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Ring-polymer molecular dynamics rate-theory in the deep-tunneling
regime: Connection with semiclassical instanton theory

Jeremy O. Richardson and Stuart C. Althorpe
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

�Received 14 October 2009; accepted 4 November 2009; published online 3 December 2009�

We demonstrate that the ring-polymer molecular dynamics �RPMD� method is equivalent to an
automated and approximate implementation of the “Im F” version of semiclassical instanton theory
when used to calculate reaction rates in the deep-tunneling regime. This explains why the RPMD
method is often reliable in this regime and also shows how it can be systematically improved. The
geometry of the beads at the transition state on the ring-polymer potential surface describes a
finite-difference approximation to the “instanton” trajectory �a periodic orbit in imaginary time ��
on the inverted potential surface�. The deep-tunneling RPMD rate is an approximation to the rate
obtained by applying classical transition-state theory �TST� in ring-polymer phase-space using the
optimal dividing surface; this TST rate is in turn an approximation to a free-energy version of the
Im F instanton rate. The optimal dividing surface is in general a function of several modes of the
ring polymer, which explains why centroid-based quantum-TSTs break down at low temperatures
for asymmetric reaction barriers. Numerical tests on one-dimensional models show that the RPMD
rate tends to overestimate deep-tunneling rates for asymmetric barriers and underestimate them for
symmetric barriers, and we explain that this is likely to be a general trend. The ability of the RPMD
method to give a dividing-surface-independent rate in the deep-tunneling regime is shown to be a
consequence of setting the bead-masses equal to the physical mass. © 2009 American Institute of
Physics. �doi:10.1063/1.3267318�

I. INTRODUCTION

Ring-polymer molecular dynamics �RPMD� is an ap-
proximate method for including quantum effects in time-
correlation functions.1–12 Like the related centroid MD
�CMD� method,13,14 the RPMD method obtains an approxi-
mate description of the thermally averaged quantum dynam-
ics by considering the classical dynamics of a set of ring
polymers. The ring polymers are the closed loops of replica
particles joined by harmonic springs that appear in quantum
path-integral simulations of static quantities.15–22

The classical dynamics of the ring polymers preserves
the quantum Boltzmann distribution and satisfies time-
reversal symmetry. These are important properties, but alone
they are not sufficient to guarantee that the �fictitious� clas-
sical dynamics of the ring polymers gives a realistic approxi-
mation to the true quantum dynamics. Nevertheless, both
RPMD and CMD have had considerable success. The two
methods differ mainly in how they choose the �fictitious�
masses of the polymer beads. In RPMD these masses are
chosen to be the same as the physical masses of the particles
in the system;1,4 in CMD they are chosen differently14 such
that the fictitious vibrations of the particle springs do not
corrupt the vibrational spectrum. As a result, CMD is better
than RPMD for simulating spectra.6,23

The RPMD method, however, does extremely well when
used to calculate thermal reaction rates.9–12 One can show9

that the RPMD rate is correct in the classical limit �where
each polymer collapses to a point� and that it is also exact for

tunneling through a parabolic barrier. The RPMD method
can therefore be expected to yield reliable estimates of reac-
tion rates in the classical and shallow-tunneling regimes.
However, a surprising result of applying the RPMD method
to systems for which accurate quantum rates are
available9,10,12 is that it yields realistic estimates of the rates
�usually to within better than a factor of two� at much lower
temperatures in the deep-tunneling regime.

In this article, we demonstrate that there is a close link
between RPMD rate-theory and the long-established semi-
classical instanton approach,24–32 which explains why the
RPMD rate is often reliable in the deep-tunneling regime and
also shows how it can be improved. The semiclassical instan-
ton approach belongs to the class of approximate quantum
rate methods �for other examples, see Refs. 33–41�, which
include quantum effects in the Boltzmann operator but treat
the dynamics classically. Such methods are expected to yield
reliable estimates of the rate, provided it is not influenced by
long-time �t���� quantum-coherence effects.

There are two alternative forms of the semiclassical in-
stanton approach, one24 derived rigorously from the �exact�
quantum flux-side correlation function42 and the
other25–32,43–45 �sometimes called the “Im F” approach� ob-
tained by modeling the rate of transmission through the bar-
rier by the rate of decay of a thermal average of shape reso-
nances �through the same barrier�. For a one-dimensional
�1D� system, the first approach approximates the rate by
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kinst�T�Qr�T� = �2��3�−1/2� d2S̃

d�2�1/2

exp�− S̃/�� , �1�

where �=1 /kT, Qr�T� is the reactant partition function, and

S̃ is the classical action along the “instanton trajectory.” The
latter is a periodic orbit in the inverted potential with period
��. At least one such orbit can be formed at any temperature
lower than the “cross-over” temperature Tc=1 /k�c, where
�c=2� /��b and �b is the barrier frequency. The second
form of instanton theory gives an expression that has the
same exponent �containing the action of the instanton� as Eq.
�1� but a different prefactor. In practice, the numerical pre-
dictions of the two approaches differ usually by a very small
amount.28 The approach of Eq. �1� is clearly to be preferred,
as being the more rigorous of the two, but it is the Im F
approach that makes clear the link with the RPMD rate and
which we will therefore employ here.

The instanton approach often yields reliable predictions
of the rates for 1D systems and sometimes for systems with
more degrees of freedom, but it suffers from the disadvan-
tage that all degrees of freedom perpendicular to the reaction
coordinate are approximated harmonically.25,39 This is an ob-
vious drawback for significantly anharmonic systems and
can also introduce large errors at temperatures just below
cross-over.27 However, there are a variety of generalizations
to the instanton approach that do not approximate these de-
grees of freedom harmonically. These include the “quantum
instanton” method of Miller and co-workers,39 the semiclas-
sical transition-state theory �TST� of Hernandez and Miller,37

and a free-energy version of the Im F instanton rate derived
by Mills et al.29 This last approach turns out to have a very
close link to the RPMD rate.

After summarizing previous work on the RPMD ap-
proach in Sec. II, we demonstrate in Sec. III that the deep-
tunneling RPMD rate is linked closely to the Im F instanton
rate and particularly to the free-energy version just men-
tioned. We investigate the comparison between the RPMD
and instanton rates numerically in Sec. IV, where we also
explain how to locate approximately the optimal dividing
surface in RP space. The derivations in Secs. II–IV are car-
ried out for 1D systems in order to simplify the presentation;
extension to multidimensions is straightforward, and we ex-
plain how this is done in Sec. V. Section VI concludes the
article.

II. RPMD RATE-THEORY

The use of ring polymers to compute statistical averages
over time-independent operators is well known and goes
back to Feynman.15–22 The quantum Boltzmann operator in
the partition function

Q�T� = Tr�e−�Ĥ� �2�

is evaluated in N imaginary time-steps of length �N=� /N.
For a one-dimensional system of mass m, moving in a po-
tential V�x�, this gives

Q�T� � � m

2��N�2�N/2	 dxe−�NUN��,x�, �3�

where x= �x1 , . . . ,xN� and

UN��,x� = 

n=1

N

V�xn� +
m

2��N��2 

n=1

N

�xn+1 − xn�2, �4�

where the second sum employs cyclic boundary conditions
in n. Equation �3� is very useful since it expresses the quan-
tum statistical average in the form of a classical average in
an extended space in which each quantum particle is re-
placed by a classical ring polymer consisting of N beads.
Equation �3� is exact in the limit N→� and generalizes eas-
ily to many degrees of freedom.

In RPMD,1–12 each bead is given an artificial mass equal
to the physical mass m and a momentum pn. This choice of
bead-masses is different from that used in the related CMD
approach14 and has been shown4 to give the best short-time
approximation to various Kubo-transformed correlation
functions. �In Sec. III F, we will show that this choice of
masses also has the important advantage of giving a
dividing-surface-independent approximation to the deep-
tunneling rate.� The ring polymers are made to follow clas-
sical trajectories through the extended phase-space �x ,p�,
subject to the �artificial� Hamiltonian

HN�p,x� = 

n=1

N
pn

2

2m
+ UN��,x� . �5�

Similar techniques17,20–22 have been used as a means of sam-
pling the configuration space x in calculations of static prop-
erties. In RPMD, however, the �artificial� classical dynamics
of the beads is taken literally and interpreted as providing an
approximation to the exact quantum dynamics of the �real,
physical� system. In particular, the RPMD rate kRPMD�T� is
calculated by applying classical rate-theory46,47 in the space
�x ,p�, which gives9,10

kRPMD�T�Qr�T� =
1

�2���N	 dp	 dxe−�NHN�p,x�

���	�x��v	�p,x�h�	�xt��,

t � 
 , �6�

with

v	�p,x� = �d	�x�
dt

�
t=0

=
1

m


n=1

N
�	�x�
�xn

pn. �7�

The term ��	�x��v	�p ,x� describes the flux of particles
through a dividing surface48 	�x�=0 at initial time t=0, and
the Heaviside step-function h� . . . � correlates this with the
fraction of particles that make it to the product side of the
reaction after the “plateau time” 
.46,47 The RPMD rate is
therefore independent of the choice of dividing surface. Most
previous implementations10–12 of Eq. �6� have used a specific
form of dividing surface in which 	 is taken to be a function
of the centroid coordinate q̄0 �see the Appendix�. We will use
a more general form of dividing surface introduced below.
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As mentioned in Sec. I, kRPMD�T� can be shown to give
the correct rate in the classical and parabolic-barrier limits.
The main purpose of this article is to explain why it is also a
sensible approximation in the deep-tunneling regime at tem-
peratures below Tc, where the parabolic approximation
breaks down. To do this, we will need to make use of the
TST approximation to Eq. �6�,

kRP-TST�T�Qr�T� =
1

�2���N	 dp	 dxe−�NHN�p,x�

���	�x��v	�p,x�h�v	�p,x�� , �8�

in which h�	�xt�� is approximated by its t→0+ limit,
h�v	�p ,x��. From classical TST,46,47 we know that the RP-
TST rate kRP-TST�T� depends �exponentially� strongly on the
location of the dividing surface and that it provides an upper
bound to the �non-TST� rate kRPMD�T�. The choice of divid-
ing surface is therefore crucial. In what follows below, we
will make extensive use of the optimal RP-TST �ORP-TST�
rate kORP-TST�T�, which we define to be the RP-TST rate
obtained using �a sufficiently good approximation to� the op-
timal choice of dividing surface, i.e., the surface that gives
the smallest value of kRP-TST�T� and that maximizes the trans-
mission coefficient

��T� =
kRPMD�T�
kRP-TST�T�

. �9�

We will show below that the optimal dividing surface can be
approximated by just the centroid coordinate if the reaction
barrier is symmetric but that it must be allowed to depend on
other normal modes of the ring polymer if it is to yield good
approximations to the deep-tunneling rate for asymmetric re-
action barriers.

III. CONNECTION WITH SEMICLASSICAL INSTANTON
THEORY

A. The Im F approximation

As mentioned in Sec. I, there are two versions of semi-
classical instanton theory, and the one that we use here is
based on the so-called Im F model.25–32 The basic assump-
tion behind this model is that one can develop an approxi-
mate short-time rate-theory based on the quantum Boltzmann
operator in the vicinity of the reaction barrier. Clearly this is
true in the classical limit �where the Boltzmann operator is
local�, and it is reasonable to suppose that it carries over into
the quantal deep-tunneling regime where the Boltzmann op-
erator is local to within roughly the thermal wavelength. One
is thus free to modify the potential elsewhere, such that it
traps the system into a series of resonances, which decay by
tunneling through the barrier �as shown schematically in
Fig. 1�. The tunneling rate is then equal to the thermal aver-
age of the rate of decay of the resonances weighted by the
�unmodified� reactant partition function and can be written as

k�T�Qr�T� =
1

�



k

�ke
−�Erk, �10�

where Erk and �k are the energies and widths of the reso-
nances.

Equation �10� is approximate because it neglects the
contribution from nonresonant over-the-barrier scattering
and also assumes that each resonance has a clearly defined
Lorentzian line-shape and width �and there is no guarantee
that the surface away from the barrier can be distorted to
produce this outcome, although it seems a reasonable possi-
bility�. The first of these assumptions will clearly be true at
low enough temperatures in the deep-tunneling regime
�where the top of the barrier is not thermally accessible�. It is
also reasonable to suppose that the rate of penetration of the
barrier will be very slow in this regime �unless the reaction
barrier is atypically thin�, in which case one can approximate
Eq. �10� by25–32

k�T�Qr�T� �
2

��
Im R�T� , �11�

where

R�T� = 

k

e−��Erk−i�k/2�. �12�

The set of complex numbers Erk− i�k /2 can be regarded for-
mally as the discrete spectrum obtained by analytic continu-

ation of the Hamiltonian Ĥ into the complex plane.49–51 To
derive instanton theory, one applies the analytic continuation
directly to the path-integral expression for Q�T�, which is
straightforward to do if the integrals are approximated using
the method of steepest descent.52 In most of the instanton
literature,26–28 this combination of steepest-descent approxi-
mation and analytic continuation is applied to the formally
exact expression for Q�T�. Here, we apply it to the RP ex-
pression of Eq. �3� �which becomes identical to the formally
exact expression in the limit N→�� in order to demonstrate
the connection with the RPMD method.

B. Saddle points on the RP potential surface

The first step in deriving the instanton expression from
Eq. �11� is to locate the saddle points on the RP potential
surface UN�� ,x�. From Eq. �4�, the stationary points of
UN�� ,x� satisfy

V��xn� = m
xn+1 − 2xn + xn−1

��N��2 , n = 1, . . . ,N . �13�

These equations have a trivial solution28

x‡

Erk

FIG. 1. Schematic illustrating the use of the Im F model to describe a
reaction rate in the deep-tunneling regime. The potential energy �black
curve� is distorted �red curve� to give a well that accommodates a series of
long-lived resonances �blue lines�. The decay of the resonances through the
barrier gives an approximation to the rate.
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xn = x‡, n = 1, . . . ,N , �14�

which corresponds to all the normal modes of the ring poly-
mer being zero, except for the centroid mode q̄0 �see the
Appendix�, which is located at the barrier maximum x‡.
Above the cross-over temperature Tc, this geometry is the
saddle point on UN�� ,x�, which is consistent with the dy-
namics of the ring polymer in the classical limit �where it
collapses to a point which behaves as a classical particle�.

Below Tc, however, the features of UN�� ,x� become
qualitatively different such that the geometry xn=x‡ is no
longer a saddle point. To see why this is so, consider the
normal modes at this geometry. Because none of the springs
are stretched, the normal modes are identical to those of the
free ring polymer �given in the Appendix�, except that the
normal frequencies are changed to ��k

2−�b
2. Above Tc, �k

��b for all k�0, and therefore all the frequencies are real,
except for the imaginary frequency i�b associated with the
centroid mode. Hence the geometry xn=x‡ is a saddle point.
Below Tc, however, �1��b �see Eq. �A3��, so the modes
q1 are now also unstable. Hence the geometry xn=x‡ has
three imaginary frequencies and is no longer a saddle point.
The unstable modes q1 describe overall stretches of the
polymer �see the Appendix�, which allow it to lower its en-
ergy by “draping” over the top of the barrier.

As a result, the saddle point below Tc corresponds to a
nontrivial solution x= x̃ to Eq. �13�, for which the right-hand
side is nonzero. This equation has a very simple physical
interpretation since it resembles a finite-difference approxi-
mation to Newton’s second law, describing the �non-RP� dy-
namics of the classical particle on the inverted potential
−V�x�. The nth polymer bead thus gives the position of the
particle after n equally spaced time-steps of duration �N�.
Since the rings are closed and are symmetric under cyclic
permutation of the beads, it follows that the classical trajec-
tory that they approximate is periodic, with period ��. The
saddle point x̃ is therefore a finite-difference approximation
to the periodic instanton trajectory.24 The projections of x̃
onto the free-polymer normal modes q are the Fourier com-
ponents of this trajectory. Examples of the geometry x̃ ob-
tained for asymmetric and symmetric Eckart barriers are
given in Fig. 2.

At temperatures �c���2�c, the instanton trajectory
describes a single “bounce” across the inverted potential in
the time ��. At lower temperatures there is a series of thresh-
olds �=��c �with � a positive integer�, beneath each of
which the frequencies of the modes q� become imaginary.
This permits the ring polymer to fold back on itself � times
across the top of the barrier, thus representing a periodic
trajectory that makes � bounces in time ��. In what follows,
we will assume that the temperature lies in the single-bounce
regime, although the treatment can easily be generalized for
lower temperatures. We will refer to the geometry x̃ of the
ring polymer corresponding to the single-bounce trajectory
as the “instanton polymer.”

The next step in deriving the instanton rate is to compute
the normal modes sk�, k=0, . . . ,N−1, and frequencies �k at
the saddle point x̃, by diagonalizing the Hessian

Knn���� = V��x̃n��nn� +
m

��N��2 �2�nn� − �nn�−1 − �nn�+1� .

�15�

We define s0 to be the unstable mode at the saddle point with
imaginary frequency i��0�. If s0 is expanded in a basis of
free-polymer normal modes q, then we expect it to be domi-
nated by the imaginary-frequency modes q0 and q1.

In the derivation of instanton theory based on the exact
expression for Q�T�,28 there is a zero-frequency mode s1,

which originates from the invariance of the action S̃ under
time translation. In the RP derivation we are following here,
the time invariance manifests itself as the symmetry of the
potential UN�� ,x� under cyclic permutation of the polymer
beads. In the limit N→�, there is a �circular� degree of
freedom, around which UN�� ,x� is constant, and which links
all cyclic permutations of the N beads. The zero-frequency
mode s1 is tangential to this degree of freedom at the point x̃.
In the N→� limit, therefore, a small displacement in s1 must
move the nth bead at position x̃n into position x̃n+1. Hence the
N→� limit of s1 can be written as

s1 =
1

�BN


n=1

N

�x̃n+1 − x̃n�xn, �16�

where the normalization coefficient BN is

BN = 

n=1

N

�x̃n+1 − x̃n�2. �17�

In a converged numerical calculation, N will be sufficiently
large that the frequency ��1� is very small, and the expression
in Eq. �16� provides a good approximation to s1. The higher
normal modes sk�2� are all finite and have real frequencies,
which tend to the normal modes of the free ring polymer in
the limit k→�.

( a )

¯ q
0

¯ r
( c )

( b )

¯ q
0

FIG. 2. RP geometries at the instanton saddle point x̃ for �a� the asymmetric
Eckart barrier at �=10 a.u. and �b� the symmetric Eckart barrier at
T=150 K. The green circles are the positions of the centroids. The arrows
represent the dominant contributions to the unstable normal mode, which is
a concerted centroid-shift and overall stretch in �a� and just a centroid-shift
in �b�. Panel �c� shows the RP geometries at various points along the mini-
mum energy path for the asymmetric Eckart barrier at �=10 a.u.
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C. RP form of the Im F instanton rate

The next step in the derivation28 is to multiply the RP
coordinates by complex scaling factors such that the �real,
infinite� partition function Q�T� is transformed into the �com-
plex, finite� quantity R�T� in Eq. �11�. The trick26–28 is to
combine this mapping with the evaluation of the integrals
over s by steepest descent. The complex scaling required is
then to multiply the unstable mode s0 by a factor of i=�−1
for s0�0 �with s0 defined such that this direction takes the
system away from the potential well shown in Fig. 1�. This
has the effect of making the frequency �0 real so that R�T�
becomes complex and finite as required. We only require the
imaginary part of R�T�, which gives the rate through Eq.
�11�. This part acquires a factor of 1

2 �since the imaginary
part of the Gaussian integral over s0 is evaluated over half
the peak� and is hence given in the steepest-descent approxi-
mation by

Im R�T� =
N�BN

2
� m

2��N�2�N/2
e−�NŨN���

��
k=0

N−1

�	 dske
−�Nm�k

2sk
2/2, �18�

where ŨN����UN�� , x̃� and the prime indicates that the
zero-frequency mode s1 has already been integrated out �to
give the factor of N�BN� so that k=1 is omitted from the
product. Evaluation of the Gaussian integrals and substitu-
tion into Eq. �11� yield the following expression for the in-
stanton rate:32

kinst�T�Qr�T� = AN���e−�NŨN���, �19�

where

AN��� =
1

�N�
� mBN

2��N�2��
k=0

N−1

���k�N�−1

. �20�

This expression tends to the standard Im F form of the in-

stanton rate28 in the limit N→�, where �N�ŨN���= S̃ �the
classical action along the instanton trajectory�, which gives
results which are numerically very close to those of the more
rigorous form of instanton theory of Eq. �1�.

D. Connection with the harmonic RP-TST rate

To make the link between the instanton and RPMD rates,
it is sufficient to note that the derivation just given involves
almost the same steps as a derivation of the harmonic ap-
proximation to the RP-TST rate. To derive the latter, we
identify the same transition state x̃ with unstable mode s0

�which is now identified as the “reaction coordinate”�, ex-
pand the potential to second order in sk�2 about x̃, and com-
pute the free energy at the transition state by integrating out
the zero-frequency mode s1 and evaluating the Gaussian in-
tegrals in Eq. �18�.

In fact the only difference between the harmonic
RP-TST derivation and the Im F derivation just given is in
the treatment of the unstable mode s0. As a result, the instan-

ton rate kinst�T� is related to the harmonic RP-TST rate
kh-RP-TST�T� by

kinst�T� = �h�T�kh-RP-TST�T� , �21�

where

�h�T� =
2�

����0�
. �22�

At the cross-over temperature Tc, the coefficient �h�T�=1.
Hence a harmonic approximation to the RP-TST rate will
give a good approximation to the instanton rate at tempera-
tures just below cross-over but will degrade in quality as Tc

decreases further. We discuss the behavior of �h�T� in
Sec. IV D.

E. Connection with the RP-TST rate

We now seek an analogous relation to Eq. �21� for the
case that the RP-TST rate is evaluated without making the
harmonic approximation. This would seem to correspond to
evaluating R�T� by steepest descent in just the unstable de-
gree of freedom and evaluating the other degrees of freedom
exactly. Such a procedure was first carried out �to our knowl-
edge� by Mills et al.29 Equation �3� is written in the form

Q�T� = 	
−�

�

due−�F�u�, �23�

where the free energy F�u� is given by

F�u� = −
1

�
ln�Q	=u�T�� �24�

and Q	=u�T� is the constrained partition function

Q	=u�T� =
1

�2���N	 dp	 dxe−�NHN�p,x���	�x� − u� .

�25�

The coordinate 	�x� is chosen to be the unstable degree of
freedom for which evaluation of the integral in Eq. �23� by
steepest descent about u=0 is most accurate. This is equiva-
lent to requiring that 	�x�=0 defines the optimal dividing
surface in a classical TST calculation �since this maximizes
F�0��. As a result, there is a close connection between this
approach and the ORP-TST rate �i.e., the RP-TST rate evalu-
ated using the optimal dividing surface�, which is analogous
to that between the harmonic RP-TST and instanton rates of
Eq. �21�. To obtain the free-energy instanton rate, one inte-
grates over u in the same way that one integrated over s0 in
Sec. III C—i.e., one multiplies u�0 by i �where this direc-
tion is defined to be the one that takes the system out of the
well� and makes the steepest-descent approximation. This
yields
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Im R�T� =� �

2��F��0��
1

�2���N	 dp	 dxe−�NHN�p,x���	�x�� .

�26�

Substitution of this expression into Eq. �11� yields the
free-energy instanton rate k	-inst�T�, which is related to the
ORP-TST rate by

k	-inst�T� = ��T�kORP-TST�T� , �27�

where53

��T� =
2�

��
� m

�F��0��
. �28�

Hence, in the deep-tunneling regime, the ORP-TST rate
kORP-TST�T� is a further approximation to the free-energy in-
stanton rate k	-inst�T� obtained by assuming that ��T��1.
This approximation will hold good at temperatures just be-
low cross-over but will degrade in quality as the temperature
is decreased further. Thus it makes sense to compute
k	-inst�T� rather than kORP-TST�T� in the deep-tunneling regime
unless the computation of the free-energy derivative F��0� in
Eq. �28� is prohibitively expensive. Of course, these relations
do not hold above the cross-over temperature, where
kORP-TST�T� is a better approximation to the rate than
k	-inst�T� �since it correctly describes shallow tunneling
through the parabolic top of the barrier and tends to the clas-
sical TST rate at high temperatures�.

F. Connection with the full RPMD rate

The full RPMD rate kRPMD�T� is related to the RP-TST
rate kRP-TST�T� through Eq. �9�. Hence Eq. �27� implies that
in the deep-tunneling regime,

kRPMD�T� =
�O�T�k	-inst�T�

��T�
, �29�

where �O�T� is the transmission coefficient for the optimal
dividing surface. In the classical and shallow-tunneling re-
gimes, we know that kRPMD�T� is likely to give a better ap-
proximation to the rate than kORP-TST�T� since the dynamics
of the centroid at these temperatures gives a good description
of the physical �classical or parabolic-tunneling� recrossing
dynamics. However, the classical dynamics of the polymer
beads cannot possibly describe the deep-tunneling recrossing
dynamics through the optimal dividing surface. Hence the
factor �O�T� is fictitious in the deep-tunneling regime, and
kRPMD�T� is therefore an approximation to kORP-TST�T�.54

To clarify this statement, we emphasize that the formal
relation between kRPMD�T� and kORP-TST�T� is of course the
same in the deep-tunneling regime as at higher temperatures,
namely, that kORP-TST�T� is an upper bound to kRPMD�T� and
that kRPMD�T� is independent of the choice of dividing sur-
face. The only thing that is different in the deep-tunneling
regime is the interpretation of kORP-TST�T� and kRPMD�T�. We
cannot assign physical meaning to the transmission coeffi-
cient �O�T� in this regime, but we know that kORP-TST�T� is
related to k	-inst�T� through Eq. �27�. Hence, we must regard

kRPMD�T� as an approximation to kORP-TST�T� in the deep-
tunneling regime instead of the other way round. From the
formal relation between kORP-TST�T� and kRPMD�T�, we know
that kRPMD�T� provides a lower-bound approximation to
kORP-TST�T�. This approximation will be good provided that
�O�T��1, which will often be the case �unless the classical
RP dynamics resembles high-friction Kramers dynamics or
some other scenario in which �O�T��1�.

Although kRPMD�T� is more approximate than
kORP-TST�T� in the deep-tunneling regime, it will often be
preferable to compute kRPMD�T� for the obvious reason that
this quantity is independent of dividing surface. Of course, a
bad choice of dividing surface would correspond to a trans-
mission coefficient ��T� that would be too small to compute
efficiently. However, it is often possible to choose a reason-
able approximation to the optimal dividing surface and then
to compute kRPMD�T� reasonably efficiently. This strategy has
been employed in a number of RPMD calculations to
date.9–12

The dividing-surface independence of kRPMD�T� is
clearly a major computational advantage, and it is interesting
to note that this property follows from the RPMD choice of
bead-masses, each of which is set equal to the physical mass.
A different choice of bead-masses �such as that used in the
CMD method13,14� gives an analogous rate to kRPMD�T�,
which is also independent of dividing surface. However such
a rate does not in general give a lower bound to the ORP-
TST rate in the deep-tunneling regime because the position
of the optimal dividing surface at these temperatures depends
in general on at least several modes of the ring polymer �see
Sec. IV� and each of these components will be incorrectly
mass-weighted unless the RPMD bead-masses are used. To
our knowledge, the RPMD method is the only method able
to compute rates in the deep-tunneling regime, which does
not require knowledge of the position of an optimal dividing
surface.

IV. NUMERICAL COMPARISONS OF RPMD,
INSTANTON, AND QUANTUM RATES

In this section, we report numerical tests on one-
dimensional model systems in order to investigate the effects
of the coefficients ��T� and ��T� on the RPMD rate
kRPMD�T�. We also investigate some properties of the instan-
ton polymer transition state at x̃ and the optimal dividing
surface used to calculate the ORP-TST and free-energy in-
stanton rates.

Two sets of calculations were carried out. The first set
�Table I� used an asymmetric Eckart barrier

V�x� =
A

1 + exp�− 2x/a�
+

B

cosh2�x/a�
, �30�

with A=−18 /�, B=13.5 /�, a=8 /�3� a.u., and a physical
mass m=1 a.u. These parameters facilitate comparison with
the literature10 and conveniently give a reciprocal cross-over
temperature �c=2� a.u. The second set of calculations
�Table II� used a symmetric Eckart barrier, with 2�B /��b

=12, a=0.660 47 a.u., and m=1836 a.u. These parameters
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facilitate comparison with Ref. 35 and give a cross-over tem-
perature Tc=239 K. Both sets of results are presented in the
form of tunneling correction factors

c�T� = kquantum�T�/kclassical�T� , �31�

which are compared with the instanton and exact quantum
results.

A. Locating the optimal dividing surface using s0

To locate a good approximation to the optimal dividing
surface �needed to calculate the ORP-TST rate�, we used the
technique familiar from variational TST �Refs. 55 and 56� in
which the free-energy surface is approximated by a plane
orthogonal to the unstable mode of the potential energy
saddle point; the plane is moved along the unstable mode
until the location is found that maximizes the free energy. We
need to modify this technique slightly to take into account
the zero-frequency mode s1. As mentioned above, the latter
arises because UN�� ,x� is invariant under cyclic permutation
of the polymer beads. As a result, the optimal dividing sur-
face is conical since it must include the circular degree of
freedom that links together all cyclic permutations of the
beads. �The conical shape is easy to visualize when using the
more approximate form of dividing surface discussed in Sec.
IV B.�

Accordingly, we locate an instanton transition state x̃
corresponding to one particular permutation of the beads
using standard saddle point searching techniques.57,58 We
then calculate the free energy by setting the zero-frequency
coordinate s1=0, integrating over the resulting �N−2�-

dimensional plane orthogonal to the unstable mode s0, and
multiplying the integral by N�BN. This last step is equivalent
to integrating over the circular degree of freedom linking all
cyclic permutations of the beads �see Sec. III B�. The free-
energy F�s0�	� is calculated on a grid of points along s0 in
order to find the point s0=�s0 that �approximately� maxi-
mizes the free energy. The resulting tunneling correction fac-
tors c�T� are given under column �c� in Tables I and II.
�Columns �a� and �b� used more approximate locations of the
dividing surface described below.�

The values of �s0 and the percentage changes in
kORP-TST�T� produced by moving the dividing surface from
s0=0 to s0=�s0 are given in Table III for the asymmetric
barrier calculation. The biggest changes in kORP-TST�T� are
produced near the cross-over temperature ����b=2��. At
these temperatures, the RP potential UN�� ,x� flattens out
along the path linking x‡ �the saddle point above Tc� to x̃ �the
saddle point below Tc�. Away from cross-over, the RP poten-
tial becomes tighter, and hence the transition-state geometry
becomes closer to the position of the �free-energy� optimal
dividing surface.

Comparison of the kRPMD�T� and kORP-TST�T� rates in
Tables I and II shows that the effects of recrossing of the
optimal dividing surface are small. Further numerical tests
will be required to confirm whether this holds true for other
systems, especially multidimensional systems in which the
potential V�x� is such that a substantial fraction of �non-RP�
classical trajectories recross the �non-RP� optimal dividing
surface. However, based on Tables I and II, it seems reason-

TABLE I. Tunneling correction factors c�T� for the asymmetric Eckart barrier. The ORP-TST results were
obtained using different approximations to the optimal dividing surface 	=0, in which 	 was allowed to depend
on �a� just the centroid coordinate q̄0, �b� q̄0 and r̄ as in Eq. �33�, and �c� all degrees of freedom. The
�-ORP-TST results were obtained by multiplying the ORP-TST results in column �b� by the factor ��T� to give
the free-energy instanton rate k	-inst�T� �see Eq. �27��.

���b RPMD

ORP-TST �approx.�

�-ORP-TST�	-inst QM Inst.�a� �b� �c�

2 1.2 1.2 1.2 1.2 ¯ 1.2 ¯

4 2.0 2.0 2.0 2.0 ¯ 2.0 ¯

6 5.3 5.6 5.6 5.6 ¯ 5.3 ¯

8 28 36 30 29 26 26 28
10 310 540 330 310 250 250 230
12 5900 16 000 6200 6000 4000 4100 3700

TABLE II. As Table I, for the symmetric Eckart barrier. The temperature is also given in kelvin to facilitate
comparison with previous work �Refs. 10, 35, and 36�.

T /K ���b RPMD

ORP-TST �approx.�

�-ORP-TST�	-inst QM Inst.�a� �c�

377 4 1.9 1.9 1.9 ¯ 2.1 ¯

301 5 2.7 2.7 2.7 ¯ 3.1 ¯

251 6 4.4 4.4 4.4 ¯ 5.2 ¯

188 8 17 17 17 21 22 22
150.6 10 100 110 110 140 160 140
125.5 12 1100 1200 1350 1600 2000 1600
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able to suppose that the polymer springs do not induce by
themselves a significant amount of recrossing of the optimal
dividing surface.

B. More approximate expressions for �

We repeated the ORP-TST calculations using more ap-
proximate expressions for the optimal dividing surface. The
first of these, which gave the results under column �a� in
Tables I and II, is simply

	 � q̄0 − 	0, �32�

where q̄0 is the centroid �see the Appendix� and the constant
	0 is chosen such that the �approximate� location of the op-
timal dividing surface is at 	=0. With this approximation to
the dividing surface, kORP-TST�T� reduces to the quantum TST
rate of Voth, Chandler, and Miller �VCM�,35,36 and k	-inst�T�
reduces to the rate expression of Gillan.33,34 Tables I and II
are consistent with previous results,10,35,36 showing that
VCM works well above the cross-over temperature Tc but
breaks down below Tc for asymmetric barriers. The reason
for this behavior is clear from Sec. III: above Tc, the saddle
point is the geometry x=x‡, for which the unstable mode is
the centroid q̄0. Below Tc, however, the saddle point is the
instanton geometry x̃, for which the unstable mode is s0.
Hence, unless s0 is dominated by q̄0 �which is not generally
the case; see below�, Eq. �32� will give a poor approximation
to the optimal dividing surface below Tc.

We can, however, generalize Eq. �32� to obtain an ex-
pression that continues to work below Tc by expanding 	 in
terms of the free RP normal modes q and retaining only the
dominant modes. For a one-dimensional system, at recipro-
cal temperatures between �c and 2�c, we expect s0 and thus
	 to be dominated by the imaginary-frequency modes q0 and
q1. We therefore approximate 	 by

	 � q̄0 cos � + r̄ sin � + 	0, �33�

where r̄=��q1
2+q−1

2 � /N. The form of r̄ takes into account the
fact that UN�� ,x� is invariant under a cyclic exchange of the
beads and thus gives a dividing surface that is conical �in the
N→� limit� in the space of q0 and q1. This is illustrated in
Fig. 3. A particular choice of instanton polymer geometry x̃
corresponds to a point on the cone; the unstable mode s0

extends radially outward, and the zero-frequency mode s1 is
tangential to the cone �Fig. 3�. For an exothermic barrier,
sin � is positive such that passage through the dividing sur-
face from reactants to products corresponds to a concerted
shift and overall stretch of the instanton polymer �as shown

schematically in Fig. 2�a��. For an endothermic barrier, sin �
is negative such that passage through the barrier corresponds
to a concerted shift and overall compression.

The results in Table I �under column �b�� show that the
simple approximation of Eq. �33� yields values of
kORP-TST�T�, which are very close to those obtained by plac-
ing the dividing surface orthogonal to the exact s0 �column
�c� of Table I�. This is true even at temperatures just above
the second cross-over temperature ��=4� a.u.�, below
which the frequencies of q2 become imaginary �so that
these modes also start to contribute significantly to 	�. The
values taken by � are given in Table III.

For the symmetric barrier, it is easy to show that the
symmetry of the Hessian is such that modes qk with odd and
even k cannot mix. The normal modes sk therefore split into
odd and even sets. The reaction coordinate s0 must be a
function of the centroid q̄0 and is therefore a combination of
the even modes only. Thus, for a symmetric barrier, Eq. �32�
continues to give a good approximation to the optimal divid-
ing surface below Tc �see Table II�, which is why the VCM
method35,36 works well for such systems. This approximation
would need to be modified below the second cross-over tem-
perature in order to include the modes q2.

TABLE III. Parameters characterizing the optimal dividing surface for the asymmetric Eckart barrier. �s0 is the
shift along the s0 axis that maximizes the free energy, and %c�T� is the resulting percentage change in the
tunneling correction factor c�T�. � is the pitch of the cone �see Fig. 3�.

� �a.u.�

2 4 6 8 10 12

�s0 �a.u.� 0.07 0.16 0.34 0.13 0.05 0.01
%c�T� 0.5 5 28 �0.1 �0.1 �0.1
� �°� 0 0 0 32 39 43

FIG. 3. Approximate form of the optimal free-energy dividing surface for a
�one-dimensional� asymmetric barrier. The surface depends on the free-RP
normal modes q0 and q1 and is cone-shaped, owing to the cyclic permuta-
tion symmetry of the beads within the polymer. Also shown are the direc-
tions of the normal modes s0 and s1 at one particular instanton geometry x̃.
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C. Computation of the coefficient �„T…

One advantage of using Eq. �33� is that it simplifies the
computation of the second derivative of the free energy
F��0�, which is required to calculate the parameter ��T� us-
ing Eq. �28�. From Eq. �24�, we can write F��0� as

F��0� = −
1

�

Q	=0� �T�
Q	=0�T�

�34�

�since F��0�=0�. On approximating 	 by Eq. �33�, this ex-
pression becomes

F��0� = −
1

�
�− �N

�2UN���
�	2 − 2�N

�UN���
�	

sin �

r̄

+ ��N
�UN���

�	
�2�

	=0

, �35�

where � . . . �	=0 denotes a �RP� phase-space average subject to
the constraint 	=0.

Using this approach, it was straightforward to compute
F��0�. The constrained averages were computed using the
RATTLE algorithm.59 The �-ORP-TST rates in Table I were
obtained by multiplying the resulting ��T� coefficients with
the ORP-TST rates from column �b�. The �-ORP-TST rates
for the symmetric barrier in Table II were obtained by mul-
tiplying the ORP-TST rates in column �a� with the ��T� ob-
tained using Eqs. �34� and �35�, with �=0.

D. Predicting the magnitude of �„T…

It is clear from Tables I and II that ��T� is likely to be
the main source of additional error in the RPMD rate �i.e., on
top of any errors already present in the rate k	-inst�T��. It is
therefore useful to predict the likely magnitude of this quan-
tity. From Tables I and II, it is evident that ��T� is roughly
equal to unity at the cross-over temperature Tc and that it
then decreases with � for the asymmetric barrier �Table I�
but increases with � for the symmetric barrier �Table II�.
These opposite trends are not particular to these two barriers:
we have found that they apply generally to symmetric and
asymmetric barriers, with weakly asymmetric barriers behav-
ing like symmetric barriers in this respect.

To understand the origin of these trends, we examine the
behavior of the coefficient �h�T� in Eq. �22�, which behaves
in qualitatively the same way as ��T�, provided that ��0� is
not too small. This coefficient is exactly unity at the cross-
over temperature Tc since at this temperature, ��0�=2� /��
�by definition�. Figure 4 plots the variation in �h�T� and ��0�
with � for the asymmetric and symmetric barriers. For the
asymmetric barrier, �0 changes only slowly with �, with the
result that �h�T���−1. For the symmetric barrier, however,
�0 decreases rapidly with �, with the result that �h�T� in-
creases �roughly linearly� from unity at Tc.

The rapid decrease in ��0� with � for the symmetric bar-
rier occurs because the stretching of the instanton polymer
over the top of the barrier flattens out the effective barrier
frequency as a function of the centroid coordinate q̄0. Of
course the same thing happens for the asymmetric barrier:
Fig. 4 shows that the effective barrier frequency as a function
of q̄0 drops almost as steeply for the asymmetric as for the

symmetric barrier. However, for the asymmetric barrier, s0

also contains a significant contribution from q1 below Tc

�by analogy with Eq. �33��, and this contribution increases as
the instanton polymer stretches over the barrier and �1

2

−�b
2 becomes more negative. This increasing contribution

from the q1 modes roughly compensates for the effect of
the flattening, with the result that ��0� decreases only slowly
with �. For the symmetric barrier, the modes q1 are prohib-
ited by symmetry from contributing to s0, and the contribu-
tions from the symmetry-allowed modes q2 are too small at
these temperatures.

Hence, for an asymmetric barrier, it is reasonable to as-
sume that

��T� �
�c

�
, �36�

which means that ��T� will drop from about 1 to about 1
2 in

the temperature range between �c and the threshold for sec-
ondary instantons �at 2�c�. This is typically the sort of error
reported in RPMD rate calculations to date �when accurate
quantum results are available for comparison�.9,10,12 For a
symmetric barrier, it is more difficult to predict the behavior
of ��T�, except to say that it will tend to increase with � on
account of the flattening-out of the free-energy barrier.

V. MULTIDIMENSIONAL GENERALIZATION

Most of the equations given in the previous sections gen-
eralize immediately to multidimensional systems. We illus-
trate here the changes that need to be made for an
f-dimensional system with a classical Hamiltonian of the
form

α
h
(T

)
|η 0

|/|
η 0
| β=

β
c

FIG. 4. �a� Variation with � of the coefficient �h�T� for the asymmetric
�dashed green line� and symmetric �blue solid line� Eckart barriers. �b�
Variation with � of the unstable frequency ��0� for the asymmetric �dashed
green line� and symmetric �blue solid line� barriers. Also shown is the varia-
tion with � of the centroid-component of ��0� for the asymmetric barrier
�dotted red line�.
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H = 

j=1

f
pj

2

2mj
+ V�x1, . . . ,xf� . �37�

For such a system, the RP potential UN�� ,x� is10

UN��,x� = 

n=1

N

V�x1,n, . . . ,xf ,n�

+ 

j=1

f
mj

2��N��2 

n=1

N

�xj,n+1 − xj,n�2, �38�

where xj,n �with n=1→N� are the polymer beads associated
with classical degree of freedom xj. The associated RP
Hamiltonian is

HN�p,x� = 

j=1

f



n=1

N
pj,n

2

2mj
+ UN��,x� , �39�

where the pj,n are the momenta of the beads, each of which is
assigned a mass mj �equal to the physical mass�. With these
changes, the RPMD and RP-TST rate-equations have the
same forms as Eqs. �6� and �8�, where 	 is now in general a
function of all N� f of the coordinates xj,n.

The derivation of the Im F instanton rate-expression pro-
ceeds exactly as in Sec. III by locating the saddle point on
UN�� ,x�, which is now a finite-difference representation of
the f-dimensional instanton trajectory. This trajectory fol-
lows a periodic orbit on the inverted potential, with period
��, which is unstable in the degrees of freedom orthogonal
to the reaction coordinate; thus the beads tend to lie on a
curve that retraces itself after half a period.28,32 The
f-dimensional instanton polymer has one unstable mode s0

and a zero-frequency mode s1. The latter describes a cyclic
permutation in which xj,n→xj,n+1 and thus takes the form

s1 =
1

�BN


j=1

f



n=1

N

�x̃j,n+1 − x̃j,n�xj,n, �40�

with normalization coefficient

BN = 

j=1

f



n=1

N

�x̃j,n+1 − x̃j,n�2. �41�

The resulting instanton rate kinst�T� has the same form as Eq.
�19�, with the prefactor modified to

AN��� =
1

�N�
� gBN

2��N�2��
k=0

N−1

���k�N�−1

, �42�

where

g = ��
j=1

f

mj�1/f

�43�

and

�k =�1

g
� �2V

�sk
2 � . �44�

The key relations between kinst�T� and kh-RP-TST�T�, and be-
tween k	-inst�T� and kORP-TST�T�, are exactly as in Eqs. �21�

and �27�, with the coefficients �h�T� and ��T� being obtained
from the derivatives of the potential with respect to s0 and
the free energy with respect to 	.

Above the cross-over temperature, the optimal dividing
surface 	 will be a generalized function of the centroids
associated with the classical degrees of freedom xj. In the
deep-tunneling regime, 	 will in general depend also on the
other normal modes of the polymer. This dependency will
not necessarily take the simple form of Eq. �33� �for ex-
ample, the curvature of the potential surface could be suffi-
ciently anharmonic to couple together a variety of RP normal
modes�, but it is likely to involve only the lowest few normal
modes of the polymer. We expect that the trend whereby
��T� decreases with � for an asymmetric barrier and in-
creases with � for a symmetric barrier will continue to hold
in multidimensions since if the potential is symmetric �or
approximately symmetric� along the reaction coordinate,
then the same flattening-out of the free energy will occur, as
the polymer extends on either side of the reaction barrier.
These properties will need to be investigated numerically in
further work.

VI. CONCLUSIONS

We have shown that the RPMD method functions as an
automated and approximate implementation of the Im F
method when used to calculate reaction rates in the deep-
tunneling regime. A major advantage of the RPMD method
is that it does not require knowledge of an optimal dividing
surface. When the latter is known, however, the ORP-TST
rate �the RP-TST rate obtained with the optimal dividing
surface� gives a better approximation to the Im F rate than
does the RPMD rate. The ORP-TST rate can be further im-
proved by multiplying it by a coefficient that depends on the
curvature of the free energy along the reaction coordinate;
the resulting rate is then identical to that obtained using a
free-energy version of instanton theory.29 Above the cross-
over temperature, the optimal dividing surface is a function
of the centroid, but in the deep-tunneling regime the other
normal modes of the ring polymer start to participate in the
reaction coordinate, beginning with the second-lowest-
frequency mode. This explains why VCM quantum TST
breaks down for asymmetric barriers in the deep-tunneling
regime since the latter method is equivalent to RP-TST, with
the optimal dividing surface constrained to be a function of
the centroid coordinate only.

These relations and the others explained in the text are
summarized in Fig. 5. We should emphasize that this figure
applies only in the deep-tunneling regime �the focus of this
article�. In the shallow-tunneling and classical regimes, the
full RPMD rate is of course less approximate than the ORP-
TST rate �since it correctly describes recrossing through the
optimal dividing surface�, and VCM TST can be expected to
work also for asymmetric barriers.

The findings of this article add to what is known regard-
ing the relative advantages and disadvantages of the RPMD
and CMD methods. It is by now agreed6,23 that CMD is
superior as a method of calculating spectra since it assigns
lighter masses to the noncentroid modes of the ring polymer,
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which means that the latter do not corrupt the vibrational
spectrum. However, this same choice of masses turns out to
be a disadvantage for computing rates. Whereas both RPMD
and CMD are likely to yield realistic predictions of the rate
above the cross-over temperature �since they are both exact
in the classical and parabolic-barrier limits�, RPMD is the
only method that can be expected to work in the deep-
tunneling regime and to yield a prediction of the rate that is
independent of the dividing surface used to compute it. The
CMD rate is also independent of dividing surface, but is, in
general, incorrect in the deep-tunneling regime �since it cor-
responds to an incorrectly mass-weighted flux through the
optimal dividing surface�.

The relations established in this article �and summarized
in Fig. 5� demonstrate the link between the RPMD method
and the Im F premise. However, they do not, as such, dem-
onstrate a link between the RPMD method and the exact
quantum rate expression since the Im F premise is, on the
basis of present knowledge, merely a model. The model is
based on plausible assumptions �see Sec. III�, is flexible and
general, and, most importantly, appears to work: where exact
quantum results are available, the various implementations
of the Im F approach �such as the Im F instanton, free-energy
instanton, and the RPMD method� give realistic estimates of
the rate. However, further investigation into the validity and
limitations of the Im F model would clearly be desirable.
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APPENDIX: NORMAL MODES OF THE FREE RING
POLYMER

The normal modes q of a free ring polymer with N beads
have the same form as the eigenstates of an N-membered
cyclic Hückel system. For even N they can be written as

q0 =
1

�N


n=1

N

xn,

qk =� 2

N


n=1

N

sin�2nk�

N
�xn, k = 1, . . . ,�N − 2�/2,

�A1�

q−k =� 2

N


n=1

N

cos�2nk�

N
�xn, k = 1, . . . ,�N − 2�/2,

qN/2 =
1

�N


n=1

N

�− 1�nxn.

This last mode is omitted if N is odd. The associated normal
frequencies are

�k =
2N

��
sin� �k��

N
� . �A2�

For low k, the frequencies satisfy

�k � 2�k��/�� �A3�

in the limit N→�. The centroid q̄0 is the center of mass of
the ring polymer, i.e., q̄0=q0 /�N.
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