PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 6, June 1996

E_{∞} -RING STRUCTURES FOR TATE SPECTRA

J. E. McCLURE

(Communicated by Thomas Goodwillie)

1. INTRODUCTION

Let G be a compact Lie group and k_G a G spectrum (as defined in [3, Section I.2]). Greenlees and May ([2]) have defined an associated G-spectrum $t(k_G)$ called the *Tate spectrum* of k_G . They observe that if k_G is a ring G-spectrum, then there is an induced ring G-spectrum structure on $t(k_G)$, and that if k_G is homotopy-commutative, then $t(k_G)$ will also be homotopy-commutative (see [2, Proposition 3.5]). It is therefore natural to ask whether an equivariant E_{∞} ring structure on k_G induces an equivariant E_{∞} ring structure on $t(k_G)$ (we will recall the definition in a moment). We offer both positive and negative answers to this question.

On the positive side, we show that $t(k_G)$ inherits a structure which is somewhat weaker than an equivariant E_{∞} ring structure, but which should be adequate for most practical purposes. To explain this we first recall that, given a *G*-universe *U*, there is an equivariant operad $\mathcal{L}(U)$ whose *j*th space consists of the (nonequivariant) linear isometries from $U^{\oplus j}$ to *U*. From now on we fix a complete *G*-universe *U*. By definition, an equivariant E_{∞} operad *C* is an equivariant operad which is equivariantly equivalent to $\mathcal{L}(U)$, and an equivariant E_{∞} ring structure is an action of an equivariant E_{∞} operad (see [3, Definition VII.2.1]). Next let us define an E'_{∞} operad to be a nonequivariant E_{∞} operad provided with trivial *G*-action. For example, if *C* is an equivariant E_{∞} operad, then its *G*-fixed points form an E'_{∞} operad \mathcal{C}^G by [3, Example VII.1.4]. We define an equivariant E'_{∞} ring structure to be an action of an E'_{∞} operad (in other words, it is an action of a nonequivariant E_{∞} operad through *G*-maps). Since any action by *C* restricts to an action by \mathcal{C}^G , we see that an equivariant E_{∞} ring structure always includes an equivariant E'_{∞} ring structure.

The reason why E'_{∞} ring structures are interesting is that if k_G is an E'_{∞} ring spectrum, then the fixed-point spectra $(k_G)^H$ have (nonequivariant) E_{∞} ring structures which are consistent as H varies (see Remark VII.2.5 of [3]); this is likely to be the property one needs for applications.

Our positive result is:

Theorem 1. If k_G is an equivariant E'_{∞} ring spectrum, then so is $t(k_G)$; in particular all fixed-point spectra $(t(k_G))^H$ are nonequivariant E_{∞} ring spectra.

©1996 American Mathematical Society

Received by the editors June 24, 1994 and, in revised form, November 10, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P91.

The author was partially supported by National Science Foundation grant 9207731-DMS.

The proof of Theorem 1 will show that the diagram in Proposition 3.5 of [2] is a diagram of equivariant E'_{∞} ring spectra.

To state our negative result we need to recall the definition of $t(k_G)$. Let EG be a contractible free G-CW complex and let $\tilde{E}G$ denote the G-space defined by the cofiber sequence

$$EG_+ \to S^0 \to \widetilde{E}G$$

(here + denotes a disjoint basepoint). Let $F(EG_+, k_G)$ be the function spectrum of maps from EG_+ to k_G ([3, Definition I.3.2]). Then $t(k_G)$ is defined to be the *G*-spectrum

$$F(EG_+, k_G) \wedge \widetilde{E}G.$$

Let us write ι for the natural map $S^0 \to \widetilde{E}G$.

Theorem 2. Let G be a finite group and let k_G be any G-spectrum. Suppose that $t(k_G)$ has an equivariant E_{∞} ring structure whose unit factors (up to equivariant homotopy) through $\sum_{G}^{\infty} \iota$. Then $t(k_G)$ must be equivariantly contractible.

This implies that if k_G is a ring *G*-spectrum for which $t(k_G)$ is not equivariantly contractible, then $t(k_G)$ cannot have an equivariant E_{∞} ring structure whose underlying ring *G*-spectrum structure is compatible with that of k_G under the natural map $k_G \to t(k_G)$. In particular, the underlying ring *G*-spectrum structure of $t(k_G)$ cannot be that defined in [3, Proposition 3.5]. Thus it seems that there is no natural way to give $t(k_G)$ an equivariant E_{∞} ring structure.

I would like to thank Mike Hopkins for suggesting this problem to me and the referee for clarifying a point in the proof.

2. Proof of Theorem 1

Theorem 1 is an immediate consequence of the following two lemmas, of which the second is well-known. Let us recall from [3, Definition VII.2.7] that, given an equivariant operad C, a C_0 space is an action of C in the category of based G-spaces; that is, it is a based G-space X with based G-maps

$$(\mathcal{C}_i)_+ \wedge_{\Sigma_i} X^{(j)} \to X$$

(here $^{(j)}$ denotes *j*-fold smash product) satisfying the same compatibility conditions that are used to define an equivariant C-space. In particular, this definition makes sense if C is a nonequivariant operad provided with the trivial *G*-action; it then says that C acts on *X* through *G*-maps.

Lemma 3. There is a nonequivariant E_{∞} operad \mathcal{D} for which $\widetilde{E}G$ is an equivariant \mathcal{D}_0 space.

Lemma 4. Let C be any equivariant operad.

(a) If k_G is a C ring spectrum (that is, if it has an equivariant action of C), then so is $F(Y_+, k_G)$ for any G-space Y.

(b) If h_G is a C ring spectrum and X is a C_0 -space, then $h_G \wedge X$ is a C ring spectrum.

Proof of Theorem 1. Suppose that k_G has an action of an E'_{∞} operad \mathcal{C}' . Let $\mathcal{C} = \mathcal{C}' \times \mathcal{D}$, where \mathcal{D} is the operad of Lemma 3. Then \mathcal{C} is an E'_{∞} operad, and it acts on k_G (via the projection $\mathcal{C}' \times \mathcal{D} \to \mathcal{C}'$) and on $\widetilde{E}G$ (via the projection

1918

 $\mathcal{C}' \times \mathcal{D} \to \mathcal{D}$). Now Lemma 4(a) implies that \mathcal{C} acts on $F(EG_+, k_G)$, and the theorem follows from Lemma 4(b) if we take h_G to be $F(EG_+, k_G)$ and X to be $\widetilde{E}G$.

Proof of Lemma 4. In each case, we specify the structural maps which constitute the C-action; the fact that they satisfy the necessary compatibility relations is a straightforward application of the methods of [3, Sections VI.1–VI.3].

For part (a) the structural map

$$\xi_j: \mathcal{C}_j \ltimes F(Y_+, k_G)^{(j)} \to F(Y_+, k_G)$$

is the adjoint of the composite

$$Y_{+} \wedge \mathcal{C}_{j} \ltimes F(Y_{+}, k_{G})^{(j)} \xrightarrow{\Delta \wedge 1} (Y_{+})^{(j)} \wedge \mathcal{C}_{j} \ltimes F(Y_{+}, k_{G})^{(j)}$$
$$\xrightarrow{\cong} \mathcal{C}_{j} \ltimes \left((Y_{+})^{(j)} \wedge F(Y_{+}, k_{G})^{(j)} \right) \xrightarrow{1 \ltimes e} \mathcal{C}_{j} \ltimes k_{G}^{(j)} \xrightarrow{\xi'_{j}} k_{G};$$

here Δ is the diagonal map of Y, the isomorphism is that of [3, Proposition VI.1.5], e is the evaluation map, and ξ'_i is the structural map of k_G .

For part (b) the structural map

$$\xi_i : \mathcal{C}_i \ltimes (h_G \land X)^{(j)} \to h_G \land X$$

is the composite

 $\mathcal{C}_j \ltimes (h_G \wedge X)^{(j)} = \mathcal{C}_j \ltimes (h_G^{(j)} \wedge X^{(j)}) \xrightarrow{\delta} (\mathcal{C}_j \ltimes h_G^{(j)}) \wedge (\mathcal{C}_{j+} \wedge X^{(j)}) \xrightarrow{\xi'_j \wedge \xi''_j} h_G \wedge X,$

where δ is the map given in Definition VI.3.5 of [3] and ξ'_j, ξ''_j are the structural maps for h_G and X.

Proof of Lemma 3. First let us observe that $\widetilde{E}G$ is nonequivariantly contractible and that for any nontrivial subgroup H of G the H-fixed set $(\widetilde{E}G)^H$ is exactly S^0 ; the same is true for $(\widetilde{E}G)^{(j)}$ since the smash product of spaces commutes with H-fixed sets.

Let $\operatorname{Map}^{G}_{*}$ denote based *G*-maps. Restriction to the *G*-fixed set gives a map

$$\phi : \operatorname{Map}^G_*(\widetilde{E}G^{(j)}, \widetilde{E}G) \to \operatorname{Map}_*(S^0, S^0)$$

which we claim is a weak equivalence. Assuming this for the moment, let \mathcal{D}'_j be the space $\phi^{-1}(\mathrm{id})$. Then the spaces \mathcal{D}'_j with the evident composition operations γ form an operad \mathcal{D}' and $\widetilde{E}G$ is a \mathcal{D}'_0 -space. The only thing preventing \mathcal{D}' from being a nonequivariant E_{∞} operad is that the action of Σ_j on \mathcal{D}'_j may not be free. To remedy this let \mathcal{C} be any nonequivariant E_{∞} operad and define \mathcal{D} to be $\mathcal{D}' \times \mathcal{C}$, acting on $\widetilde{E}G$ via the projection $\mathcal{D}' \times \mathcal{C} \to \mathcal{D}'$.

It only remains to prove the claim that ϕ is a weak equivalence. First we observe that the reduced diagonal map

$$\Delta: \widetilde{E}G \to \widetilde{E}G^{(j)}$$

is a weak equivalence on each fixed-point set, and is therefore a G-homotopy equivalence by the equivariant Whitehead theorem. It follows that

$$\Delta^* : \operatorname{Map}^G_*(\widetilde{E}G, \widetilde{E}G) \to \operatorname{Map}^G_*(\widetilde{E}G^{(j)}, \widetilde{E}G)$$

is a homotopy equivalence, so it suffices to verify the claim when j = 1.

To handle this case, we map the cofiber sequence

$$EG_+ \to S^0 \to \widetilde{E}G$$

into $\widetilde{E}G$ to get a fiber sequence

$$\operatorname{Map}^G_*(\widetilde{E}G, \widetilde{E}G) \to \operatorname{Map}^G_*(S^0, \widetilde{E}G) \to \operatorname{Map}^G_*(EG_+, \widetilde{E}G).$$

The middle term is equal to S^0 , so it suffices to show that the third term is weakly contractible. For this we recall that the functor $\operatorname{Map}^G_*(EG_+, -)$ takes *G*-maps which are nonequivariant weak equivalences to weak equivalences (for example, this follows from [1, XI.5.6] since $\operatorname{Map}^G_*(EG_+, -)$ is a special case of the holim construction). Since \widetilde{EG} is nonequivariantly contractible, we see that $\operatorname{Map}^G_*(EG_+, \widetilde{EG})$ is weakly contractible and we are done.

3. Proof of Theorem 2

As motivation for the proof of Theorem 2, we first explain why the operad \mathcal{D}' constructed in the proof of Lemma 3 is not equivalent to the linear isometries operad $\mathcal{L}U$. Let G = Z/2 for simplicity and consider the $G \times \Sigma_2$ -spaces $\mathcal{L}U_2$ and \mathcal{D}'_2 (recall that \mathcal{D}'_2 has trivial G-action). Let H be the diagonal copy of Z/2 in $G \times \Sigma_2 = Z/2 \times Z/2$. We claim that $\mathcal{L}U_2$ has H fixed points but \mathcal{D}'_2 has none; this certainly implies that $\mathcal{L}U_2$ and \mathcal{D}'_2 are not $G \times \Sigma_2$ -equivalent. To see that $\mathcal{L}U_2$ has H-fixed points we need only show that there is an H-equivariant linear isometry from $U \oplus U$ to U; but this is obvious since as an H-representation $U \oplus U$ is a complete H-universe, and is therefore H-isomorphic to U. (We note for later use that $(\mathcal{L}U_2)^H$ is in fact contractible by [3, Lemma II.1.5].) On the other hand, if \mathcal{D}'_2 had an H-fixed point, then there would be a $G \times \Sigma_2$ -equivariant map

$$\widetilde{E}G^{(2)} \to \widetilde{E}G$$

(with Σ_2 acting trivially on the target) which extends the identity map of S^0 , and passing to *H*-fixed points would give a (nonequivariant) map $(\widetilde{E}G^{(2)})^H \to S^0$ which extends the identity map of S^0 . But this is impossible since $(\widetilde{E}G^{(2)})^H$ is contractible: there is a (nonequivariant) homeomorphism

$$\widetilde{E}G \to (\widetilde{E}G^{(2)})^{E}$$

which takes x to $x \wedge gx$, where g is the generator of G.

The proof of Theorem 2 is a variant of the same idea. For simplicity, we begin with the case G = Z/2. Suppose that $t(k_G)$ has an equivariant E_{∞} ring structure whose unit η factors through $\Sigma_G^{\infty} \iota$. Then there is a G-homotopy commutative diagram of G-spectra

where ξ_2 and ξ'_2 are the structural maps for S^0_G and $t(k_G)$. Next we recall that the upper-left corner of this diagram is an equivariant suspension spectrum, so that

1920

we may pass to the adjoint to get a G-homotopy commutative diagram of spaces. More precisely, [3, Proposition VI.5.3] gives an isomorphism

$$\mathcal{L}U_2 \ltimes_{\Sigma_2} (S^0)^{(2)} \cong \Sigma_G^\infty (\mathcal{L}U_{2+} \wedge_{\Sigma_2} (S_G^0)^{(2)})$$

which carries ξ_2 to the composite

$$\Sigma_G^{\infty}(\mathcal{L}U_{2+} \wedge (S^0)^{(2)}) = \Sigma_G^{\infty}(\mathcal{L}U_2/\Sigma_2)_+ \xrightarrow{\Sigma_G^{\infty}\pi} \Sigma_G^{\infty}S^0;$$

here π is the evident projection $(\mathcal{L}U_2/\Sigma_2)_+ \to S^0$. Thus the adjoint of the diagram above has the form

For our purposes, the important thing about this diagram is that $\tilde{\eta} \circ \pi$ factors, up to G-homotopy, through $\mathcal{L}U_{2+} \wedge \tilde{E}G^{(2)}$. Precomposing with the projection

$$\mathcal{L}U_{2+} \wedge (S^0)^{(2)} \to \mathcal{L}U_{2+} \wedge_{\Sigma_2} (S^0)^{(2)},$$

we see that the composite

(1)
$$\mathcal{L}U_{2+} \wedge (S^0)^{(2)} = (\mathcal{L}U_2)_+ \xrightarrow{\pi} S^0 \xrightarrow{\bar{\eta}} \Omega_G^{\infty} t(k_G)$$

(where we have again written π for the evident projection) factors up to $G \times \Sigma_2$ homotopy through $\mathcal{L}U_{2+} \wedge \tilde{E}G^{(2)}$. Now let H be the diagonal copy of Z/2 in $G \times \Sigma_2$. Passing to the H-fixed points of (1) (and noting that the H-fixed points of $\Omega_G^{\infty}t(k_G)$ are the same as the G-fixed points since Σ_2 acts trivially), we see that the composite

(2)
$$(\mathcal{L}U_2^H)_+ \xrightarrow{\pi^H} S^0 \xrightarrow{\tilde{\eta}^G} (\Omega_G^\infty t(k_G))^G$$

factors up to (nonequivariant) homotopy through

$$\mathcal{L}U_{2+}^H \wedge (\widetilde{E}G^{(2)})^H.$$

But we have shown in the first paragraph of this section that $(\tilde{E}G^{(2)})^H$ is contractible, so composite (2) is (nonequivariantly) homotopy trivial. We also showed in the first paragraph that $\mathcal{L}U_2^H$ is contractible, so π^H is an equivalence, and we conclude that

$$\tilde{\eta}^G: S^0 \to (\Omega^\infty_G t(k_G))^G$$

is homotopy trivial. This means that $\tilde{\eta}$ is *G*-homotopy trivial, and passing to the adjoint, we see that η itself is *G*-homotopy trivial. But η is the unit of the equivariant E_{∞} ring $t(k_G)$, so $t(k_G)$ must be equivariantly contractible, as was to be shown.

So far we have assumed that G is Z/2. When G is finite of order n the action of G on itself by multiplication induces a homomorphism $\rho : G \to \Sigma_n$, and one can repeat the argument given above with $\mathcal{L}U_2$ replaced by $\mathcal{L}U_n$, Σ_2 replaced by Σ_n , and H replaced by the subgroup of $G \times \Sigma_n$ consisting of elements of the form $(g, \rho(g))$. \Box

J. E. McCLURE

References

- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR 51:1825
- 2. J. P. C. Greenlees and J. P. May, *Generalized Tate, Borel and co Borel cohomology*, preprint. 3. L. G. Lewis, J. P. May, and M. Steinberger, *Equivariant stable homotopy theory*, Lecture
- Notes in Math., vol. 1213, Springer-Verlag, Berlin and New York, 1986. MR 88e:55002

Department of Mathematics, Mathematical Sciences Building, Purdue University, West Lafayette, Indiana 47907-1395