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Abstract. Ring signatures, introduced by Rivest, Shamir and Tauman, enable a
user to sign a message anonymously on behalf of a “ring”. A ring is a group of
users, which includes the signer. We propose a ring signature scheme that has size
O(

√
N) where N is the number of users in the ring. An additional feature of our

scheme is that it has perfect anonymity.
Our ring signature like most other schemes uses the common reference string

model. We offer a variation of our scheme, where the signer is guaranteed anony-
mity even if the common reference string is maliciously generated.

1 Introduction

Ring signatures, introduced by Rivest, Shamir and Tauman [RST06], enable a user to
sign a message anonymously on behalf of a “ring” with the only condition that the user
is a member of the ring. A ring is a collection of users chosen by the signer. The signer
has to be a member of the ring but the other users do not need to cooperate and may be
unaware that they are included in a ring signature.

A variety of applications have been suggested for ring signatures in previous works
(see for example [RST06,Nao02,DKNS04]). The original application given was the
anonymous leaking of secrets. For example, a high-ranking official in the government
wishes to leak some important information to the media. The media want to verify
that the source of information is valid, at the same time the official leaking it desires
anonymity. Ring signatures give us a way to achieve this task, wherein the media can
verify that some high-ranking government official signed the message but cannot ascer-
tain which member actually leaked the secret. Another application is that of designated-
verifier signatures [JSI96]. Ring signatures enable Alice to sign an email and send it to
Bob with the property that Bob cannot convince a third party that Alice actually sent
him this message.

The description of the ring itself is in general linear in the number of members be-
cause it is necessary to specify the users included in the ring. Yet, one might face a
situation wherein we would like to verify many different signatures on the same ring.
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In this case, the size of the ring-signature being sub-linear is quite useful.1 Most ring
signature schemes known today are of linear size in the number of ring members, the
only exception being the scheme in [DKNS04], which is independent of the size of the
ring. Apart from [CWLY06,BKM06,SW06,Boy07], to the best of our knowledge, all
other constructions (including [DKNS04]) are in the random oracle model. The scheme
in [CWLY06] is based on a strong new assumption, while in [BKM06], the scheme uses
generic ZAPs for NP, thus making it impractical. Shacham and Waters [SW06] give a
construction of linear size that is secure under the computational setting of the defi-
nitions in [BKM06]. Boyen [Boy07] gives a linear size ring signature in the common
random string model with perfect anonymity. Our goal is to construct a sub-linear size
ring-signature scheme with perfect anonymity without random oracles.

1.1 Our Contribution

We give the first ring signature of sub-linear size without random oracles. Our scheme
is based on composite order groups with a bilinear map. Security is based on the strong
Diffie-Hellman assumption [BB04] and the subgroup decision assumption [BGN05].
Our scheme has perfect anonymity in the common reference string model. To reduce
the amount of trust in the common reference string, we also offer a variant of our scheme
that gives an unconditional guarantee of anonymity even if the common reference string
is generated maliciously. Both schemes have ring signatures of size O(k

√
N) bits,

where N is the number of users in the ring and k is a security parameter.

TECHNIQUE. The broad idea behind the scheme is as follows: Let the number of mem-
bers in the ring be N . To compute a ring signature, the signer first chooses a random
one-time signature key and issues a signature on the message using this one-time sign-
ing key. Both the public key of the one-time signature and the signature are published.
Next, the signer validates the one-time signature key. In other words, she signs the
one-time signature key with her own signing key. This validation signature has to be
hidden for anonymity. The signer, hence makes two perfectly hiding commitments to
her verification key and the validation signature and publishes these values. She then
makes non-interactive witness-indistinguishable (NIWI) proofs using techniques from
[GOS06,BW06,GS06] that the commitments indeed contain a verification key and a
signature on the one-time signature verification key respectively. Finally, the signer will
prove that the committed verification key belongs to the ring. The main novelty in our
scheme is a sub-linear size proof for a commitment containing one out of N verification
keys. This proof relies on a technique akin to one-round private information retrieval
(PIR) with O(

√
N) communication complexity, which is used to get a commitment to

the verification key.

2 Ring Signatures – Definitions

[BKM06] contains a comprehensive classification of ring signature definitions. We
achieve security under the strongest of these definitions. In the following, we will

1 Generally speaking, sub-linear size ring signatures are useful when we can amortize the cost
of describing the ring itself over many signatures.



Ring Signatures of Sub-linear Size Without Random Oracles 425

modify their definitions in order to include a common reference string and to define
information theoretical anonymity.

Definition 1 (Ring signature). A ring signature scheme consists of a quadruple of
PPT algorithms (CRSGen, Gen, Sign, Verify) that respectively, generate the common
reference string, generate keys for a user, sign a message, and verify the signature of a
message.

– CRSGen(1k), where k is a security parameter, outputs the common reference
string ρ.

– Gen(ρ) is run by the user. It outputs a public verification key vk and a private
signing key sk.

– Signρ,sk(M, R) outputs a signature σ on the message M with respect to the ring
R = (vk1, . . . , vkN ). We require that (vk, sk) is a valid key-pair output by Gen
and that vk ∈ R.

– Verifyρ,R(M, σ) verifies a purported signature σ on a message M with respect to
the ring of public keys R.

The quadruple (CRSGen, Gen, Sign, Verify) is a ring signature with perfect
anonymity if it has perfect correctness, computational unforgeability and perfect
anonymity as defined below.

Definition 2 (Perfect correctness). We require that a user can sign any message on
behalf of a ring where she is a member. A ring signature (CRSGen, Gen, Sign, Verify)
has perfect correctness if for all adversaries A we have:

Pr
[
ρ ← CRSGen(1k); (vk, sk) ← Gen(ρ); (M, R) ← A(ρ, vk, sk);

σ ← Signsk(M, R) : Verifyρ,R(M, σ) = 1 ∨ vk /∈ R
]

= 1.

Definition 3 (Unforgeability). A ring signature scheme (CRSGen, Gen, Sign, Verify)
is unforgeable (with respect to insider corruption) if it is infeasible to forge a ring sig-
nature on a message without controlling one of the members in the ring. Formally, it is
unforgeable when there is a negligible function ε so for any non-uniform polynomial time
adversaries A we have:

Pr
[
ρ ← CRSGen(1k); (M, R, σ) ← AVKGen,Sign,Corrupt(ρ) :

Verifyρ,R(M, σ) = 1
]

< ε(k),

– VKGen on query number i selects a randomizer wi, runs (vki, ski) ← Gen(ρ; wi)
and returns vki.

– Sign(α, M, R) returns σ ← Signρ,skα
(M, R), provided (vkα, skα) has been gen-

erated by VKGen and vkα ∈ R.
– Corrupt(i) returns wi (from which ski can be computed) provided (vki, ski) has

been generated by VKGen.
– A outputs (M, R, σ) such that Sign has not been queried with (∗, M, R) and R

only contains keys vki generated by VKGen where i has not been corrupted.
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Definition 4 (Perfect anonymity). A ring signature scheme (CRSGen, Gen, Sign,
Verify) has perfect anonymity, if a signature on a message M under a ring R and
key vki0 looks exactly the same as a signature on the message M under the ring R and
key vki1 . This means that the signer’s key is hidden among all the honestly generated
keys in the ring. Formally, we require that for any adversary A:

Pr
[
ρ ← CRSGen(1k); (M, i0, i1, R) ← AGen(ρ)(ρ);

σ ← Signρ,ski0
(M, R) : A(σ) = 1

]

= Pr
[
ρ ← CRSGen(1k); (M, i0, i1, R) ← AGen(ρ)(ρ);

σ ← Signρ,ski1
(M, R) : A(σ) = 1

]
,

where A chooses i0, i1 such that (vki0 , ski0), (vki1 , ski1) have been generated by the
oracle Gen(ρ).

We remark that perfect anonymity implies anonymity against full key exposure which
is the strongest definition of anonymity in [BKM06].

3 Preliminaries

We make use of bilinear groups of composite order. These were introduced by Boneh,
Goh and Nissim [BGN05] and can for instance be based on elliptic curves and the
modified Weil-pairing from Boneh and Franklin [BF03]. Let GenBGN be a randomized
algorithm that outputs (p, q, G, GT , e, g) so we have:

– G is a multiplicative cyclic group of order n := pq
– g is a generator of G
– GT is a multiplicative group of order n
– e : G × G → GT is an efficiently computable map with the following properties:

• Bilinear: ∀ u, v ∈ G and a, b ∈ Zn : e(ua, vb) = e(u, v)ab

• Non-degenerate: e(g, g) is a generator of GT whenever g is a generator of G
– The group operations on G and GT can be performed efficiently

We will write Gp and Gq for the unique subgroups of G that have respectively order p
and order q. Observe, u 	→ uq maps u into the subgroup Gp.

We base our ring signature scheme on two assumptions - namely, the strong Diffie-
Hellman Assumption [BB04] in Gp and the subgroup decision assumption [BGN05].

SUBGROUP DECISION ASSUMPTION. Informally, in the above setting of composite or-
der groups, the subgroup decision assumption holds if random elements from G and Gq

are computationally indistinguishable. Formally, for generator GenBGN, the subgroup
decision assumption holds if there is a negligible function ε so for any non-uniform
polynomial time adversary A:

Pr
[
(p, q, G, GT , e, g) ← GenBGN(1k); n := pq; r ← Z

∗
n; h := gr :
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A(n, G, GT , e, g, h) = 1
]

− Pr
[
(p, q, G, GT , e, g) ← GenBGN(1k); n := pq; r ← Z

∗
q ; h := gpr :

A(n, G, GT , e, g, h) = 1
]

≤ ε(k).

STRONG DIFFIE-HELLMAN ASSUMPTION IN Gp. The strong Diffie-Hellman assump-
tion holds in Gp if there is a negligible function ε so for all non-uniform adversaries
that run in polynomial time in the security parameter:

Pr
[
(p, q, G, GT , e, g) ← GenBGN(1k); x ← Z

∗
p :

A(p, q, G, GT , e, gq, gqx, gqx2
, . . .) = (c, g

q
x+c ) ∈ Zp × Gp

]
< ε(k).

UNDERLYING SIGNATURE SCHEME. Boneh and Boyen [BB04] suggest two signature
schemes. One that is secure against weak chosen message attack, see below, and one
which is secure against adaptive chosen message attack. We will use the scheme that is
secure against weak chosen message attack, since it has a shorter public key and this
leads to a simpler and more efficient ring signature.

We define the scheme to be secure against weak message attack if there is a negligible
function ε so for all non-uniform polynomial time interactive adversaries A:

Pr
[
(M1, . . . , Mq) ← A(1k); (vk, sk) ← KeyGen(1k); σi ← Signsk(Mi);

(M, σ) ← A(vk, σ, . . . , σq) : Verifyvk(M, σ) = 1 and M /∈ {M1, . . . , Mq}
]

< ε(k).

The Boneh-Boyen signature scheme adapted to the composite order bilinear group
model is weak message attack secure under the strong Diffie-Hellman assumption.

– Key generation: Given a group (p, q, G, GT , e, g) we pick a random sk ← Z
∗
n and

compute vk := gsk. The key pair is (vk, sk).
– Signing: Given a secret key sk ∈ Z

∗
n and a message M ∈ {0, 1}�, output the

signature σ := g
1

sk+M . By convention, 1/0 is defined to be 0 so that in the unlikely
event that sk+M = 0, we have σ := 1. We require � < |p|, this is quite reasonable
since we can always use a cryptographic hash-function to shorten the message we
sign.

– Verification: Given a public key vk, a message M ∈ {0, 1}� and a signature
σ ∈ G, verify that

e(σ, vk · gM ) = e(g, g).

If equality holds output “Accept”. Otherwise, output “Reject”.

Boneh and Boyen [BB04] prove that their signature scheme is existentially unforge-
able under weak chosen message attack provided the strong Diffie-Hellman assumption
holds in prime order groups. This proof translates directly to the composite group order
model. Our concern is only whether a signature is forged in the order p subgroup Gp,
i.e., an adversary that knows p and q finds (M, σ) so e(vkgM , σ)q = e(g, g)q. As in
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[BB04] it can be shown to be infeasible to forge a signature in Gp under a weak chosen
message attack assuming the strong Diffie-Hellman assumption holds in Gp.

A COMMITMENT/ENCRYPTION SCHEME. We use a commitment/encryption scheme
based on the subgroup decision assumption from [BGN05]. The public key will be a
description of the composite order group as well as an element h. The element h is a
random element, chosen to have order n (perfect hiding commitment) or order q (en-
cryption). The subgroup decision assumption implies that perfect hiding commitment
keys and encryption keys are indistinguishable.

To commit to a message m ∈ G, we pick r ← Zn at random and compute the
commitment c := mhr. When h has order n, this is a perfectly hiding commitment to
m. However, if h has order q, the commitment uniquely determines m’s projection on
Gp. Let λ be chosen so λ = 1 mod p and λ = 0 mod q. Given the factorization of n,
we can compute

mp = cλ = mλhλr = mλ.

We can also commit to a message m ∈ Zn by computing gmhr. If h has order n, then
this is a perfectly hiding Pedersen commitment. If h has order q, then the commitment
uniquely determines m mod p.

NON-INTERACTIVE WITNESS-INDISTINGUISHABLE PROOFS. A non-interactive proof
enables us to prove that a statement is true. The proof should be complete, meaning that
if we know a witness for the statement being true, then we can construct a proof. The
proof should be sound, meaning that it is impossible to construct a proof for a false state-
ment. We will use non-interactive proofs that have perfect witness-indistinguishability.
This means that given two different witnesses for the statement being true, the proof
reveals no information about which witness we used when we constructed the proof.

We will use the public key for the perfectly hiding commitment scheme described
above as a common reference string for our NIWI proofs. When h has order n we
get perfect witness-indistinguishability. However, if h has order q, then the proof has
perfect soundness in Gp.

One type of statement that we will need to prove is that a commitment c is of the
form c = gmhr for m ∈ {0, 1}. Boyen and Waters [BW06], building on [GOS06],
give a non-interactive witness-indistinguishable proof for this kind of statement, π =
(g2m−1hr)r , which is verified by checking e(c, cg−1) = e(h, π). When h has order
n, this proof has perfect witness-indistinguishability, because π is uniquely determined
from the verification equation so all witnesses must give the same proof. On the other
hand, if h has order q, then the verification shows that e(c, cg−1) has order q. This
implies m = 0 mod p or m = 1 mod p.

We will also need non-interactive witness-indistinguishable proofs for more advan-
ced statements. Groth and Sahai [GS06] show that there exist very small non-interactive
witness-indistinguishable proofs for a wide range of statements. These proofs have per-
fect completeness on both types of public key for the commitment scheme, perfect
soundness in Gp, when h has order q, and perfect witness-indistinguishability when h
has order n.
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4 Sub-linear Size Ring Signature Scheme Construction

We will give a high level description of the ring signature. We have a signer that knows
skα corresponding to one of the verification keys in the ring R = {vk1, . . . , vkN} and
wants to sign a message M . The verification keys are for the Boneh-Boyen signature
scheme. There are three steps in creating a signature:

1. The signer picks one-time signature keys, (otvk, otsk) ← KeyGenone−time(1k).
The message M will be signed with the one-time signature scheme. The verification
key otvk and the one-time signature will both be public. The signer will certify otvk
by signing it with a Boneh-Boyen signature under vkα.

2. The signer needs to hide vkα and the certifying signature on otvk. She will therefore
make two perfectly hiding commitments to respectively vkα and the signature. Us-
ing techniques from [GS06] she makes a non-interactive witness-indistinguishable
proof that the commitments contain a verification key and a signature on otvk.

3. Finally, the signer will prove that the committed verification key belongs to the
ring. The main novelty in our scheme is this sub-linear size proof. She arranges
R in an ν × ν matrix, where ν =

√
N . She commits to the row of the matrix

that contains vkα and makes a non-interactive witness-indistinguishable proof for
having done this. She then makes a non-interactive witness-indistinguishable proof
that the committed verification key appears in this row.

We now present a detailed description of the ring signature scheme. CRSGen gener-
ates a common reference that contains the description of a composite order group and
a public key for the perfectly hiding commitment scheme.

CRSGen(1k)

1. (p, q, G, GT , e, g) ← GenBGN(1k)
2. n := pq ; x ← Z

∗
n ; h := gx

3. Output (n, G, GT , e, g, h) /* Perfectly hiding commitment scheme

The users’ key generation algorithm Gen takes as input a common reference string
and outputs a signing public-private key pair (vk, sk). In our case, it will output keys
for the Boneh-Boyen signature scheme that is secure against weak message attack.

Gen(n, G, GT , e, g, h)

1. sk ← Z
∗
n ; vk := gsk

2. Output (vk, sk) /* Boneh-Boyen signature scheme with public key (g, vk)

A user with keys (vkα, skα) wants to sign a message M under the ring R={vk1, . . . ,
vkN} of size N . Let i, j be values such that α = (i − 1)ν + j, where ν =

√
N .2 It is

useful to think of R as a ν × ν matrix. Then vkα = vk(i−1)ν+j is the entry in row i and
column j.

2 Without loss of generality we assume N is a square. If N is not a square, we can simply copy
vk1 sufficiently many times to make N a square.
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Sign(n,G,GT ,e,g,h,skα)(M, R)

1. (otvk, otsk) ← KeyGenone−time(1k) ; σone−time ← Signotsk(M, R)

/* This was step 1 in the high level description: a one-time signature on the
message and the ring. The pair (otvk, σone−time) will be public.

2. r ← Zn ; C := vkαhr ; σα := g
1

skα+otvk ; s ← Zn ; L := σαhs ; πL :=
g

r
skα+otvk +(skα+otvk)s · hrs

/* This was step 2 in the high level description. σα is the signer’s certifying
signature on otvk. C, L are perfectly hiding commitments to respectively vkα

and σα. πL is a NIWI proof [GS06] that C, L contain respectively a verification
key and a signature on otvk. All that remains is to make a NIWI proof that C
contains some vkα ∈ R without revealing which one. The rest of the protocol is
this NIWI proof.

3. rl ← Zn ; Cl := hrl ; πC
l := (g−1hrl)rl for 0 ≤ l < ν , l �= i − 1;

ri−1 := −
∑

l �=i−1 rl ; Ci−1 := ghri−1 ; πC
i−1 := (ghri−1)ri−1

/* The commitments C0, . . . , Cν−1 are chosen so Ci−1 is a commitment to g,
whereas the others are commitments to 1. The proofs π0, . . . , πν−1 are NIWI
proofs [GOS06,BW06] that each C0, . . . , Cν−1 contains either 1 or g. Since the
commitments have been chosen such that

∏ν−1
l=0 Cl = g, this tells the verifier

that there is exactly one Ci−1 that contains g, while the other commitments con-
tain 1. We will use this in a PIR-like fashion to pick out row i in the ν × ν ma-
trix R. Observe, for all 1 ≤ m ≤ ν we have Am :=

∏ν−1
l=0 e(Cl, vklν+m) =

e(g, vk(i−1)ν+m)e(h,
∏ν−1

l=0
vkrl

lν+m), which is a commitment to e(g, vk(i−1)ν+m).
4. sm ← Zn ; Bm := vkν(i−1)+mhsm ; πB

m := g−sm ·
∏ν−1

l=0 vkrl

lν+m for
1 ≤ m ≤ ν

/* B1, . . . , Bν are commitments to the verification keys in row i of R. Recall
A1,. . . ,
Aν contain row i of R paired with g. πB

1 ,. . ., πB
ν are NIWI proofs [GS06] that

B1, . . . , Bν contain elements that paired with g give the contents of A1, . . . , Aν .
This demonstrates to the verifier that B1, . . . , Bν indeed does contain row i of
R.

5. tm ← Zn ; Dm := htm ; πD
m := (g−1htm)tm for 1 ≤ m ≤ ν , m �= j

tj := −
∑

m �=j tm ; Dj := ghtj , πD
j := (ghtj )tj

/* D1, . . . , Dν are commitments so Dj contains g, and the other commitments
contain 1. The NIWI proofs [GOS06,BW06] πD

1 , . . . , πD
ν convince the verifier

that D1, . . . , Dν contain 1 or g. Combining this with
∏ν

m=1 Dm = g shows that
exactly one Dj is a commitment to g, while the others contain 1.

6. πC := gsj−r
∏ν

m=1 vktm

(i−1)ν+mhsmtm
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/*A :=
∏ν

m=1 e(Bm, Dm)=e(g, vk(i−1)ν+j)e(h, gsj
∏ν

m=1 vktm

(i−1)ν+mhsmtm)
isacommitmenttoe(g, vkα).πC isaNIWIproof[GS06]thatthecontentofCpaired
with g corresponds to the content in A.

7. Output the signature σ :=
(
otvk,σone−time,C, L, πL, {C0, . . . , Cν−1}, {πC

0 , . . . ,

πC
ν−1}, {B1, . . . , Bν}, {πB

1 , . . . , πB
ν }, {D1, . . . , Dν}, {πD

1 , . . . , πD
ν }, πC

)
.

Verify(n,G,GT ,e,g,h,R)(M, σ)

1. Verify that σone−time is a one-time signature of M, R under otvk.
2. Verify that e(L, Cgotvk) = e(g, g)e(h, πL).
3. Verify that e(Cl, Clg

−1) = e(h, πC
l ) for all 0 ≤ l < ν and

∏ν
l=1 Cl = g.

4. Compute Am :=
∏ν

l=1 e(Cl, vk(l−1)ν+m) and verify Am = e(g, Bm)e(h, πB
m) for

all 1 ≤ m ≤ ν.
5. Verify that e(Dm, Dmg−1) = e(h, πD

m) for all 1 ≤ m ≤ ν and
∏ν

m=1 Dm = g.
6. Compute A :=

∏ν
m=1 e(Bm, Dm) and verify A = e(C, g)e(h, πC).

7. “Accept” if all the above steps verify correctly, otherwise “Reject”.

Theorem 1. The scheme presented in the previous section is a ring signature scheme
with perfect correctness, perfect anonymity and computational unforgeability under the
subgroup decision assumption, the strong Diffie-Hellman assumption and the assump-
tion that the one-time signature is unforgeable.

Sketch of Proof. Perfect correctness follows by inspection. Perfect anonymity follows
from the fact thatotvk andσone−time are generated the same way, no matter which signing
key we use, and the fact that when h has order n, then all the commitments are perfectly
hiding and the proofs are perfectly witness-indistinguishable [GOS06,BW06,GS06].

Computational unforgeability can be proven in three steps. By the subgroup decision
assumption it is possible to switch from using h of order n in the common reference
string to use h of order q with only negligible change in the probability of a forgery
happening. The commitments are now perfectly binding in Gp and the NIWI proofs are
perfectly sound in Gp [GOS06,BW06,GS06], so C contains some uncorrupt vkα ∈ R
and L contains a signature σα on otvk under vkα. By the properties of the one-time
signature scheme, otvk has not been used in any other signature, and thus σα is a
forged Boneh-Boyen signature on otvk. By the strong Diffie-Hellman assumption this
probability is negligible. �

5 Untrusted Common Reference String Model

Suppose we do not trust the common reference string. There are two possible prob-
lems: maybe it is possible to forge signatures, or maybe the ring signatures are not
anonymous. The possibility of forgery can in many cases be viewed as an extended ring
signature, we know that one of the N ring-members or the key generator signed the
message. This may not be so problematic, if for instance one of the ring members was
the key generator this is not a problem since that member can sign anyway. A breach of
anonymity seems more problematic. If we consider the example from the introduction,
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where a high-ranking official wants to leak a secret to the media, she needs to have
strong guarantees of her anonymity. We will modify our scheme to get a (heuristically)
unconditional guarantee of anonymity.

In the scheme presented earlier the common reference string is ρ = (n, G, GT ,
e, g, h). If we generate the groups as described in [BGN05] it is easy to verify that
we have a group of order n with a bilinear map e, where all group operations can
be computed efficiently. It is also easy to find a way to represent the group elements,
so we can check that g, h ∈ G [GOS06]. What is hard to check is how many prime
factors n has and what the order of g and h is. We make the following observation,
which follows from the proof of anonymity: If h has order n, then the ring signature
has perfect anonymity. We will therefore not include h in the common reference string
but instead provide a method for the signer to choose a full order h as she creates the
ring signature.

To get anonymity, h should have order n. If we pick a random element in G there is
overwhelming probability that it has order n, unless n has a small prime factor. Lenstra’s

ECM factorization algorithm [Len87] heuristically takes O(e(1+o(1))
√

(ln p)(ln ln p))
steps to find the prime factor p. Therefore, it is heuristically possible to verify that
n only has superpolynomial prime factors and we can pick random elements that with
overwhelming probability have order n.

We will modify the key generation such that a user also picks a random element
hi ∈ G when creating her key. The signer’s anonymity will be guaranteed if the element
she picks has order n. When she wants to issue a signature, she picks t ← Zn at
random and uses h :=

∏N
i=1 hti−1

i . We will argue in the proof of Theorem 2 that with
overwhelming probability over the choice of t, that element h she generates this way
has order n. Using this h she then creates the ring signature as described in the previous
section.

5.1 Ring Signature with Unconditional Anonymity

Our modified ring signature scheme (CRSGen′, Gen′, Sign′, Verify′) works as follows:

– CRSGen′(1k) outputs ρ′ := (n, G, GT , e, g, h′) ← CRSGen(1k)
– Gen′(ρ′) uses Lenstra’s ECM factorization algorithm to check that n has no poly-

nomial size prime factors. It runs (vki, ski) ← Gen(ρ′) and picks hi at random
from G. It sets vk′

i := (vki, hi) and outputs (vk′
i, ski).3

– Sign′
ρ′,skα

(M, R′) sets R :=(vk1, . . . , vkN ) for R′ = ((vk1, h1), . . . , (vkN , hN)).
It picks t ← Zn and sets h :=

∏N
i=1 hti−1

i . It sets ρ := (n, G, GT , e, g, h) and
creates a ring signature σ ← Signρ,skα

(M, R). It outputs σ′ := (t, σ).
– Verify′

ρ′,R′(M, σ′) sets R := (vk1, . . . , vkN ) and h :=
∏N

i=1 hti−1

i as the
signing algorithm. It sets ρ := (n, G, GT , e, g, h) and outputs the response of
Verifyρ,R(M, σ).

3 For practical purposes, say with 1024-bit n and ring-size less than 10000, checking that n has
no prime factors smaller than 40 bits is sufficient to guarantee that each time the user signs a
message there is less than one in a million risk of the signature not being perfectly anonymous.
Since Lenstra’s ECM factorization algorithm is only run once during key generation and is
reasonably efficient when looking for 40-bit prime factors this cost is reasonable.
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Theorem 2. The quadruple (CRSGen′, Gen′, Sign′, Verify′) is a ring signature
scheme with perfect correctness, heuristic statistical anonymity and computational un-
forgeability under the subgroup decision and strong Diffie-Hellman assumptions.

Sketch of proof. To prove computational unforgeability we will modify Gen′ such that it
picks hi of order q. Using the groups suggested in [BGN05] we can construct convinc-
ing randomness that would lead Gen′ to pick such an hi. We can therefore answer any
corruption queries the adversary makes. By the subgroup decision assumption, no non-
uniform polynomial time adversary can distinguish between seeing correctly generated
hi’s of order n and hi’s of order q. It must therefore have at most negligibly smaller
chance of producing a forgery after our modification. Now h =

∏N
i=1 hti−1

i has order q
for any t ∈ Zn. The proof of Theorem 1 shows that a polynomial time adversary with
has negligible chance of producing a forgery on h of order q.

We will now prove heuristic statistical anonymity, even when the common refer-
ence string is maliciously generated by the adversary. Consider an honest signer with
keys (vkα, hα), skα. From the run of Lenstra’s ECM factorization algorithm we know
heuristically that n has no polynomial size prime factors. Therefore, with overwhelming
probability the randomly chosen hα has order n. We will argue that with overwhelming
probability over the choice of t, the signer picks h that has order n. When h has order
n all commitments will be perfectly hiding and all proofs will be perfectly witness-
indistinguishable [GS06], so we will get perfect anonymity.

It remains to argue that with overwhelming probability over t the element h =∏N
i=1 hti−1

i has order n. Consider a generator γ for G and let x1, . . . , xN be the discrete
logarithms of h1, . . . , hN with respect to γ. We wish to argue that for any prime factor
p|n we have

∑N
i=1 ti−1xi �= 0 mod p.

Given a prime p|n we will show that there is at most N − 1 choices of t mod p so∑N
i=1 ti−1xi = 0 mod p. To see this, consider the following system of linear equations:

V x =

⎛
⎜⎜⎜⎝

1 t1 t21 . . . tN−1
1

1 t2 t22 . . . tN−1
2

...
...

...
. . .

...
1 tN t2N . . . tN−1

N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
x2
...

xN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ .

V is a Vandermonde matrix and has non-zero determinant if all t1, . . . , tN are dif-
ferent. Since xα �= 0 mod p this implies that we cannot find N different t1, . . . , tN
so

∑N
i=1 ti−1

i xi = 0 mod p. When choosing t at random there is at least probability
1 − N−1

p that
∑N

i=1 ti−1xi �= 0 mod p. Since p is superpolynomial, this probability
is negligible. The same argument holds for all other prime factors in n, so with over-
whelming probability h is a generator of G. �
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