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Abstract: We study the formation and propagation of two-dimensional

vortex solitons, i.e. solitons with a phase singularity, in optical materials

with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes

the dynamics of an otherwise unstable vortex beam. This occurs for either

single or higher charge fundamental vortices as well as higher order

(multiple ring) vortex solitons. Our results pave the way for experimental

observation of stable vortex rings in other nonlocal nonlinear systems

including Bose-Einstein condensates with pronounced long-range interpar-

ticle interaction.
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32. J. Wyller, W. Królikowski, O. Bang, J.J. Rasmussen, ”Generic features of modulational instability in nonlocal

Kerr media,” Phys. Rev. E 66, 066615 1-13 (2002).

33. S.K. Turitsyn, ”Spatial dispersion of nonlinearity and stability of multidimensional solitons,” Theor. Math. Phys.

64, 226-232 (1985).
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1. Introduction

A soliton is a localized wave that propagates without change through a nonlinear medium.

Such a localized wave forms when the dispersion or diffraction associated with the finite size

of the wave is balanced by the nonlinear change of the properties of the medium induced by

the wave itself. Solitons, a topic of great interest in recent years, are universal in nature having

been identified in such diverse physical systems as fluids, plasmas, solids, matter waves, and

classical field theory [1]. In the field of optics, solitons hold ongoing promise for their poten-

tial application in telecommunications and all-optical switching [2]. The soliton concept is also

important in the context of Bose-Einstein condensates (BECs) where it represents a stable lo-

calized coherent excitation of the condensate. Depending on whether the bosonic interaction is

attractive or repulsive, bright or dark BEC solitons can be observed [3, 4].

Solitons exist in a variety of forms, including bright, dark, scalar, vector, and numerous

others [5]. Perhaps the most commonly studied are fundamental bright solitons in the form of

self-localized single peak structures with transversely constant phase. However, in recent years

so-called bright vortex (or spinning) solitons have also attracted a great deal of attention. These

are finite-size beams characterized by a phase singularity at the center. The phase of such a

beam rotates around the singularity, the number of rotations defining the topological charge

of the vortex [6]. As a consequence of this phase singularity, a vortex beam carries angular

momentum and its amplitude in the center is identically equal to zero. That is, these beams

have the form of a bright ring.

The formation and dynamics of bright vortex solitons has been extensively studied in the

context of optics [7, 8, 9, 10, 11] and BECs with an attractive interparticle potential [12]. The

early studies of vortex beams in saturable self-focusing nonlinear media demonstrated their

intrinsic instability [8]. Extensive numerical and theoretical investigations showed that vortex

rings decompose during propagation into a number of filaments that travel off tangentially to

conserve the total angular momentum. It has been established that fragmentation of the vortex

is caused by the excitation of exponentially growing azimuthal linear modes [8, 13].

In 1997 Quiroga and Michinel [10] demonstrated the stable propagation of vortex rings in

the case of competing third-order self-focusing and fifth-order self-defocusing nonlinearities.

At low light intensity the focusing dominates while for high intensity the self-defocusing ef-

fect prevails. This model supports the stable propagation of vortex rings at sufficiently large

power when the vortex profile becomes very flat. Soon other groups confirmed the existence of

stable vortex rings in other competing nonlinearity models [11], both in two and three spatial

dimensions. From a practical perspective, it should be mentioned that while the vortex beam

is stabilized by the competing nonlinearities, this happens in the regime when the higher-order

contribution to the nonlinearity dominates — a rather peculiar situation not observed in real

physical systems, except for, perhaps certain engineered meta-materials.

A more physical and experimentally feasible situation has been considered by Yang and Peli-

novsky [14]. They studied the so-called vortex vector soliton which consists of two mutually

incoherent components propagating in a self-focusing medium. One component is a fundamen-

tal beam with constant phase while the second is a vortex ring [15]. In contrast to the then

common belief that such structures are unstable (confirmed by simulations and experiments),
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Yang and Pelinovsky showed the existence of a region in parameter space supporting stable

vortex vector solitons. From a waveguide perspective, one can look at this object as a vortex

ring guided by a waveguide structure (or external potential) which provides stability for the

coupled system. Recently a method of stabilizing vortex solitons utilizing a partially coherent

light beam has also been proposed [16].

Here we consider coherent vortex ring solitons in nonlinear media with a spatially nonlocal

self-focusing nonlinearity. We will show that such models support stable propagation of vortex

solitons of arbitrary charge for a sufficiently high degree of nonlocality [17].

Spatial nonlocality, an established concept in plasma physics [18, 19, 20], implies that the

response of the medium at a particular point is not determined solely by the wave intensity

at that point (the case in local media) but also depends on the wave intensity in its vicinity.

The nonlocal nature of the nonlinearity often results from an underlying transport process such

as atom diffusion [21] or heat transfer [22]. It can also originate from long-range molecular

interactions as in nematic liquid crystals with an orientational nonlocal nonlinearity [23, 24].

Spatial nonlocality of the nonlinear response is also naturally present in the description of BECs

where it represents the finite range of the bosonic interaction. Often neglected in theoretical

models of weakly localized BECs, the nonlocality has to be taken into account in situations

when, for example, strong localization occurs during catastrophic self-focusing (collapse) or

when the bosonic particles exhibit long-range interactions [25, 26].

Nonlocality has also recently become important in optics [27, 28, 29, 30]. Studies of spa-

tially nonlocal nonlinearities reveal a number of interesting effects. Perhaps most importantly,

nonlocality tends to suppress the modulational instability (MI) of plane waves propagating in

self-focusing media. (While this is generally the case, it is worth noting that certain types of

nonlocality may actually promote MI, even in defocusing media [31, 32].) It is well-known that

localized multi-dimensional waves in media with a focusing nonlinearity may exhibit strong

self-focusing which can lead to a catastrophic increase (blow-up, or collapse) of the intensity

over finite time (or propagation distance). However, as first shown by Turitsyn for a restricted

class of models [33] and more recently by our group [29, 34] for general nonlocal models,

nonlocality can prevent catastrophic collapse of beams and stabilize multidimensional solitons.

2. Model

We consider an optical beam propagating along the z-axis of a nonlinear self-focusing mate-

rial with the scalar amplitude of the electric field E(r,z) = ψ(r,z)exp(iKz− iΩt)+ c.c. Here

r = (x,y), K is the wavenumber, Ω is the optical frequency, and ψ(r,z) is the slowly varying

amplitude. We assume that the refractive index change N(I) induced by the beam with intensity

I(r,z) = |ψ(r,z)|2 can be described by the nonlocal model

N(I) =
∫

R(r′− r)I(r′,z) d2r′, (1)

where
∫

d2r =
∫ ∞
−∞

∫ ∞
−∞ dxdy. The response function R(r), assumed to be a real, positive definite,

localized, and symmetric function (i.e. R(r) = R(r), where r = |r|), satisfies the normalization

condition
∫

R(r) d2r = 1. The width of the response function R(r) determines the degree of

nonlocality. For a singular response, R(r) = δ (r), the refractive index becomes a local function

of the light intensity, N(I) = I(r,z), i.e., the refractive index change at a given point is solely

determined by the light intensity at that very point. With increasing width of R(r) the light

intensity in the vicinity of the point r also contributes to the index change at that point. The

nonlinear response (1) leads to the following nonlocal nonlinear Schrödinger (NLS) equation

governing the evolution of the optical beam

i∂zψ +
(

∂ 2
x +∂ 2

y

)

ψ +N(I)ψ = 0. (2)
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Fig. 1. Examples of ring vortex solitons in a nonlocal medium with charge m=1 (a) and m=3

(b). Solid line - normalized amplitude profile, dotted line - refractive index profile, dashed

line - profile of the nonlocal response function. Top row - strongly nonlocal regime (σ0 =
5, σ = 1,Λ = 26.0783). Bottom row - weak nonlocality (σ0 = 0.1, σ = 1,Λ = 2.0198).

It has been shown that as long as the response function is real, symmetric, positive definite

and monotonically decaying, the physical properties do not depend strongly on its shape [32].

For convenience in the variational calculations described below, we therefore choose to work

with the following Gaussian response

R(r) =
1

πσ2
0

exp(−|r|2/σ2
0 ). (3)

Except for certain special cases [35, 36], stationary solutions to Eq. (2) cannot be found ana-

lytically. As we are interested in circularly symmetric solutions (vortex rings) we look for the

stationary solution in a cylindrical coordinate system

ψ(r,z) = ψ(r,φ ,z) = u(r)exp(imφ)exp(iΛz) (4)

where r and φ are the radial and angular coordinates, u(r) represents the radial structure of

the solution, Λ is the propagation constant, and m denotes the vorticity (charge). In this case,

Eq. (2) assumes the following form

∂ 2
r u(r)+

1

r
∂ru(r)−

(

m2

r2
+Λ

)

u(r)+u(r)
∫ 2π

0

∫ ∞

0
R(|r− r′|)|u(r′)|2r′ dr′dφ = 0 (5)

In a first approach we find approximate vortex soliton solutions using the variational tech-

nique [37]. It can be shown that the nonlocal propagation equation can be derived from the

following Lagrangian density

L = −Λ|u(r)|2 −|∇ u(r)|2 + |u(r)|2
∫

R(|r− r′|)|u(r′)|2 d2r′. (6)

As a trial function, we choose a functional form which closely represents a typical single ring

vortex soliton, viz.

u(r) = Ar exp(−r2/(2σ2)). (7)

Inserting the trial function (7) into the Lagrangian L =
∫

L d2r and performing the spatial

integration, we obtain the effective Lagrangian L = L(A,σ) depending only on the parameters

A and σ . From the Euler-Lagrange equations we then find A and σ as a function of Λ.
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To find exact stationary solutions to the nonlocal equation (5), we resort to an iterative nu-

merical procedure. At each iteration we first calculate the convolution integral N(|u|2) using

the function found in the previous iteration. This is done in the frequency domain employing a

fast Hankel transform algorithm [38]. This newly calculated nonlocal term is then fed back into

the original Eq. (5), whose new solution is obtained by solving the following linear equation

Λun+1(r)−∂ 2
r un+1(r)−

1

r
∂run+1(r)+

m2

r2
un+1(r) = un(r)N(|un(r)|2) (8)

The effectiveness of this iterative procedure depends strongly on the accuracy of the initial

guess for the function u(r). We found that use of approximate variational solutions ensured fast

convergence to the exact solutions.

Illustrative results of the soliton-finding algorithm are presented in Fig.1 showing amplitude

profiles of ring solitons and their corresponding contour plots with charge m = 1 (a) and m = 3

(b) for strongly (top) and weakly (bottom) nonlocal regimes. These plots also show the profile

of the nonlocal response function R(r) (dashed line) and the nonlinearity-induced index profile

N(I) (dotted line). Note that in the strongly nonlocal regime the index profile is very broad and

resembles the shape of the nonlocal response function rather than the intensity profile of the

vortex (as in the local case).

Fig. 2. Propagation of nonlocal charge m = 1 ring vortex solitons. (a) unstable propagation

in the weakly nonlocal case with σ0/σ = 0.1 and σ = 1, Λ = 2.0198, (x,y) ∈ [−10,10]×
[−10,10] and z ∈ [0,5]. (b) stable propagation in the highly nonlocal case with σ0/σ =
10, Λ = 101.0199 and σ = 1, (x,y) ∈ [−30,30]× [−30,30] and z ∈ [0,50].

In order to investigate the stability of the vortex soliton solutions we simulate their propaga-

tion by directly solving the original nonlocal evolution Eq. (2) using the numerically-obtained

exact solutions as initial conditions. By perturbing these solutions with a small amount of ran-

dom complex noise containing a mixture of all possible unstable modes and evolving the input

profiles to large z (typically between 50 and 100, but in the most extreme cases up to 900) we

have determined the conditions necessary to propagate practically (i.e. experimentally viable)

stable vortex rings. The simulations have been conducted using the split-step beam propagation

method on a regular 512×512 mesh. Since the nonlocal term has the form of a convolution, it

is evaluated in the frequency domain.

Our simulations reveal that the stability of vortex solitons is determined by the degree of

nonlocality of the nonlinearity. In the weakly and moderately nonlocal regime all vortex ring

solitons experience azimuthal instability and break into filaments after a certain propagation

distance, as seen in Fig. 2(a). The nonlocality decreases the maximum growth-rate of the insta-

bility and thereby increases the length over which the solitons remain stable, but is too weak
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to remove the instability completely [29]. However, when the nonlocality becomes large the

resulting vortex ring propagates in a stable fashion exhibiting only small-scale oscillations of

its amplitude and radius due to an initial destabilizing perturbation. These oscillations are man-

ifestations of the so-called internal modes of the nonlocal solitons discussed by Krepostnov

et al. [39]. An illustrative example of stable propagation is displayed in Fig. 2(b). Importantly,

stabilization of the vortex ring is not restricted to charge m = 1 but was also observed for higher

charges (up to m = 5).

It should be emphasized that the stabilization mechanism reported here is markedly different

from that discussed in the context of competing nonlinearities. In the latter the stabilization

occurred when the nonlinearity changed its character from focusing to defocusing. Here, the

stabilizing mechanism is more closely related to the propagation of vortex vector solitons [14],

where the fundamental beam co-propagating with the vortex component acts as a confining

potential. In nonlocal media the role of confining potential is played by the self-induced nonlo-

cal waveguide structure N(|u(r)|2). As the nonlocality tends to average and smooth out spatial

variations of the beam intensity, soliton perturbations exert a reduced effect on the nonlinearity-

induced potential which, being sufficiently broad and deep (see top graphs in Fig. 1), confines

the vortex ring and inhibits its decomposition.

Fig. 3. Transverse structure of the nonlinearity-induced potential nesting the ring vor-

tex soliton from Fig. 2. (a) Movie (3.2MB) depicting spatial evolution of the potential

in a weakly nonlocal case (unstable propagation) (Click here for high resolution movie -

15MB); (b) Transverse structure of potential for strong nonlocality (stable propagation of

the vortex soliton). Simulation parameters are the same as in Fig. 2.

In Fig. 3 we illustrate the 2-dimensional structure of the self-induced potential represented

by the nonlocal refractive index N(I) with the superimposed vortex beam. It is evident that

for weak nonlocality (Fig. 3(a)) the potential mimics the structure of the vortex and hence

its evolution is sensitive to perturbations of the vortex itself. On the other hand, in a strongly

nonlocal case, Fig. 3(b), the nonlinear potential no longer resembles the vortex intensity dis-

tribution and, because of the averaging character of nonlocality, becomes insensitive to beam

perturbation providing the stabilizing factor in the vortex dynamics.

In fact, one could anticipate the stabilization effect of nonlocality by considering the case of

strong nonlocality (σ0/σ ≫ 1). In this limit, the nonlocal term in Eq. (2) can be represented

as N(|u|2) = P0R(r) where P0 = 2π
∫ |u(r)|2r dr is the total power of the beam [36]. The plots

depicting R(r) and N(r) in the top graphs in Fig. 1 show that this is indeed a very good approx-

imation. Hence, in this limit, the nonlocal NLS equation becomes actually linear and local.

Further, the dynamics of waves is then equivalent to that of a particle in an external poten-

tial represented by the function P0R(r). This regime corresponds to the case of the so-called

“accessible soliton” discussed by Snyder and Mitchell [27]. For certain forms of the potential
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R(r) the ensuing eigenvalue problem can be treated analytically. Here the response function

is Gaussian and Eq. (2) cannot be solved analytically. However, by considering only the lower

order solutions corresponding to states located near the bottom of the potential well represented

by the function R(r), one can use the harmonic approximation R(r) ≈ R(0)(1− r2/σ2
0 ). Eigen-

solutions to the Schrödinger equation with harmonic potential have the form of Laguerre-Gauss

functions. In fact, the simplest solution with a nontrivial phase is

ψ(r,φ) = 2σ2
0 σ−4r|m| exp(−r2/(2σ2))exp(imφ), (9)

which is just a bright vortex ring (σ is a free parameter). Since the nonlocal equation is to a

good approximation linear in this strongly nonlocal regime, it is to be expected that the solution

(9) is structurally stable, or at worst weekly unstable with a growth-rate so small that for any

practical/experimental situation, it must be regarded as being stable.

Fig. 4. Stable propagation of a double ring nonlocal vortex soliton with charge m=1, σ0 = 9,

σ = 1, (x,y) ∈ [−25,25]× [−25,25] and z ∈ [0,25]. (a) Transverse intensity structure.

(b) Movie (1.5MB) illustrating dynamics of the vortex nested in the self-induced nonlocal

potential. Note the difference in oscillations of the inner and outer rings. (Click here for

high resolution movie - 10MB ).

Finally, in Fig. 4 we illustrate the dynamical behavior of the higher order single charge vortex

soliton, which, in the highly nonlocal regime is approximated by the function

ψ(r,φ) = 4
√

2σ2
0 σ−4r(1− r2/(2σ2))exp(−r2/(2σ2))exp(iφ). (10)

This structure has a form of two out-of phase bright rings. As the plot shows, this two-ring

vortex soliton propagates in a stable manner exhibiting only internal oscillations caused by the

fact that the initial condition was only an approximate solution to the original nonlocal equation.

Interestingly, as the plots show, the inner and outer rings oscillate with different frequencies,

which may indicate the simultaneous excitation of different internal modes.

3. Conclusions

We studied the properties of bright vortex solitons in a nonlinear medium with a spatially non-

local nonlinearity. We demonstrated that the spatial averaging mechanism of the nonlocality

generates a robust confining potential. This potential prevents instability of the solitons allow-

ing them to propagate as stable objects even in the presence of relatively strong perturbations.

While this result does not constitute proof of the absolute stability of vortex rings, it is never-

theless an unambiguous indication of the feasibility of their experimental observation As the

physical mechanism of this stabilizing process is generic, our results are applicable to the gen-

eral class of nonlinear models with spatially nonlocal nonlinearity. In particular, we predict the
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possible observation of stable vortex ring solitons in Bose-Einstein condensates with a pro-

nounced long-range attractive interparticle interaction, such as those formed by molecules with

a significant dipole moment.

An independent study of stable vortex solitons propagating in media with a nonlocal thermal

nonlinearity has been reported recently by A. Yakimenko, Y. Zaliznyak and Y. Kivshar [40].
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