RINGS HAVING DOMINANT MODULES

TOYONORI KATO

(Received April 19, 1971)

Recently the notion of dominant modules has been introduced in Kato [9] prompted by Tachikawa [17] and then studied further in Kato [10]. In this paper we shall be concerned with a class of rings which includes the class of left perfect rings as well as the class of left S-rings, namely, rings having dominant left modules.

Section 1 is devoted to illustrative examples of such rings, most of which are quoted from [9].

On the other hand, there appeared in Morita [13, 15] (cf. Jans [5]) the following condition on a ring R

(2) $\operatorname{Hom}(\operatorname{Ext}^{1}(_{R}X, _{R}R)_{R}, E(R_{R})) = 0$

for (finitely generated) $_{R}X \in _{R}\mathcal{M}$, where and throughout this paper, $E(\)$ will denote the injective hull, and $_{R}\mathcal{M}$ the category of left *R*-modules.

For the class of rings having dominant left modules, this condition (2) characterizes left QF-3 rings¹; the proof of this theorem is given in Section 2. The point of this theorem is that the converse of Morita [13, Theorem 4.1] holds.

It was Lambek [11] who pointed out for the first time that Utumi's maximal right quotient ring of a ring R (cf. Utumi [19]) is the bicommutator of $E(R_R)$. In what follows, let Q be Utumi-Lambek maximal right quotient ring of a ring R. If R has a dominant left module, so does Q (Example 8 in Section 3). This observation leads us to investigate the situation when Q has a dominant left module. The purpose of Section 3, the final section, is to examine this situation entirely based on Morita [14]. It is shown in Theorem 2 that Q has a dominant left module if and only if there exists a module $_R U$ such that

(i) $_{R}U$ is of type *FP*.

(ii) $_{R}U$ is faithful and flat.

(iii) U_s is lower distinguished, where $S = \text{End}_{(R}U)$.

For an illustrative example of this situation, let R = Z be the ring of integers and $_{R}U = _{Z}Q$ the rational number field. In this connection, if

¹⁾ A ring R is called left QF-3 if $E(_RR)$ is torsionless (cf. Colby and Rutter [4], Tachikawa [17] and Kato [6, 7]).

 $_{Q}U$ is dominant, then

 $\operatorname{Hom}(_{R}Y, _{R}Q) \otimes _{R}U \approx \operatorname{Hom}(_{R}Y, _{R}U)$

canonically for ${}_{R}Y \in {}_{R}\mathcal{M}$, and

 $\operatorname{Hom}(_{R}Y,_{R}R)\otimes_{R}U\approx\operatorname{Hom}(_{R}Y,_{R}U)$

canonically for finitely generated ${}_{R}Y \in {}_{R}\mathcal{M}$, as is shown in Lemma 4. Theorem 3 discusses the situation when ${}_{R}U$ is injective for a dominant module ${}_{Q}U$. Among other things it is shown that, if there exists a dominant module ${}_{Q}U$ such that ${}_{R}U$ is injective, then the condition (2) above holds for all finitely generated modules ${}_{R}X$. Theorem 3 contains the converse part of Morita [15, Theorem 2] for the class of left Noetherian rings R for which Q has dominant left modules as well.

Throughout this paper, rings R will have unity element and modules will be unital. $_{R}X$ will signify the fact that X is a left R-module. As a matter of course, homomorphisms of modules will operate on the side opposite to the scalars.

1. Introduction to dominant modules. A faithful, finitely generated, projective module $_{R}U$ is called dominant if U_{S} is lower distinguished², where $S = \text{End}(_{R}U)$ is the endomorphism ring of $_{R}U$ (cf. Kato [9]). In this paper we are mainly concerned with rings having dominant modules, and so let us survey such rings by illustrative examples:

EXAMPLE 1. A progenerator $_{R}U^{3}$ is dominant if and only if R_{R} is lower distinguished.

This follows from the Morita equivalence $\mathcal{M}_{S} \sim \mathcal{M}_{R}$, $S = \operatorname{End}_{(R}U)$.

The following example is an analogue of [9, Example 3] (cf. Morita [14, Theorem 8.2]).

EXAMPLE 2. *R* has a dominant left module and $E(R_R)$ -domi. dim $R_R \ge 2^{4i}$ if and only if *R* is the endomorphism ring of a lower distinguished generator for \mathcal{M}_S , where *S* is a ring.

EXAMPLE 3 (Kato [9, Example 4]). If R is a semi-perfect ring with the essential right socle, then R has a dominant left module. Thus left perfect rings as well as semi-primary rings have always dominant left modules.

EXAMPLE 4. The ring Z of integers has no dominant module.

²⁾ U_S contains a copy of each simple right S-module (cf. Azumaya [1]).

³⁾ $_{R}U$ is a finitely generated projective generator for $_{R}\mathcal{M}$ (cf. Bass [2]).

⁴⁾ $E(R_R)/R \subseteq \prod E(R_R)$ (cf. Tachikawa [17, 18], Morita [14] and Kato [8]).

Azumaya's observation [1, Theorem 8] and Example 1 above will serve a verification of this example.

EXAMPLE 5. Let R be an infinite direct product of fields. Then R has no dominant module, and yet R is a commutative, self-injective, regular ring (cf. [9, Example 2]).

2. Characterization of QF-3 rings. In this section we are chiefly concerned with rings R having dominant left modules, and then give a characterization of left QF-3 rings in terms of the condition (2) mentioned in Introduction.

LEMMA 1. Let $_{R}U$ be a dominant module. Then $E(_{R}R)$ is torsionless if and only if $_{R}U$ is injective.

PROOF. The "if" part follows directly from Kato [6, Proposition 1]. To show the "only if" part, suppose $E(_{R}R)$ is torsionless. We observe first that $E(_{R}U)$ is U-torsionless. Indeed, since $_{R}U \subseteq \prod_{R}R \subseteq \prod E(_{R}R)$, $E(_{R}R) \subseteq \prod_{R}R$, and $_{R}R \subseteq \prod_{R}U$ by assumption,

$$E(_{R}U) \subseteq \prod E(_{R}R) \subseteq \prod_{R}R \subseteq \prod_{R}U$$
.

Observe next that U_s is lower distinguished, where $S = \text{End}_{(R}U)$. Thus, according to Onodera [16, Lemma 4.4]⁵, $_{R}U$ is injective.

LEMMA 2 (Kato [9]). Let _RU be faithful, finitely generated projective and $S = \text{End}_{(R}U)$. Then

$$Hom(U_{s}, E(U_{s}))_{R} = E(R_{R})^{6}$$
.

LEMMA 3 (Morita [15, Theorem 2'])⁷⁾. If R has a faithful, finitely generated projective, injective left module, then

 $\operatorname{Hom}(\operatorname{Ext}^{\scriptscriptstyle 1}({}_{\scriptscriptstyle R}X, {}_{\scriptscriptstyle R}R)_{\scriptscriptstyle R}, E(R_{\scriptscriptstyle R})) = 0 \quad \text{for} \quad {}_{\scriptscriptstyle R}X \in {}_{\scriptscriptstyle R}\mathscr{M} \ .$

REMARK. If R has a faithful, projective, injective left module, then

 $\operatorname{Hom}(\operatorname{Ext}^{1}(_{R}X, _{R}R)_{R}, E(R_{R})) = 0$

for finitely generated $_{R}X \in _{R}\mathcal{M}$.

We shall sketch the proof. Given $_{R}U$ and $_{R}Y$, there exists the canonical map

$$\alpha: \operatorname{Hom}(_{R}Y, _{R}R) \otimes _{R}U \longrightarrow \operatorname{Hom}(_{R}Y, _{R}U)$$

⁵⁾ By a slight modification of the proof of [6, Lemma 1], the author obtained this result independently.

⁶⁾ The author is grateful to Dr. T. Onodera who showed him another simple proof (cf. forthcoming papers T. Onodera [Eine Bemerkung über Kogeneratoren] and T. Kato [U-distinguished modules]).

⁷⁾ This has also been independently obtained by the author.

defined via

 $y((f \otimes u)\alpha) = (yf)u$ for $y \in Y, f \in \operatorname{Hom}(_{\mathbb{R}}Y, _{\mathbb{R}}R), u \in U$.

It is known that α is a monomorphism for ${}_{R}Y \in {}_{R}\mathcal{M}$, if ${}_{R}U$ is projective. With this fact in mind, assume now that ${}_{R}U$ is faithful, projective, and injective. Then an exact sequence $0 \to {}_{R}Y \to {}_{R}P \to {}_{R}X \to 0$ with ${}_{R}P$ finitely generated projective, gives rise to the following commutative diagram with exact rows

Hence $\operatorname{Ext}_{R}^{1}(RX, RR) \otimes RU = 0$ since α is a monomorphism. On the other hand, since RU is faithful and projective,

 $E(R_R) \subset \operatorname{Hom}(U_s, E(U_s))_R$; $S = \operatorname{End}_{(R}U)$.

It thus follows

$$\operatorname{Hom}(\operatorname{Ext}^{1}(_{R}X, _{R}R)_{R}, E(R_{R})) \subseteq \operatorname{Hom}(\operatorname{Ext}^{1}(_{R}X, _{R}R)_{R}, \operatorname{Hom}(U_{s}, E(U_{s}))_{R}) \\ \approx \operatorname{Hom}(\operatorname{Ext}^{1}(_{R}X, _{R}R) \otimes _{R}U_{s}, E(U_{s})) = 0.$$

We are now ready for our main theorem.

THEOREM 1. If R has a dominant left module, then the following conditions are equivalent:

- (1) $E(_{\mathbb{R}}R)$ is torsionless.
- (2) Hom $(\operatorname{Ext}^{1}(_{R}X, _{R}R)_{R}, E(R_{R})) = 0$ for $_{R}X \in _{R}\mathcal{M}$.

(2') Hom $(\operatorname{Ext}^{1}(_{R}R, _{R}R)_{R}, E(R_{R})) = 0$

for finitely generated $_{R}X \in _{R}\mathcal{M}$.

PROOF. (1) \Rightarrow (2). Let _RU be a dominant module. Since $E(_{R}R)$ is torsionless, _RU is injective by Lemma 1. Now, _RU is faithful, finitely generated projective, and injective. Thus the condition (2) follows at once from Lemma 3.

 $(2) \Rightarrow (2')$ is trivial.

 $(2') \rightarrow (1)$. It suffices to show that $_{R}U$ is injective, where $_{R}U$ is dominant, in view of Lemma 1. Let $0 \rightarrow_{R} Y \rightarrow_{R} P \rightarrow_{R} X \rightarrow 0$ be an exact sequence with $_{R}P$ finitely generated projective. In the same manner as above, we have the following exact commutative diagram

$$\operatorname{Hom}(_{R}P, _{R}R) \otimes _{R}U \longrightarrow \operatorname{Hom}(_{R}Y, _{R}R) \otimes _{R}U \longrightarrow \operatorname{Ext}^{1}(_{R}X, _{R}R) \otimes _{R}U \longrightarrow 0$$

$$\overset{\mathbb{Q}\alpha}{\operatorname{Hom}}(_{R}P, _{R}U) \longrightarrow \operatorname{Hom}(_{R}Y, _{R}U) ,$$

4

where the vertical maps α are isomorphisms by the finitely generated projectivity of _RU (cf. Morita [12, Lemma 7.1]). Here

$$\operatorname{Ext}^{1}(_{R}X, _{R}R) \otimes _{R}U = 0$$
.

In fact,

$$\begin{aligned} \operatorname{Hom}(\operatorname{Ext}^{\operatorname{i}}({}_{\scriptscriptstyle R}X, {}_{\scriptscriptstyle R}R)\otimes {}_{\scriptscriptstyle R}U_{\scriptscriptstyle S}, \, E(U_{\scriptscriptstyle S})) &\approx \operatorname{Hom}(\operatorname{Ext}^{\operatorname{i}}({}_{\scriptscriptstyle R}X, {}_{\scriptscriptstyle R}R)_{\scriptscriptstyle R}, \, \operatorname{Hom}(U_{\scriptscriptstyle S}, \, E(U_{\scriptscriptstyle S}))_{\scriptscriptstyle R}) \\ &\approx \operatorname{Hom}(\operatorname{Ext}^{\operatorname{i}}({}_{\scriptscriptstyle R}X, {}_{\scriptscriptstyle R}R)_{\scriptscriptstyle R}, \, E(R_{\scriptscriptstyle R})) = 0 \; ; \qquad S = \operatorname{End}({}_{\scriptscriptstyle R}U) \end{aligned}$$

making use of Lemma 2 and the condition (2'). However $E(U_s)$ is a cogenerator for \mathscr{M}_s since ${}_{R}U$ is dominant. Therefore $\operatorname{Ext}^{1}({}_{R}X, {}_{R}R) \otimes {}_{R}U = 0$. It now follows from the above diagram that the induced map $\operatorname{Hom}({}_{R}P, {}_{R}U) \to \operatorname{Hom}({}_{R}Y, {}_{R}U)$ is an epimorphism. We have thus established the injectivity of ${}_{R}U$.

REMARK. As we mentioned in Introduction, Theorem 1 is an improvement on Morita [13, Theorem 4.1], in view of Example 3 in Section 1.

The following two examples show that the "dominant" hypothesis is important in Theorem 1.

EXAMPLE 6. According to Morita [15, Theorem 2] (cf. Theorem 3), the ring Z of integers satisfies the condition (2') above, whereas $E(_{z}Z)$ is not torsionless.

EXAMPLE 7⁸⁾. As is stated just above, the ring Z fulfils the condition (2'), but not the condition (2). In fact, let

$$_{Z}X= \displaystyle \bigoplus_{n=2}^{\infty} Z/nZ$$
 .

Then one verifies easily that

$$\operatorname{Ext}^{1}({}_{Z}X, {}_{Z}Z) \approx \prod_{n=2}^{\infty} \operatorname{Ext}^{1}(Z/nZ, {}_{Z}Z) \approx \prod_{n=2}^{\infty} Z/nZ$$
.

Thus

$$\operatorname{Hom}(\operatorname{Ext}^1(_{_Z}X,_{_Z}Z)_{_Z},\,E(Z_{_Z}))=\operatorname{Hom}(\,\prod\limits_{n=2}^{\infty}Z/nZ,\,Q_{_Z})
eq 0$$
 ,

where Q is the rational number field.

3. Dominant modules over maximal quotient rings. In what follows, let R be a ring and Q Utumi-Lambek maximal right quotient ring of R (cf. Lambek [11]). In this section we deal with rings R for which Q has a dominant left module.

EXAMPLE 8. If R has a dominant left module, so does Q.

⁸⁾ The author is indebted to Dr. K. Uchida for this example.

Indeed, let $_{R}U$ be dominant and $S = \operatorname{End}(_{R}U)$. Then $Q = \operatorname{End}(U_{s})$ is Utumi-Lambek maximal right quotient ring of R by Kato [10, Corollary 5]. Thus $_{Q}U$ is dominant since U_{s} is a lower distinguished generator for \mathcal{M}_{s} (cf. Example 2).

The following theorem is entirely based on Morita [14].

THEOREM 2. Let R be a ring and Q Utumi-Lambek maximal right quotient ring of R. Then the following conditions are equivalent:

- (1) Q has a dominant left module.
- (2) There exists a module $_{R}U$ such that
 - (i) $_{R}U$ is of type FP^{9} ,
 - (ii) $_{R}U$ is faithful and flat,
 - (iii) U_S is lower distinguished, where $S = \text{End}(_R U)$.

PROOF. (1) \Rightarrow (2). Let $_{Q}U$ be dominant and $S = \operatorname{End}_{(Q}U)$. We shall now show that $_{R}U$ satisfies (i), (ii), and (iii). By Lemma 2 and Lambek [11]

$$\operatorname{Hom}(U_{\scriptscriptstyle S},\,E(U_{\scriptscriptstyle S}))_{\scriptscriptstyle Q}=E(Q_{\scriptscriptstyle Q})=E(R_{\scriptscriptstyle R})$$
 .

Hence $_{R}U$ is flat by Morita [14, Lemma 1.3], since $E(U_{s})$ is an injective cogenerator for \mathcal{M}_{s} . On the other hand, since Q is Utumi-Lambek maximal right quotient ring of R,

$$\operatorname{Hom}(Q/R \otimes_{R} U_{S}, E(U_{S})) \approx \operatorname{Hom}(Q/R, \operatorname{Hom}(U_{S}, E(U_{S}))_{R})$$
$$\approx \operatorname{Hom}(Q/R, E(R_{R})) = 0.$$

It follows that $Q/R \otimes_R U = 0$. Since $_R U$ is flat, the exact sequence $0 \to R_R \to Q_R \to Q/R \to 0$ induces an exact sequence

$$0 \longrightarrow R \otimes_{R} U \longrightarrow Q \otimes_{R} U \longrightarrow Q/R \otimes_{R} U = 0.$$

Thus

$${}_{\scriptscriptstyle Q}U_{\scriptscriptstyle S} lpha {}_{\scriptscriptstyle Q}Q \bigotimes {}_{\scriptscriptstyle R}U_{\scriptscriptstyle S}$$
 .

Furthermore U_s is a generator for \mathcal{M}_s and $Q = \operatorname{End}(U_s)$. Thus, applying Morita [14, Theorem 1,1] we conclude that $_{\mathbb{R}}U$ is of type FP and $S = \operatorname{End}(_{\mathbb{R}}U)$.

(2) \Rightarrow (1). Suppose $_{R}U$ satisfies (i), (ii), and (iii). Let $S = \text{End}(_{R}U)$ and $R' = \text{End}(U_{s})$. From the flatness of $_{R}U$, it follows that

$$E(R_{\scriptscriptstyle R}') \subset \operatorname{Hom}(U_{\scriptscriptstyle S},\,E(U_{\scriptscriptstyle S}))_{\scriptscriptstyle R}$$
 ,

and hence

$$\operatorname{Hom}(R'/R, E(R'_{\scriptscriptstyle R})) \subset \operatorname{Hom}(R'/R, \operatorname{Hom}(U_{\scriptscriptstyle S}, E(U_{\scriptscriptstyle S}))_{\scriptscriptstyle R}) \ pprox \operatorname{Hom}(R'/R \otimes_{\scriptscriptstyle R} U_{\scriptscriptstyle S}, E(U_{\scriptscriptstyle S})) = 0$$
,

⁹⁾ For the definition, see Morita [14, §1].

for, $_{R}U$ is of type *FP*. This implies that R'_{R} is a rational extension of R_{R} . Moreover

$$E(R'_{R'})$$
-domi. dim $R'_{R'} \geq 2$,

since U_s is a lower distinguished generator for \mathcal{M}_s (cf. Morita [14, Theorem 8.2]). Thus R' = Q (cf. Tachikawa [18, Corollary 2]), and so $_{Q}U$ is dominant.

REMARK. Q has a dominant left module if and only if, $\mathscr{L}(E(R_R))$, the full subcategory of \mathscr{M}_R consisting of all modules having $E(R_R)$ -dominant dimension ≥ 2 , is equivalent to \mathscr{M}_S for a ring S by Kato [10, Corollary 2] (cf. Morita [14], Tachikawa [17, 18], and Kato [7, 9]).

EXAMPLE 9. Let R = Z be the ring of integers and Q the rational number field. Then there exists an equivalence

$$\mathscr{L}(E(Z_{\scriptscriptstyle Z}))=\mathscr{L}(Q_{\scriptscriptstyle Z})\thicksim\mathscr{M}_{\scriptscriptstyle Q}$$
 .

LEMMA 4. Let R be a ring and Q Utumi-Lambek maximal right quotient ring of R. Suppose Q has a dominant module $_{Q}U$. Then

- (1) $T \otimes_{R} U = 0 \Leftrightarrow \operatorname{Hom}(T_{R}, E(R_{R})) = 0 \text{ for } T_{R} \in \mathscr{M}_{R}.$
- (2) Hom(Hom($_{R}Y, Q/R)_{R}, E(R_{R})$) = 0 for finitely generated $_{R}Y \in _{R}\mathcal{M}$.
- (3) $\operatorname{Hom}(_{R}Y, _{R}Q) \otimes _{R}U \approx \operatorname{Hom}(_{R}Y, _{R}U)$ canonically for $_{R}Y \in _{R}\mathcal{M}$.
- (3') $\operatorname{Ext}^{1}(_{R}X, _{R}Q) \otimes _{R}U \approx \operatorname{Ext}^{1}(_{R}X, _{R}U)$ for $_{R}X \in _{R}\mathcal{M}$.

(4) The canonical map

$$\alpha: \operatorname{Hom}(_{R}Y, _{R}R) \otimes _{R}U \longrightarrow \operatorname{Hom}(_{R}Y, _{R}U)$$

is a monomorphism (resp. an isomorphism) for $_{\mathbb{R}}Y \in _{\mathbb{R}}\mathcal{M}$ (resp. for finitely generated $_{\mathbb{R}}Y \in _{\mathbb{R}}\mathcal{M}$).

(4') There exists a monomorphism (resp. an epimorphism)

 $\operatorname{Ext}^{1}(_{R}X, _{R}R) \otimes _{R}U \longrightarrow \operatorname{Ext}^{1}(_{R}X, _{R}U)$

for finitely generated $_{R}X \in _{R}\mathscr{M}$ (resp. for finitely related¹⁰) $_{R}X \in _{R}\mathscr{M}$).

PROOF. Let $S = \operatorname{End}_{(Q}U)$. Then $Q = \operatorname{End}(U_S)$ and $S = \operatorname{End}_{(R}U)$ as in the above proof.

(1) follows from the isomorphisms

 $\operatorname{Hom}(T \otimes_{R} U_{s}, E(U_{s})) \approx \operatorname{Hom}(T_{R}, \operatorname{Hom}(U_{s}, E(U_{s}))_{R}) \approx \operatorname{Hom}(T_{R}, E(R_{R}))$

and from the fact that $E(U_s)$ is a cogenerator for \mathcal{M}_s .

(2)

 $\operatorname{Hom}_{(R}Y, Q/R) \otimes_{R} U \subset \operatorname{Hom}_{(R}Y, Q/R \otimes_{R} U) = 0,$

¹⁰⁾ $_{R}X$ is called finitely related if there exists an exact sequence $0 \rightarrow_{R}Y \rightarrow_{R}P \rightarrow_{R}X \rightarrow 0$ with $_{R}P$ projective (not necessarily finitely generated) and $_{R}Y$ finitely generated.

for, $_{R}Y$ is finitely generated and $_{R}U$ is flat by Theorem 2. It follows that $\operatorname{Hom}(_{R}Y, Q/R) \otimes_{R}U = 0$, or equivalently,

$$\operatorname{Hom}(\operatorname{Hom}(_{R}Y, Q/R)_{R}, E(R_{R})) = 0$$

in view of (1). (3)

$$\operatorname{Hom}(_{\mathbb{R}}Y, _{\mathbb{R}}Q) \otimes_{\mathbb{R}}U_{S} \approx \operatorname{Hom}(_{\mathbb{R}}Y, _{\mathbb{R}}\operatorname{Hom}(U_{S}, U_{S})) \otimes_{\mathbb{R}}U_{S}$$
$$\approx \operatorname{Hom}(U_{S}, \operatorname{Hom}(_{\mathbb{R}}Y, _{\mathbb{R}}U)_{S}) \otimes_{\mathbb{R}}U_{S} \approx \operatorname{Hom}(_{\mathbb{R}}Y, _{\mathbb{R}}U)_{S}$$

canonically for $_{R}Y \in \mathcal{M}$, since $_{R}U$ is of type FP by Theorem 2 (cf. Morita [14, Theorem 1.1]).

(3') An exact sequence $0 \rightarrow {}_{R}Y \rightarrow {}_{R}P \rightarrow {}_{R}X \rightarrow 0$ with ${}_{R}P$ projective yields an exact commutative diagram

$$\operatorname{Hom}(_{R}P, _{R}Q) \otimes _{R}U \longrightarrow \operatorname{Hom}(_{R}Y, _{R}Q) \otimes _{R}U \longrightarrow \operatorname{Ext}^{1}(_{R}X, _{R}Q) \otimes _{R}U \longrightarrow 0$$

$$\overset{\mathbb{V}}{\underset{\operatorname{Hom}(_{R}P, _{R}U)}{\longrightarrow} \operatorname{Hom}(_{R}Y, _{R}U) \longrightarrow \operatorname{Ext}^{1}(_{R}X, _{R}U) \longrightarrow 0$$

with vertical maps isomorphisms by (3). Thus

 $\operatorname{Ext}^{1}(_{R}X, _{R}Q) \bigotimes_{R}U \approx \operatorname{Ext}^{1}(_{R}X, _{R}U) \text{ for } _{R}X \in _{R}\mathcal{M}.$

(4) Since $_{R}U$ is flat, the exact sequence $0 \to R \to Q \to Q/R \to 0$ induces the exact commutative diagram for $_{R}Y \in _{R}\mathcal{M}$

making use of (3). Hence α is a monomorphism for ${}_{R}Y \in {}_{R}\mathcal{M}$ and an isomorphism for finitely generated ${}_{R}Y \in {}_{R}\mathcal{M}$ by (1) and (2).

Each of the α 's is a monomorphism and α_P (resp. α_Y) is an isomorphism if $_{R}P$ (resp. $_{R}Y$) is finitely generated by (4). Thus (4') follows from Five lemma.

REMARK. The statement (2) in Lemma 4 is still true without the assumption that Q has a dominant left module.

THEOREM 3. Let R be a ring and Q Utumi-Lambek maximal right

8

quotient ring of R. Assume Q has a dominant left module. Consider now the following conditions:

(1) If $_{Q}U$ is dominant, then $_{R}U$ is injective.

(1') There exists a dominant module $_{Q}U$ such that $_{R}U$ is injective.

(2) Hom $(\operatorname{Ext}^{1}(_{R}X, _{R}Q)_{R}, E(R_{R})) = 0$ for $_{R}X \in _{R}\mathcal{M}$.

(2') Hom $(\text{Ext}^{1}(_{R}X, _{R}Q)_{R}, E(R_{R})) = 0$ for finitely generated $_{R}X \in _{R}\mathcal{M}$.

(2") Hom $(\text{Ext}^{1}(_{R}X, _{R}R)_{R}, E(R_{R})) = 0$ for finitely generated $_{R}X \in _{R}\mathcal{M}$.

(1") If $_{Q}U$ is dominant, then $\text{Ext}^{1}(_{R}X, _{R}U) = 0$ for finitely presented $_{R}X \in _{R}\mathcal{M}$.

(3) $E(_{R}R)$ is flat.

Then $(1) \Leftrightarrow (1') \Leftrightarrow (2) \Leftrightarrow (2') \Rightarrow (2'') \Rightarrow (1'')$, and if R is left Noetherian they all are equivalent.

PROOF. (1) \Leftrightarrow (1') \Leftrightarrow (2) \Leftrightarrow (2') \Rightarrow (2") \Rightarrow (1") by Lemma 4.

From now on, suppose R is left Noetherian. Then

 $(1'') \Rightarrow (1)$ is well-known.

 $(1') \rightarrow (3)$. Since _RU is faithful and injective,

$$E(_{R}R) \subset \prod_{R} U$$
.

Hence $E(_{R}R)$ is flat by Theorem 2 and Cartan and Eilenberg [3, Exercise 4, p. 122].

 $(3) \Rightarrow (2'')$ is due to Morita [15, Theorem 2].

REFERENCES

- G. AZUMAYA, Completely faithful modules and self-injective rings, Nagoya Math. J., 27 (1966), 697-708.
- [2] H. BASS, The Morita theorems, University of Oregon, Lecture notes 1962.
- [3] H. CARTAN AND S. EILENBERG, Homological algebra, Princeton, University Press 1956.
- [4] R. R. COLBY AND E. A. RUTTER, Jr., Semi-primary QF-3 rings, Nagoya Math. J., 32 (1968), 253-258.
- [5] J. P. JANS, Duality in Noetherian rings, Proc. Amer. Math. Soc., 12 (1961), 829-835.
- [6] T. KATO, Torsionless modules, Tôhoku Math. J., 20 (1968), 234-243.
- [7] T. KATO, Rings of dominant dimension ≥1, Proc. Japan Acad., 44 (1968), 579-584.
- [8] T. KATO, Rings of U-dominant dimension ≥1, Tôhoku Math. J., 21 (1969), 321-327.
- [9] T. KATO, Dominant modules, J. Algebra, 14 (1970), 341-349.
- [10] T. KATO, U-dominant dimension and U-localization, Unpublished.
- [11] J. LAMBEK, On Utumi's ring of quotients, Canad. J. Math., 15 (1963), 363-370.
- [12] K. MORITA, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A9, No. 205 (1965), 40-71.
- [13] K. MORITA, Duality in QF-3 rings, Math. Z., 108 (1969), 237-252.
- [14] K. MORITA, Localizations in categories of modules, Math. Z., 114 (1970), 121-144.
- [15] K. MORITA, Noetherian QF-3 rings and two-sided quasi-Frobenius maximal quotient rings, Proc. Japan Acad., 46 (1970), 837-840.
- [16] T. ONODERA, Koendlich erzeugte Moduln und Kogeneratoren, To appear.
- [17] H. TACHIKAWA, On left QF-3 rings, Pacific J. Math., 32 (1970), 255-268.

T. KATO

[18] H. TACHIKAWA, On splitting of module categories, Math. Z., 111 (1969), 145-150.
[19] U. UTUMI, On quotient rings, Osaka Math. J., 8 (1956), 1-18.

DEPARTMENT OF MATHEMATICS College of General Education Tôhoku University Kawauchi, Sendai, Japan

10