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Abstract

With increasing amounts of data available on the web and a

diverse range of users interested in programmatically access-

ing that data, web automation must become easier. Automa-

tion helps users complete many tedious interactions, such as

scraping data, completing forms, or transferring data between

websites. However, writing web automation scripts typically

requires an expert programmer because the writer must be

able to reverse engineer the target webpage. We have built a

record and replay tool, Ringer, that makes web automation

accessible to non-coders. Ringer takes a user demonstration

as input and creates a script that interacts with the page as a

user would. This approach makes Ringer scripts more robust

to webpage changes because user-facing interfaces remain

relatively stable compared to the underlying webpage im-

plementations. We evaluated our approach on benchmarks

recorded on real webpages and found that it replayed 4x more

benchmarks than a state-of-the-art replay tool.

Categories and Subject Descriptors H.5.3 [Group and Or-

ganization Interfaces]: Web-based interaction

General Terms Design, Languages

Keywords Record-Replay, Automation, Javascript, Browser

1. Introduction

Programmatic access to user-facing websites serves a range

of purposes: news readers reformat news articles for cleaner

access (e.g., Readability [3]); end users automate tedious in-

teractions with webpages (e.g., IFTTT [1]); and data scientists

scrape data for their studies and journalists for their stories

(the investigative news organization ProPublica hires pro-

grammers to develop web scrapers [2]). Overall, the interest

in web automation is growing: the number of StackOverflow

questions on “scraping” grew by 16% in 2014 and 23% in

2015 [34], and commercial scrapers such as Kimono [25] and

import.io [22] appeared during the last three years.

Writing good web automation scripts is challenging. Since

some websites do not offer APIs for accessing their data,

retrieving the data programmatically requires reverse engi-

neering their webpages’ DOM tree structures and event han-

dlers. To remain useful, programs must account for future

changes to webpages, such as website redesigns or updated

content. Additionally, on websites that actively attempt to pre-

vent automated scraping, the programmer must work around

obfuscation. For instance, some pages wait to load part of

a page’s content until the user hovers over or clicks on a

relevant component. Further, modern user interfaces, such

as autocomplete menus and “infinite scrolling,” add to the

complexity of automating web access.

1.1 Approach

We describe Ringer, a record and replay system that produces

web automation scripts from end-user demonstrations. Ringer

is based on the observation that while the internals of a web-

page may change, the user-facing interface tends to remain

stable in order to maintain a consistent user experience. Reli-

able automation can thus be achieved by invoking actions at

the level of the user-visible interface, rather than by reverse

engineering server requests or JavaScript function calls or

other low-levels components of the implementation.

Given a user demonstration, Ringer produces a script

that completes the user’s demonstrated task. The script is

a sequence of statements of the form “wait for a condition

C, then perform an action a on a webpage node n.” Ringer

records the sequence of actions in the demonstration. For



each action, it produces a condition and a node selector that

make the script robust to certain types of webpage changes.

1.2 Applications

Because Ringer infers scripts from only a user demonstration,

it gives non-programmers access to web automation. Using

Ringer, we built an example application (discussed further

in Section 8.5) that lets non-coders build a homepage with

custom “live information tiles.” Users record how to scrape

the day’s flavors at their local ice cream shop, today’s open

hours at their pool, or their current commute time; the custom

homepage replays those interactions to display up-to-date

information.

Ringer benefits expert programmers, too, because record

and replay obviates the need for tedious reverse engineering.

Programmers can simply record an interaction and then

modify the resulting Ringer script or embed it into a larger

application. For example, WebCombine [14], a tool built

using Ringer, lets a user scrape large datasets from structured

websites. The user demonstrates how to scrape one row of

the dataset, and WebCombine modifies the resultant Ringer

script to scrape all other rows of the dataset.

1.3 Technical challenges

Replaying recorded actions may appear simple, but funda-

mental challenges make it difficult to mimic a human user,

both spatially (selecting the node on which to apply an action)

and temporally (determining the conditions under which the

page is ready for the action).

To solve the spatial problem we must define a reliable

correspondence between demonstration-time DOM nodes

and replay-time nodes. Given a new version of a webpage, we

seek the node that a user would select to re-demonstrate the

interaction. Existing solutions [6, 27, 36] are fragile because

they require a few key node attributes to remain constant.

In contrast, our approach selects the replay-time node that

maximizes a similarity metric. A longitudinal study of 30

webpages found that after 37 days our approach still identified

83% of nodes, 22 percentage points more than the next best

approach.

To solve the temporal problem we must determine when

the webpage is ready for the next user action. Modern interac-

tive webpages often use visual cues, like showing a loading

bar, to signal that they are waiting for responses from a server.

An impatient user (or a naive replay tool) might ignore the

cue and use stale data, producing unexpected behaviors. Al-

though these visual cues are intuitive to humans, existing

replay techniques are oblivious to them. To address the tem-

poral problem, Ringer replays scripts multiple times to infer

triggers — conditions that must be met before each script

action can run. We empirically show that these conditions

make Ringer programs robust to pages with asynchronous

server communication and have the added benefit of being on

average more than 2.5x faster than the user’s demonstration.

1.4 Results

To evaluate Ringer as a whole, we developed a suite of 34

interaction benchmarks. We compared Ringer to CoScripter,

an existing end-user replay tool, and found that CoSripter

replayed 6 (18%) benchmarks, while Ringer replayed 25

(74%). We also tested how well Ringer handled page changes

by rerunning Ringer scripts over a three-week period. Of the

24 benchmarks that ran initially, 22 (92%) continued to run

at the end of the testing period.

To set expectations for how well a replayer can perform,

we must acknowledge that sites are free to modify their

pages arbitrarily at any time. To counteract the inherent best-

effort nature of the replay problem, Ringer uses previously

developed techniques [23] to specify invariants, i.e., text that

must appear on a page. We use these invariants to increase the

confidence that replay has not diverged and as a correctness

condition when evaluating Ringer.

This paper makes the following contributions:

• A record and replay approach to webpage automation that

mimics a user’s interactions. We record scripts that use

three constructs: actions, nodes and trigger conditions.

• A node addressing algorithm based on similarity that

identifies nodes across multiple webpage accesses.

• An algorithm that generates trigger conditions by observ-

ing multiple replay executions.

This paper is organized as follows. Section 2 introduces

the challenges of automating websites and the approaches

Ringer takes to solve them. Ringer’s core language features

are presented in Section 3, with the temporal problem dis-

cussed further in Section 4 and the spatial problem discussed

further in Section 5. Section 6 details Ringer’s implementa-

tion, and Section 7 details its limitations. In Section 8, we

present an evaluation of Ringer on a set of benchmark web-

sites. Finally, Section 9 offers a discussion of related work.

2. Challenges in Web Automation

Using a running example, we describe the inherent challenges

of the web automation approaches currently available to pro-

grammers (Sections 2.1 and 2.2) and how Ringer addresses

these challenges while making automation accessible to end

users (Sections 2.3 and 2.4).

2.1 Web automation scripts written by programmers

Consider the task of searching Amazon for a given camera

model, selecting the silver-colored camera from a list of color

options, then scraping its price. Perhaps a user wants to au-

tomate this process to detect when the price drops below

a fixed amount. The interest in such data is strong; Camel-

camelcamel [9], which lets end-users track Amazon prices,

has more than 180,000 users [21]. Although programmers

have built such tools for mainstream retailers like Amazon,

users cannot rely on programmers to develop price scraping



(a) Page of black camera. (b) After hover on silver button.

(c) After click (grayed page). (d) Page of silver camera.
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Figure 1: Amazon price scraping interaction. Each circle in ((e)) corresponds to a webpage state shown in ((a)-(d)). Note that

hovering over the silver option instantly displays the silver camera picture but not its price. Only after the click does the page

request the silver price from the server and overlays to gray. The response updates the price and removes the gray overlay.

1 driver = webdriver.Chrome()
2 driver.get(amazonURL)
3 # Find the silver button
4 button = driver.find_elements_by_xpath(’//img[@alt="Silver"]’)[0]
5 button.click() # Mimic the user clicking the button
6 # Wait until the product title contains the color name
7 WebDriverWait(driver, 10).until(
8 EC.text_to_be_present_in_element(
9 (By.ID, "productTitle"), "Silver"))

10 price = driver.find_element_by_id("priceblock_ourprice")
11 print price.text # Print out price of item

Figure 2: Selenium script to scrape the cost of a silver camera

from Amazon.com.

tools for their favorite niche sites, since writing site-specific

scrapers for small audiences is not lucrative.

How would one write this price-scraping script? A pro-

grammer first studies the Amazon page to reverse engineer

it, learning how to programmatically access data on the page

and what DOM events must occur to load the data. We show

screenshots of this task in Figure 1 and diagram the sequence

of events between browser components in Figure 1(e). After

producing a first draft of the script, the programmer tests it

over the next few days, to adapt the script to the inevitable

page changes. The final result resembles the Selenium script

shown in Figure 2.

The programmer must first determine how to programmat-

ically access webpage elements (DOM tree nodes), such as

the silver camera button, which lacks a node ID. Finding a

suitable selector requires examining the DOM tree and identi-

fying features of the target node that both uniquely identify it

and remain constant across multiple page accesses over time.

For the silver camera image, the programmer notices that the

alt field is always “Silver” and uses this insight to identify

the element with the XPath expression in line 4.

The programmer must also notice the asynchrony: the

script cannot scrape the price immediately after clicking

the “Silver” button. Doing so would yield the price of the

previously selected black camera. This incorrect outcome

occurs because the page responds to the click by requesting

the silver camera’s price from the server. The page grays

out the content as a visual cue (Fig. 1(c)) to convey that the

displayed information is invalid and a request is pending.

Surprisingly, the page still lets the user interact with the stale

information. For example, a user clicking the “Add to cart”

button during this period will add the black camera, after

already having clicked on the silver one.

The programmer must devise a trigger condition to iden-

tify when the silver camera’s price becomes available. The

standard approach of waiting for the relevant DOM node to

appear does not work in this case because the node is present

throughout. The alternative approach of adding a fixed-time

wait may break when the server is especially slow. For the

Figure 2 example, the programmer opted to carefully mon-

itor the page changes to determine that the page was ready

for scraping when the product title included the word “Sil-

ver” (line 7-9). This page-specific condition requires reverse

engineering that is likely inaccessible to end users.

2.2 Web automation script failures

In general, one writes web automation scripts for tasks that

must be performed many times. Therefore, scripts should be

usable for as long as possible. However, today’s webpages are

in a constant state of flux, which makes this goal a challenge.

They are redesigned often; they undergo A/B testing; and

they present breaking news, user-generated content, and other

frequently updated content. Many pages are minimized or

obfuscated, using new identifiers for their DOM nodes during



each reload. In short, the server-side code, the DOM structure

and contents, and the JavaScript code can change at any time.

As an example, consider the Amazon task. The Selenium

script used the expression driver.find_element_by_id("price

block_ourprice") to find the current product price (line 10).

Although this may seem like an intuitive approach — it uses

an ID, which should uniquely identify the node — low-level

attributes like this are prone to change. During one 60-second

interaction with the Amazon page, we logged 1,499 ID modi-

fications and 2,419 class modifications. These changes were

caused by the page’s JavaScript without the page even reload-

ing! Similar changes can likewise occur during A/B testing

or page redesign. These low-level attributes are imperceptible

to the user, so a user can continue interacting normally even

as they change. Because these attributes are invisible to users,

sites have no incentive to keep them stable. Thus, scripts that

use these frequently altered attributes often break when they

fail to find the correct node.

2.3 Ringer’s approach

Amazon example in Ringer. A Ringer user starts a record-

ing, interacts with the browser as usual, then stops the record-

ing. The experience of recording how to complete a task is

exactly the same as the experience of completing the task.

During recording, Ringer logs each action (DOM events

such as mouseup, keydown, etc.) that the user makes and

the DOM nodes on which those actions are performed. Here

is part of the trace generated from the previously described

Amazon recording:

1 observed mousedown event on an image node
2 observed mouseup event on an image node
3 observed click event on an image node
4 observed capture event on a span node

To turn this trace into a script, Ringer records hundreds

of attributes for each node referenced in the trace. At replay

time, the script selects the node that retrieves the highest

similarity score, based on how many of a node’s attributes

match the original node’s attributes. After the recording stage,

the script looks like this:

1 dispatch action mousedown on node matching {type: ’IMG’, ...}
2 dispatch action mouseup on node matching {type: ’IMG’, ...}
3 dispatch action click on node matching {type: ’IMG’, ...}
4 dispatch action capture on node matching {type: ’SPAN’, ...}

While the hand-written script presented in Sec. 2.1 breaks

upon ID changes, Ringer’s approach still typically selects the

correct node because the ID is only one of the hundreds of

features Ringer uses.

This similarity approach succeeds in part because it re-

sembles how a user finds nodes in a webpage. The user does

not have a fixed rule in mind for finding the price node but

rather looks for a node in more or less the same place as its

last position or a node similar to those used in the past. This

likeness may be influenced by many features – the price’s

font size, its position on the page, its proximity to other in-

formation. Like a human user, Ringer takes advantage of

all these features. Even though we cannot predict the subset

ahead of time, some subset of the features typically remain

stable since the developer wants to keep the user experience

consistent.

After recording, the Ringer program contains actions and

reliably identifies nodes, so it can be executed. However, it

will not pause between clicking the button and scraping the

price, so it will scrape stale data.

To learn when to dispatch an action, Ringer replays the

script several times, mimicking the user’s timing. Since server

response times vary, we typically observe a mix of successful

and unsuccessful executions. Whether an execution is suc-

cessful depends on the user’s goals. To automatically detect

success, the user must select invariant text that should appear

during a successful replay. For the Amazon example, the user

would select the title “Sony W800/S 20 MP Digital Camera

(Silver)" at the end of the interaction. Ringer saves a trace of

each successful replay. Each saved trace includes the relative

ordering of actions and server responses during a successful

execution.

Ringer then uses these execution traces to infer which

server responses must arrive before Ringer can successfully

replay an action. The URLs of server requests — and even the

number of requests — may vary from run to run, so Ringer

uses URL features to identify important server responses

across runs. After trigger inference, the final script looks like

this:

1 dispatch action mousedown on node matching {type: ’IMG’, ...}
2 dispatch action mouseup on node matching {type: ’IMG’, ...}
3 dispatch action click on node matching {type: ’IMG’, ...}
4 waituntil server response matching hostname==’amazon.com’
5 && path==’ajaxv2’ && params.id==’bar’:
6 dispatch action capture on node matching {type: ’SPAN’, ...}

2.4 Generalization of scripts

Ultimately, we expect that Ringer will be used as a building

block for more expressive end-user programming tools that

will adapt Ringer scripts to their needs. We provide an API

that lets programmers embed Ringer scripts into other applica-

tions and modify the scripts [14]. Our API lets programmers

parametrize a script to interact with different nodes, to type a

different string, and to open a different URL. For example,

a programmer can force the script to choose a certain node

by replacing the recorded feature set with a set that uniquely

identifies the new node. Programmers building end-user pro-

gramming tools can use this API to execute many variations

on a given interaction.

For a simple example of generalization, consider a user

who records how to select an item from a pulldown menu,

then clicks a search button. A tool could run this script inside

a loop, each time altering the script to select a different node

from the menu. A more advanced generalization tool might

go further, letting the user identify a relation on a set of

webpages, then applying a Ringer script to all rows to scrape

large datasets. In fact, WebCombine [14], a relational web



scraper targeted at non-programmers, has used Ringer to do

exactly this.

3. Language Design

When a human user interacts with the browser during the

recording phase, we assume that user is executing an implicit

program, in which each statement takes the form "wait

for X , then do Y on Z." The goal of replay is to mimic

this intended user program. We propose that to faithfully

replay this program, a replayer needs the following language

constructs:

• Actions: means by which a replayer affects an application

• Elements: components of an application interface on which

actions are dispatched

• Triggers: expressions that control when an action occurs

For pure record and replay, we assume the intended user

program is a straight-line sequence of statements. Each

statement takes this form:

1 waituntil triggers t1, t2, ... tn are satisified:
2 dispatch action a on element e

To execute this statement, Ringer waits until all trigger

conditions, t1, . . . tn, are satisfied. It then waits until an

element on the page matches element e, at which point it

dispatches the action a on the element.

3.1 Abstractions

This formulation gives us a program structure but does not

specify what abstractions to use for the action, element, and

trigger constructs. We use the following abstractions:

• Actions: Ringer records users’ interactions as DOM events.

DOM events are how scripts on the page listen for and

respond to user interactions.

• Elements: DOM events are dispatched on DOM nodes, so

Ringer must identify a matching DOM node on the replay-

time webpage. It attempts to mimic the user through a

similarity metric rather than using a fixed expression.

• Triggers: It is difficult to distinguish which cues are im-

portant. Often, visual cues occur in response to server re-

sponses. Therefore, Ringer uses server responses as triggers

to approximate visual cues.

While it is highly unlikely that a human user applies these

exact abstractions, these abstractions directly control the

information a human receives from a webpage and are

therefore a good fit for our user-imitation approach.

3.2 Ringer System Architecture

With this language in place, we can build the full record and

replay system, pictured in Figure 3, to produce scripts in the

Ringer language from user demonstrations.

Recording. During recording, Ringer observes all DOM

events, and the DOM-level features of all involved nodes.

User 
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HTTP 
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(a) User
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(b) Ringer

Figure 3: Ringer architecture. The Ringer replayer becomes

a replacement user. We highlight and underline the messages

used to monitor and control the browser. Ringer directly pro-

duces DOM events to mimic user interactions and observes

HTTP responses directly.

This trace is the input to our trigger inference algorithm,

which uses it to produce a set of successful execution traces.

From these traces, we infer a set of server response triggers

for each action, which we use to construct the final program.

Replay. During replay, Ringer executes each statement.

It first checks if all trigger expressions are satisfied by

comparing each expression to the list of server responses

observed thus far. Once all expressions are satisfied, the

replayer uses the DOM features to identify a node and then

dispatches the DOM event on that node.

4. Trigger Inference

As a human uses visual cues to synchronize with webpages,

Ringer must also synchronize. Without synchronization, an

execution could scrape the wrong information, like the Ama-

zon scraping script from Section 2; or, worse, it could silently

cause undesired side-effects on a page. To solve this prob-

lem, we infer triggers, which pause replay execution until the

webpage is ready for the next action.

4.1 Design rationale

The simplest triggers wait a fixed amount of time, but this

approach makes scripts slow and susceptible to network

delays. The most user-like option is to look for visual cues

to construct expressions like line 4 in Figure 2. However,

the high frequency of visual changes makes it difficult to

isolate relevant cues. The Amazon example uses a page that

contains over 4,000 nodes, and more than 600 DOM changes

occur after the user clicks the button, only a few of which are

associated with page readiness. The large number of nodes

and changes creates a large space of candidate expressions.

Instead of using visual cues, we look to what pages are

usually signaling with these cues, i.e., outstanding server

requests and responses. The Amazon page contains only



35 such responses, so inferring response-detecting trigger

expressions is feasible.

4.2 Example

To infer trigger expressions, Ringer must: (i) align server

responses across multiple replays, and (ii) identify trigger-

dependent actions. We could find no existing algorithms for

this problem and therefore designed a simple but effective

one.

We illustrate our approach on a simplified version of the

Amazon example. Initially, the user provides a demonstration

of the interaction, creating a simple script with two actions:

action a1 click silver button

action a2 scrape price

The user must also provide a correctness condition so that

Ringer can automatically detect when a replay is successful.

The user does this by selecting the title text,“Sony W800/S

20 MP Digital Camera (Silver),” as an invariant, indicating

that any successful execution must display this text. Ringer

then automatically (without user intervention) replays this

script. During these training-time replays, Ringer mimics the

user’s timing, so we call these naive replays. Ringer continues

to replay the script until it has observed two successful

executions:

action a1 click silver button

response r1 www.amazon.com/ajaxv2?rid=foo&id=bar

response r2 www.amazon.com/impress.html/ref=pba

action a2 scrape price

action a1 click silver button

response r3 www.amazon.com/ajaxv2?rid=baz&id=bar

action a2 scrape price

response r4 www.amazon.com/impress.html/ref=pba

Aligning server responses. To infer the dependency re-

lation, we must identify common server responses across

multiple traces. We use URLs’ hostnames and paths for

this purpose. For our example, we identify r1 and r3 as

the same response even though the URLs differ (with dif-

ferent rid parameters) since they share a hostname and

path. To increase precision, we incorporate the URL pa-

rameters that remain constant, such as the id parameter.

Thus, the final expression that identifies the r1 and r3 re-

sponses is: hostname==’amazon.com’ && path==’ajaxv2’

&& params.id==’bar’.

Identifying trigger-dependent actions. Ringer must also

infer which server responses an action requires. Let t1 and t2
be the trigger expressions that identify {r1, r3} and {r2, r4},
respectively. With these traces, Ringer can safely infer that a2
depends only on t1. Since the second trace shows a successful

execution in which a2 was dispatched before r4, it is clear a2
does not depend on t2.

Some assignments of trigger expressions to actions cause

more synchronization than others. If Ringer observes only

ADDTRIGGERS(actions : List[Action], runs : Set[List[Event]])

1 mapping : Map[Action, Set[Trigger]]← {}

2 used : Set[Trigger]← {}

3 for action : Action← actions do

4 responses : Set[List[Event]]← {}

5 for run : List[Event]← runs do

6 prefix : List[Event]← run.slice(0, run.indexOf(action))

7 all : List[Event]← prefix.filter(isResponse)

8 unmatched : List[Event]← REMOVEMATCHED(all, used)

9 responses← responses ∪ {unmatched}

10 triggers : Set[Trigger]← INFERTRIGGERS(responses)

11 mapping ← mapping ∪ {action→ triggers}

12 used← used ∪ triggers

13 return mapping

Figure 4: Algorithm to associate actions with necessary

triggers using a set of successful executions.

the first trace, it cannot eliminate the possibility that a2
depends on t2: it would associate a2 with both t1 and t2. This

suffices to replay the script, but it causes Ringer to wait for t2
unnecessarily. In a better program, with less synchronization,

a2 waits only for t1. Given the second trace, Ringer can infer

this better program.

4.3 Identifying trigger-dependent actions

We developed our trigger inference algorithm around one key

insight: if an action a depends on a response r, then r must

appear before a in all successful traces.

Our algorithm seeks to add triggers to a Ringer program so

that the script never fails due to an action being replayed early.

This correctness condition is met if the trigger expressions

added by our algorithm enforce all dependencies between

responses and actions. The secondary goal is to minimize

the delay caused by the triggers. We should avoid waiting

for a server response unless the action must come after the

response.

The input to Ringer’s trigger inference algorithm is a

sequence of actions (a Ringer script without triggers) and a

set of successful traces. Each successful trace is a sequence of

actions and responses. The output is a mapping from actions

to the triggers they require.

For each action, the algorithm identifies the set of server

responses that occur before the action in all passing traces.

The only proof that no dependency between an action and a

response is a successful run in which the action precedes the

response. Therefore, we conservatively assign a maximal set

of trigger expressions.

The ADDTRIGGERS algorithm in Figure 4 iterates over

all actions (line 3), identifying the responses that happen

before the current action in each execution (lines 6 to 7).

It then removes responses that are already associated with

previous actions (line 8). We run INFERTRIGGERS on the

www.amazon.com/ajaxv2?rid=foo&id=bar
www.amazon.com/impress.html/ref=pba
www.amazon.com/ajaxv2?rid=baz&id=bar
www.amazon.com/impress.html/ref=pba


trigger := host && path && type (&& params)∗ (&& order)?
host := hostname == string
path := path == string
type := type == (GET | POST)
params : params.string == string
order := isAfter(id)

Figure 5: Grammar of response identification expressions.

remaining responses (line 10). INFERTRIGGERS returns a set

of trigger expressions, one for each semantically equivalent

server response that appeared in all executions. For instance,

from our earlier example, we would run INFERTRIGGERS

on [r1, r2], [r3], and it would produce t1, the set containing

a trigger expression that corresponds to r1 and r2. Finally,

we map the current action to the set of trigger expressions

(line 11), and the loop continues.

4.4 Aligning server responses

To use server responses as triggers, we must find expressions

that identify them across multiple executions. This is difficult

because different URLs can represent semantically equivalent

responses. For example, a response can use a different session

ID parameter for each execution. We also cannot assume

that all server responses seen in one execution will occur

in another. The goal is to produce an expression flexible

enough to identify semantically equivalent responses despite

variations of the URL, but restrictive enough to not also

identify semantically different server responses that can have

similar URLs.

Ringer infers trigger expressions in the grammar shown

in Figure 5. We use features of server responses’ URLs,

including the hostname, path, query parameters, and type

of response. A trigger expression evaluates to true if Ringer

witnesses a server response that matches each URL feature in

the expression. If the trigger expression contains an isAfter(id)

clause, then Ringer must receive the response after executing

action id.

Our INFERTRIGGERS function takes lists of responses as

input. Each list contains responses from a single trace that

were not used as triggers for any previous action. For instance,

in the Amazon example, the list was [r1, r2], [r3]. The output

is a set of trigger expressions, one for each semantically

equivalent response that occurs in all input lists. In this

example, r1 and r3 were equivalent.

To produce the output trigger expression, we must first

identify which responses are semantically equivalent. Our

algorithm makes a (hostname, path, type) tuple for each

response and checks whether any response tuple appears

in all input lists. If it does, the algorithm produces a trigger

expression for this set of responses, including all parameters

that the URLs have in common.

If a given trigger expression has already been used to iden-

tify a previous response, we add an isAfter clause, indicating

that this trigger applies only after a previous event. This en-

sures that a single response does not satisfy more than one

trigger expression.

4.5 Assumptions

Our approach relies on four core assumptions.

1. Slow is safe. We assume that it is always acceptable to

delay an action, but that replaying it too early could cause

failures. Since human users may be slow to react, this

assumption holds on almost all pages we examined.

2. Arbitrary waits are rare. Our approach cannot handle

interactions that demand waits of arbitrary time periods

(e.g., interactions with JavaScript’s setTimeout). Since

users are impatient, it is rare for developers to add such

waits.

3. Correctness criteria have no false positives. Believing

a failing trace is successful can lead our algorithm to elim-

inate required dependencies. Therefore, the correctness

criterion must accurately determine whether an execution

is successful.

4. We can collect enough traces. Because we prioritize cor-

rectness, Ringer never eliminates a dependency between

a response and an action without witnessing it to be su-

perfluous. If we observe too few executions, Ringer could

produce scripts that wait unnecessarily. Even with our con-

servative approach and two or three successful traces, we

can significantly reduce replay execution time (Sec. 8.3),

so it is important that we be able to collect enough traces

to eliminate potential response-action dependencies. An-

other danger is that our inferred trigger expressions could

overfit a small number of input traces, causing Ringer

to ignore semantically equivalent responses. We handle

these cases by adding a timeout, so that replay eventually

continues even if no server response matches an overfit

trigger expression.

5. Node Addressing

Every action observed during a recording is enacted on a

node. For a replay script to execute correctly, it must dispatch

the action on the corresponding replay-time node.

5.1 Problem statement

The DOM is a tree of nodes. A node maps attributes to values.

At time t1, we load url u, which yields DOM tree T , and we

observe a given node with m attributes n = 〈a1 : v1, ..., am :
vm〉 in T . At time t2, we load u, which yields DOM tree T ′,

and must identify the node n′ ∈ T ′ that a user would identify

as corresponding to n ∈ T .

This problem is difficult because T ′ can be arbitrarily

different from T . The structure of T , the attributes of n, and

the attributes of other nodes in T could all change. In the limit,

T ′ could have a wholly different structure than T and not

have any common nodes with T . If this happened regularly,



identifying nodes would be almost impossible. However, this

would also make replay difficult for human users. The need

to offer a consistent user interface suggests that in practice

there is often substantial similarity between the DOM trees

of the same page loaded at different times.

5.2 Past approaches

Past record and replay tools and node addressing algorithms –

such as iMacros [6], ATA-QV [36], XPath relaxation [15, 17,

26] and CoScripter [27] – solved the problem by selecting at

record time what features they would require at replay time.

Given T and n, these node addressing algorithms construct

a function f such that f(T ) = n. To find a corresponding

node on a new page T ′, they apply f , proposing f(T ′) as

n′. Typically, f uses some combination of the attributes of n.

Based on the designer’s insights into how webpages change,

they select a few important attributes that uniquely identify n
in T .

To make these approaches more concrete, we briefly

describe two such node addressing algorithms. The iMacros

[6] approach records the text of n and an index attribute – the

number of nodes before n in T that have the same text. The

combination of text and index uniquely identifies n in T and

produces at most one node in any other DOM tree.

The ATA-QV algorithm [36] is more complicated. At

record time, it finds all nodes with the same text attribute

as n. It then compares the subtrees containing these nodes to

find text nodes that exist in n’s subtree but not in others. It

recursively accumulates a list of these disambiguating texts,

which let it uniquely identify n in T , although they may not

guarantee a unique output on variations of T . Thus, for ATA-

QV, the text within a node’s subtree serves as the crucial

attributes. At replay time, ATA-QV finds the node whose

subtree includes the target set.

5.3 Our approach

Rather than constructing a function f : T → n at record time

that discards most information about n, our approach builds

a function SIMILARITY for measuring the similarity between

two nodes. At record time, we save n. At replay time, for

each candidate node nc ∈ T , we run SIMILARITY(n, nc).
The node with the highest score is selected.

Past tools calculate a small set of features at record time

and require that they all match during replay. This assumes

that all of these features will remain stable. In contrast, our

approach requires that only some subset of features match.

The features we use include per-node features: attributes of

the node object; getBoundingClientRect features, like width;

getComputedStyle features, like font; and portions of the

node text. In addition, we also include many features with

information about the surrounding subtree: selected XPath

and XPath-like expressions and features of parent, child, and

sibling nodes. These latter features let Ringer use the context

of the original node to find a similar node.

SIMILARITY(weights : Map[Attribute,Weight],
n : Map[Attribute, V alue], nc : Map[Attribute, V alue])

1 score : Number ← 0

2 for attribute : Attribute← n do

3 if n[attribute] == nc[attribute] do

4 score← score+ weights[attribute]

5 return score

Figure 6: Algorithm to calculate the similarity of candidate

node nc to node n.

We constructed three similarity algorithms. All take the

same basic form, applying the core SIMILARITY algorithm

in Fig. 6. For each attribute a in the set of all attributes, if

n[a] == nc[a], the score is incremented by the attribute’s

weight. The node with the highest score is the output node.

Each variation of the SIMILARITY algorithm uses different

weights. The first algorithm weights all attributes equally.

For the second and third algorithms, we produced weights

using machine learning, one using linear regression and one

using SVM with a linear kernel (details in Appendix A).

Surprisingly, we found that the algorithm that weighted

all attributes equally achieved the best performance. This

result indicates that past changes to a website are not good

predictors of future changes and supports our claim that using

a fixed set of features is fragile.

5.4 Benefits of our approach

The key benefit of our approach is an increased robustness

to page changes over time. As detailed in Sec. 5.2, past

approaches rely on each feature in a small subset of features to

remain stable over time. The chosen features are essentially

a heuristic, guided by the designers’ instincts about how

pages change over time. Unfortunately, even when designers

choose a good subset that has been consistent in the past,

past performance does not guarantee that they will remain

consistent in the future.

Let us consider how past techniques handle the Amazon

task. The user’s goal is to scrape the price as it changes over

time. How do the iMacros and ATA-QV node addressing

techniques identify the price node? Both techniques first filter

for nodes with the original node’s text, which is the price

observed during recording – the stale data! If the price has

changed, there is no such node, and the tools fail.

In contrast, our similarity approach loses only one match-

ing attribute when the price text changes. reducing the simi-

larity score by only one. Other attributes – from background

color to font family, border thickness to node height – still

match the original node. So even as the price changes, our

similarity-based approach finds the correct price node.

6. Implementation as a Chrome Extension

Ringer is implemented in JavaScript, which offers portabil-

ity, and is distributed as a stand-alone Chrome extension,



which offers easy deployment. We made our code publically

available at https://github.com/sbarman/webscript.

Recording and Replaying Actions. Ringer records actions

by recording DOM events. To intercept and log each event,

our Chrome extension content script adds Ringer’s event lis-

teners to all important DOM events before the recorded page

loads. (By default, we exclude high-frequency mousemove,

mouseover, and mouseout events although these could be

enabled as desired.) Our listeners are called during the cap-

ture phase so that they are executed before other listeners;

any listener could suppress the execution of later listeners,

which would hide events from the recorder.

At replay time, we recreate the observed events and raise

them with the dispatchEvent function, carefully handling two

subtleties. First, the browser distinguishes between events

dispatched natively (i.e., via user interactions) from those

dispatched from a JavaScript program, including from an

extension. The former events are trusted and are allowed

to cause side-effects; some effects of the latter are ignored.

For example, clicking a checkbox node n with a mouse sets

n.checked to true. In contrast, dispatching the click event

to n from JavaScript has no effect on n.checked.

Second, the replayer must avoid breaking an implicit

invariant established by JavaScript’s single-threaded and

non-preemptive semantics. In particular, the browser dis-

patches some consecutive events atomically, preventing non-

related events from executing their handlers within the atomic

block. One such group of events is keydown, keypress,

textInput and input. We found that at least one website

(Southwest.com) relied on this behavior: An early version of

our replayer allowed a scheduled function to be executed in

the midst of an atomic block. As a result, the autocomplete

menu triggered by the typing did not use the last character

the user typed.

To handle these challenges, we developed a runtime

system that actively corrects any inconsistencies between

when an event is recorded and when it is replayed. Details

of this system are beyond the scope of this paper but can be

found in [11].

Observing Triggers. Ringer uses the Chrome webRequest

API to receive notifications of all requests to the server as

well as all server responses. During recording, we use these

notifications to collect the set of candidate triggers. During

replay, we use these notifications to identify when triggers

have fired. Ringer does not control when the browser sends

or receives a request. Instead, during replay, Ringer delays

dispatching events to control the order of actions relative to

server notifications; this is the trigger mechanism described

in Section 4.

Identifying Nodes. Ringer’s event listeners also record in-

formation about the event’s target node and relevant adjacent

nodes. Attributes of these nodes are used in Ringer’s node

addressing algorithm. The recorded information includes a

mix of XPath expressions, CSS selectors, text, coordinates,

traversals of the DOM tree, and many other features.

7. Limitations

We now review the limitations of Ringer’s components.

Actions. Some DOM events – for example, mousemoves,

mouseovers, and mouseouts – occur at a very high rate.

Because JavaScript is single-threaded, the same thread that

records and replays each event must also processes webpage

interactions, so recording the very large number of high-

frequency events can make pages slow to respond. Therefore,

Ringer does not record these events unless high-frequency

mode is explicitly turned on by the user. For most pages we

encountered, these events were unnecessary.

Elements. The similarity-based node addressing approach

is inherently best-effort. We obtain no theoretical guarantees

but find in practice that the approach is sufficient.

Triggers. The Ringer approach was designed for interac-

tions that satisfy the trigger assumptions (see Section 4.5).

Ringer fails when these do not hold. For instance, Ringer is

not intended to target interactions that require precise abso-

lute times between actions, such as most games. As a concrete

example, consider Google Maps, which calculates “inertia”

during map movements to continue scrolling even after the

user releases the click. It does so by using the time between

mouse movement actions. Since Ringer does not reproduce

exact times between actions, it cannot replay this interaction.

Another possible source of failures is client-side delay,

such as delays from animations, timeouts, or the use of

browser-local storage. Since these delays do not occur be-

cause of server requests, Ringer’s trigger algorithm will not

infer them. In practice, we have not observed websites that

fail because of client-side delays.

8. Evaluation

We start with an end-to-end comparison of Ringer and

CoScripter, another by-demonstration replayer for end-user

programming. We show that our design decisions make

Ringer more reliable on modern websites (Section 8.1). We

also examine how well Ringer handles page changes by

executing Ringer scripts repeatedly over a period of three

weeks (Section 8.2). We evaluate the components of replay

in isolation, showing that triggers are indeed necessary for

correct replay (Section 8.3). We evaluate node identification

in isolation from the full Ringer system, showing that it

outperforms existing algorithms in robustly handling page

changes over time (Section 8.4).

Benchmarks. We designed a benchmark suite consisting of

one web navigation scenario for each of 34 sites taken from

Alexa’s list of most-visited sites[4]. These websites tend to

be complex, making heavy use of AJAX requests, custom

event handlers, and other features that challenge replay.

https://github.com/sbarman/webscript


Each interaction completes what we perceive to be a core

site task, such as buying a product from an online retailer.

Each benchmark comes with user-specified invariant text

used to automatically detect whether the execution has been

successful. For instance, the Walmart benchmark succeeds if

the final page includes the string “This item has been added

to your cart.”

The websites, interactions, and invariants were selected by

one of the authors. The author selected familiar websites in

order to choose a task and an invariant for each benchmark.

We excluded from consideration any tasks that lacked check-

able correctness criteria. While the benchmarks were chosen

without knowing if Ringer would work on them, there was

the possibility of selection bias due to the author’s knowledge

of Ringer’s limitations.

8.1 Comparison to CoScripter

CoScripter[27] is a web record and replay tool built to

automate business processes. We chose to compare against

CoScripter because it is the only existing web replay tool that

can be used by non-programmers. While other replay tools

let users draft scripts by providing recordings, the drafts are

too fragile to use directly. Users must understand code and

the browser well enough to fix the scripts produced by those

replayers.

Unlike Ringer, CoScripter’s scripts are human readable.

This feature comes at a cost: CoScripter’s actions are limited

to a set of predefined operations, such as clicking an element

or typing text. This approach, successful when webpages

were less interactive, fails on modern interactions, e.g., the

use of an autocomplete menu, where the page reacts to a com-

bination of mouse and keyboard events to implement custom

behavior; successful replay requires faithfully reproducing

these fine-grain events. Our evaluation confirmed that using a

small set of high-level actions limited the interactions that can

be replayed, and that faithfully mimicking all fine-grained

user actions was more successful.

Procedure. To test Ringer, we recorded each benchmark

interaction and selected invariant text. We then replayed

the script 5 times, using the invariant text to determine

whether the replay succeeded. If all 5 replays succeeded, we

considered Ringer’s replay successful on the benchmark. We

tested CoScripter manually, so each script was replayed only

once. Thus for CoScripter, we marked a single correct replay

as a success. We performed all replay executions within one

day of the recording.

Results. We found that Ringer succeeded on 25 of the 34

benchmarks (74%), while CoScripter successfully replayed

6 benchmarks (18%). In Table 1, columns Ringer and Co-

Scripter present the results of our experiment.

Of the 9 benchmarks on which Ringer failed, 5 are com-

plete failures for which Ringer never produced a successful

replay. The other 4 are partial failures; Ringer replayed the

script successfully at least once. We provide a sample of the

reasons why Ringer replay failed:

• ebay: The script reached an item for which bidding had

already ended, preventing a bid from being placed.

• g-docs: Ringer could not identify the correct node.

• paypal: The recorded script did not include the login

interaction. (For most pages, the need to record login

is rare, but PayPal logs users out of their accounts very

quickly.)

• webmd: The site used a Flash interface, which Ringer

does not support.

Our post-mortem analysis of CoScripter’s results revealed

two common failures. First, some scripts failed because

CoScripter did not identify the correct target elements on

replay-time pages (column Element in Table 1). We do

not consider this a fundamental flaw as it may be fixed by

substituting our node identification algorithm. The second

limitation is fundamental and results from the decision to

use a small number of predefined human-readable actions.

The lack of fine-grain actions makes CoScripter incapable of

correctly replaying some interactions (column Interaction).

For instance, on the Google search page, the user typed a

partial string “SPLA” and then clicked on an option from

an autosuggest menu. CoScripter recorded this interaction as

“enter ‘SPLA’ into the ‘Search’ textbox.” Without the click,

the query is not executed, which causes the replay to fail.

While CoScripter could add new actions for more webpage

idioms, such as AJAX-updated pulldown menus, such a

scheme is unlikely to keep pace with the rapid evolution

of web design.

Of the benchmarks marked Other, two failed because

CoScripter did not faithfully mimic user key presses. When

a user types a string, the webpage dispatches a sequence

of DOM events for each key press. However, CoScripter

only updated the node’s text attribute, without dispatching

individual key presses. Skipping keypress event handlers

caused the executions to diverge. The final benchmark failed

because CoScripter did not wait for a page to fully load.

8.2 Performance over time

We evaluated how well Ringer scripts handle page changes by

running the scripts repeatedly over a period of three weeks.

Procedure. We used the same set of benchmarks that we

used for the comparison to CoScripter. We repeatedly re-

played each script to determine if the script remained suc-

cessful at each point. We ran each benchmark once every one

to four days, over the three week period.

Results. We found that of the original 24 passing scripts,

only 3 experienced failures on more than a single testing

date. The other 21 scripts were generally successful, with 15

experiencing no failures and 6 experiencing only one failure



Site Description #
E

v
en

ts

T
im

e
(s

)

R
in

g
er

C
o

S
cr

ip
te

r

E
le

m
en

t

In
te

ra
ct

io
n

O
th

er

allrecipes find recipe and scale it 130 22 X × × ×
amazon find price of silver camera 76 22 X × ×
best buy find price of silver camera 58 13 X × ×
bloomberg find cost of a company’s stock 27 5 X × ×
booking book a hotel room 75 21 X × ×
drugs find side effects of Tylenol 38 13 X X

ebay place bid on item 67 36 × × ×
facebook find friend’s phone number 47 9 3/5 × × ×
g-docs add text into new document 15 6 × × ×
g-maps estimate time of drive 121 35 X × ×
g-translate translate ’hello’ into French 48 12 X × ×
gmail compose and send email 159 22 X × ×
goodreads find related books 88 27 X X

google search for a phrase 29 4 X × ×
hotels book a hotel room 75 17 X × ×
howstuffworks scrape off common misconceptions 32 11 X X

kayak book a flight 74 19 X × ×
linkedin view connections sorted by last name 12 16 X × ×
mapquest estimate time of drive 106 15 X × ×
myfitnesspal calculate caloriess burned 102 23 X × ×
opentable make a reservation 69 24 4/5 × ×
paypal tranfser funds to friend 150 30 × × ×
southwest book a flight 93 15 X × × ×
target buy Kit Kats 70 10 X X

thesaurus find synonyms of “good” 39 9 X × ×
tripadvisor book a hotel room 28 5 × × ×
twitter send a direct message 133 36 X × × ×
walmart buy Kit Kats 51 19 3/5 × ×
webmd use symptom checker 34 17 × × ×
xe convert currency 51 24 X × ×
yahoo find cost of a companies stock 30 3 2/5 X

yelp find and filter restaurants in area 57 28 X × ×
youtube find statistics for video 97 19 X X

zillow find cost of a house 90 19 X × ×

Table 1: We present the results of running our benchmark suite. # Events gives the number of DOM events recorded, and Time

gives the duration in seconds. Ringer shows how well Ringer performs immediately after the recording. CoScripter shows how

well CoScripter performs immediately after recording. A X indicates all replay runs succeeded, and an × indicates all runs

failed. A partial failure is denoted by “# successes / # runs.” Ringer outperforms CoScripter, replaying 25 interactions correctly

vs. 6 interactions. For every benchmark that CoScripter failed to replay, we diagnose a root cause for that failure, shown in

columns Element, Interaction, and Other. Element indicates that CoScripter misidentified an element. Interaction indicates

that replay failed due to an improperly recorded user interaction.



Day

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

allrecipes X X X X X X X X X X X

bloomberg X X X X X X X X X X

drugs X X X X X X X X X X

facebook X X X X X X X X X X

g-maps X X X X X X X X X X

g-translate X X X X X X X X X X

hotels X X X X X X X X X X

howstuffworks X X X X X X X X X X

linkedin X X X X X X X X

mapquest X X X X X X X X

southwest X X X X X X X X

tripadvisor X X X X X X X X X

twitter X X X X X X X X X X

yelp X X X X X X X X X

youtube X X X X X X X X X

goodreads X X X X X X X X 4/5 X

google X X X X X X X X 3/5 X

opentable X X X X X X 1/5 X

zillow X X X X 4/5 4/5 X X X

thesaurus X X X X X 3/5 X 4/5 4/5 X

target X X X X X × X X X X

best buy X X × X X X X X X X

yahoo X X X X X X X X ×

xe X X X 4/5 4/5 X × × ×

kayak 3/5 3/5 4/5 4/5 X 4/5 X 2/5

myfitnesspal 3/5 X 2/5 4/5 4/5 2/5 X 3/5

booking × × × × × × × X X X

ebay × × × 3/5 × × × × × ×

amazon × × × × × × × × × ×

g-docs × × × × × × × × × ×

gmail × × × × × × × × × ×

paypal × × × × × × × ×

walmart × × × × × × × × ×

webmd × × × × × × × × ×

Passing 24 24 24 24 25 25 25 23 24 24 23 22 23 22 24 24 24 24 22 22 21 23

Table 2: We present the results of running our benchmark suite over a period of three weeks. Each column heading indicates the

number of days since the initial recording. Text in a cell indicates that the benchmark was run that day. A X indicates that all

replay runs succeeded and a × indicates all runs failed. A partial failure is denoted by “# successes / # runs”. Benchmarks are

grouped by their status at the start of testing and whether their status changed over the 3 week period. The last line counts the

number of passing benchmarks, treating a benchmark as passing if the latest run of the benchmark passed. The first segment of

the table includes all scripts that produced perfect success rates at every run. The second segment of the table includes scripts

which produced perfect results at the start, but experienced any kind of failure during the test period. The third and fourth

segments include all scripts that failed to produce 5/5 correct replays at the start – that is, these are the scripts that would be

considered failures in the comparison against CoScripter section. The third segment includes scripts whose performance varied

at all during the course of the test period. The fourth includes scripts that consistently produced 0/5 correct replays throughout

the test period.



over the three week period. Table 2 presents the results of our

experiment.

We used Day 3 as the initial baseline, since our testing

framework experienced failures during Days 1 and 2.

Note that since we conducted the CoScripter experiment

and the longitudinal study months apart, the sites changed

in the intervening period. Therefore, we do not expect the

first day performance to correspond exactly to the first

day performance in the CoScripter experiment. Indeed, 9

benchmarks produced different results, even though the rates

of success are similar at 25/34 and 24/34.

Of the 24 scripts that initially succeeded in 5/5 runs, 9

experienced some type of failure during the testing period. For

7 scripts, these failures were temporary. We did not diagnose

all failures but did determine that some (including the unusual

target failure) were caused by rate limiting. Only 2 scripts

experienced failures that lasted until the end of the testing

period.

Of the 7 scripts that failed temporarily, only 2 experienced

complete failures, meaning only 2 produced 0/5 successful

replays on any day. The remaining 5 experienced partial fail-

ures, meaning that the script continued to replay successfully

at least once (and often more) each day.

Overall, with 20 out of 24 scripts producing at least one

successful replay on every single test date, the results indicate

that Ringer scripts are fairly robust to page changes over a

three week time period.

8.3 Trigger inference

We evaluated whether interactions require synchronization;

whether Ringer learns sufficient triggers to mimic users’

interpretation of visual cues; and how much speedup we

obtain by replaying actions as soon as triggers are satisfied.

Procedure. We used a subset of benchmarks from the

CoScripter experiment. Each benchmark is executed in four

Ringer configurations: the user-timing configuration waited

as long as the user waited during the demonstration. The

no-wait version dispatched events as soon as possible, only

pausing when the target node has not yet been created by

the webpage program. The 2run-trigger and 3run-trigger

versions used triggers inferred from two and three traces,

respectively. We ran each configuration 10 times.

Results. In Figure 7, the x-axis gives the percentage of

runs that succeeded, and the y-axis shows speedup compared

to user-timing. The ideal replayer would pair perfect cor-

rectness with maximum speedup, placing it at the right and

closest to the top.

The no-wait version gives a theoretical ceiling on speedup.

Overall, the 3run-trigger versions of each benchmark had

an average speedup of 2.6x while the no-wait version had an

average speedup of 3.6x.

The user-timing version shows that the original script

generally succeeds if the user was sufficiently slow and the

server was sufficiently fast.

For 9 out of 21 benchmarks, trigger inference was not

needed since the no-wait version succeeded at least 90% of

the time. This is not to say no synchronization was needed,

but often waiting for the target node to appear is sufficient.

For 10 out of 21 benchmarks, triggers were necessary, and

we found that our trigger inference algorithm produced a

version that was faster than the original version and more

successful than the no-wait version.

For two benchmarks, all of the no-wait executions suc-

ceeded while the trigger versions succeeded less than 90%

of the time. Since we automate our tests, it is difficult to

diagnose these failures; possible reasons include bad trigger

conditions, misidentified elements, or the server being down.

Understanding synchronization. To understand why the

no-wait synchronization is fragile, we examined three bench-

marks where Ringer succeeded and no-wait frequently

failed. paypal: If a click was dispatched prematurely, re-

play misidentified an element, clicking the wrong link and

navigating to an unknown page. yelp: Without a sufficient

delay, replay clicked a restaurant filter option while a previ-

ous filter was being applied, causing the page to ignore the

second filter. target: If replay did not wait for the page to

fully load, the page froze after a button click, most likely due

to a partially loaded JavaScript program.

8.4 Node identification

Our final experiment tested our node identification algorithm

in isolation from Ringer. We compared our similarity-based

algorithm to the state of the art and found that our approach

outperformed existing node addressing approaches.

Defining the ground truth, i.e., whether a replay-time

node corresponds to a record-time node, cannot be perfectly

automated. After all, if we could automatically identify the

corresponding node, we would have solved the original

problem. Consider a webpage with a list of blog posts; each

post starts at the top and is shifted down as new entries appear.

Let our record-time target node n be the post at index 0, with

title t. Say at replay-time, the post with title t appears at

index 2. What node corresponds to n? The post at index 0 or

the post with title t? Either could be correct, depending on

the script that uses it. Only the human user can definitively

choose which node they intended to select.

Unfortunately, involving humans vastly reduces the num-

ber of nodes on which we can test. To increase the scale of

our experiment, we define two automatic measures of node

correspondence. Both are based on clicking a node, and subse-

quently checking if the click caused a page navigation. First,

a lower bound: a replay-time node n′ corresponds to a record-

time node n if clicking on n′ causes a navigation to the same

page (the same URL), as clicking on n. Second, an upper

bound: a replay-time node n′ corresponds to a record-time

node n if clicking on both nodes causes navigation, possibly

to different pages. The upper bound handles cases like the

blog described above. Clicking on the top post may be the
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Figure 7: Success rate v. speedup on a set of benchmarks. Benchmarks with shaded backgrounds require synchronization.

right action, but we should expect it to lead to a different

URL. Of course, with these bounds we can only test the node

addressing algorithms on nodes that cause page navigations.

We consider this to be a reasonable tradeoff, as it allows us

to test on a much larger set of nodes than would be possible

through human labeling.

Procedure. We used our upper and lower bounds to test

our similarity algorithm against the iMacros [6] and ATA-

QV [36] algorithms on a dataset of all 5,928 clickable

DOM nodes from the 30 most popular websites, according

to Alexa rankings [4]. On Day 0, for each webpage, we

programatically clicked on every node and recorded the

destination URL. We kept only nodes that caused navigation.

Once per day, we tested whether each algorithm could find

each node.

Results. Figure 8 shows the percentage of nodes on which

each algorithm succeeded each day, using both metrics. Using

the upper bound metric, similarity consistently outperformed

the other approaches. On day zero, performance is compara-

ble across approaches, with similarity slightly outperforming

iMacros and iMacros outperforming ATA-QV. After the rel-

ative consistency of the day 0 performance, similarity begins

to substantially outperform iMacros. Already on the first

day, similarity exhibited 1.21x the success rate of iMacros

and 1.50x the success rate of ATA-QV. By the one month

(Day 31) mark, similarity exhibited 1.35x the success rate of

iMacros and 1.60x the success rate of ATA-QV. In absolute

terms, similarity succeeded on 81.4% of the clickable nodes,

while iMacros succeeded on only 60.2%.

The performances of the similarity and iMacros ap-

proaches are much more similar when judged with the lower

bound metric, although similarity produces a better lower

bound than iMacros on every date. On the first day, similar-

ity produces a success rate of 1.06x iMacros’ success rate
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Figure 8: Performance of state-of-the-art node addressing

algorithms against our similarity approach.



and 1.55x ATA-QV’s success rate. By the one month mark,

similarity produces a success rate of 1.08x iMacros’ success

rate and 1.58x ATA-QV’s success rate. Although these 8%

and 58% improvements are not as large as the 35% and 60%

improvements suggested by the more permissive acceptance

criterion, we are satisfied that by either metric, similarity

represents an improvement over the alternative methods.

Similarity weights. The similarity approach in this experi-

ment was the SIMILARITY algorithm with uniform weights.

In additional experiments, we tested this variation against the

SVM and regression versions, and found that the uniform

weights performed best. This result occurs even though we

gave the machine learning versions the advantage of being

tested on the same websites that were used to train them.

The training and testing data were from the same sites, but

different time periods. Already on Day 1, the upper bound

of the uniform weights version was 94% compared to 53%

for the regression-trained weights and 86% for the SVM-

trained weights. The machine learning variations failed be-

cause they placed too much emphasis on a small number of

features. Like prior node addressing approaches, these algo-

rithms relied on the assumption that future webpage changes

would be like the changes observed in the past. In today’s

ever-evolving web, this is not a reasonable expectation. Thus

uniform weights, an approach that can adapt to the largest

variety of changes, produces the best performance.

8.5 Ringer as a building block

Ringer has already been used to construct several tools that

treat replay as a subroutine. For instance, the relational

web scraping tool WebCombine [14] uses Ringer to infer

scripts that are then parameterized into functions and invoked

to collect complex online datasets, e.g. a 3 million row

database of all papers published by the top 10,000 authors in

Computer Science. WebCombine was also used to collect the

StackOverflow statistics cited in Section 1.

We have used Ringer to build a tool for authoring custom

homepages with “live information tiles.” Non-programmers

demonstrate how to scrape the information they want to see –

when the bus arrives, whether a package has been delivered

– and the homepage runs Ringer scripts to populate the

tiles with the most recent information. Another application

resembles Greasemonkey [10], allowing users to modify

webpages by running small Ringer scripts.

9. Related Work

Web automation. Many previous tools allow users to au-

tomate the browser through demonstration. The CoScripter

[27] line of research focuses on making web scripting ac-

cessible to all. This line also includes Vegemite for creating

mashups [29], and ActionShot [28] for representing a history

of browser interactions. CoScripter works at a higher level of

abstraction, making the assumption that its small language of

actions represents all possible interactions. But this language

cannot faithfully capture all interactions on modern pages,

causing it to break in unexpected ways.

Other tools offer record and replay systems as a way to

obtain a rough draft of the target script. This simplifies the

script writing process but not to remove the programming

component altogether. iMacros [6] is one such commercial

tool. The browser testing framework Selenium [8] is another.

Its Selenium IDE component offers a record and playback

functionality. However, both iMacros and Selenium produce

scripts that a programmer must edit. Both of these tools are

targeted at experienced programmers, whose alternative is to

write such scripts from scratch.

Another class of tools aims at streamlining the process

of writing scripts. Chickenfoot [12] lets users combine high-

level commands and pattern-matching to identify elements.

Sikuli [37] uses screenshots to identify GUI components.

Beautiful Soup [5] is a Python library for interacting with

webpages, and libraries such as OXPath [19, 20, 24] and

Scrapy [7] are aimed specifically at scraping. While these

tools do simplify webpage automation relative to writing

scripts in low-level languages, they still demand that the user

be able to program and understand how the browser works.

Mashups [16, 35] allow end-users to connect content from

different sources to create new services. For instance, IFTTT

[1] creates simple conditional mashups that follow the pattern

“If this, then that.” Unfortunately these mashup tools access

data through APIs, and thus depend on programmers to

produce those APIs.

Deterministic replay of websites. Another class of projects

deterministically recreates webpage executions. Mugshot

[31] is a record and replay tool aimed at web developers,

allowing them to recreate buggy executions for debugging

purposes. It records all sources of non-determinism at record-

time and prevents their divergence at replay-time by using

a proxy server and instrumenting the webpages. Timelapse

[13] also implements deterministic replay, but works at a

lower level, using techniques from virtual machine literature.

Jalangi [33] performs replay for JavaScript code, in order to

run dynamic analyses. Like Mugshot, it must instrument the

Javascript code and relies on the JavaScript structure being the

same across executions. These record and replay approaches

work on cached versions of a webpage and therefore cannot

be used to automate interactions with the live page.

Trigger inference. The trigger inference problem is closely

related to race detection on webpages [32]. The aim of trigger

inference is to discover races between webpage code execu-

tion and user actions. However not all races on the webpage

are harmful; we believe most are benign. Therefore, we em-

pirically identify races that cause the script to break. Another

related field is inference of partial orders [18, 30]. This work

infers hidden partial orders based on linear extensions, i.e.,

traces, of the hidden partial orders. Unlike past work, we

aim to find an over-approximation of the partial order and

therefore use a more conservative approach.



10. Conclusion

As more data appears on the web, users need better ways

to programmatically access it. Our system, Ringer, aims to

help end users by turning demonstrations into replay scripts.

But Ringer is just one step towards bridging the gap between

a user’s goals and the interfaces provided by a website. To

achieve this goal, we envision more expressive applications

which use record and replay as a building block. Web scraping

by demonstration is one such tool, but more tools are needed

to help users, especially non-programmers, increase their

access to data on the web.

A. ML Approaches to Node Addressing

In addition to the version of our similarity-based node ad-

dressing algorithm that uses uniform weights, we tested two

variations that used learned weights. We trained the weights

for one with linear regression and the other with SVM.

We collected the training data from the 30 top sites

according to Alexa rankings [4]. For each node in each page,

we recorded all node attributes and the URL reached by

clicking on it. Usually this was the start URL, but in cases

where a page navigation occurs, the post-click URL gives

us a way to check if two nodes are equivalent. We collected

this same information twice, a week apart. For each node ni

in the initial run, we checked whether the post-click URL

differed from the pre-click URL. If yes, we checked whether

any node nf in the final run shared the post-click URL. If

yes, we collected the set of all nodes Nf from the same page

as nf . For each node in Nf , we calculated which attributes

matched the attributes of ni. This vector of Boolean values is

the feature vector for our dataset. The vector for nf (the node

with the matching post-click URL) is the positive example

labeled with 1; all other nodes in Nf are negative examples

and are labeled with 0. Thus, each node may appear in the

dataset multiple times, for different target nodes ni in the

initial run, but the vector is different each time, since the

vector reflects the attributes that match the current ni.

As an example, a node nf1 = 〈a1, b2〉 that corresponds to

ni1 = 〈a1, b1〉 produces feature vector 〈1, 0〉 and label 1 for

node ni1; however for node ni2 = 〈a2, b2〉, the nf1 feature

vector is 〈0, 0〉 and the label is 0. Both of these (feature vector,

label) pairs would be in the dataset.

We used linear regression on this dataset to produce a set

of weights for the linear regression SIMILARITY algorithm.

The same steps, but with a SVM using a linear kernel, produce

the weights used in the SVM node addressing algorithm.
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