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1. Introduction

Let G be a compact Lie group and kG a G spectrum (as defined in [3, Section
I.2]). Greenlees and May ([2]) have defined an associated G-spectrum t(kG) called
the Tate spectrum of kG. They observe that if kG is a ring G-spectrum, then there
is an induced ring G-spectrum structure on t(kG), and that if kG is homotopy-
commutative, then t(kG) will also be homotopy-commutative (see [2, Proposition
3.5]). It is therefore natural to ask whether an equivariant E∞ ring structure on
kG induces an equivariant E∞ ring structure on t(kG) (we will recall the definition
in a moment). We offer both positive and negative answers to this question.

On the positive side, we show that t(kG) inherits a structure which is somewhat
weaker than an equivariant E∞ ring structure, but which should be adequate for
most practical purposes. To explain this we first recall that, given a G-universe U ,
there is an equivariant operad L(U) whose jth space consists of the (nonequivari-
ant) linear isometries from U⊕j to U . From now on we fix a complete G-universe
U . By definition, an equivariant E∞ operad C is an equivariant operad which is
equivariantly equivalent to L(U), and an equivariant E∞ ring structure is an ac-
tion of an equivariant E∞ operad (see [3, Definition VII.2.1]). Next let us define
an E′∞ operad to be a nonequivariant E∞ operad provided with trivial G-action.
For example, if C is an equivariant E∞ operad, then its G-fixed points form an E′∞
operad CG by [3, Example VII.1.4]. We define an equivariant E′∞ ring structure to
be an action of an E′∞ operad (in other words, it is an action of a nonequivariant
E∞ operad through G-maps). Since any action by C restricts to an action by CG,
we see that an equivariant E∞ ring structure always includes an equivariant E′∞
ring structure.

The reason why E′∞ ring structures are interesting is that if kG is an E′∞ ring

spectrum, then the fixed-point spectra (kG)
H

have (nonequivariant) E∞ ring struc-
tures which are consistent as H varies (see Remark VII.2.5 of [3]); this is likely to
be the property one needs for applications.

Our positive result is:

Theorem 1. If kG is an equivariant E′∞ ring spectrum, then so is t(kG); in par-
ticular all fixed-point spectra (t(kG))H are nonequivariant E∞ ring spectra.
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The proof of Theorem 1 will show that the diagram in Proposition 3.5 of [2] is
a diagram of equivariant E′∞ ring spectra.

To state our negative result we need to recall the definition of t(kG). Let EG be

a contractible free G-CW complex and let ẼG denote the G-space defined by the
cofiber sequence

EG+ → S0 → ẼG

(here + denotes a disjoint basepoint). Let F (EG+, kG) be the function spectrum
of maps from EG+ to kG ([3, Definition I.3.2]). Then t(kG) is defined to be the
G-spectrum

F (EG+, kG) ∧ ẼG.

Let us write ι for the natural map S0 → ẼG.

Theorem 2. Let G be a finite group and let kG be any G-spectrum. Suppose that
t(kG) has an equivariant E∞ ring structure whose unit factors (up to equivariant
homotopy) through

∑∞
G ι. Then t(kG) must be equivariantly contractible.

This implies that if kG is a ring G-spectrum for which t(kG) is not equivariantly
contractible, then t(kG) cannot have an equivariant E∞ ring structure whose un-
derlying ring G-spectrum structure is compatible with that of kG under the natural
map kG → t(kG). In particular, the underlying ring G-spectrum structure of t(kG)
cannot be that defined in [3, Proposition 3.5]. Thus it seems that there is no natural
way to give t(kG) an equivariant E∞ ring structure.

I would like to thank Mike Hopkins for suggesting this problem to me and the
referee for clarifying a point in the proof.

2. Proof of Theorem 1

Theorem 1 is an immediate consequence of the following two lemmas, of which
the second is well-known. Let us recall from [3, Definition VII.2.7] that, given an
equivariant operad C, a C0 space is an action of C in the category of based G-spaces;
that is, it is a based G-space X with based G-maps

(Cj)+ ∧Σj X
(j) → X

(here (j) denotes j-fold smash product) satisfying the same compatibility conditions
that are used to define an equivariant C-space. In particular, this definition makes
sense if C is a nonequivariant operad provided with the trivial G-action; it then
says that C acts on X through G-maps.

Lemma 3. There is a nonequivariant E∞ operad D for which ẼG is an equivariant
D0 space.

Lemma 4. Let C be any equivariant operad.
(a) If kG is a C ring spectrum (that is, if it has an equivariant action of C), then

so is F (Y+, kG) for any G-space Y .
(b) If hG is a C ring spectrum and X is a C0-space, then hG ∧ X is a C ring

spectrum.

Proof of Theorem 1. Suppose that kG has an action of an E′∞ operad C′. Let
C = C′ × D, where D is the operad of Lemma 3. Then C is an E′∞ operad, and

it acts on kG (via the projection C′ × D → C′) and on ẼG (via the projection
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C′ × D → D). Now Lemma 4(a) implies that C acts on F (EG+, kG), and the
theorem follows from Lemma 4(b) if we take hG to be F (EG+, kG) and X to be

ẼG.

Proof of Lemma 4. In each case, we specify the structural maps which constitute
the C-action; the fact that they satisfy the necessary compatibility relations is a
straightforward application of the methods of [3, Sections VI.1–VI.3].

For part (a) the structural map

ξj : Cj n F (Y+, kG)(j) → F (Y+, kG)

is the adjoint of the composite

Y+ ∧ Cj n F (Y+, kG)(j) ∆∧1−−−→ (Y+)(j) ∧ Cj n F (Y+, kG)(j)

∼=→ Cj n
(

(Y+)(j) ∧ F (Y+, kG)(j)
)

1ne−−→ Cj n k(j)
G

ξ′j−→ kG;

here ∆ is the diagonal map of Y , the isomorphism is that of [3, Proposition VI.1.5],
e is the evaluation map, and ξ′j is the structural map of kG.

For part (b) the structural map

ξj : Cj n (hG ∧X)(j) → hG ∧X
is the composite

Cj n (hG ∧X)(j) = Cj n (h
(j)
G ∧X(j))

δ→ (Cj n h(j)
G ) ∧ (Cj+ ∧X(j))

ξ′j∧ξ
′′
j−−−−→ hG ∧X,

where δ is the map given in Definition VI.3.5 of [3] and ξ′j , ξ
′′
j are the structural

maps for hG and X .

Proof of Lemma 3. First let us observe that ẼG is nonequivariantly contractible

and that for any nontrivial subgroup H of G the H-fixed set (ẼG)H is exactly

S0; the same is true for (ẼG)(j) since the smash product of spaces commutes with
H-fixed sets.

Let MapG∗ denote based G-maps. Restriction to the G-fixed set gives a map

φ : MapG∗ (ẼG(j), ẼG)→ Map∗(S
0, S0)

which we claim is a weak equivalence. Assuming this for the moment, let D′j be

the space φ−1(id). Then the spaces D′j with the evident composition operations

γ form an operad D′ and ẼG is a D′0-space. The only thing preventing D′ from
being a nonequivariant E∞ operad is that the action of Σj on D′j may not be free.
To remedy this let C be any nonequivariant E∞ operad and define D to be D′ ×C,
acting on ẼG via the projection D′ × C → D′.

It only remains to prove the claim that φ is a weak equivalence. First we observe
that the reduced diagonal map

∆ : ẼG→ ẼG(j)

is a weak equivalence on each fixed-point set, and is therefore a G-homotopy equiv-
alence by the equivariant Whitehead theorem. It follows that

∆∗ : MapG∗ (ẼG, ẼG)→MapG∗ (ẼG(j), ẼG)

is a homotopy equivalence, so it suffices to verify the claim when j = 1.
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To handle this case, we map the cofiber sequence

EG+ → S0 → ẼG

into ẼG to get a fiber sequence

MapG∗ (ẼG, ẼG)→MapG∗ (S0, ẼG)→MapG∗ (EG+, ẼG).

The middle term is equal to S0, so it suffices to show that the third term is weakly
contractible. For this we recall that the functor MapG∗ (EG+, –) takesG-maps which
are nonequivariant weak equivalences to weak equivalences (for example, this follows

from [1, XI.5.6] since MapG∗ (EG+, –) is a special case of the holim construction).

Since ẼG is nonequivariantly contractible, we see that MapG∗ (EG+, ẼG) is weakly
contractible and we are done.

3. Proof of Theorem 2

As motivation for the proof of Theorem 2, we first explain why the operad D′
constructed in the proof of Lemma 3 is not equivalent to the linear isometries
operad LU . Let G = Z/2 for simplicity and consider the G × Σ2-spaces LU2 and
D′2 (recall that D′2 has trivial G-action). Let H be the diagonal copy of Z/2 in
G × Σ2 = Z/2 × Z/2. We claim that LU2 has H fixed points but D′2 has none;
this certainly implies that LU2 and D′2 are not G × Σ2-equivalent. To see that
LU2 has H-fixed points we need only show that there is an H-equivariant linear
isometry from U ⊕U to U ; but this is obvious since as an H-representation U ⊕U
is a complete H-universe, and is therefore H-isomorphic to U . (We note for later
use that (LU2)H is in fact contractible by [3, Lemma II.1.5].) On the other hand,
if D′2 had an H-fixed point, then there would be a G× Σ2-equivariant map

ẼG(2) → ẼG

(with Σ2 acting trivially on the target) which extends the identity map of S0,

and passing to H-fixed points would give a (nonequivariant) map (ẼG(2))H → S0

which extends the identity map of S0. But this is impossible since (ẼG(2))H is
contractible: there is a (nonequivariant) homeomorphism

ẼG→ (ẼG(2))H

which takes x to x ∧ gx, where g is the generator of G.
The proof of Theorem 2 is a variant of the same idea. For simplicity, we begin

with the case G = Z/2. Suppose that t(kG) has an equivariant E∞ ring structure
whose unit η factors through Σ∞G ι. Then there is a G-homotopy commutative
diagram of G-spectra

LU2 nΣ2 (S0
G)(2) 1nΣ∞G ι

(2)

−−−−−−→ LU2 nΣ2

(
Σ∞G ẼG

)(2)

−−−−→ LU2 nΣ2 t(kG)
(2)yξ2 yξ′2

S0
G

η−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ t(kG)

where ξ2 and ξ′2 are the structural maps for S0
G and t(kG). Next we recall that the

upper-left corner of this diagram is an equivariant suspension spectrum, so that
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we may pass to the adjoint to get a G-homotopy commutative diagram of spaces.
More precisely, [3, Proposition VI.5.3] gives an isomorphism

LU2 nΣ2 (S0)(2) ∼= Σ∞G (LU2+ ∧Σ2 (S0
G)(2))

which carries ξ2 to the composite

Σ∞G (LU2+ ∧ (S0)(2)) = Σ∞G (LU2/Σ2)+
Σ∞G π−−−→ Σ∞G S

0;

here π is the evident projection (LU2/Σ2)+ → S0. Thus the adjoint of the diagram
above has the form

LU2+ ∧Σ2 (S0)(2) 1∧Σ2 ι
(2)

−−−−−→ LU2+ ∧ ẼG(2) −−−−→ Ω∞G (LU2 nΣ2 t(kG)
(2)

)y=

(LU2/Σ2)+yπ
yΩ∞G ξ

′
2

S0 η̃−−−−−−−−−−−−−−−−−−−−−−−−−→ Ω∞G t(kG)

For our purposes, the important thing about this diagram is that η̃ ◦ π factors,

up to G-homotopy, through LU2+ ∧ ẼG(2). Precomposing with the projection

LU2+ ∧ (S0)(2) → LU2+ ∧Σ2 (S0)(2),

we see that the composite

LU2+ ∧ (S0)(2) = (LU2)+
π→ S0 η̃→ Ω∞G t(kG)(1)

(where we have again written π for the evident projection) factors up to G × Σ2-

homotopy through LU2+∧ẼG(2). Now let H be the diagonal copy of Z/2 in G×Σ2.
Passing to the H-fixed points of (1) (and noting that the H-fixed points of Ω∞G t(kG)
are the same as the G-fixed points since Σ2 acts trivially), we see that the composite

(LUH2 )+
πH−−→ S0 η̃G−−→ (Ω∞G t(kG))G(2)

factors up to (nonequivariant) homotopy through

LUH2+ ∧ (ẼG(2))H .

But we have shown in the first paragraph of this section that (ẼG(2))H is con-
tractible, so composite (2) is (nonequivariantly) homotopy trivial. We also showed
in the first paragraph that LUH2 is contractible, so πH is an equivalence, and we
conclude that

η̃G : S0 → (Ω∞G t(kG))G

is homotopy trivial. This means that η̃ is G-homotopy trivial, and passing to
the adjoint, we see that η itself is G-homotopy trivial. But η is the unit of the
equivariant E∞ ring t(kG), so t(kG) must be equivariantly contractible, as was to
be shown.

So far we have assumed that G is Z/2. When G is finite of order n the action
of G on itself by multiplication induces a homomorphism ρ : G → Σn, and one
can repeat the argument given above with LU2 replaced by LUn, Σ2 replaced by
Σn, and H replaced by the subgroup of G× Σn consisting of elements of the form
(g, ρ(g)).
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