
RingCT 2.0: A Compact Accumulator-Based (Linkable
Ring Signature) Protocol for Blockchain

Cryptocurrency Monero

Shi-Feng Sun1,2, Man Ho Au1 ⋆, Joseph K. Liu3, Tsz Hon Yuen4, Dawu Gu2

1Hong Kong Polytechnic University, Hong Kong
E-mail: csssun,csallen@comp.polyu.edu.hk

2Shanghai Jiao Tong University, China
E-mail: dwgu@sjtu.edu.cn

3Monash University, Australia
E-mail: joseph.liu@monash.edu

4 Huawei, Singapore
E-mail: YUEN.TSZ.HON@huawei.com

Abstract. In this work, we initially study the necessary properties and security re-
quirements of Ring Confidential Transaction (RingCT) protocol deployed in the pop-
ular anonymous cryptocurrency Monero. Firstly, we formalize the syntax of RingCT
protocol and present several formal security definitions according to its application
in Monero. Based on our observations on the underlying (linkable) ring signature
and commitment schemes, we then put forward a new efficient RingCT protocol
(RingCT 2.0), which is built upon the well-known Pedersen commitment, accumu-
lator with one-way domain and signature of knowledge (which altogether perform
the functions of a linkable ring signature). Besides, we show that it satisfies the secu-
rity requirements if the underlying building blocks are secure in the random oracle
model. In comparison with the original RingCT protocol, our RingCT 2.0 protocol
presents a significant space saving, namely, the transaction size is independent of
the number of groups of input accounts included in the generalized ring while the
original RingCT suffers a linear growth with the number of groups, which would
allow each block to process more transactions.

1 Introduction

1.1 Monero: A Blockchain-based Cryptocurrency

A cryptocurrency is a digital asset designed to work as a medium of exchange using cryp-
tography to secure the transactions and to control the creation of additional units of the
currency. Bitcoin became the first decentralized cryptocurrency in 2009. Since then, nu-
merous cryptocurrencies have been created. Bitcoin and its derivatives use decentralized
control as opposed to centralized electronic money or centralized banking systems. The
decentralized control is related to the use of blockchain transaction database in the role of
a distributed ledger.

Major advantages of cryptocurrency include decentralized control and anonymous pay-
ment, when compared to the traditional credit card or debit card system. However, the
anonymity provided by bitcoin has been questioned in the sense it offers pseudonymity
instead of offering a true anonymity. For instance, there is a research that identifies owner-
ship relationships between Bitcoin addresses and IP addresses [22]. Bitcoin proxy or even
other users may still compute the actual identity of a bitcoin’s owner. Although there are
various improvements to enhance the anonymity of bitcoin (e.g. [33]), they are far from
practical and satisfactory.

One of the first attempt to provide anonymity in cryptocurrency is Dash (released in
2014), which anonymizes the transaction process by mixing coins. Nevertheless, it does
not formally provide cryptographic anonymity. Another attempt to provide anonymity in

⋆ Corresponding author

2 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

cryptocurrency is ZCash [9] (released in 2016), which uses zero-knowledge succinct non-
interactive argument of knowledge (zk-SNARKs) [10]. They provide anonymity with a
formal security proof. They used zk-SNARKs to prove the knowledge of pre-image of
hash functions in which the proof generation process is rather expensive. Therefore, the
efficiency is much worse than the normal bitcoin transaction (for the sender side, it takes
a few minutes to perform a spent computation).

Monero is an open-source cryptocurrency created in April 2014 that focuses on pri-
vacy, decentralisation and scalability. The current market value of Monero is already over
US$1.5B1, which is one of the largest cryptocurrencies. Unlike many cryptocurrencies that
are derivatives of Bitcoin, Monero is based on the CryptoNote protocol and possesses signif-
icant algorithmic differences relating to blockchain obfuscation. Monero daemon is mainly
based on the original CryptoNote protocol, which deploys “one-time ring signatures” as the
core crypto-primitive to provide anonymity. Monero further improves the protocol by using
a variant of linkable ring signature [24], which is called Ring Confidential Transactions
(RingCT) [26].

On 10 January 2017, RingCT has been put into Monero transactions, starting at block
#1220516. RingCT transactions are enabled by default at this stage, but it is still possible
to send a transaction without RingCT until the next hard fork in September 2017. In
the first month after implementation, it has been reported that approximately 50-60% of
transactions used the optional RingCT feature.2

Upon the enhancement of privacy, a major trade-off is the increase of size for the
transaction, due to the size of the linkable ring signature in the RingCT protocol. Although
RingCT has already shortened the size of the ring signature by 50% when compared to the
original CryptoNote protocol, it is still linear with the number of public keys included in
the ring.

1.2 Ring Signature and Linkable Ring Signature

A ring signature scheme (e.g., [28, 35, 1]) allows a member of a group to sign messages
on behalf of the group without revealing his identities, i.e. signer anonymity. In addition,
it is not possible to decide whether two signatures have been issued by the same group
member. Different from a group signature scheme (e.g., [14, 11, 7]), the group formation
is spontaneous and there is no group manager to revoke the identity of the signer. That
is, under the assumption that each user is already associated with a public key of some
standard signature scheme, a user can form a group by simply collecting the public keys
of all the group members including his/her own. These diversion group members can be
totally unaware of being conscripted into the group.

Ring signature provides perfect (or unconditional) anonymity. However, it may be too
strong in some scenario. For example, in the case of anonymous e-voting, it is necessary
to detect if someone has submitted his vote more than once so that the second casting
should not be counted. Similar concerns should be applied into anonymous e-cash system.
A double-spent payment should be discarded. In both scenarios, a linkable-anonymity is
necessary, instead of the strongest form, unconditional anonymity. Linkable ring signature
[24] provides a perfect characteristic of linkable anonymity: verifier knows nothing about the
signer, except that s/he is one of the users in the group (represented by the list of public
keys/identities). Yet given any two linkable signatures, the verifier knows that whether
they are generated by the same signer (even though the verifier still does not know who
the actual signer is).

1.3 Our Contributions

The contributions of this paper are twofold. First, we give a rigorous security definition and
requirement of RingCT protocol. We note that in the original paper of RingCT [26], there

1 At the time of September 2017. Market info is referenced from https://coinmarketcap.com/
2 https://web.archive.org/web/20170127204814/http://moneroblocks.info/stats/ringct-
transactions

RingCT 2.0: A Compact Spend Protocol for Monero 3

is no rigorous security definition but just a direct instantiation of the protocol. A rigorous
security definition would definitely help future researchers to develop better improvement
of RingCT. Second, we target to reduce the size of the RingCT protocol. Our new RingCT
protocol (we call it RingCT 2.0) is based on the well-known Pedersen commitment, accu-
mulator with one-way domain and signature of knowledge related to the accumulator. The
accumulator and the signature of knowledge together perform the functions of a linkable
ring signature. In particular, the size of signature in our protocol is independent to the
number of groups of input accounts in a transaction. We argue that it can significantly
shorten the size of each block, when compared to the original protocol (which is linear
with the number of groups of accounts included in the generalized ring for the anonymiz-
ing purpose) especially when the number of groups grows larger. More importantly, our
construction fits perfectly into the framework of the RingCT definition, which makes it
suitable to be deployed in Monero.

2 Related Works

Linkable ring signature was first proposed by Liu et al. [24] in 2004 (they named it as Link-
able Spontaneous Anonymous Group Signature which is actually linkable ring signature).
There are many variants in different types of cryptosystems with different features. We
summarize their features in table 1.

Table 1. Comparison of Linkable Ring Signatures

Scheme Signature Size Cryptosystem

Liu et al. [24] O(n) public key

Tsang and Wei [31] O(1) public key

Liu and Wong [25] O(n) public key

Au et al. [2] O(1) public key

Au et al. [3] O(n) certificate-based

Zheng et al. [36] O(n) public key

Tsang et al. [32] O(n) public key

Tsang et al. [30] O(n) identity-based

Chow et al. [15] O(1) identity-based

Fujisaki and Suzuki [20] O(n) public key

Fujisaki [19] O(
√
n) public key

Au et al. [4] O(1) identity-based

Yuen et al. [34] O(
√
n) public key

Liu et al. [23] O(n) public key

As we can see from the table, there are only a few constant size linkable ring signature
existed in the literature. In our discussion, we focus on public key only because both
identity-based and certificate-based cryptosystems are not suitable for blockchain paradigm
as they require a Private Key Generator (PKG) to issue user keys, which contradicts to the
decentralized concept of blockchain. Among them, [31] requires the Certificate Authority
(CA) to generate the user key. [2] is an improvement over [31] but it still requires an
interaction between the user and the CA during the user key generation process. Neither
of them is suitable for blockchain.

We note that not all linkable ring signature schemes are suitable for Monero. There are
some requirements that should be satisfied in order to be compatible with RingCT. We
will discuss more on this in Section 4.

3 Preliminaries

In this section, we first give some notations used in the rest of this paper. We use [n] to
denote the set of integers {1, 2, . . . , n} for some positive integer n ∈ N. For a randomized

4 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

algorithm A(·), we write y = A(x; r) to denote the unique output of A on input x and
randomness r, and denote by y ← A(x) the process of picking randomness r at random
and setting y = A(x; r). Also, we write x← S for sampling an element uniformly at random
from a set S, and use negl(λ) to denote some negligible function in a security parameter
λ.

3.1 Mathematical Assumptions

Bilinear Pairings. Let G1 and G2 be two cyclic groups of prime order p, and g be a
generator of G1. A function e : G1 ×G1 → G2 is a bilinear map if the following properties
hold:

– Bilinearity: e(Ax, By) = e(A,B)xy for all A,B ∈ G1 and x, y ∈ Zp;
– Non-degeneracy: e(g, g) 6= 1, where 1 is the identity of G2;
– Efficient computability: there exists an algorithm that can efficiently compute e(A,B)

for all A,B ∈ G1.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a group where |G| = q and
g ∈ G such that 〈g〉 = G. There exists no probabilistic polynomial time (PPT) algorithm
that can distinguish the distributions (g, ga, gb, gab) and (g, ga, gb, gc) with non-negligible
probability over 1/2 in time polynomial in q, where a, b, c are chosen uniformly at random
from Zq.
k-Strong Diffie-Hellman (k-SDH) Assumption. There exists no PPT algorithm which,

on input a k + 1-tuple (g0, g
α
0 , g

α2

0 , . . . , gα
k

0) ∈ G
k+1, returns a pair (w, y) ∈ G× Z

∗
p, where

G = 〈g0〉 and p is the order of G, such that wα+y = g0, with non-negligible probability and
in time polynomial in λ.

3.2 Building Blocks

In this section, we briefly recall the basic primitives used to construct our RingCT protocol,
which include accumulator with one-way domain, signature of knowledge and homomorphic
commitment scheme.

Accumulators with One-Way Domain. As defined in [16, 6], an accumulator accu-
mulates multiple values into one single value such that, for each value accumulated, there
is a witness proving that it has indeed been accumulated. Formally, let F = {Fλ} be a
sequence of families of functions and X = {Xλ} a sequence of families of finite sets, such
that Fλ = {f : Uf × Xf → Uf} and Xλ ⊆ Xf for all λ ∈ N, we call the pair (F ,X) an
accumulator family with one-way domain if the following conditions hold:

– quasi-commutativity: for all λ ∈ N, f ∈ Fλ, u ∈ Uf and x1, x2 ∈ Xλ, it holds that
f(f(u, x1), x2) = f(f(u, x2), x1). {Xλ} is always referred to as the domain of this accu-
mulator. For any X = {x1, x2, · · · , xn} ⊂ Xλ, we further refer to f(· · · f(u, x1) · · ·xn)
as the accumulated value of X over u, which will be denoted by f(u,X) thanks to this
quasi-commutative property.

– collision-resistance: for all λ ∈ N and efficient adversaries A, it holds that

Pr

[
X ⊂ Xλ ∧ (x ∈ Xf\X)
(w ∈ Uf) ∧ (f(w, x) = f(u,X))

:
f ← Fλ;u← Uf ;
(x,w,X)← A(f, Uf , u)

]
≤ negl(λ).

– one-way domain: let {Yλ}, {Rλ} be two sequences of families of sets associated with
{Xλ}, such that each Rλ is an efficiently verifiable, samplable relation over Yλ × Xλ

and it is infeasible to efficiently compute a witness y′ ∈ Yλ for an x sampled from Xλ.
That is,

Pr[(y′, x) ∈ Rλ : (y, x)← Samp(1λ); y′ ← A(1λ, x)] ≤ negl(λ),

where Samp denotes the efficient sampling algorithm over Rλ.

RingCT 2.0: A Compact Spend Protocol for Monero 5

– efficient generation: there exists an efficient algorithm denoted by ACC.Gen that on
input a security parameter λ outputs a description desc of a random element of Fλ,
possibly including some auxiliary information.

– efficient evaluation: for λ ∈ N, f ∈ Fλ, u ∈ Uf and X ⊂ Xλ, w ∈ Uf is called a witness
for the fact that x ∈ X has been accumulated within v

.
= f(u,X) ∈ Uf iff f(w, x) = v.

There exists two algorithms denoted by ACC.Eval and ACC.Wit that on input (desc, X)
and (desc, x,X) can efficiently evaluate the accumulated value f(u,X) and the witness
for x in f(u,X), respectively.

For sake of simplicity, we will denote by ACC = (ACC.Gen,ACC.Eval,ACC.Wit) such an
accumulator with one-way domain in the following.

Signature of Knowledge. Every three-move Proof of Knowledge protocols (PoKs) that
is Honest-Verifier Zero-Knowledge (HVZK) can be transformed into a signature scheme by
setting the challenge to the hash value of the commitment concatenated with the message
to be signed [18]. Signature schemes generated as such are provably secure [27] against
existential forgery under adaptively chosen message attack in the random oracle model
[8]. They are sometimes referred to as Signatures of Knowledge, SoK for short [12]. As
an example, we denote by SoK{(x) : y = gx}(m), where m is the message, the signature
scheme derived from the zero-knowledge proof of the discrete logarithm of y using the
above technique. Before presenting the formal definition of SoK, we first let R be a fixed
NP-hard relation with the corresponding language L = {y : ∃ x s.t (x, y) ∈ R}. Recall that
a relation is called hard if it is infeasible for any efficient algorithm, given some instance y,
to compute a valid witness such that (x, y) ∈ R. In general, signature of knowledge protocol
for R over message spaceM comprises of a triple of poly-time algorithms (Gen, Sign, Verf)
with the following syntax:

– Gen(1λ): on input a security parameter λ, the algorithm outputs public parameters
par, which will be implicitly taken as part input of the following algorithms. Also, we
assume that λ is efficiently recoverable from par.

– Sign(m,x, y): on input a message m ∈ M and a valid pair (x, y) ∈ R, the algorithm
outputs an SoK π.

– Verf(m,π, y): on input a message m, an SoK π and a statement y, the algorithm
outputs 0/1 indicating the in/validity of the SoK.

Definition 1 (SimExt Security of SoK [13]). An SoK protocol SoK = (Gen, Sign,Verf)
for hard relation R is called SimExt-secure if it satisfies the correct, simulatable and ex-
tractable properties as defined below.

Correctness For any message m ∈M and valid pair (x, y) ∈ R, it holds that

Pr[Verf(m,π, y) = 1 : par← Gen(1λ);π ← Sign(m,x, y)] ≥ 1− negl(λ),

where if the probability is exactly 1 we call SoK perfectly correct.
Simulatability There exists a poly-time simulator Sim = (SimGen, SimSign) such that for

any PPT adversary A, it holds that
∣∣Pr

[
b = 1 : (par, td)← SimGen(1λ); b← ASim(td,·,·,·)(par)

]
−

Pr
[
b = 1 : par← Gen(1λ); b← ASign(·,·,·)(par)

]∣∣ ≤ negl(λ),

where Sim receives an input (m,x, y), checks the validity of y and returns π ← SimSign

(m,x, y) if (x, y) ∈ R. In addition, td is the additional trapdoor information used by
Sim to simulate signatures without knowing a witness.

Extraction In addition to Sim, there exists an efficient extractor Ext such that for any
PPT adversary A, it holds that

Pr

 (x, y) ∈ R ∨ (m, y) ∈ Q
∨ Verf(m, y, π) = 0

:
(par, td)← SimGen(1λ);
(m, y, π)← ASim(td,·,·,·)(par)
x← Ext(par, td,m, y, π).

 ≥ 1− negl(λ).

where Q denotes the set of all queries (m, y) that A has made to Sim.

6 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

Homomorphic Commitment Schemes. Informally, a (non-interactive) commitment
scheme includes two phases: in commit phase, a sender chooses a value and constructs
a commitment to it; later in the reveal phase the sender may open the commitment and
reveal the value. After that, the receiver can verify that it is exactly the value that was
committed at first. More formally, a commitment scheme consists of a pair of poly-time
algorithms (CKGen,Com): on input a security parameter λ, CKGen(1λ) outputs a public
commitment key ctk, which specifies a message spaceMctk and a commitment space Cctk;
on input a message m ∈ Mctk, Com(ctk,m) generates a commitment c← Com(ctk,m) to
m, where ctk is often omitted when it is clear from the context. Normally, a commitment
scheme should satisfy the hiding and binding properties, as defined below.

Definition 2 (Security of HCom [21]). A non-interactive scheme HCom = (CKGen,
Com) is called a secure homomorphic commitment scheme if it satisfies the following prop-
erties.

Hiding This property means that the commitment does not reveal the committed value.
More precisely, HCom is called hiding if for all PPT adversaries A, it holds that

∣∣∣∣Pr
[
A(c) = b :

ctk ← CKGen(1λ); (m0,m1)← A(ctk);
b← {0, 1}; c← Com(ctk,mb)

]
−

1

2

∣∣∣∣ ≤ negl(λ),

where m0,m1 ∈Mctk and HCom is called perfectly hiding if the probability of A guess-
ing b is exactly 1/2.

Binding This property means that a commitment cannot be opened to two different values.
More precisely, HCom is called binding if for all PPT adversaries A, it holds that

Pr

[
m0 6= m1 ∧

Com(m0; r0) = Com(m1; r1)
:
ctk ← CKGen(1λ);
(m0, r0,m1, r1)← A(ctk)

]
≤ negl(λ),

where m0,m1 ∈ Mctk and r0, r1 are random coins of Com. HCom is called perfectly
binding if the probability is exactly 0. Moreover, we call HCom strongly binding if the
probability holds even for the condition (m0, r0) 6= (m1, r1) rather than m0 6= m1.

Homomorphic For this property, we assume that for each well-formed ctk, the commit-
ment space Cck is a multiplicative group of order q and both the messages and random
coins are from Zq. This property says that for all λ ∈ N, ctk ← CKGen(1λ), m0,m1 ∈ Zq

and r0, r1 ∈ Zq, it holds that

Com(m0; r0) · Com(m1; r1) = Com(m0 +m1; r0 + r1).

4 RingCT Protocol for Monero

In this section, we formalize ring confidential transaction (RingCT) protocol for Monero.
Recall that Monero is based on CryptoNote, where each user may have a number of dis-
tinct accounts. Each account consists of a one-time address and a coin, and it is always
associated with an account key used to authorize its spending. In each transaction, a user
can spend many of her/his accounts with the corresponding keys. The goal of ring confi-
dential transaction (RingCT) protocol is to protect the anonymity of spenders as well as
the privacy of transactions.

Informally, a RingCT protocol mainly comprises of two phases: the generation and the
verification of ring confidential transactions, which are operated by the spender and recipi-
ents respectively. When a user would like to spend m of her/his accounts, w.l.o.g., denoted

by As = {(pk
(k)
s , cn

(k)
s)}k∈[m] where pk

(k)
s is the user’s k-th account address and cn

(k)
s is

the coin w.r.t. this account, s/he first chooses t output accounts {(pkout,j , cnout,j)}j∈[t]

for all output addresses R = {pkout,j}j∈[t] accordingly, such that the sum of balances of
her/his input accounts equals to that of output accounts, and then additionally selects n−1
groups of input accounts with each containing m different accounts to anonymously spend
As for some payments (i.e., creating a ring confidential transaction). Whenever receiving

RingCT 2.0: A Compact Spend Protocol for Monero 7

this transaction from the P2P blockchain network, the miners check the validity of the
transaction with public information along with it and add it to a (new) block if valid.

By a thorough analysis of the protocol in [26], we find that the RingCT protocol essen-
tially involves ring signatures and commitments (that are used to hide account balance).
To be compatible within the protocol, these two cryptographic primitives should satisfy
the following properties simultaneously:

– Public keys generated by the key generation algorithm of ring signature should be
homomorphic.

– Commitments should be homomorphic with respect to (w.r.t.) the same operation as
public keys.

– Commitments to zero are well-formed public keys, each corresponding secret key of
which can be derived from the randomness of commitments.

To further capture the essential properties and securities required by the ring confidential
transaction protocol for Monero, we initiate the formalization of RingCT protocol and its
security models, the details of which are shown in the following subsections.

4.1 Technical Description

In general, a RingCT protocol consists of a tuple of poly-time algorithms (Setup, KeyGen,
Mint, Spend, Verify), the syntax of which are described as follows:

– pp ← Setup(1λ): the Setup algorithm takes a security parameter λ ∈ N, and outputs
the public system parameters pp. All algorithms below have implicitly pp as part of
their inputs.

– (sk, pk) ← KeyGen(pp): the key generation algorithm takes as input pp and outputs
a public and secret key pair (pk, sk). In the context of Monero, pk is always set as a
one-time address, which together with a coin constitutes an account.

– (cn, ck) ← Mint(pk, a): the Mint algorithm takes as input an amount a and a valid
address pk s.t. (pk, sk) ← KeyGen(pp), and outputs a coin cn for pk as well as the
associated coin key ck3. The coin cn together with address pk forms an account act

.
=

(pk, cn), the corresponding secret key of which is ask
.
= (sk, ck) that is required for

authorizing its spending.
– (tx, π, S)← Spend(m,Ks, As, A,R): on input a group As of accounts together with the

corresponding account secret keys Ks, an arbitrary set A of groups of input accounts
containing As, a set R of out addresses and some transaction string m ∈ {0, 1}∗, the
algorithm outputs a transaction tx (containing m, A and AR which denotes the set of
output accounts w.r.t. R), a proof π and a set S of serial numbers.

– 1/0← Verify(tx, π, S): on input the transaction tx containing m, A and AR, proof π and
serial numbers S, the algorithm verifies whether a set of accounts with serial numbers
S is spent properly for the transaction tx towards addresses R, and outputs 1 or 0,
meaning a valid or invalid spending respectively.

4.2 Security Definitions

A RingCT protocol should at least satisfy the properties formalized below.

Definition 3 (Perfect Correctness). This property requires that a user can spend any
group of her accounts w.r.t. an arbitrary set of groups of input accounts, each group con-
taining the same number of accounts as the group she intends to spend. Specifically, a
RingCT protocol Π = (Setup,KeyGen,Mint, Spend, Verify) is called perfectly correct if for
all PPT adversaries A, it holds that

Pr

Verify(tx, π, S) = 1 :

pp← Setup(1λ); (m, A,R)← A(pp,As,Ks)
where (As,Ks) =

{(
(pk, cn), (sk, ck)

)}
s.t.

(pk, sk)← KeyGen(pp), (cn, ck)← Mint(pk, a);
(tx, π, S)← Spend(m,Ks, As, A,R).

 = 1.

3 We note that ck will be privately sent to the user possessing account address pk, e.g., by private
public key encryption.

8 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

Definition 4 (Balance). This property requires that any malicious user cannot (1) spend
any account without her control and (2) spend her own/controllable accounts with a larger
output amount. Specifically, a RingCT protocol Π = (Setup,KeyGen, Mint, Spend,Verify) is
called balanced w.r.t. insider corruption if for all PPT adversaries A, it holds that

Pr

[
A Wins :

pp← Setup(1λ); ({act′i}
µ
i=1, {Si}

ν
i=1)

← AAddGen,ActGen,Spend,Corrupt(pp)

]
≤ negl(λ),

where all oracles AddGen, ActGen, Spend and Corrupt are defined as below:

– AddGen(i): on input a query number i, picks randomness τi, runs algorithm (ski, pki)←
KeyGen(pp; τi) and returns address pki.

– ActGen(i, ai): on input address index i and an amount ai, runs algorithm (cni, cki)←
Mint(pki, ai), then adds i and account acti = (pki, cni) to initially empty lists I and G
respectively, and outputs (acti, cki) for address pki, where pki is assumed to have been
generated by AddGen. The associated secret key with account acti is aski

.
= (ski, cki).

The oracle also uses aski to determine the serial number si of acti and adds it to
initially empty list S.

– Spend(m, As, A,R): takes in transaction string m, input accounts A containing As and
output addresses R, runs (tx, π, S)← Spend(m,Ks, As, A,R) and returns (tx, π, S) after
adding it to list T , where As ⊂ G and we assume that at least one account/address in
As has not been corrupted so far.

– Corrupt(i): on input query number i ∈ I, uses account key aski to determine the serial
number si of account acti with address pki, then adds si and (si, ai) to lists C and B
respectively, where ai is the balance of the account with address pki, and finally returns
τi.

At last, A outputs all her spends with some new accounts (act′1, act
′
2, · · · , act

′
µ, S1,S2, · · · ,

Sν) such that Si = (txi, πi, Si), where all spends are payed to, w.l.o.g., the challenger with
account address pkc

4, i.e., txi = (mi, Ai, A{pkc}), and Ai ⊂ G ∪{act
′
i}

µ
i=1 for all i ∈ [ν]. We

call A wins in the experiment if her outputs satisfy the following conditions:

1. Verify(txi, πi, Si) = 1 for all i ∈ [ν].
2. Si /∈ T ∧ Si ⊂ S for all i ∈ [ν], and Sj ∩ Sk = ∅ for any different j, k ∈ [ν].

3. Let Si = {si,j} and E =
ν⋃

i=1

{ai,j : (si,j , ai,j) ∈ B ∧ si,j ∈ Si ∩ C}, it holds that
∑

ai,j∈E ai,j <
∑ν

i=1 aout,i, where aout,i denotes the balance of output account in Si.

Definition 5 (Anonymity). This property requires that two proofs of spending with the
same transaction string m, input accounts A, output addresses R and distinct spent ac-
counts As0 , As1 ∈ A are (computationally) indistinguishable, meaning that the spender’s
accounts are successfully hidden among all the honestly generated accounts. Specifically, a
RingCT protocol Π = (Setup,KeyGen,Mint, Spend,Verify) is called anonymous if for all
PPT adversaries A = (A1,A2), it holds that

∣∣∣∣∣∣∣∣
Pr

b

′ = b :

pp← Setup(1λ); (m, As0 , As1 , A,R)←

AAddGen,ActGen,Spend,Corrupt
1 (pp); b← {0, 1},

(tx∗, π∗, S∗)← Spend(m,Ksb , Asb , A,R);

b′ ← ASpend,Corrupt
2 (pp, (tx∗, π∗, S∗))

−

1

2

∣∣∣∣∣∣∣∣
≤ negl(λ),

where all oracles are defined as before, Asi ∈ A and Asi ⊂ G for i ∈ {0, 1}. In addition,
the following restrictions should be satisfied:

– For all i ∈ {0, 1}, any account in Asi has not been corrupted.
– Any query in the form of (·, As, ·, ·) s.t. As ∩ Asi 6= ∅ has not been issued to Spend

oracle.

4 Note that in this case, assuming pkc has been generated by AddGen, the challenger knows all
balances of the spent accounts and output accounts involved in the adversarial spends {S}νi=1.

RingCT 2.0: A Compact Spend Protocol for Monero 9

Definition 6 (Non-Slanderability). This property requires that a malicious user can-
not slander any honest user after observing an honestly generated spending.That is, it is
infeasible for any malicious user to produce a valid spending that shares at least one se-
rial number with a previously generated honest spending. Specifically, a RingCT protocol
Π = (Setup,KeyGen,Mint, Spend,Verify) is called non-slanderable if for all PPT adversaries
A, it holds that

Pr

[
A Wins :

pp← Setup(1λ);
(
(t̂x, π̂, Ŝ), (tx∗, π∗, S∗)

)

← AAddGen,ActGen,Spend,Corrupt(pp)

]
≤ negl(λ),

where all oracles are defined as before, and (t̂x, π̂, Ŝ) is one output of the oracle Spend for
some (m, As, A,R). We call A succeeds if the output satisfies the following conditions: (1)
Verify(tx∗, π∗, S∗) = 1; (2) (tx∗, π∗, S∗) /∈ T ; (3) Ŝ ∩ C = ∅ but Ŝ ∩ S∗ 6= ∅.

We note that our non-slanderability definition already covers linkability property of a link-
able ring signature. Thus we do not need to explicitly define linkability.

5 Our RingCT 2.0 Protocol

In this section, we present a new RingCT protocol under our formalized syntax. Specifically,
our protocol is constructed based on a generic accumulator with one-way domain ACC,
a signature of knowledge SoK and the well-known Pedersen commitment. Proceeding to
present the details, we first give an intuition of our protocol. Without loss of generality,

we denote all, say, n groups of input accounts by A = {(pk
(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] (including

the group of m accounts the user intends to spend) and set the spender’s group as the s-th

group, i.e., As = {(pk
(k)
in,s, cn

(k)
in,s)}k∈[m]. Conceptually, our idea is to arrange the account

groups key into a matrix in which each group corresponds to a column. To shorten the size
of transaction, the public keys in the same row is accumulated into one value. Then, the
spender proves that he is using one account of each row in the spending. To ensure that
the spender is using the account of the same column, the accumulated elements in protocol

are formed as pk
(k)
in,i · u

s instead of pk
(k)
in,i, as shown in the matrix below.

To further guarantee the total balance in each transaction is conserved, the spender

computes extra public keys p̃ki based on the input accounts and the output accounts.

Looking ahead, knowledge of the secret key that corresponds to p̃ki implies that the balance
in accounts Ai is equal to the balance of the output accounts.

pk
(1)
in,1 · u

1 · · · pk
(1)
in,s · u

s · · · pk
(1)
in,n · u

n

...
. . .

...
. . .

...

pk
(k)
in,1 · u

1 · · · pk
(k)
in,s · u

s · · · pk
(k)
in,n · u

n

...
. . .

...
. . .

...

pk
(m)
in,1 · u

1 · · · pk
(m)
in,s · u

s · · · pk
(m)
in,n · u

n

p̃k1 · u
1 · · · p̃ks · u

s · · · p̃kn · u
n

⇒
...
⇒
...
⇒
⇒

v1
...
vk
...
vm

vm+1

5.1 Protocol Description

Let ACC = (ACC.Gen,ACC.Eval,ACC.Wit) be an accumulator with one-way domain and
SoK = (Gen, Sign,Verf) be a signature of knowledge as defined in Section 3.2. Based on these
primitives and the Pedersen commitment, our RingCT protocol RCT = (Setup,KeyGen,Mint,
Spend,Verify) is designed as follows:

Setup(1λ): on input a security parameter λ, the algorithm prepares a collision-resistant
accumulator f with one-way domain Gq, together with its description desc, by calling
ACC.Gen(1λ), and generates par by running Gen(1λ). Then it randomly picks generators
h0, h1, u, h̃ ∈ Gq, and outputs the system parameters pp =

(
1λ, desc, par, h0, h1, u, h̃

)
.

10 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

KeyGen(pp): on input pp, the algorithm generates a key pair (sk, pk) := (x, y = hx
0) ∈

Zq ×Gq by executing the sampling algorithm of the one-way relation associated with the
domain of f . In the context of Monero, the public key pk is always set as a one-time address,
which combining with a coin constitutes a user’s account.

Mint(pk, a): on input address pk and an amount a ∈ Zq, the algorithm mints a coin
for pk: chooses r ∈ Zq uniformly at random, computes commitment c = hr

0h
a
1 , where

r is called a secret hiding factor and a is the balance of account pk, and then returns
(cn, ck) = (c, (r, a)). The coin cn together with pk forms the account act

.
= (pk, cn), to

which the corresponding secret key is ask
.
= (sk, ck).

Spend(m,Ks, As, A,R): on input a set of secret keys Ks associated with the group of
input accounts As, some transaction string m ∈ {0, 1}∗, an arbitrary set A of groups of
input accounts containing As, and a set R of output addresses, the algorithm produces
an SoK π and the corresponding serial numbers S w.r.t. As as follows. Without loss of
generality, we denote all, say, n groups (including the group the user intends to spend)

of input accounts by A = {(pk
(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] and set the spender’s group as the

s-th group, i.e., As = {(pk
(k)
in,s, cn

(k)
in,s)}k∈[m], the corresponding secret keys of which are

Ks = {ask
(k)
s = (sk

(k)
in,s, (r

(k)
in,s, a

(k)
in,s))}k∈[m], and denote the intended output addresses by

R = {pkout,j}j∈[t].

1. Set aout,j ∈ Zq for all output address pkout,j ∈ R, such that the input and output

balances satisfy
m∑

k=1

a
(k)
in,s =

t∑
j=1

aout,j , then pick uniformly at random rout,j ∈ Zq and

mint coin cnout,j = cout,j = h
rout,j

0 h
aout,j

1 . After that, add output account actout,j =
(pkout,j , cnout,j) to AR, and privately send the coin key ckout,j = (rour,j , aout,j) to the
user holding address pkout,j .

2. Compute s̃ks =
m∑

k=1

sk
(k)
in,s+

m∑
k=1

r
(k)
in,s−

t∑
j=1

rout,j and p̃ki =
m∏

k=1

pk
(k)
in,i·

m∏
k=1

cn
(k)
in,i/

t∏
j=1

cnout,j

for each i ∈ [n]. Clearly, it holds that p̃ks = hs̃ks

0 , which follows from the fact that
m∑

k=1

a
(k)
in,s =

t∑
j=1

aout,j . For convenience, we denote p̃ki and s̃ks by y
(m+1)
i and x

(m+1)
s

respectively hereafter, i.e., p̃ki
.
= y

(m+1)
i and s̃ks

.
= x

(m+1)
s .

3. Generate a proof π that the group of coins As was spent properly for a transaction tx,
which consists of m, input accounts A and output accounts AR = {actout,j}, as follows.

For clarity, we denote sk
(k)
in,s = x

(k)
s for all k ∈ [m] and pk

(k)
in,i = y

(k)
i for all i ∈ [n] and

k ∈ [m]. Recall that p̃ki
.
= y

(m+1)
i for all i ∈ [n] and s̃ks

.
= x

(m+1)
s .

(a) For each k ∈ [m+1], compute the accumulated value vk = ACC.Eval(desc, {y
(k)
i ·u

i})

and the witness w
(k)
s = ACC.Wit(desc, {y

(k)
i · ui|i 6= s}) for the fact that y

(k)
s · us

has been accumulated within vk (i.e., computing the witness w
(k)
s s.t. f(w

(k)
s , y

(k)
s ·

us) = vk). Then compute sk = h̃x(k)
s for all k ∈ [m]. For simplicity, we denote

z
(k)
s = y

(k)
s · us hereafter.

(b) Use Sign to produce a signature of knowledge π on tx as:

SoK

({wk, zk, xk}

m+1
k=1 , γ) :

f(wm+1, zm+1) = vm+1 ∧ zm+1 = h
xm+1
0 uγ∧

f(w1, z1) = v1 ∧ z1 = h
x1
0 uγ ∧ s1 = h̃x1∧

...

f(wm, zm) = vm ∧ zm = h
xm
0 uγ ∧ sm = h̃xm

(tx)

(c) Eventually, return (tx, π, S), where S = {s1, s2, . . . , sm}. We note that the serial

number sk is uniquely determined by the address key sk
(k)
in,s for every k ∈ [m], and

thus they can be used to prevent double-spending.

Verify(tx, π, S): receiving a transaction tx containing m, A and AR, the associated SoK
π for tx and the serial numbers S = {si}, the recipient verifies that a set of accounts with
serial numbers {si} from input accounts A was spent for a transaction tx (towards output
addresses R) with string m, as follows:

RingCT 2.0: A Compact Spend Protocol for Monero 11

1. Use A = {(pk
(k)
in,i, cn

(k)
in,i)}i∈[n],k∈[m] and AR = {(pkout,j , cnout,j)}j∈[t] (contained in tx)

to compute p̃ki =
m∏

k=1

pk
(k)
in,i ·

m∏
k=1

cn
(k)
in,i/

t∏
j=1

cnout,j for all i ∈ [n], and then compute

the accumulated values vk = ACC.Eval(desc, {pk
(k)
in,i · u

i}) for all k ∈ [m] and vm+1 =

ACC.Eval(desc, {p̃ki · u
i}).

2. Take as input accumulated values (v1, · · · , vm+1), serial numbers S = (s1, · · · , sm),
transaction tx and π to verify whether it is a valid spending by checking Verf(tx, (v1, · · · ,

vm+1, s1, · · · , sm), π)
?
= 1. If true, accept this transaction, otherwise reject it.

The correctness of this protocol follows directly from that of the underlying signature
of knowledge protocol SoK. We do not give more details here.

Remark 1. Compared with the conference version, there is a modification of how si is com-
puted in our RingCT 2.0 protocol. The conference version, which requires zero-knowledge
proof-of-knowledge of (ski, pki) for the relation si = H(pki)

ski is extremely expensive in
practice. The current version, which requires si = h̃ski can be instantiated using standard
techniques and can be done in a much more efficient manner.

5.2 Security Analysis

In this part, the securities of our RingCT protocol are collectively analyzed under the
formalized security models, which are indicated as the following theorems.

Theorem 1. Assuming the discrete logarithm (DL) problem in Gq is hard, ACC is an
accumulator with one-way domain and SoK is a SimExt-secure signature of knowledge,
then the proposed RingCT protocol RCT is balanced w.r.t. insider corruption.

Theorem 2. Let HComP be the Pedersen commitment, ACC be an accumulator with one-
way domain and SoK a SimExt-secure signature of knowledge, then the proposed RingCT
protocol RCT is anonymous under the DDH assumption.

Theorem 3. Assuming the DL problem in Gq is hard, ACC is an accumulator with one-
way domain and SoK is a SimExt-secure signature of knowledge, then the proposed RingCT
protocol RCT is non-slanderable w.r.t. insider corruption.

Proofs for Theorem 1, 2 and 3 can be found in the Appendix.

5.3 Instantiations

Our RingCT protocol is constructed based on a well-known homomorphic commitment,
i.e., the Pedersen commitment, a generic accumulator with one-way domain ACC and a
signature of knowledge SoK for a specific language related to ACC. Next we give an instan-
tiation of ACC and SoK, and briefly recall the Pedersen commitment for completeness.

Pedersen commitment. As shown in [21], the Pedersen commitment is naturally a homo-
morphic commitment scheme. Its key generation algorithm CKGen and commit algorithm
Com are described respectively as:

– CKGen(1λ): on input a security parameter 1λ, outputs the commitment key ctk =
(Gq, q, g, h), where Gq is a cyclic group of prime order q and g, h are random generators
of Gq.

– Com(ctk,m): to commit to a message m ∈ Zq, the algorithm randomly picks r ∈ Zq

and computes c = gmhr.

As well known, this commitment scheme is perfectly hiding and computationally strongly
binding under the discrete logarithm assumption in Gq.

12 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

Accumulator with one-way domain. A specific (universal) accumulator for DDH groups
presented in [6] is well suited to our protocol, the algorithms of which are described as
follows:

– ACC.Gen(1λ): generate cyclic groups G1 = 〈g0〉 and G2 of prime order p, equipped with
a bilinear pairing e : G1×G1 → G2, and an accumulating function g◦ f : Z∗

p×Z
∗
p → G1,

where f is defined as f : Z∗
p×Z

∗
p → Z

∗
p such that f : (u, x) 7→ u(x+α) for some auxiliary

information α randomly chosen from Z
∗
p (for simplicity, u is always set as the identity

element of Z∗
p) and g is defined as g : Z∗

p → G1 such that g : x 7→ gx0 . The domain of
accumulatable elements is Gq = 〈h〉, which is a cyclic group of prime order q such that

Gq ⊂ Z
∗
p. At last, output the description desc = (G1,G2,Gq, e, g0, g

α
0 , g

α2

0 , · · · , gα
n

0 , g◦f),
where n is the maximum number of elements to be accumulated.

– ACC.Eval(desc, X): compute the accumulated value g ◦ f(1, X) for X by evaluating∏n
i=0(g

αi

0)ui with public information {gα
i

0 }i∈[n], where ui is the coefficient of the poly-
nomial

∏
x∈X(x+ α) =

∏n
i=0(uiα

i).
– ACC.Wit(desc, xs, X): the relation Ω w.r.t. this accumulator is defined as Ω(w, x,

v) = 1 iff e(w, gx0g
α
0) = e(v, g0), a witness ws for the element xs ∈ X := {x1, x2, · · · , xn}

s.t. s ∈ [n] is computed as ws = g ◦ f(1, X\{xs}) =
∏n−1

i=0 (g
αi

0)ui with public informa-

tion {gα
i

0 }i∈[n−1], where ui is the coefficient of the polynomial
∏n

i=1,i 6=s(xi + α) =∏n−1
i=0 (uiα

i).

Regarding this accumulator, the domain of accumulatable elements is Gq = 〈h〉, the
one-way relation for which is defined as Rq

.
= {(y, x) ∈ Zq × Gq : x = hy}. Moreover, the

relation Rq is efficiently verifiable, efficiently samplable and one-way, as defined before.

Theorem 4 ([6]). Under the n-SDH assumption in group G1, the above accumulator ACC
is a secure universal accumulator. Moreover, under the DL assumption in group Gq, it is
an accumulator with one-way domain.

Remark 2. It is easy to see that one drawback of our RingCT in contrast to the original
is that the accumulator needs a trusted setup. Similar to Zcash [9], this can be partially
solved by using multiparty computation technique.

As to the SoK associated with our RingCT protocol (instantiated with this ACC), it
can be obtained by applying the Fiat-Shamir paradigm [17] to a generalized interactive
zero-knowledge protocol from [6]. In the following, we present more details on the zero-
knowledge protocol equipped with our RingCT.

Let g0, g1, g2 and h0, h1, h2, h̃, u be independent generators of G1 and Gq ⊂ Z
∗
p respec-

tively. The other notations are the same as before. To achieve our goal, the protocol can
be decomposed as several efficient zero-knowledge protocols as below.

The first protocol, denoted by PoK1, is to prove the knowledge of (xk, zk, γ) s.t. zk =
hxk

0 · u
γ and sk = h̃xk without revealing any information of xk, γ and zk. More precisely,

we have:

PoK1

{
(zk, rk, xk, γ, t) : Ck = gzk0 grk1 ∧ zk = hxk

0 · u
γ ∧ sk = h̃xk ∧D = hγ

1h
t
2

}
.

To instantiate this protocol, we further treat it as the composition of the following
sub-protocols:

PoK1

〈
PoK1,1

{
(zk, rk) : Ck = gzk0 grk1

}

PoK1,2

{
(xk, rk, γ, t) : Ck = g

h
xk
0 ·uγ

0 grk1 ∧ sk = h̃xk ∧D = hγ
1h

t
2

}

The instantiation of PoK1,1 is a standard generalization of Schnorr’s protocol. Regarding
the instantiation of PoK1,2, it makes use of the zero-knowledge proof-of-knowledge of double
discrete logarithms [11], which can be obtained by extending the protocol presented in [6].

The second protocol denoted by PoK2, is to demonstrate that the committed element
zk in Ck is indeed accumulated in value vk, without revealing any information about wk

s.t. Ω(wk, zk, vk) = 1. More concretely, we have:

PoK2 {(wk, zk, rk) : e(wk, g
zk
0 gα0) = e(vk, g0) ∧ Ck = gzk0 grk1 } .

RingCT 2.0: A Compact Spend Protocol for Monero 13

By using the similar technique in [5], a prover knowing (wk, zk, rk) can compute this pro-
tocol by first computing quantities wk,1 = gτ10 gτ21 , wk,2 = wkg

τ1
1 for some τ1, τ2 ← Zp, and

then computing the following proof-of-knowledge protocol:

PoK′
2

{
(τ1, τ2, zk, δ1, δ2, rk) : wk,1 = gτ10 gτ21 ∧ wzk

k,1 = gδ10 gδ21 ∧

e(wk,2,g
α
0)

e(vk,g0)
= e(wk,2, g0)

−zke(g1, g0)
δ1e(g1, g

α
0)

τ1 ∧ Ck = gzk0 grk1

}
.

where δ1 = τ1zk and δ2 = τ2zk.
Combining protocols PoK1 and PoK2, we get an interactive zero-knowledge protocol

for our RingCT:

PoK
{
(wk, zk, xk, γ) : e(wk, g

zk
0 gα0) = e(vk, g0) ∧ zk = hxk

0 uγ ∧ sk = h̃xk

}
.

In the above presentation, we give more priority to clarity than efficiency; the protocols
may be optimized for even better performance.

Remark 3. In our RingCT protocol, a spender needs to compute such a zero-knowledge
protocol for m times (cf. the third step of algorithm Spend), each time corresponding to an
accumulation of n input accounts. In addition, the spender needs to calculate a simplified
version of PoK, where sk = h̃xk is omitted.

We also note that, to avoid the use of “negative amount” in transactions, the user in
our protocol has to show that the transaction amount a ∈ [0, 264] as well if we use 64 bits
to represent a transaction amount, which can be realized in a similar way as the original
RingCT [26].

6 Efficiency Analysis

In this section, we give a brief comparison of the efficiency of our RingCT protocol with
that of [26]. In particular, the anonymity of our protocol relies heavily on the underlying
accumulator with one-way domain, which compacts a group of input accounts to a shorter
value, while the RingCT protocol given in [26] is directly constructed on the basis of a
linkable ring signature. As shown in [26], the size of signature in their protocol increases
linearly with the number n of group accounts. More concretely, it is almost O(n(m + 1))
where m is the number of accounts contained in each group. In contrast, the communica-
tion complexity of our protocol is O(m), which is independent of the number of groups.
Clearly, the proposed protocol presents a significant space/bandwidth saving when n is
large enough. More details on the comparison are given in Table 2 below.

Table 2. Comparison of RingCT Protocols

Ref. Spender Verifier Communication

[26]
2.1mn· exp1 2.2mn·exp1 m|G1|+1|H|
+mn·Hp +mn·Hp +mn|Zp|

Ours

0.4(m+ 1)(n+ 1)· exp1 3.2λ(m+ 1)·expq + (λ+ 5)(m+ 1)|G1|+
+(m+ 1)·p (1.1λ+ 0.4n+ 4)(m+ 1)·exp1 (3λ+ 6)(m+ 1)|Zp|+

+(m+ 1)·expT +3(m+ 1)·p+2.2(m+ 1)·expT 3λ(m+ 1)|Zq|+ (m+ 1)|GT |
“n”: the number of group of input accounts; “m”: the number of input accounts in each group;
“λ”: the length of element in Zp; “exp1”: an exponentiation operation in group G1; “expT ”: an
exponentiation operation in group GT ; “expq”: an exponentiation operation in group Gq ⊂ Z

∗

p;
“p”: a bilinear pairing operation; Hp: a map-to-point hash function; |H|: the output size of a
hash function H; |G1|: the length of element in group G1, similarly for |Zp|, |Zq| and |GT |.

In the comparison, we only take into account of the expensive operations, mainly expo-
nentiation and bilinear pairing. We also take some pre-computations (that are not counted

14 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

in the table) and optimizations in both [26] and our protocol. For example, when com-
puting protocol PoK′

2, the initial message, say wk,1, g
τ1
1 , and pairings e(g1, g0), e(g1, g

α
0)

can be pre-computed, and multi-exponentiation, e.g., gτ10 gτ21 can be optimized with almost
1.1 exponentiation operation. Similar strategy has been taken to the computation of other
sub-protocols, we omit the details here.

7 Conclusion

In this work, we first formalize the syntax of RingCT protocol and present some rigorous
security definitions by capturing the necessary security requirements for its application
in Monero, which is the core part for Monero. Next, we propose a new RingCT protocol
(RingCT 2.0) based on a specific homomorphic commitment, accumulator with one-way
domain and the related signature of knowledge. The size of the RingCT 2.0 protocol is
independent to the number of groups of input accounts included in the generalized ring
while the original RingCT protocol suffers from the linear growing size with the number
of groups. We believe the significant space complexity improvement in RingCT 2.0 will
improve the overall efficiency of Monero especially for a pretty high level of anonymity.

Acknowledgement

This work is supported by National Natural Science Foundation of China (61602396,
61472083).

References

1. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n Signatures from a Variety of Keys. In ASI-
ACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 415–432. Springer,
2002.

2. M. H. Au, S. S. M. Chow, W. Susilo, and P. P. Tsang. Short linkable ring signatures revisited.
In EuroPKI, volume 4043 of Lecture Notes in Computer Science, pages 101–115. Springer,
2006.

3. M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Certificate based (linkable) ring signature. In
Information Security Practice and Experience, Third International Conference, ISPEC 2007,
Hong Kong, China, May 7-9, 2007, Proceedings, volume 4464 of Lecture Notes in Computer
Science, pages 79–92. Springer, 2007.

4. M. H. Au, J. K. Liu, W. Susilo, and T. H. Yuen. Secure id-based linkable and revocable-iff-
linked ring signature with constant-size construction. Theor. Comput. Sci., 469:1–14, 2013.

5. M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k -taa. In Security and Cryptography
for Networks, 5th International Conference, SCN 2006, Maiori, Italy, September 6-8, 2006,
Proceedings, pages 111–125, 2006.

6. M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu. Dynamic universal accumulators for DDH
groups and their application to attribute-based anonymous credential systems. In Topics in
Cryptology - CT-RSA 2009, The Cryptographers’ Track at the RSA Conference 2009, San
Francisco, CA, USA, April 20-24, 2009. Proceedings, pages 295–308, 2009.

7. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures: Formal Def-
initions, Simplified Requirements, and a Construction Based on General Assumptions. In
Proc. EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 614–
629. Springer-Verlag, 2003.

8. M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient
Protocols. In 1st ACM Conference on Computer and Communications Security, pages 62–73.
ACM Press, 1993.

9. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 459–474, 2014.

10. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. In Proceedings of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22, 2014., pages 781–796, 2014.

RingCT 2.0: A Compact Spend Protocol for Monero 15

11. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups (Extended
Abstract). In Proc. CRYPTO 97, volume 1294 of Lecture Notes in Computer Science, pages
410–424. Springer-Verlag, 1997.

12. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups (Extended
Abstract). In CRYPTO 1997, volume 1294 of LNCS, pages 410–424. Springer-Verlag, 1997.

13. M. Chase and A. Lysyanskaya. On signatures of knowledge. In Advances in Cryptology -
CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, pages 78–96, 2006.

14. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances in Cryp-
tology - EUROCRYPT ’91, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 257–265. Springer, 1991.

15. S. S. M. Chow, W. Susilo, and T. H. Yuen. Escrowed linkability of ring signatures and its
applications. In VIETCRYPT, volume 4341 of Lecture Notes in Computer Science, pages
175–192. Springer, 2006.

16. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous Identification in Ad Hoc Groups.
In C. Cachin and J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science,
pages 609–626. Springer, 2004.

17. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signa-
ture problems. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, pages 186–194, 1986.

18. U. Fiege, A. Fiat, and A. Shamir. Zero Knowledge Proofs of Identity. In STOC ’87: 19th
Annual ACM conference on Theory of Computing, pages 210–217, New York, NY, USA, 1987.
ACM Press.

19. E. Fujisaki. Sub-linear size traceable ring signatures without random oracles. In CT-RSA,
volume 6558 of Lecture Notes in Computer Science, pages 393–415. Springer, 2011.

20. E. Fujisaki and K. Suzuki. Traceable ring signature. In Public Key Cryptography, volume
4450 of Lecture Notes in Computer Science, pages 181–200. Springer, 2007.

21. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and spend a coin.
In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part II, pages 253–280, 2015.

22. P. Koshy, D. Koshy, and P. D. McDaniel. An analysis of anonymity in bitcoin using P2P
network traffic. In Financial Cryptography and Data Security - 18th International Conference,
FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, pages 469–485,
2014.

23. J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Linkable ring signature with unconditional
anonymity. IEEE Trans. Knowl. Data Eng., 26(1):157–165, 2014.

24. J. K. Liu, V. K. Wei, and D. S. Wong. Linkable Spontaneous Anonymous Group Signature
for Ad Hoc Groups (Extended Abstract). In ACISP 2004, volume 3108 of Lecture Notes in
Computer Science. Springer, 2004.

25. J. K. Liu and D. S. Wong. Linkable ring signatures: Security models and new schemes. In
ICCSA (2), volume 3481 of Lecture Notes in Computer Science, pages 614–623. Springer,
2005.

26. S. Noether. Ring Signature Confidential Transactions for Monero. Cryptology ePrint Archive,
Report 2015/1098, 2015. http://eprint.iacr.org/.

27. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In EUROCRYPT 1996,
volume 1070 of LNCS, pages 387–398, 1996.

28. R. L. Rivest, A. Shamir, and Y. Tauman. How to Leak a Secret. In Proc. ASIACRYPT 2001,
volume 2248 of Lecture Notes in Computer Science, pages 552–565. Springer-Verlag, 2001.

29. S.-F. Sun, M. H. Au, J. K. Liu, and T. H. Yuen. RingCT 2.0: A Compact Accumulator-Based
(Linkable Ring Signature) Protocol for Blockchain Cryptocurrency Monero (Full Version).
Cryptology ePrint Archive, Report 2017, 2017. http://eprint.iacr.org/.

30. P. P. Tsang, M. H. Au, J. K. Liu, W. Susilo, and D. S. Wong. A Suite of Non-Pairing ID-
Based Threshold Ring Signature Schemes with Different Levels of Anonymity. In ProvSec
2010, volume 6402 of Lecture Notes in Computer Science, pages 166–183. Springer, 2010.

31. P. P. Tsang and V. K. Wei. Short Linkable Ring Signatures for E-Voting, E-Cash and Attes-
tation. In ISPEC 2005, volume 3439 of Lecture Notes in Computer Science. Springer, 2005.

32. P. P. Tsang, V. K. Wei, T. K. Chan, M. H. Au, J. K. Liu, and D. S. Wong. Separable Linkable
Threshold Ring Signatures. In Proc. INDOCRYPT 2004, Lecture Notes in Computer Science,
pages 384–398. Springer-Verlag, 2004.

16 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

33. D. A. Wijaya, J. K. Liu, R. Steinfeld, S. Sun, and X. Huang. Anonymizing bitcoin transaction.
In ISPEC 2016, volume 10060 of Lecture Notes in Computer Science, pages 271–283. Springer,
2016.

34. T. H. Yuen, J. K. Liu, M. H. Au, W. Susilo, and J. Zhou. Efficient linkable and/or threshold
ring signature without random oracles. Comput. J., 56(4):407–421, 2013.

35. F. Zhang and K. Kim. ID-Based Blind Signature and Ring Signature from Pairings. In
Proc. ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 533–547.
Springer-Verlag, 2002.

36. D. Zheng, X. Li, K. Chen, and J. Li. Linkable ring signatures from linear feedback shift
register. In EUC Workshops, volume 4809 of Lecture Notes in Computer Science, pages 716–
727. Springer, 2007.

A Proof for Theorems

A.1 Proof for Theorem 1

Proof. Suppose that there is an efficient adversary A that can break the balance property
of our RingCT protocol RCT with non-negligible probability ǫ, then we can construct an
efficient algorithm A′ to solve the DL problem in Gq.

Given a random DL instance (h0, h1 = hα
0), the algorithm A′ arming to compute α

generates desc and par by running ACC.Gen(1λ) and Gen(1λ), respectively. It then chooses

uniformly at random β ∈ Zq, computes h̃ = hβ
0 and sets pp = (desc, par, h0, h1, u, h̃).

Assume without loss of generality that A makes at most qad, qac and qco queries to AddGen,
ActGen and Corrupt, respectively. A′ first randomly picks j∗ ∈ [qad] and chooses uniformly
at random xi ∈ Zq for all i ∈ [qad], and then A′ sets the queried addresses as

pki =

{
hxi

0 , i 6= j∗

hxi

1 , i = j∗

where the corresponding secret key for pki is implicitly set as ski = xi for all i ∈ [qad]\{j
∗}

and skj∗ = α · xj∗ . After that, A′ simulates all the oracles as below:

– AddGen(i): for the i-th query, simply returns address pki.
– ActGen(i, ai): on input index i and an amount ai, chooses random ri ∈ Zq and sets
ci = hri

0 hai

1 . Then, returns (cni, cki) = (ci, (ri, ai)) and adds i, acti = (pki, cni) and
si = h̃ski to lists I, G and S, respectively.

– Spend(m, As, A,R): on input a transaction string m, input accounts A containing As ⊂
G and output addresses R, the algorithm A′ generates (tx, π, S) as in real RingCT
protocol with the corresponding account keys Ks if actj∗ /∈ As. Otherwise, A′ generates
π by invoking the simulator Sim of SoK with the appropriately accumulated values and
the corresponding serial numbers (to As) as input. By the SimExt security of SoK, the
simulated spending without witness is computationally indistinguishable from the real.

– Corrupt(i): on input query i ∈ I, A′ aborts if i = j∗. Otherwise, returns xi, and adds
si and (si, ai) to lists C and B by searching on the previous queries made to ActGen

oracle.

Finally, A outputs (act′1, act
′
2, · · · , act

′
µ, S1,S2, · · · ,Sν), such that Si = (txi, πi, Si) and all

spends are payed to A′. Suppose that A wins in this simulated game, meaning that the
outputs of A satisfy that

∑
ai,j∈E ai,j <

∑ν
i=1 aout,i, where Si = {si,j}, E =

⋃ν
i=1{ai,j :

(si,j , ai,j) ∈ B ∧ si,j ∈ Si ∩ C}, and aout,i denotes the balance of output account in Si. For
simplicity, we further denote Ei = {ai,j : (si,j , ai,j) ∈ B ∧ si,j ∈ Si ∩ C}. Then, we show
how to use A to solve the DL problem in Gq. Precisely, the discrete logarithm α of h1 to
base h0 can be computed in the following cases:

– ∀i ∈ [ν], Si\C = ∅: this case denoted as case1 means that all spent accounts are
under A’s control. Thus, we know from

∑
ai,j∈E ai,j <

∑ν
i=1 aout,i that there exists

some i∗ ∈ [ν] s.t.
∑

ai∗,j∈Ei∗
ai∗,j < aout,i∗ . Note that in this case we have Ei∗ =

{ai∗,j : (si∗,j , ai∗,j) ∈ B ∧ si∗,j ∈ Si∗}. Through the serial numbers in Si∗ = {si∗,j}
m
j=1

RingCT 2.0: A Compact Spend Protocol for Monero 17

we can find the group {acti∗,j} of correspondingly spent accounts in Ai∗ , where each
acti∗,j = (pki∗,j , cni∗,j) and the associated secret key is aski∗,j = (ski∗,j , (ri∗,j , ai∗,j)).

Then we are able to compute the extra public key p̃ki∗ corresponding to the spent
accounts:

p̃ki∗ =
m∏
j=1

pki∗,j ·
m∏
j=1

cni∗,j/cnout,i∗

=
m∏
j=1

h
ski∗,j

0 ·
m∏
j=1

(h
ri∗,j

0 h
ai∗,j

1)/(h
rout,i∗

0 h
aout,i∗

1)

= h

m∑
j=1

ski∗,j+
m∑

j=1
ri∗,j−rout,i∗

0 · h
α(

m∑
j=1

ai∗,j−aout,i∗)

0 ,

where cnout,i∗ = h
rout,i∗

0 h
aout,i∗

1 denotes the output coin in txi∗ . Moreover, according to
the definition of balance, we know that Si /∈ T for all i ∈ [ν], thus by using extractor Ext

we can efficiently extract a valid witness
(
{(wi∗,j , zi∗,j , ski∗,j)}

m
j=1, (w̃i∗ , z̃i∗ , s̃ki∗), γi∗

)

s.t. p̃ki∗ = hs̃ki∗

0 for the statement w.r.t. Si∗ . With s̃ki∗ the DL instance (h0, h1) can
be solved by computing

α =

s̃ki∗ − (
m∑
j=1

ski∗,j +
m∑
j=1

ri∗,j − rout,i∗)

m∑
j=1

ai∗,j − aout,i∗
.

Recall that
m∑
j=1

ai∗,j < aout,i∗ , hence we have
m∑
j=1

ai∗,j − aout,i∗ 6= 0.

– ∃ i ∈ [ν], Si\C 6= ∅: this case denoted as case2 means that A successfully spends
some account without her control. Let J = {i ∈ [ν] : Si\C 6= ∅}, SJ =

⋃
i∈J (Si\C)

and the size of Si\C be ℓi. Then we check if sj∗ ∈ SJ . If not, simply outputs a
random guess. Otherwise, there exists i∗ ∈ J s.t. sj∗ ∈ Si∗ . To this point, we can use
td to extract a valid witness as the above case, where the witness includes skj∗ s.t.

pkj∗ = h
skj∗

0 = h
α·xj∗

0 , and then solve the discrete logarithm of h1 to h0 by computing
α = skj∗/xj∗ .

At last, we give a brief analysis of the probability of A′ successfully solving the DL
problem. For clarity, we denote by abortc the event that A′ aborts in the Corrupt phase,
and abortc the complementary event. Clearly, if abortc does not happen, the simulated game
is almost identical to the real from the point of A’s view, except that the spending queries
(m, As, A,R) s.t. actj∗ ∈ As are computed by calling the simulator of SoK. Therefore, A
wins this game with probability at least ǫ − ε(λ) for some negligible ε(λ). Conditioned
on abortc, A

′ always succeeds to compute α if A wins in the first case; otherwise, the
probability of A′ to compute α is at least Pr[sj∗ ∈ SJ] = (

∑
i∈J ℓi)/qad. Moreover, from

the simulation we know that Pr[abortc] = 1 − qco/qac. Combining them together, we get
that the probability that A′ succeeds to solve the discrete logarithm of h1 to h0 is

Pr[A′(h0, h1 = hα
0) = α]

= Pr[A′(h0, h1 = hα
0) = α ∧ abortc] + Pr[A′(h0, h1 = hα

0) = α ∧ abortc]

≥ Pr[A′(h0, h1 = hα
0) = α|abortc] · Pr[abortc]

= Pr[A′(h0, h1 = hα
0) = α|abortc, case1] · Pr[case1|abortc] · Pr[abortc]+

Pr[A′(h0, h1 = hα
0) = α|abortc, case2] · Pr[case2|abortc] · Pr[abortc]

≥
(
Pr[case1|abortc] + Pr[sj∗ ∈ SJ |abortc, case2] · Pr[case2|abortc]

)
· Pr[abortc]

=
(
1 + (

∑
i∈J

ℓi

qad
− 1) · Pr[case2|abortc]

)
· Pr[abortc]

≥
(
1 + (

∑
i∈J

ℓi

qad
− 1) · Pr[A wins|abortc]

)
· Pr[abortc]

=
(
1− qco

qac

)(
1 + (

∑
i∈J

ℓi

qad
− 1)(ǫ− ε)

)
.

Now, the proof of Theorem 1 is completed. ⊓⊔

18 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

A.2 Proof for Theorem 2

Proof. The proof proceeds via the following games. The first game is exactly the original
game, while the last is such a game that completely hides the information about b. In the
following, we will denote by Wini the event that the adversary guesses correctly in Gamei.

Game0: This is actually the original game (cf. Definition 5). In more details, the challenger
generates public parameters pp =

(
1λ, desc, par, h0, h1, u, h̃

)
by running the Setup(1λ) algo-

rithm, and responds all queries to AddGen, ActGen, Spend and Corrupt as in the real game.
Whenever receiving the challenge query (m, As0 , As1 , A,R), Asi being the si-th group of
accounts of A for i ∈ {0, 1}, the challenger chooses b ∈ {0, 1} uniformly at random and gen-
erates the challenge spending as follows. For sake of clarity, we denote all input accounts as

A = {(pk
(k)
i , cn

(k)
i)}i∈[n],k∈[m], the sb-th group of A as Asb = {act

(k)
sb = (pk

(k)
sb , cn

(k)
sb)}k∈[m]

where the corresponding key to account act
(k)
sb is ask

(k)
sb = (sk

(k)
sb , (r

(k)
sb , a

(k)
sb)), and the set

of output addresses as R = {pkout,j}j∈[t]. Precisely, the challenge spending (tx∗, π∗, S∗) is
computed as below:

1. Generate output account act
(b)
out,j = (pkout,j , cn

(b)
out,j) for all address pkout,j ∈ R and

add act
(b)
out,j to A

(b)
R , where cn

(b)
out,j = h

r
(b)
out,j

0 h
a
(b)
out,j

1 and the input balance {a
(k)
sb } and

output balance {a
(b)
out,j} satisfy that

m∑
k=1

a
(k)
sb =

t∑
j=1

a
(b)
out,j .

2. Compute p̃k
(b)

i =
m∏

k=1

pk
(k)
i ·

m∏
k=1

cn
(k)
i /

t∏
j=1

cn
(b)
out,j for all i ∈ [n], the accumulated values

vk = ACC.Eval(desc, {pk
(k)
i ·u

i}) for all k ∈ [m] and v
(b)
m+1 = ACC.Eval(desc, {p̃k

(b)

i ·u
i}),

as well as the serial numbers s
(b)
k = h̃sk(k)

sb for all k ∈ [m].

3. Compute (w
(k)
sb , z

(k)
sb , sk

(k)
sb) for each k ∈ [m], where w

(k)
sb = ACC.Wit(desc, {pk

(k)
i ·u

i|i 6=

sb}) and z
(k)
sb

.
= pk

(k)
sb · u

sb . Also, compute (w
(m+1)
sb , z

(m+1)
sb , s̃k

(b)

sb
), where w

(m+1)
sb =

ACC.Wit(desc, {p̃k
(b)

i ·u
i|i 6= sb}), z

(m+1)
sb

.
= p̃k

(b)

sb
·usb and s̃k

(b)

sb
=

m∑
k=1

sk
(k)
sb +

m∑
k=1

r
(k)
sb −

t∑
j=1

r
(b)
out,j . Then, generate a signature of knowledge π∗ on tx∗ = (m, A,A

(b)
R) as:

SoK

({wk, zk, xk}

m+1
k=1 , γ) :

f(wm+1, zm+1) = vm+1 ∧ zm+1 = h
xm+1
0 uγ∧

f(w1, z1) = v1 ∧ z1 = h
x1
0 uγ ∧ s1 = h̃x1∧

...

f(wm, zm) = vm ∧ zm = h
xm
0 uγ ∧ sm = h̃xm

(tx∗),

and return the challenge spending (tx∗, π∗, S∗), where S∗ = (s
(b)
1 , s

(b)
2 , · · · , s

(b)
m).

Finally, the adversary outputs its guess b′. Obviously, from the definition of anonymity
we have that

Pr[Win0] = Pr[b′ = b].

Game1: This game is the same as Game0 except that par and all signatures of knowledge
are generated by calling the simulator Sim = (SimGen, SimSign) of SoK. That is, (par, td)←
SimGen(1λ) and all SoKs w.r.t. Spend queries and challenge query are produced without
using any witness. More precisely, the challenge query (m, As0 , As1 , A,R) and the admissible
spending queries (m, As, A,R) s.t. As ∩Asb = ∅ are simulated as follows.

For a spending query (m, As, A,R), the challenger computes the statement (v1, v2, · · · ,
vm+1, s1, s2, · · · , sm) together with the corresponding witness ({wk, zk, xk}

m+1
k=1 , s), and

then computes π = Sim(tx, (v1, v2, · · · , vm+1, s1, s2, · · · , sm)) without using the witness.
Similarly, when receiving a challenge query (m, As0 , As1 , A,R), the challenger computes
the associated statement and witness as in the previous game, but generates the SoK as

π∗ = Sim(tx∗, (v1, v2, · · · , v
(b)
m+1, s

(b)
1 , s

(b)
2 , · · · , s

(b)
m)).

RingCT 2.0: A Compact Spend Protocol for Monero 19

Clearly, by the SimExt-security of SoK we get that

|Pr[Win1]− Pr[Win0]| ≤ negl(λ).

Game2: The difference of this game from Game1 is that during the challenge phase the
output coin w.r.t. address pkout,j ∈ R is chosen uniformly at random. More specifically, in
this game we set h1 = hα

0 for α ← Zq, and compute each output coin cnout,j for address

pkout,j ∈ R by picking r̂j ∈ Zq uniformly at random and setting cnout,j = h
r̂j
0 , which

implicity sets the corresponding key to cnout,j as ckout,j = (r̂j − α · a
(b)
out,j , a

(b)
out,j). In this

case, p̃ki =
m∏

k=1

pk
(k)
i ·

m∏
k=1

cn
(k)
i /

t∏
j=1

cnout,j for all i ∈ [n] is completely independent of b, and

so is vm+1 = ACC.Eval(desc, {p̃ki · u
i}). Thus, by the perfectly hiding property of HComP ,

we get that
Pr[Win2] = Pr[Win1].

Game3: This game differs from the previous only in the generation of serial numbers. In
this game, the serial numbers for the challenge query are chosen uniformly at random. More

specifically, sk ← Gq for each k ∈ [m], instead of sk = h̃sk(k)
sb . Recall that no accounts in

Asb is corrupted and no spending queries (m, As, A,R) s.t. As∩Asb 6= ∅ is permitted, so the
serial numbers S∗ = (s1, s2, · · · , sm) are fresh to the adversary and they are uniformly dis-
tributed from A’s view. Moreover, the simulated SoK π∗ = Sim(tx∗, (v1, v2, · · · , vm+1, s1,
s2, · · · , sm)) is completely independent of b. Therefore, the simulated spending (tx∗, π∗, S∗)
in this game leaks no information about b and thus Pr[b′ = b] = 1/2.

Lemma 1. Under the DDH assumption, Game2 is computationally indistinguishable from
Game3. More precisely, for all λ ∈ N and PPT distinguishers D, it holds that

|Pr[Win3]− Pr[Win2]| ≤ 2mqac ·AdvDDH
D (λ),

where m denotes the number of spent accounts in each transaction.

Proof. To prove the above lemma, we first introduce a sequence of games, denoted by
Game2,i for i ∈ {0, 1, · · · ,m}. In more details, these games are defined as follows.

Game2,i: it is almost identical to Game2 except that the first i serial numbers (w.r.t.

challenge query) are chosen uniformly at random, instead of computing as sk = h̃sk(k)
sb .

Obviously, for the case i = 0 it is exactly Game2, and for i = m it is the same as Game3.
Thus, to the end we only need to show that every two consecutive games Game2,i and
Game2,i+1 are computationally indistinguishable. Next, we present a reduction of this to
the standard DDH assumption.

Suppose that there exists an adversary A that can distinguish Game2,i and Game2,i+1

with non-negligible probability, then we can design an efficient distinguisher D to solve the
DDH problem.

Given a random DDH instance (g, ga, gb, gc) for a, b, c ← Zq, the distinguisher D gen-
erates desc and par by calling ACC.Gen(1λ) and Gen(1λ) respectively, sets h0 = g and
h̃ = gb, and then picks random generators h1, u ∈ Gq. After that, it outputs parameters

pp =
(
1λ, desc, par, h0, h1, u, h̃

)
. Without loss of generality, we assume that A makes at

most qad, qac and qco queries to AddGen, ActGen and Corrupt respectively. D first ran-
domly picks j∗ ∈ [qad], and chooses uniformly at random xi ∈ Zq for all i ∈ [qad], then D
sets the queried addresses as

pki =

{
hxi

0 , i 6= j∗

(ga)xi , i = j∗

where the corresponding secret key for pki is implicitly set as ski = xi for all i ∈ [qad]\{j
∗}

and skj∗ = a · xj∗ . After that, D simulates all oracles in the following way:

– AddGen(i): for the i-th query, simply returns address pki.

20 Shi-Feng Sun, Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Dawu Gu

– ActGen(i, ai): on input index i and amount ai, randomly chooses ri ∈ Zq and sets
ci = hri

0 hai

1 , then returns (cni, cki) = (ci, (ri, ai)) and adds i and acti = (pki, cni) to
initially empty lists I and G, respectively.

– Spend(m, As, A,R): on input transaction string m, input accounts A containing As ⊂ G
and output addresses R, D generates (tx, π, S) as in Game3 regardless of whether
actj∗ ∈ As or not. Recall that signature of knowledge π is generated currently by
invoking the simulator Sim of SoK.

– Corrupt(i): on input query i ∈ I, D aborts if i = j∗, otherwise returns xi.

When receiving challenge query (m, As0 , As1 , A,R) s.t. Asi ∈ A and Asi ⊂ G, D checks
if actj∗ ∈ Asi for i ∈ {0, 1}. If not, D halts and outputs a random guess. Else, it picks

b ← {0, 1} and returns a random bit if actj∗ /∈ Asb ∨ actj∗ 6= act
(i+1)
sb , otherwise uses Asb

to answer this query as follows:

1. For each pkout,j ∈ R, chooses cnout,j uniformly at random and sets p̃ki =
m∏

k=1

pk
(k)
i ·

m∏
k=1

cn
(k)
i /

t∏
j=1

cnout,j for all i ∈ [n].

2. Computes (v1, v2, · · · , vm, vm+1) and sets s1, s2, · · · , si ← Gq, si+1 = (gc)xj∗ and sk =

h̃xk for all k ∈ {i + 2, i + 3, · · · ,m}, then simulates π∗ = Sim(tx∗, (v1, v2, · · · , vm+1,
s1, s2, · · · , sm)) and returns (tx∗, π∗, S∗).

Eventually, the adversary A output its guess b′, and D outputs 1 if b′ = b.
For easy analysis, we denote by E1 the event that (actj∗ ∈ As0) ∨ (actj∗ ∈ As1) and

E2 the event that actj∗ ∈ Asb ∧ actj∗ = act
(i+1)
sb . Conditioned on E1 and E2, D perfectly

simulates Game2,i if (g, ga, gb, gc) is a valid DDH instance, in which case it holds that

si+1 = (gc)·xj∗ = (gab)xj∗ = h̃skj∗ = h̃sk(i+1)
sb . Otherwise, D perfectly simulates Game2,i+1,

in which case we have si+1 = (gc)xj∗ that is uniformly distributed from A’s view. Thus, it
is easy to get from the above discussion that

|Pr[Win2,i]− Pr[Win2,i+1]|
= |Pr[D(g, ga, gb, gab) = 1|E1 ∧ E2]− Pr[D(g, ga, gb, gc) = 1|E1 ∧ E2]|
= 1

Pr[E1∧E2]
|Pr[D(g, ga, gb, gab) = 1]− Pr[D(g, ga, gb, gc) = 1]|

= 2qac ·AdvDDH
D (1λ),

where m is the number of spent accounts in each transaction.

At last, from the above analysis we get that

|Pr[b′ = b]− 1/2| ≤ 2mqac ·AdvDDH
D (1λ) + negl(λ).

Hence, under the DDH assumption and securities of building blocks, our protocol is anony-
mous in the random oracle model. ⊓⊔

A.3 Proof for Theorem 3

Proof. The proof of this theorem is similar to that of Theorem 1. We can embed a random
DL instance into a simulated game, such that if there exists an adversary that can slander
an honest spending, then it can be used to design an efficient algorithm to solve the DL
problem with non-negligible probability. For completeness, we present the details as follows.

Suppose for contradiction that there is an efficient adversary A that can break the
non-slanderability of our RingCT protocol with non-negligible probability ǫ, then we can
use A as a subroutine to design an efficient algorithm A′ to solve the DL problem in Gq.

Given a random DL instance (h0, h1 = hα
0), the algorithm A′ produces desc and par by

running the algorithms ACC.Gen(1λ) and Gen(1λ) respectively. It then chooses uniformly

at random β ∈ Zq, computes h̃ = hβ
0 and sets pp = (desc, par, h0, h1, u, h̃). Without loss of

generality, we assume that A makes at most qad, qac and qco queries to AddGen, ActGen

RingCT 2.0: A Compact Spend Protocol for Monero 21

and Corrupt, respectively. First, A′ randomly picks j∗ ∈ [qad] and chooses uniformly at
random xi ∈ Zq for all i ∈ [qad], and then sets the queried addresses as

pki =

{
hxi

0 , i 6= j∗

hxi

1 , i = j∗

where the associated secret key with pki is implicitly set as ski = xi for all i ∈ [qad]\{j
∗}

and skj∗ = α · xj∗ . After that, A′ simulates all oracles in the following way:

– AddGen(i): for the i-th query, directly returns address pki.
– ActGen(i, ai): on input index i and an amount ai, randomly chooses ri ∈ Zq and sets
ci = hri

0 hai

1 . Then, sends back (cni, cki) = (ci, (ri, ai)) and adds i, acti = (pki, cni) and
si = h̃ski to lists I, G and S, respectively.

– Spend(m, As, A,R): on input a spending query (m, As, A,R) s.t. As ⊂ G, A
′ gener-

ates (tx, π, S) as in real RingCT protocol with the corresponding account keys Ks if
actj∗ /∈ As. Otherwise, A′ generates π by invoking the simulator Sim of SoK with the
appropriately accumulated values and corresponding serial numbers (to As) as input.
By the SimExt security of SoK, the simulated spending without witness is computa-
tionally indistinguishable from the real.

– Corrupt(i): on input index i ∈ I, A′ aborts if i = j∗. Otherwise, it returns xi and adds
si to corruption list C.

Finally, A outputs
(
(t̂x, π̂, Ŝ), (tx∗, π∗, S∗)

)
. Suppose that A succeeds in this simulated

game, meaning that the output ofA satisfies that (1) Verify(tx∗, π∗, S∗) = 1; (2) (tx∗, π∗, S∗)
/∈ T ; (3) Ŝ∩C = ∅ and Ŝ∩S∗ 6= ∅. Next, we show how to use A to solve the DL problem in
Gq. Precisely, the discrete logarithm α of h1 to base h0 can be computed in the following

way: check if j∗ ∈ Ŝ ∩ S∗, simply outputs a random guess if it does not hold; otherwise,
we can use trapdoor td to extract a valid witness w.r.t. (tx∗, π∗, S∗) as before, where the

witness contains skj∗ satisfying pkj∗ = h
skj∗

0 = h
α·xj∗

0 . Then, the discrete logarithm α of
h1 to h0 can be computed as α = skj∗/xj∗ .

At last, we briefly analyze the probability of A′ solving the DL problem. For clarity,
we denote by abortc the event that A′ aborts in the Corrupt phase, and abortc the com-
plementary event. Obviously, if abortc does not happen, the simulated game is the same
as the real from the point of A’s view, except that the spending queries (m, As, A,R) s.t.
actj∗ ∈ As are answered by calling the simulator of SoK. Thus, A wins this game with

probability at least ǫ − ε(λ) for some negligible ε(λ). In this case, if j∗ ∈ Ŝ ∩ S∗ holds,
A′ can successfully compute the discrete logarithm α of h1 to h0. Given the above, we get
that the probability that A′ succeeds to solve the discrete logarithm of h1 to h0 is

Pr [A′(h0, h1 = hα
0) = α]

≥ Pr[A wins ∧ j∗ ∈ Ŝ ∩ S∗]

≥ Pr[A wins ∧ j∗ ∈ Ŝ ∩ S∗|abortc] · Pr[abortc]

= Pr[A wins|abortc] · Pr[j
∗ ∈ Ŝ ∩ S∗|abortc] · Pr[abortc]

≥ ǫ−ε(λ)
qad

.

Hence, under the DL assumption the proposed protocol is non-slanderable in the random
oracle. ⊓⊔

