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Ring-opening functionalizations of unstrained cyclic
amines enabled by difluorocarbene transfer
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Chemical synthesis based on the skeletal variation has been prolifically utilized as an

attractive approach for modification of molecular properties. Given the ubiquity of unstrained

cyclic amines, the ability to directly alter such motifs would grant an efficient platform to

access unique chemical space. Here, we report a highly efficient and practical strategy that

enables the selective ring-opening functionalization of unstrained cyclic amines. The use of

difluorocarbene leads to a wide variety of multifaceted acyclic architectures, which can

be further diversified to a range of distinctive homologative cyclic scaffolds. The virtue of

this deconstructive strategy is demonstrated by successful modification of several natural

products and pharmaceutical analogues.
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G
iven the ubiquity of cyclic amines in a myriad of natural
products and synthetic compounds, a growing emphasis has
been placed on how we harness and manipulate such

prestigious motifs for the construction of value-added molecules1–4.
While significant progress has been made in the development of
appending processes for their peripheral variation5–10, the skeletal
diversification by means of ring-opening, -contraction, -expansion
or -fusion approaches remains limited (Fig. 1a)11. This is particu-
larly pertinent for the unstrained cyclic systems, which is attributed
to the fact that the structural reorganization is inevitably accom-
panied by highly demanding C–N12,13 or C–C14–16 bond cleavage.
To this end, the ability to access these robust σ-bonds in an efficient
and selective manner would provide a powerful handle for the
diversification of azacyclic skeletons.

Despite recent advances in the realm of C–C bond transforma-
tions17–20, the selective cleavage of C–N bonds would be a com-
pelling strategy for ring-opening functionalization of cyclic amines.
Nonetheless, the process that cleaves and turns C–N bonds into
versatile functionalities is still relatively scarce. For instance, the
conventional reductive approach, typically employing molecular

hydrogen in combination with transition metal catalysts, often
leads to non-transformable hydrocarbon frameworks by reductive
C–N bond cleavage, thus limiting the degree of scaffold diversity
(Fig. 1b, top)21–24.

In an ideal scenario, the ring-opening reaction would be fol-
lowed by the installation of versatile motifs that can be further
transformed for diversity-generating chemical synthesis25–27.
With this regard, the oxidative strategy has enjoyed methodolo-
gical prosperity in recent years28–32. In a classical reaction mode,
oxidation of the α-carbons of cyclic amines generates labile
hemiaminals, thereby enabling the conversion of otherwise inert
C–N bonds into amino-aldehyde or -carboxylic acid moieties
(Fig. 1b, middle). While the conventional oxidative strategies
often suffer from low functional group compatibility, improved
procedures have been recently developed by harnessing transition
metals. A conspicuous example includes the elegant work by
Sarpong33, which furnishes a deconstructive halogenation of
cyclic amines via cascade decarboxylative process.

An alternative way of rendering the C–N bonds more accessible
is through the formation of quaternary ammonium salts (Fig. 1b,
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bottom). The increased bond polarity ameliorates the leaving
group ability of amino moiety, ultimately allowing the C–N bond
cleavage by means of elimination34 or nucleophilic substitution
reactions35–37. This chemistry has been widely utilized in the ring-
opening reaction of strained rings38–42, however, its use in
unstrained cyclic systems is somewhat thwarted by the stability of
the involved salts. Of a great potential for further development is
the von Braun reaction, which employs cyanogen bromide (CNBr)
in ring-opening bromination of azacyclic compounds43,44. This
reaction outperforms other strategies in terms of efficiency and
applicability, but has found relatively narrower synthetic applica-
tions45–48. This is mainly due to the limited function of the
resulting N–CN group and the requirement of harsh conditions for
its removal. Additionally, cyanogen bromide is highly toxic, and
can undergo explosive trimerization to cyanuric bromide or
decompose to hazardous hydrogen cyanide (HCN)49. Chlor-
oformates have been utilized as milder reagents50–54, however
generally applied for strained ring systems38,41, with an exceptional
report by Cho still limited to N-alkyl-substituted 5-membered
cyclic amines55. One of the main challenges associated with such
reagents comes from a poor capability to access the key ammo-
nium salt intermediates, which in turn restricts the employable
ring types.

Here we report a highly efficient and practical strategy for the
ring-opening functionalization of a wide variety of unstrained
cyclic amines, including but not limited to 5- and 6-membered
rings (Fig. 1c). The use of difluorocarbene allows a prominently
selective N-difluoromethylation, with subsequent ring-opening
halogenation and in situ hydrolysis furnishing acyclic N-formyl
haloamines. The resulting pluripotent motifs further enable
the construction of diverse arrays of homologated scaffolds by
transforming both N-formyl and halide functional groups
incorporated in products, providing a unique platform for scaf-
fold diversity that cannot be accessed by the conventional von
Braun-type reactions. Not only a wider range of cyclic amines can
be deconstructively modified, but this strategy can also be applied
to complex molecules bearing labile functional groups.

Results
Reaction development. Difluorocarbene serves as an excellent
reagent in transition metal-free cyclopropanation of alkenes and
alkynes, and can also react with various carbon or heteroatom
nucleophiles56,57. We envisaged that its highly-electrophilic char-
acter would permit an efficient and selective generation of key
ammonium salt intermediates from a variety of azacyclic cores,
whereby the introduced difluoromethyl (CF2H) group would then
manipulate the ring properties to eventually enable the decon-
structive functionalization of challenging C–N bonds. Difluor-
ocarbene can be readily generated by α-elimination of CF2XY-type
reagents, among which (bromodifluoromethyl)trimethylsilane
(TMSCF2Br) stands out as one of the most practical precursors58.
It is non-toxic, air- and moisture-stable, easy to handle, and can
generate the reactive species under mild conditions.

We, therefore, focused on the use of TMSCF2Br in our initial
investigation towards the deconstructive functionalization of N-
phenylpyrrolidine 1a. Pleasingly, after extensive screenings of
various reaction parameters, we identified the optimized conditions
consisting of TMSCF2Br, NH4OAc base and 1,2-dichloroethane
(1,2-DCE) solvent, which furnished the ring-opening product 2a in
85% yield at room temperature in 12 h (Fig. 2a, entry 1).
Interestingly, the deconstructive product was incorporated with
an N-formyl moiety, presumably by in situ hydrolysis of the
unstable N-CF2H group59. This cascade process is beneficial in
synthetic aspects, as the N-formyl group not only is readily
removable60, but also provides a unique opportunity for diverse

post-modifications. Control experiments established the importance
of base (entry 2), which is required for the generation of
difluorocarbene intermediate. Notably, an alternative difluorocar-
bene source (entry 3), a dichlorocarbene variant61 (entry 4) and the
conditions developed by Cho55 (entry 5) were found to be
incompetent (see Supplementary Table 1 for details). Encouraged
by the above promising result, we also examined the feasibility of
N-ethylpyrrolidine 1b in the ring-opening bromoformylation
(Fig. 2b). We could obtain the presupposed intermediacy of
quaternary ammonium salt by treating 1b under the optimized
conditions at room temperature (int1, 78%). A moderate heating of
the isolated intermediate int1 consequently resulted in a facile ring-
cleavage to afford 2b (83%).

Substrate scope of 5-membered rings. Having established the
optimal conditions, we next evaluated the substrate scope over a
range of 5-membered azacyclic compounds (Fig. 3). All substrates
examined were smoothly reacted under mild conditions irre-
spective of the nature of N-substituents, furnishing the ring-
opening bromoformylation products in excellent selectivity and
high efficiency (2a–2r). Noteworthy is that 1.1 equiv. of the
difluorocarbene precursor was sufficient enough for N-alkyl
substrates (2b–2c). Methoxy, trifluoromethyl, ketone and amide
functionalities on N-aryl groups were found to be well-tolerated
in ring-opening of pyrrolidines (2d–2g, 77–91%). Benzo-fused
and fully saturated bicyclic amines were also effectively trans-
formed (2h–2l, 50–83%). In case of octahydroindolizine (1k), the
skeleton was ring-opened exclusively at the 5-membered unit.
A dihydropyrrole 1m was readily ring-opened without affecting
the olefin moiety (2m, 86%), proving its orthogonality to the
previously reported cyclopropanation reactions58.

Significantly, reactivity differentiation by basicity of amines or
steric influences allows the reaction to occur in excellent
regioselectivities. For instance, when there are two nitrogen
atoms present in the same or different azacyclic skeletons, those
with a more basic amine were exclusively difluoromethylated and
subsequently ring-opened (2n and 2o, 81 and 72%). For 2- or 3-
substituted pyrrolidines, the ring was selectively cleaved at the
sterically less demanding 5-position (2p–2r, 60–95%). We were
delighted to find that the variation of halides was also possible,
affording the chlorination or iodination products in moderate to
good yields (2a-Cl, 2b-Cl and 2d-I, 51–82%). In addition,
the ring-opening acetoxylation was achieved (2a-OAc, 70%) by
employing an excessive amount of NH4OAc in combination with
(chlorodifluoromethyl)trimethylsilane (TMSCF2Cl).

Elucidation of the regioselectivity in C–N bond cleavage. The
finding of a convenient method for ring-opening functionaliza-
tion of 5-membered cyclic amines led us to probe the origin of
selectivity for N-alkyl substrates (Fig. 4). Taking a CF2H salt
int1 as a model intermediate, three potential substitution path-
ways were computationally evaluated (Fig. 4a). Transition state
analysis was consistent with the observed selectivity for int1. The
ring-opening process (TS3) displayed an activation barrier
of 20.7 kcal/mol, whereas those for deethylation (TS2) and
dedifluoromethylation (TS1) were higher in energy by 5 and
17 kcal/mol, respectively. Although the product from the ring-
opening pathway (RO1) was slightly uphill by 2.6 kcal/mol, this
process was expected to be facilitated by the subsequent hydro-
lysis of the N-CF2H group to the thermodynamically stable
N-formyl product 2b (see Supplementary Fig. 3). The revealed
preference of int1 to undergo the ring-opening pathway (TS3)
over N-deethylation (TS2) could be quantified by a distortion-
interaction analysis (Fig. 4b). Along with the intrinsic reaction
coordinate, distortion energy term of ring-opening is significantly
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smaller than that of N-deethylation, whereas their interaction
energy profiles are rather similar. From these outcomes, it could
be concluded that the earlier nature of the ring-opening transition
state with respect to the C–N breaking event is responsible for the
corresponding selectivity. Moreover, the DFT-optimized struc-
tures of int1 clearly show that the cyclic C–N bond is noticeably
longer than the ethyl C–N bond presumably because of the ring
strain, indicating that the attack of the cyclic C–N bond involves
the least structural reorganization towards the corresponding
transition state (Fig. 4c).

Extension to 6-membered cyclic amines. With the comprehen-
sive results obtained for the ring-opening functionalization of
five-membered cyclic amines, we wondered whether the current
methodology could also be applied to 6-membered cyclic amines.
Delightfully, the initial attempt with N-phenylpiperidine 3a as a
substrate gave a ring cleavage product 4a under the optimized
conditions at 60 °C (80%, Fig. 5a). On the other hand, N-alkyl
substrates were obstructed by undesired N-dealkylation, which
has been a major problem encountered in most of the existing
ring-opening strategies31. For instance, N-ethylpiperidine 3b
afforded the ring-opening product 4b in 18% yield along with the
N-dealkylation product 5 in 82% yield (4b:5, 1:4.6). In addition to
the earlier example of octahydroindolizine (1k, Fig. 3), these

results suggested again that 6-membered rings are less influenced
by the presence of a CF2H group, presumably due to their
inherent ring stability. Intriguingly, we discovered that this issue
could be overcome by examining the steric influence of the N-
alkyl group. In particular, the ring-opening pathway becomes
substantially more favourable with increment of substituents at
the γ-position (4d–4f). For example, N-dealkylation pathway was
largely suppressed in the case of N-neohexyl substrate (3f), which
exclusively gave the ring-opening product 4f in 86% yield.
Meanwhile, N-isobutyl substrate (3c) showed a similar selectivity
to N-ethyl substrate (3b), indicating that a β-substituent has a
negligible effect on the selectivity. These outcomes are captivating
as the observed trend is opposed to that of general SN2 reactions,
in which branching carbons farther away from the electrophilic
site tend to have a smaller effect on the nucleophilic attack62.

Having identified this interesting steric influence, we further
sought to investigate the observed selectivity by computational
analysis. N-Difluoromethyl-N-ethyl piperidinium bromide (int2)
and the analogous N-neohexyl salt (int3) were representatively
chosen for the case study. Consistent with the experimental results,
the DFT calculations on the N-ethyl salt int2 show that N-
dealkylation is marginally preferred over the ring-opening pathway
(∆∆G‡= 1.6 kcal/mol, Fig. 5b). In sharp contrast, the activation
barrier for ring-opening of int3 is 4.6 kcal/mol lower in energy than
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the corresponding N-dealkylation (Fig. 5c). The structural analysis
of the intermediates and their transition states further revealed the
primary steric influence by γ-substituents (Fig. 5d). The DFT-
optimized structure of the N-neohexyl salt int3 clearly shows that
the substituent at the γ-position of N-alkyl group considerably
disturbs the N-dealkylation path. As a result, the rotation along the
C(α)–C(β) bond becomes imperative as the nucleophile approaches
in the transition state, which then causes an unfavourable steric
repulsion with the N–CF2H piperidine moiety. Consequently,
N-dealkylation becomes disfavoured with a significantly increased
activation barrier, rendering the ring-opening pathway relatively
more favourable.

Substrate scope of 6-membered and larger rings. With the
obtained understanding of reactivity and selectivity, a range of 6-
membered cyclic amines were explored for the current ring-
opening functionalization strategy (Fig. 6a). Piperidine rings were
viable to give the desired products in good to excellent yields
(4a–4i, 79–99%), and both N-aryl and N-alkyl substituents could
be incorporated. Ester functional groups were found to be tol-
erable, with the 4-substituted piperidines (3g and 3h) giving rise
to γ- and δ-amino esters 4g and 4h in 85 and 80% yields,
respectively. A spiro bicyclic substrate (3i) was also effectively
functionalized to give the corresponding product 4i in 99% yield.

Morpholine was also feasible with both N-phenyl (3j) and N-
neohexyl (3k) substituents, affording the valuable acyclic products 4j
and 4k in excellent yields (90%). 1-Phenyl-4-tosylpiperazine (3l) was
selectively ring-opened at the 2-position (4l, 76%, r.r. > 20:1), which
was enabled by a selective difluoromethylation at the nitrogen
incorporated with a phenyl group. Tetrahydroisoquinoline substrate
(3m) was reacted at the more electrophilic benzylic site to give the
ring-opened product in an excellent yield and high selectivity (4m,
93%, r.r.= 12:1). The reaction of trans-decahydroisoquinoline (3n)
was also highly selective, leading to the deconstructive product by
bromination at the sterically less demanding site (4n, 88%, r.r. >
20:1). Moreover, julolidine (3o) and quinuclidine (3p) cyclic cores
were effectively transformed to the corresponding bromoamines (4o
and 4p, 71 and 75%, respectively).

Notably, arecoline 3q exclusively gave the ring-opening product
4q (87%) by a Hofmann-type elimination reaction. This relatively
simple natural product had previously been reported to favour
N-demethylation when treated with chloroformates51. The reaction
of an N-butylpiperidine substrate 3r occurred exclusively at the
position appended with a phenyl group (4r, 87%). These two
examples showed that steric at the N-alkyl group is not necessary in
cases where the ring is substituted with certain functional groups.
Furthermore, the reaction was also found feasible with 7- and
8-membered rings, furnishing the desired linear bromoamine
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products in excellent yields (7a–7b and 9a–9b, 68–95%). Overall,
the ability to manipulate various cyclic skeletons allowed the
synthesis of difficult-to-access acyclic bromoamine motifs with a
wide range of N-substituents, including those previously under-
explored for 6-membered or larger cyclic systems.

To further highlight the broad applicability of our method,
late-stage modifications of biologically relevant compounds were
examined (Fig. 6b). The exceptional functional group tolerance
and excellent regioselectivity were proven with a Sildenafil
analogue 10 that contains various nitrogen atoms, which afforded
11 by an exclusive ring-opening of the piperazine scaffold in 43%
yield along mostly with unreacted starting material. Reserpine
also underwent an efficient C–N bond cleavage by acetoxylation
at the benzylic site, leading to the synthetically challenging
10-membered azacyclic product 12 (56%, >20:1 d.r.).

Notably, Fenpiprane and Prozapine, analogous drugs corre-
spondingly containing N-alkyl substituted 6- and 7-membered
cyclic amines, selectively afforded the ring-opening products 13 and
14 in 60 and 81% yields, respectively. Likewise, (S)-(+)-citronellyl
morpholine was effectively ring-opened to give 15 in 63% yield.
Considering that the basic motifs of these examined compounds are
vastly present in many other pharmaceuticals and natural products,
this approach is expected to find wide synthetic applications.

Skeletal diversification. In addition to the excellent substrate
generality and applicability demonstrated above, we envisioned that
our resulting product could be further used as a pluripotent inter-
mediate for skeletal diversification. The substrate-based strategy
relying on the pre-installation of an internal functional group would
limit the obtainable scaffolds from a specific ring system. With this
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regard, the ability to forge various ring structures through a
common ring-opening approach would add a new dimension
in generating structural-diversity. Taking advantages of the simul-
taneously introduced alkyl halide and N-formyl groups in our

products, we anticipated that a series of branching reactions would
grant distinct skeletons.

First, one-pot sequence of lithium-iodine exchange, cyclization
and reduction of the iodoformylation product 2d–I gave a
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ring-expansion product 16 in 51% yield (Fig. 7a, i). This ring-
opening-reclosing strategy is attractive in that it utilizes an
external C1 source to achieve a homologation process that does
not rely on the pre-encoded systems63. In the second ring-
modification, 1-(3,4-dimethoxyphenethyl)pyrrolidine 1s was
ring-opened (2s, 96%, a gram-scale) and subsequently treated
under the Bischler–Napieralski reaction conditions to afford a
C1-tethered product 17 in 93% yield (Fig. 7a, ii).

The conversion of the bromoalkyl group to olefin functionality
via E2 elimination, and succeeding intramolecular reaction with
the N-formyl moiety offers another opportunity to obtain post-
modification derivatives of high synthetic values. For example,
Ni-catalysed hydrocarbamolylation64 of the newly generated double
bond provided γ-lactam products 18 and 19 in 51 and 74% yields,
respectively (Fig. 7a, iii). In addition, Ti-mediated intramolecular
cyclopropanation using the Kulinkovich–de Meijere conditions65

gave 2-azabicyclo[3.1.0]hexane products 20 and 21 in 75 and 73%
yields from 2d and 2s, respectively (Fig. 7a, iv).

We next briefly examined skeletal remodelling based on the use
of pre-installed functional groups (Fig. 7b). 4-Carboxylate sub-
stituted piperidine 3g was smoothly converted to a lactone product
22 (83%) by a one-pot ring-opening, hydrolysis and cyclization
procedure. Similarly, the reaction of N-Boc protected piperazine 3s
afforded a cyclic carbamate product 23 (79%) under the standard

ring-opening conditions, in this case, without the need of additional
reagents. Moreover, the structure of obtained product 23 was
characterized by its X-ray structure to confirm the site selectivity.

Furthermore, we demonstrated that our strategy could be
utilized in ring-diversification of natural products. (Fig. 7c). For
example, DL-Laudanosine was readily ring-opened by an elimina-
tion process to give the olefin intermediate 24 (92%), and the
subsequent Bischler–Napieralski reaction and hydride insertion
led to a 7-membered analogue 25 in 70% yield. In addition to the
excellent efficiency and selectivity achieved with biologically
relevant compounds, this unique ability to create a diversified
scaffold represents one of the distinguishing features of our
current methodology.

In summary, we have developed an efficient strategy for
deconstructive modification of unstrained azacyclic systems. The
key finding was the use of difluorocarbene as a mild and practical
source to form the key ammonium salt intermediates, which not
only surpass the existing methodologies in terms of practicability,
efficiency, functional group tolerance, chemo- and regioselecitvities,
but also provides a unique tool to diversify a wider range of cyclic
amines to acyclic analogues and homologated cyclic cores upon
post-transformations. The utility of the developed protocol
was further demonstrated by the direct structural alteration of
azacyclic cores present within complex molecules. This late-stage
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diversification of natural products and pharmaceutical analogues
enabled ready access to underexplored chemical space around
bioactive molecules.

Methods
General procedure for the ring-opening bromoformylation. To a 2 mL reaction
vial containing a mixture of N-phenylpyrrolidine (29 μL, 0.2 mmol) and NH4OAc
(61.7 mg, 0.8 mmol) in 1,2-dichloroethane (1,2-DCE) (0.5 mL) was added (bro-
modifluoromethyl)trimethylsilane (124 μL, 0.8 mmol). The vial was sealed and
stirred at room temperature for 12 h, then filtered through a pad of celite and
washed with CH2Cl2 (5 × 3 mL). The filtrate was concentrated in vacuo, and the
desired product was obtained as a colourless oil (43 mg, 85%) after purification by
flash chromatography (eluent: EtOAc/n-Hexane, 1:5).

Data availability
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its Supplementary Information, and also available from the authors upon reasonable

request. The X-ray crystallographic coordinates for structures reported in this article have
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