

intended for research purposes only. The software is

installable using the Anaconda 3.6 package manager.

License and installation instructions are available on Gitlab.

The software is written in Python and utilizes common

libraries for core functionality. Utilization of the machine-

learning interface requires the additional installation of the

OpenCV, Keras, and Tensorflow packages. The software is

designed to work with data stored in the NIfTI format.

Supplemental Python code has been published in the Gitlab

archive demonstrating the use of dcm2nii to convert DICOM

datasets to NIfTI. The RIL-Contour is broadly compatible

with Python 2.7+ and Python 3.6+. Interaction with a

MIRMAID content management system requires Python 2.7.

Acknowledgments The following image analysts have made a signifi-

cant contribution to one or more annotation projects utilizing RIL-

Contour: Lindsey Anding, Cailin Austin, Isabel Bazley, Lucas Betts,

Clare Buntrock, Margaret Cantlon, Nicholas DeBlois, Lauren Karras,

Rachel Marks, Kristina Monson, Sallie Perkins, Cole Rokke, Jill Tryon,

Bailey Ullom, Angela Weiler, and Paul Weishaar.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

References

1. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521:436–

444, 2015

2. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang

Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L:

ImageNet large scale visual recognition challenge. Int J Comput

Vis 115(3):211–252, 2015

3. Weston AD, et al: Automated abdominal segmentation of CT scans

for body composition analysis using deep learning. Radiology

181432, 2018

4. Philbrick KA, Yoshida K, Inoue D, Akkus Z, Kline TL, Weston

AD, Korfiatis P, Takahashi N, Erickson BJ: What does deep learn-

ing see? Insights from a classifier trained to predict contrast en-

hancement phase from CT images. Am J Roentgenol 211(6):

1184–1193, 2018

5. Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC,

Erickson BJ: Residual deep convolutional neural network predicts

MGMT methylation status. J Digit Imaging 30:622–628, 2017

6. Akkus Z, Ali I, Sedlář J: Predicting deletion of chromosomal arms

1p/19q in low-grade gliomas from MR images using machine in-

telligence. J Digit Imaging 30:469–476, 2017

7. Rajpurkar P, et al: Chexnet: Radiologist-level pneumonia detection

on chest x-rays with deep learning. arXiv preprint arXiv:

1711.05225, 2017

8. Rueden CT et al.: ImageJ2: ImageJ for the next generation of sci-

entific image data. BMC Bioinformatics 18(1):529, 2017

9. Kikinis R, Pieper SD, Vosburgh KG: 3D Slicer: A platform for

subject-specific image analysis, visualization, and clinical support.

In: Jolesz FA Ed.. Intraoperative Imaging and Image-Guided

Therapy. New York: Springer New York, 2014, pp. 277–289

580 J Digit Imaging (2019) 32:571–581

https://gitlab.com/Philbrick/rilcontour
https://gitlab.com/Philbrick/rilcontour


10. Kline TL, Edwards ME, Korfiatis P, Akkus Z, Torres VE, Erickson

BJ: Semiautomated segmentation of polycystic kidneys in T2-

weighted MR images. Am J Roentgenol 207(3):605–613, 2016

11. Rubin DL, Willrett D, O’Connor MJ, Hage C, Kurtz C, Moreira

DA: Automated tracking of quantitative assessments of tumor bur-

den in clinical trials. Transl Oncol 7(1):23–35, 2014

12. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC,

Gerig G: User-guided 3D active contour segmentation of anatomi-

cal structures: Significantly improved efficiency and reliability.

NeuroImage 31(3):1116–1128, 2006

13. Fischl B: FreeSurfer. NeuroImage 62(2):774–781, 2012

14. Papademetris X et al.: BioImage Suite: An integrated medical im-

age analysis suite: An update. Insight J 2006:209–209, 2006

15. Jiang H, van Zijl PCM, Kim J, Pearlson GD, Mori S: DtiStudio:

Resource program for diffusion tensor computation and fiber bun-

dle tracking. Comput Methods Prog Biomed 81(2):106–116, 2006

16. McAuliffe MJ, et al: Medical image processing, analysis and visu-

alization in clinical research. In: Proceedings 14th IEEE

Symposium on Computer-Based Medical Systems. CBMS, 2001

17. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith

SM: FSL. NeuroImage 62(2):782–790, 2012

18. Takahashi N, Sugimoto M, Psutka SP, Chen B, Moynagh MR,

Carter RE: Validation study of a new semi-automated software

program for CT body composition analysis. Abdom Radiol 42(9):

2369–2375, 2017

19. Carvalho LE, Sobieranski AC, von Wangenheim A: 3D segmenta-

tion algorithms for computerized tomographic imaging: A system-

atic literature review. J Digit Imaging 1–52, 2018

20. Cheng J-Z, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, Huang CS,

Shen D, Chen CM: Computer-aided diagnosis with deep learning

architecture: Applications to breast lesions in US images and pul-

monary nodules in CT scans. Sci Rep 6:24454, 2016

21. Wachinger C, Reuter M, Klein T: DeepNAT: Deep convolutional

neural network for segmenting neuroanatomy. NeuroImage 170:

434–445, 2018

22. Wang KC: Standard lexicons, coding systems and ontologies for

interoperability and semantic computation in imaging. J Digit

Imaging 31(3):353–360, 2018

23. Agarwal V, Podchiyska T, Banda JM, Goel V, Leung TI, Minty EP,

Sweeney TE, Gyang E, Shah NH: Learning statistical models of

phenotypes using noisy labeled training data. J Am Med Inform

Assoc 23(6):1166–1173, 2016

24. Korfiatis PD, Kline TL, Blezek DJ, Langer SG, RyanWJ, Erickson

BJ: MIRMAID: A content management system for medical image

analysis research. RadioGraphics 35(5):1461–1468, 2015

25. Marcus DS, Olsen TR, Ramaratnam M, Buckner RL: The extensi-

ble neuroimaging archive toolkit. Neuroinformatics 5(1):11–33,

2007

26. Kline TL, Korfiatis P, Edwards ME, Bae KT, Yu A, Chapman AB,

MrugM, Grantham JJ, Landsittel D, Bennett WM, King BF, Harris

PC, Torres VE, Erickson BJ, CRISP Investigators: Image texture

features predict renal function decline in patients with autosomal

dominant&#xa0;polycystic kidney disease. Kidney Int 92(5):1206–

1216, 2017

27. Selvaraju RR, et al.: Grad-CAM: Why did you say that? arXiv

[stat.ML], 2016

28. Selvaraju RR, et al: Grad-cam: Visual explanations from deep net-

works via gradient-based localization. v3(8)7, 2016. See https://

arxiv.org/abs/1610.02391

29. Simonyan K, Vedaldi A, Zisserman A: Deep Inside Convolutional

Networks: Visualising Image Classification Models and Saliency

Maps. arXiv [cs.CV], 2013

30. Zhou B, et al: Learning Deep Features for Discriminative

Localization. arXiv [cs.CV], 2015

31. Mehrtash A, et al: DeepInfer: Open-source deep learning

deployment toolk i t for image-guided therapy. In:

Proceedings of SPIE–the International Society for Optical

Engineering, 10135. 101351K, 2017

32. Yu F, et al: Lsun: Construction of a large-scale image dataset using

deep learning with humans in the loop. arXiv preprint arXiv:

1506.03365, 2015

33. Zhou Z, et al: Integrating active learning and transfer learning for

carotid intima-media thickness video interpretation. 2018

34. Russakovsky O, Li L, Fei-Fei L: Best of both worlds: Human-

machine collaboration for object annotation. In: 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR). 2015

35. Sakinis T, et al: Interactive segmentation of medical images through

fully convolutional neural networks. arXiv preprint arXiv:

1903.08205, 2019.

36. Wu J, et al: Deep multiple instance learning for image classification

and auto-annotation. In: 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 2015

37. Xu Y, et al: Deep learning of feature representation with multiple

instance learning for medical image analysis. In: 2014 IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP). 2014

38. Mettes P, Snoek CG, Chang S-F: Localizing actions from

video labels and pseudo-annotations. arXiv preprint arXiv:

1707.09143, 2017

39. Li X,Morgan PS, Ashburner J, Smith J, Rorden C: The first step for

neuroimaging data analysis: DICOM to NIfTI conversion. J

Neurosci Methods 264:47–56, 2016

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

J Digit Imaging (2019) 32:571–581 581

https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1610.02391

	RIL-Contour: a Medical Imaging Dataset Annotation Tool for and with Deep Learning
	Abstract
	Introduction
	Software Overview
	RIL-Contour User Interface
	Voxel Annotations
	Text Annotations
	Import and Exporting Annotations
	Concurrent User Annotation and Multiuser Workflows
	Deep-Learning Powered Annotation
	Understanding Model Inference
	Deep-Learning Model Segmentation Model Metrics
	Annotation by Iterative Deep Learning

	Discussion
	Conclusion
	Software Availability
	References


