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Abstract

A simple protocol for the practical, scalable, catalytic asymmetric synthesis of γ-quaternary

acylcyclopentenes in up to 91% overall yield and 92% ee has been developed. The reaction

sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the

unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for

performing two-carbon ring contractions. The resulting enantioenriched, highly-functionalized

acylcyclopentenes provide a variable substituent and four additional functional group handles for

chemoselective manipulation and potential application to the total synthesis of a wide array of

natural products.
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Highly substituted cyclopentanes are a common structural motif integrated into thousands of

natural products.[1] Selected examples of bioactive compounds containing this basic

structural unit include the hamigerans (2),[2a] steroids (3),[2b] pleuromutilin antibiotics

(4),[2c] cyathane diterpenoids (5),[2d] cyclic botryococcenes (6),[2e] and anti-HBV

schisanwilsonenes (7a–c)[2f] (Figure 1). Synthetic methods for the asymmetric preparation

of cyclopentanoid cores with multiple functional group handles are highly desirable because

they allow for the strategic synthesis of these and other natural products.[3] Toward this

goal, we envisioned that functionalized chiral units such as acylcyclopentene 1 could serve
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as valuable synthetic intermediates (Figure 1). In this report, we describe a general and

enantioselective preparation of versatile chiral acylcyclopentenes[4, 5] that combines a

catalytic asymmetric alkylation reaction[6] and a facile two-carbon ring contraction.

Our work in this area began with observation of the unusual reactivity of seven-membered

ring vinylogous esters compared to their six-membered ring counterparts. Although LiAlH4

reduction of vinylogous ester 8 gave expected enone 9[7] as the major product after acidic

workup (Scheme 1A), subjecting the analogous seven-membered ring vinylogous ester (10a)

to identical reaction conditions led to cycloheptenone 11a as only a minor product (Scheme

1B). Interestingly, the major product was identified as stable β-hydroxyketone 12a.[ 8 ] The

lack of appreciable β-elimination even under acidic conditions suggests that subtle, but

fundamental differences in ring conformational preferences between six- and seven-

membered rings may lead to the strikingly different product distributions.[9]

To further examine the inherent reactivity of β-hydroxyketone 12a, we exposed the

compound to a variety of basic reaction conditions. Treatment of β-hydroxyketone 12a with

LiOt-Bu in t-BuOH afforded acylcyclopentene 1a in 53% yield without any evidence of

direct β-hydroxy elimination to enone 11a. Overall, the reaction constitutes a two-carbon

ring contraction that likely proceeds via a retro-aldol fragmentation/aldol cyclization

pathway. Although isolated examples of the preparation of acylcyclopentenes from seven-

membered rings[10] are known, general ring contraction methods have not been

demonstrated with γ-quaternary stereocenters and catalytic asymmetric routes are

unprecedented.

Enticed by this initial finding, we investigated the effect of different bases on product

formation (Table 1). Alcohol additives in combination with LiOH in THF improved the

yield for the reaction (entries 2–4), with CF3CH2OH[11] enabling the production of 1a in

96% yield.[12] It is interesting to note that enone 11a was not observed under any of the

surveyed conditions. Among the conditions that promote the desired ring contraction, the

combination of LiOH and CF3CH2OH in THF offered a mild, efficient, and selective

method for further studies (entry 4).

With an optimized procedure for the ring contraction, we turned our attention to the

asymmetric synthesis of various quaternary substituted vinylogous esters (e.g., 10, Table

2).[13,14] A number of racemic β-ketoester substrates (e.g., 14) for catalytic enantioselective

alkylation could be obtained by acylation of parent vinylogous ester 13 with allyl

cyanoformate[15] and trapping with a range of electrophiles under basic conditions.[16]

Application of our standard enantioselective decarboxylative alkylation reaction

conditions[6,13] to substrate 14a produced chiral vinylogous ester 10a in 91% yield and 88%

ee (entry 1).[17,18] Substituents such as ethyl, benzyl, propargyl, homoallyl, and 2,4-

pentadienyl were well-tolerated in the reaction, giving similarly high yields and

enantioselectivity (entries 2–6). A number of heteroatom containing substrates were

explored to test if more diverse functionality could be incorporated into our target

acylcyclopentenes (entries 7–11). β-Ketoesters bearing a 2-chloroallyl substitutent readily

underwent the enantioselective alkylation reaction (entry 7). Gratifyingly, compounds that

possess Lewis basic moieties readily furnished the desired products without complications

(entries 8–9). Even indoles and free aldehydes could be incorporated into the

cycloheptenone products (entries 10–11).

The chiral vinylogous esters (e.g., 10) prepared above allowed us to examine the scope of

the ring contraction reaction (Table 3). Substrate reduction with LiAlH4 and base-promoted

rearrangement of vinylogous esters bearing γ-alkyl substituents provided access to the

corresponding acylcyclopentenes in excellent yields over the two-step protocol (entries 1–6).
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The chloroallyl, nitrile, and indole-containing substrates could be transformed with similarly

high yields using the same conditions (entries 7–8, 10). Alternatively, DIBAL allowed

smooth conversion of vinylogous ester 10i containing an N-basic pyridine (entry 9). Milder

reduction under Luche conditions enabled facile conversion of silyl ether substrates (entries

11–12).[19] Furthermore, trans-propenyl substituted (entry 13) and spirocyclic (entry 14)

substrates performed well in the ring contraction chemistry. With the combination of

asymmetric alkylation and ring contraction, we achieved a route to substituted

acylcyclopentenes with a wide range of functionality at the γ-quaternary stereocenter.

To demonstrate the practicality and scalability of the method, the α-methyl β-ketoester 14a

was converted to the corresponding acylcyclopentene 1a in 69% yield over three steps on 15

g scale (Scheme 2A).[16] Notably, the multi-gram protocol proceeds with reduced catalyst

loading and at higher reaction concentrations for the asymmetric alkylation step.

Additionally, the enantiopurity of the acylcyclopentene 1a can be increased to 98% ee by

recrystallization of semicarbazone 15 (Scheme 2B).[16] Hydrolysis of hydrazone 15 with

aqueous HCl enabled facile recovery of 1a. Further derivatization afforded X-ray quality

crystals of 16 for verification of absolute stereochemistry.[20] To enable access to β-
substituted acylcyclopentenes, addition of n-BuMgBr to 10a resulted in formation of tertiary

β-hydroxyketone 17 (Scheme 2C).[16] Application of modified ring contraction conditions

allowed access to acylcyclopentene 18.

With a versatile, enantioselective synthesis of γ-quaternary acylcyclopentenes 1 in hand, we

sought to demonstrate the further synthetic utility of these compounds. By combining site

selective manipulations in short reaction sequences (1–4 steps), any of five reactive handles

present in acylcyclopentene 1 can be functionalized (Scheme 3, sites A–E). Through careful

implementation of these transformations, diverse monocarbocyclic (1j, 18–23), spirocyclic

(24–25), and fused polycyclic structures (26–27) can be obtained.[16]

In summary, we have developed a catalytic enantioselective synthesis for the preparation of

densely functionalized chiral acylcyclopentenes in excellent yields and enantioselectivities.

The protocol exploits a highly efficient Pd-catalyzed asymmetric alkylation reaction and a

newly-developed, mild two-carbon ring contraction. The important chiral building blocks

formed using this method can undergo a variety of synthetic transformations and will serve

as valuable intermediates for the total synthesis of natural products. Efforts directed toward

these ends are currently underway and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Representative natural products possessing cyclopentanoid core structures with quaternary

stereocenters.
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Scheme 1.

Anomalous reactivity of seven-membered ring vinylogous esters and discovery of a ring

contraction reaction.
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Scheme 2.

Multi-gram ring contraction, enrichment of ee by recrystallization, and organometallic

modified ring contraction sequence.
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Scheme 3.

Versatility and synthetic utility of acylcyclopentenes.
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