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ABSTRACT

This paper describes RIME (Replicated IMage dEtector), an alternative approach to watermarking for detecting
unauthorized image copying on the Internet. RIME pro�les internet images and stores the feature vectors of the
images and their URLs in its repository. When a copy detection request is received, RIME matches the requested
image's feature vector with the vectors stored in the repository and returns a list of suspect URLs. RIME characterizes
each image using Daubechies' wavelets. The wavelet coe�cients are stored as the feature vector. RIME uses a
multidimensional extensible hashing scheme to index these high-dimensional feature vectors. Our preliminary result
shows that it can detect image copies e�ectively: It can �nd the top suspects and copes well with image format
conversion, resampling, and requantization.
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1. INTRODUCTION

Advancement in the internet and world-wide web technology has led to the growth of information dissemination at
an unprecedent pace. The resulting more and more e�cient distribution of data, however, has increased the problems
associated with copyright enforcement.1

Many studies have proposed schemes for detecting copies of text documents.2 In this paper, we present an image

copy detection service being developed at Stanford University. We call this service RIME, for Replicated IMage
dEtector. Given an image registered by its creator or distributor, RIME checks if copies of the image exist on the
internet and returns a list of suspect URLs. The creator or distributor of the image can then check if the suspect
images are indeed unlawful copies (for instance by using watermarks).

RIME faces two conicting performance requirements: accuracy and speed. On the one hand, we want to achieve
high precision and high recall, which often means high computational cost. On the other hand, we would like to
reduce processing time so that more images can be compared given limited time and computing resources. To meet
these performance requirements, RIME faces two design challenges: First, it needs a good feature vector that can
tell apart di�erent images. Second, it needs an e�cient indexing scheme that can �nd the suspect images accurately
and quickly (i.e., with minimum number of IOs).

For the feature vector, RIME characterizes each image using Daubechies' Discrete Wavelet Transform (DWT) for
each of the three opponent color components. Wang, Wiederhold, and Firschein have demonstrated in the Wavelet
Image Search Engine (WISE)3,4 that DWT may characterize images better than other known techniques for content-
based image retrieval. DWT o�ers good spatial and frequency localization. In the spatial domain, it is able to capture
the color changes from pixel to pixel. In the frequency domain, DWT can capture the intensity of the minutest color
changes by applying wavelet transform in multiple levels. Moreover, subsets of the frequency bands can be used as
�lters that quickly screen out irrelevant images to narrow down the search space.

Since each image is represented by a multi-dimensional feature vector, searching replicas of an image means
essentially searching vectors in the neighborhood of the given vector. Many trees (e.g., R-tree, k-d-b-tree, SS-tree,
SR-tree, etc.) have been proposed to perform nearest-neighbor search for high-dimensional data.5{7 These trees,
however, often su�er from the curse of dimensionality, in that both the memory requirement and search speed can
grow superlinearly with the number of data dimensions as well as the database size. Instead, RIME employs a
multidimensional extensible hashing index structure. The hashing scheme requires less memory; more importantly,
it performs the search through computation (i.e., computing the nearest buckets via a hashing function) rather than
through index structure traversal. When the index structure cannot �t in main memory (e.g., because either the
number of data dimensions or the database is very large), the hashing scheme enjoys signi�cantly faster searching
speed.



In addition to the challenges that we have described, the feature vector must be able to survive image format
conversion (e.g., from JPEG to Gif and vice versa), resampling, and requantization. Furthermore, RIME must also
be able to cope with geometric transformations such as translation, scaling, and rotation of the images. Our prelim-
inary experimental results show that RIME can discover most suspect images (with format conversion, resampling,
requantization, and geometric transformation) in the database. We are currently implementing the hashing scheme
we proposed and building a much larger image database to verify RIME's scalability.

The rest of the paper is organized as follows: Section 2 describes RIME's architecture. Section 3 depicts how
RIME prepares for the feature vectors and selects �lters. Section 4 compares the multidimensional extensible hashing
scheme that RIME employs with the traditional tree structures. Section 5 shows our preliminary experimental results.
Finally, we o�er our conclusions in Section 6.

1.1. Related Work

Many studies have proposed using watermark schemes to safeguard image copyright. These schemes add to the
images the creator's or the distributor's identity. A watermark, however, is vulnerable to image processing, geometric
distortions, and subterfuge attacks.8 In addition, working with a large variety of watermark schemes increases the
detection time drastically since for each internet image we may need to process it many times, each time with a
di�erent watermark scheme. Safeguarding copyright by checking the image directly has two distinct advantages:
although a copied image can also be altered, it is unlikely that a pirate will change the image substantially and
thereby lose its original appearance, and each image needs to be pro�led only once. We believe that the watermark
still plays an important role in authenticating images in courts of laws. After RIME provides the creator or distributor
with a suspect list, the actual owner of the images can use watermark or other authentication techniques to prove
ownership.

At a �rst glance, RIME's functionality may look similar to that of some content-based image retrieval databases
such as QBIC,9 Virage,10 VisualSEEk,11 and WISE,3 which retrieve images similar to a given one. RIME,
however, di�ers from these systems in many ways. The fundamental di�erence lies in the measure of search accuracy.
RIME searches for all the copies of an image, while a content-based image retrieval system searches for similar images.
Judging if an image is a copy of another is objective, whereas judging if two images are similar can be very subjective.
For instance, two images with the same green mountain and blue sky background but di�erent small objects (e.g.,
owers of di�erent colors) in the foreground may be considered similar by one person but di�erent by another. In
fact, as pointed out in the study of,12 a content-based image retrieval system may answer a similarity query only
approximately. Under this relaxation, a nearest neighbor search can be implemented much more e�ciently: Instead
of looking for the images in all adjacent bins (or buckets, cells, etc. depending on the index structure used) within a
range, returning all images in the bin where the given image resides can satisfy the similarity search. On the other
hand, making the same relaxation in RIME's searching algorithm may not be as forgiving. To achieve accurate copy
detection, RIME thus requires a good feature vector and an e�cient index structure.

2. ARCHITECTURE

Figure 1 is a bird's-eye view of RIME. RIME receives registered images from users, pro�les the images, and �nds
matching ones in its repository. If matches are found, RIME returns a list of suspect URLs. To build the repository
that stores the image pro�les, RIME crawls the web periodically, pro�les newly discovered images, and then indexes
them based on their features.

Figure 2 shows RIME's components. They are:

1. The Pro�ler, which extracts feature vectors from images.

2. The Registered Image Repository (RIR), which contains the feature vectors and URLs of the images registered
by the owner or distributor for copy detection. RIME performs copy detection periodically (e.g., after a new
web crawl) for these registered images.

3. The Internet Image Repository (IIR), which stores the feature vectors and URLs of the crawled web images.
Notice that RIR and IIR may be two logical databases on top of one physical database.

4. The Indexer, which indexes the feature vectors in a high-dimensional structure for e�cient searching and
storage.
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Figure 1. RIME's Bird's-Eye View
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Figure 2. RIME's Components

5. The Matcher, which performs nearest-neighbor search in the index structure to return suspect URLs.

RIME does not store any images in its repository. Instead, after pro�ling the images, it stores only the resulting
feature vectors and the URLs of the images. In Section 3, we de�ne feature vectors and describe in detail how they
are created. Not storing the images not only saves a tremendous amount of storage space, but also avoids copyright
issues.

3. IMAGE FEATURE VECTORS

A feature vector should be small and good at representing the image. It must also be able to tell di�erent images
apart in a very large image database. RIME applies Daubechies' Discrete Wavelet Transform suggested in3 to an
image and extracts the feature vector based on the wavelet coe�cients. We also propose using some linear and
non-linear combinations of the wavelet coe�cients as the �lters to speed up image copy detection.

Figure 3 presents the three steps to prepare for an image's feature vector. First, we convert the image into a
canonical size and format. Second, we apply Daubechies' wavelet transformation on the image to produce coe�cients.
Finally, we store the selected wavelet coe�cients as the image's feature vector. In the remainder of this section, we
describe these steps in detail and show that RIME's feature vector is superior to that produced by other methods.

3.1. Preprocessing the Images

Many color image formats exist, GIF, JPEG, and TIFF being the ones most widely used. Because images can have
di�erent formats and di�erent sizes, we �rst normalize the data. We rescale images to thumbnails of 256�256 pixels
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in the RGB (Red-Green-Blue) color space. We choose the 256�256 image size because it is the size and aspect ratio
of most internet images and the wavelet transform requires the pixel number of each side to be a power of two.

To rescale an image, we use bilinear interpolation. This method resamples the input image by overlaying the
image with our grid of 256� 256 points. The input image is sampled at each grid point to determine the pixel colors
of the output image. The sample process shifts the grid both vertically and horizontally. The value at each grid
point is the linear interpolation of the pixels it samples. This rescaling process is more e�ective than a Haar-like
rescaling (i.e., grouping many pixels into one to decrease image size or replicating one pixel into many to increase
image size), especially for the images that have sharp color changes.

Next, we transform the rescaled image to a di�erent color space. Since what's needed is actual human perceptual
color distance, which di�ers from that of RGB color space,9 we convert and store the image in a component color
space with intensity and perceived contrasts. We de�ne the new values of a color pixel based on the RGB values of
an original pixel as follows: 8<

:
C1 = (R+G+ B)=3
C2 = (R+ (max �B))=2
C3 = (R+ 2 � (max �G) + B)=4

(1)

Here max is the maximum possible value for each color component in the RGB color space. For a standard 24-bit
color image, max = 255. Each color component in the new color space also ranges from 0 to 255. This color space
is similar to the opponent color axes 8<

:
RG = R� 2 �G+ B
BY = �R �G+ 2 �B
WB = R+G+ B

(2)

de�ned in13 and.14

In addition to providing the perception correlation properties15 of such an opponent color space, another important
advantage of this alternative space is that the C1 axis, or the intensity, can be more coarsely sampled than the other
two axes for color correlation. This helps reduce the size of the feature vector.

3.2. Characterizing Images Using Wavelets

Traditionally, a color histogram has been used to characterize an image. However, while a global histogram preserves
the color information contained in the image, it does not preserve information about the colors' locations. For
instance, an image with the sun setting into the sea contains orange and blue. A global color histogram may capture
the fractions of orange and blue correctly but cannot tell where the colors are concentrated. Thus, two images having
similar color histograms may have very di�erent semantics.

Storing color layout information is another way to describe the content of an image. In traditional color layout
image indexing, we divide the image into equal-sized blocks, compute the average color on the pixels in each block,
and store the values for image matching using the Euclidean metric or variations of the Euclidean metric. It is also



Figure 4. A Wavelet Transform Example

possible to compute the values based on statistical analysis of the pixels in the block. Both techniques are very
similar to image rescaling or subsampling. However, these approaches do not perform well when the image contains
high frequency information such as sharp color changes. For example, if there are pixels of various colors ranging
from black to white in one block, these techniques may not be e�ective.

Shape-based and texture-based detection and coding algorithms are other techniques of characterizing images.
Both have substantial limitations for general-purpose image databases. For example, current shape detection algo-
rithms only work e�ectively on images with relatively uniform backgrounds, and texture coding is not appropriate for
non-textural images. In addition, shape recognition is computation intensive and hence not suitable for processing a
large number of images.

RIME uses Daubechies' wavelet coe�cients proposed in3 to represent image semantics, including object con�gu-
ration and local color variation. A fast wavelet transform with Daubechies' wavelet is applied to a preprocessed image
for each of the three color components (i.e., C1, C2, and C3). The low frequency coe�cients of the wavelet transforms
are stored as the feature vector of the image. Contrary to the techniques mentioned above, the Daubechies' wavelet
o�ers good spatial and frequency localization. In the spatial domain, it is able to capture the color changes from
pixel to pixel. In the frequency domain, it can capture the intensity of the color changes to the minutest detail.

3.3. Selecting Features

RIME uses wavelet coe�cients as the features to compare images. However, using all 256 � 256 coe�cients in
three-color space to perform image matching requires too large an index structure (256 � 256 � 3 dimensions) and
too much storage space. Instead, we apply wavelet transform recursively to reduce the coe�cients to 16 � 16 � 3
to produce some useful coarser features. Figure 4 shows an example where wavelet transformation is applied to one
color space of the image three times to reduce the number of coe�cients down to one eighth (at the upper-left corner
of the �gure). The idea here is that we use some coarser features as �lters to screen out irrelevant images. After this
�ltering step, we then use the total number of coe�cients to do the �ne-grained and more computationally intensive
copy detection in a much-reduced sample.
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Rime uses two �lters: a color �lter and a shape �lter:

� Color �lter: We �rst perform wavelet transform multiple times to reduce the number of coe�cients to 16� 16
in C1, C2, and C3, respectively, as shown in Figure 5. We pick the 8 � 8 low frequency coe�cients in the
upper-left quadrant in Figure 5 in three-color space as the color �lter. In Section 4, we show how we index
these 8� 8� 3 coe�cients to reduce the search space for the �ne-grained matching.

� Shape �lter: the shape �lter is the sum of the remaining high frequency coe�cients in the table shown in
Figure 5. The 8�8 coe�cients in the bottom-left quadrant represent the high horizontal frequency components;
the upper-right quadrant the high vertical frequency components; and the bottom-right quadrant the high
diagonal components. Intuitively, we see that vertical lines in an image produce high frequency horizontal
coe�cients, horizontal lines produce high frequency vertical coe�cients, and diagonal lines diagonal coe�cients.
Two similar images should have similar shapes and hence similar high frequency components in these three
quadrants in C1, C2, and C3, respectively.

Since most of these high frequency components are zeros, we sum them up in three quadrants of three-color
space to produce nine values. We then pick a threshold value to decide if an image has signi�cant high frequency
components in these nine quadrants. If two images have objects of the same shapes, they should have signi�cant
high frequency components in the same quadrants. Therefore, images having di�erent high frequency quadrants
can be discarded in this �ltering step.

Although identifying the objects and their shapes in an image is di�cult and expensive, determining that the
image has horizontal, vertical, and diagonal lines is fairly simple using this approach.

3.4. Filtering and Matching

Given a query image, the search is carried out in two steps: 1) �ltering and 2) �ne-grained matching. In the �rst
step, RIME indexes into a subset of found images by using the coarser coe�cients as the �lter. In the second step,
we compute a weighted version of the Euclidean distance between the feature coe�cients of the remaining images
and those of the querying image. We then select and sort the images with the smallest distances and present them
as the images matching the query.

4. INDEX STRUCTURE

RIME uses a high-dimensional index structure to organize feature vectors so that both storing and looking up these
vectors in the high-dimensional space can be e�cient. The index structure divides the high-dimensional space into
a number of regions (buckets, bins, or quadrants, depending on the index structure used), each containing a subset
of feature vectors that can be stored in a small number of disk blocks.

Given an image vector, RIME searches for similar vectors in the high-dimensional space in the following steps:
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Figure 6. Tree-like Structures

1. It performs a where-am-I search to �nd in which region the given vector resides.

2. It then performs a nearest-neighbor search to locate the neighboring regions where similar vectors may reside.
This search is converted into a range search, which locates all the regions that overlap, with the search sphere
centered the given vector and having a diameter d.

3. Finally, RIME computes the Euclidean distances between the vectors in the nearby regions (obtained from the
previous step) and the given vector. The search result includes all the vectors that are within distance d from
the given vector.

The performance bottleneck of RIME lies in the �rst two steps. If the index structure does not �t in mainmemory
and the search algorithm is ine�cient, RIME needs to traverse a large portion of the index structure on the disk.
Also, the number of neighboring regions can grow exponentially with respect to the dimensions of the feature vectors.
Reading in the data from all neighboring regions can thus take an exponential number of IOs. A high-dimensional
index structure must be designed to minimize these IO costs to achieve reasonable performance.

There are two categories of index structures, tree-like and hash-table-like.16 In the remainder of this section, we
discuss their pros and cons and present the structures with which we are currently experimenting to satisfy RIME's
performance objectives.

4.1. Tree-like Structures

Many tree-like structures have been proposed to index high-dimensional data (e.g., R�-tree,17,18 SS-tree,19 SR-
tree,6 TV-tree,20 X-tree,5 M-tree,21 and K-D-B-tree7). At the interior nodes of these tree structures, key and
pointer pairs are stored. Figure 6 shows a typical interior node with three keys and four pointers. Each fkey; pointerg
pair records the splitting values of the attributes and the pointer to the child node. Given a �xed number of vectors
to index, the depth of the tree depends on the fanout of the interior nodes, i.e., the smaller the fanout, the larger
the depth of the tree. The fanout of the tree in turn depends on the size of these fkey; pointerg pairs. The higher
the data's dimensions, the more splitting attribute values must be recorded, and hence the smaller the fanout of the
interior nodes. As the height of the tree structure increases, so does the memory requirement for staging the index
structure. When an interior node splits into child nodes, the space represented by the parent node is divided into
subregions of di�erent shapes.� The coordinates of these bounding shapes must also be recorded in the interior nodes
for speeding up range queries (discussed below). This further aggravates the memory requirement for the tree-like
index structures. If the index structure is too large to �t in main memory, the search performance will su�er.

In addition, these bounding shapes often overlap. The study of12 shows that when the data dimensions go beyond
16, the percentage to which a bounding shape overlaps its neighboring shapes can approach 100% for the R-tree.
Because siblings can overlap, the number of buckets to look up for the where-am-I search can grow exponentially.

�For instance, the R-tree and the K-D-tree use bounding rectangles, the SS-tree uses bounding spheres, and the SR-tree uses both.



Finally, most tree-like structures employ the branch-and-bound algorithm22 to perform nearest-neighbor queries.
Since the algorithm can traverse a large portion of the tree to look for the candidate regions, it is critical for the
index structure to �t in main memory, or the on-disk search can degrade the performance signi�cantly. This leads
to our proposal of using a hash-table-like structure.

4.2. Hash-table-like Structures

To conserve memory space, we propose using a hashing approach, which avoids recording fkey; pointerg pairs. The
main ideas are the followings:

� We divide the ith dimension into 2ki evenly divided stripes, where the value of ki is determined by how the
values of the ith attribute cluster. This way, using a minimum number of bits (ki bits in the ith dimension) we
can encode to which region a feature vector belongs.

� To perform the where-am-I query for a given vector, we hash the vector to a region (bucket) via a function.
This e�ectively replaces searching in a high-dimensional structure with computation.

� Tomake the range query mimic a nearest-neighbor query, we add a distance to the given vector in each dimension
to compute a range. We then use the hash function again to compute the candidate buckets.

This index structure conserves memory space since it does not need to record any fkey; pointerg pairs. It also
uses a hash function to compute the candidate buckets to avoid potential on-disk lookup. However, this structure is
suboptimal in choosing the splitting points at each dimension compared to a scheme like VAM-split.12 Consequently,
it can incur some storage overhead and increase the number of candidate buckets it must load in to compute vector
distances during the �nal phase of the nearest-neighbor search. We remedy this shortcoming through bucket grouping.
The details of the index structure are described in.23 We are currently integrating this hashing scheme into RIME
to enhance its searching speed and accuracy.

5. EXPERIMENTS

The primary focus of our experiments at this stage is to make sure that the wavelet feature vectors are proper for
image copy detection.

The preliminary version of RIME is built on WISE, which uses wavelet transform and tree-structure vector
quantization to index the images. The implementation is done in C on UNIX platforms. The discrete fast wavelet
transforms were performed on a Pentium Pro 300MHz LINUX workstations. As reported in,3 to compute the feature
vectors for more than 30,000 color photos in our database requires approximately 2 hours of CPU time. It takes
about 40 seconds for the feature space classi�cation module to process all the 30,000 feature vectors in the database
and to build the tree structure.

For testing the accuracy, we inserted a sequence of 10 images modi�ed from the same image to the database of
30,000 images. The image is processed through sharpening, softening, despeckling, posterizing, and watercoloring,
and requantization. Figure 7 shows a sample query result obtained from the system. The image at the upper-left
corner in Figure 7 is the original image. With the current system, we detected eight out of the ten copies but missed
two. The two mission images were clustered in a neighboring bucket. We are satis�ed with the detection accuracy
that wavelets can provide. However, we feel enhancements can be performed in at least three areas:

1. Some images with no resembling semantics are also included as the suspects. We think this may be due to the
lack of the shape �lter we proposed in Section 3.3.

2. Although the query performance is satisfactory since the index structure can �t in main memory, we have not
adequately stressed the index structure.

3. Some copies were not detected because we performed the search only approximately: we searched only in the
bucket where the query image resided but not in all the neighboring buckets.

Section 6 concludes with our plans for future enhancement.



Figure 7. A Sample Query Result

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown a new approach to detect unauthorized image copies on the internet. We proposed
RIME, which uses wavelets to characterize images and indexes the images with an extensible hashing scheme. Our
preliminary experimental results show that the wavelets are proper features for doing image copy detection work.

We are currently crawling more internet images to build a much larger database to test out the robustness of the
feature vector and index structure. Speci�cally, we are doing the following:

1. Experiment with various color and shape �lters to enhance the search result.

2. Implement the extensible multidimensional index structure for RIME.

3. Build a large image database to stress the performance of the index structure.
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