RINGS IN WHICH EVERY ELEMENT IS THE SUM OF TWO IDEMPOTENTS

Yasuyuki Hirano and Hisao Tominaga

Abstract

Let R be a ring with prime radical P. The main theorems of this paper are (1) The following conditions are equivalent: 1) R is a commutative ring in which every element is the sum of two idempotents; 2) R is a ring in which every element is the sum of t wo commuting idempotents; 3) R satisfies the identity $x^{3}=x$. (2) If R is a PI-ring in which every element is the sum of two idempotents, then R / P satisfies the identity $x^{3}=\boldsymbol{x}$. (3) Let R be a semi-perfect ring in which every element is the sum of two idempotents. If ${ }_{R} R_{R}$ is quasi-projective, then R is a finite direct sum of copies of $G F(2)$ and/or $G F(3)$.

Throughout, R will represent a ring with prime radical P. A Boolean ring is defined as a ring in which every element is an idempotent. As a generalisation of Boolean rings, we consider the class of rings in which every element is the sum of two idempotents. We begin with an example which shows that such a ring need not be Boolean or even commutative.

Example. Let $A(\neq 0)$ and B be Boolean rings, and $W(\neq 0)$ a B - A-bimodule. Assume, furthermore, that W is s-unital as a right A-module, that is, for any w in W, there exists an element e in A such that $w e=w$. Then every element of the non-commutative ring $R=\left(\begin{array}{cc}A & 0 \\ W & B\end{array}\right)$ is the sum of two idempotents. In fact, $\left(\begin{array}{ll}a & 0 \\ w & b\end{array}\right)=\left(\begin{array}{cc}e & 0 \\ w & 0\end{array}\right)+\left(\begin{array}{cc}a-e & 0 \\ 0 & b\end{array}\right)$, where e is an element of A such that $w e=w$.

Our present objective is to prove the following theorems.
THEOREM 1. The following conditions are equivalent:

1) R is a commutative ring in which every element is the sum of two idempotents.
2) R is a ring in which every element is the sum of two commuting idempotents.
3) $\quad R$ satisfies the identity $x^{3}=x$.
[^0][^1]Theorem 2. Let R be a PI-ring in which every element is the sum of two idempotents. Then R / P satisfies the identity $x^{3}=x$.

Theorem 3. Let R be a semi-perfect ring in which every element is the sum of two idempotents. If ${ }_{R} R_{R}$ is quasi-projective, then R is a finite direct sum of copies of $G F(2)$ and/or $G F(3)$.

In preparation for proving our theorems, we state four lemmas.
Lemma 1. Let $R(\neq 0)$ be a ring in which every element is the sum of two idempotents. If R contains no non-trivial idempotents, then R is either $G F(2)$ or $G F(3)$.

Proof: Since 0 and 1 are the only idempotents of R, we have either $R=\{0,1\}$ or $R=\{0,1,2\}$. Thus R is either $G F(2)$ or $G F(3)$.

Lemma 2. Let a be an element of R with $a^{2}=0$.
(1) If $a=e+f$ for idempotents e, f then $4 a=0$.
(2) If $a=e+f$ for commuting idempotents e, f then $a=2 e$ and $4 e=0$.

Proof: (1) Obviously,

$$
\begin{aligned}
0 & =a^{3}-2 a^{2} \\
& =a+2(e f+f e)+e f e+f e f-2(a+e f+f e) \\
& =e f e+f e f-a .
\end{aligned}
$$

Hence $0=e a^{2} e+f a^{2} f=a+3(e f e+f e f)=4 a$.
(2) Since $0=a^{2}=a+2 e f$, we get $a=-2 e f$, and so $0=a(f-e)=f-e$. Hence $a=2 e$ and $4 e=a^{2}=0$.

Lemma 3. Let R be a ring with 1 , and n a positive integer greater than 1 . Then the $n \times n$ full matrix ring $M_{n}(R)$ over R contains an element which cannot be written as the sum of two idempotents.

Proof: We write $M_{n}(R)=\sum_{i, j=1}^{n} R e_{i j}$, where $e_{i j}$ are matrix units. Suppose, to the contrary, that every element of $M_{n}(R)$ is the sum of two idempotents. Then, by Lemma $2(1), 4 e_{12}=0$ and so $4 R=0$. Consider the element $a=e_{11}+e_{12}+e_{21}$, and choose idempotents $e=\sum r_{i j} e_{i j}$ and f such that $a=e+f$. Since $a-e=f=$ $f^{2}=a^{2}-a e-e a+e$, we get $a^{2}=a+a e+e a-2 e$. Comparing the coefficients of e_{11}, e_{12} and e_{21} on both sides, we get $1=r_{12}+r_{21}, 0=r_{11}+r_{22}-r_{12}$ and $0=r_{11}+$ $r_{22}-r_{21}$, and therefore $1=2 r_{12}$. Then $4 R=0$ implies that $1=4 r_{12}^{2}=0$, which is a contradiction.

LEMMA 4. Let R be a prime ring in which every element is the sum of two idempotents. If $R \neq Z$, the centre of R, then char $R=2$ and Z is either 0 or $G F(2)$.

Proof: First, we claim that R cannot be reduced. Actually, if R is reduced, then every idempotent is central, and so $R=Z$ by hypothesis, a contradiction. Hence R has a non-zero element a with $a^{2}=0$. By Lemma 2 (1), we conclude that char $R=2$. Now, let z be an arbitrary element of Z. By hypothesis, we can write $z=e+f$ for idempotents e, f in R. Then it is easily observed that $e f=f e$. Since char $R=2$, we obtain that $z^{2}=e+f+2 e f=e+f=z$. Since R is prime, this implies that z is either 0 or 1 . This completes the proof.

Proof of Theorem 1: 1) $\Longrightarrow 3$). It is well-known that R is a subdirect sum of subdirectly irreducible rings R_{λ}. Since, by Lemma 1 , each R_{λ} is either $G F(2)$ or $G F(3), R$ satisfies the identity $x^{3}=x$.
$3) \Longrightarrow 2$). As is well-known, R is a commutative ring. Replacing x by $2 x$ in $x^{3}=x$, we obtain $6 x=0$. Further, replacing x by $x^{2}-x$ in $x^{3}=x$, we obtain $3 x^{2}=3 x$. By making use of these, we see easily that $\left(-2 x^{2}\right)^{2}=4 x^{4}=-2 x^{4}=-2 x^{2}$ and $\left(x+2 x^{2}\right)^{2}=x^{2}+4 x^{3}+4 x^{4}=x^{2}+4 x+4 x^{2}=x+2 x^{2}+3\left(x-x^{2}\right)+6 x^{2}=x+2 x^{2}$. Hence x is the sum of the idempotents $-2 x^{2}$ and $x+2 x^{2}$.
$2) \Longrightarrow$ 1). Let a be an element of R with $a^{2}=0$. Then, by virtue of Lemma 2 (2), there exists an idempotent e such that $a=2 e$ and $4 e=0$. Now, $-e=f+g$ with some commuting idempotents f, g. Then $e=(-e)^{2}=-e+2 f g$, so $2 e=2 f g=2 e f g$. Noting that $f e=e f$, we see easily that $a=2 e=2 e f g=2 e f(-e-f)=-4 e f=0$. Hence R is a reduced ring. As is well-known, every idempotent of the reduced ring R is central, and so R is commutative.

Corollary 1. Let R be a semiprime ring. If R has the property that every element is the sum of two idempotents, then the centre Z of R has the same property.

Proof: Since R is semiprime, R is a subdirect sum of prime rings $R_{\lambda}(\lambda \in \Lambda)$. By Lemmas 1 and 4, the centre Z_{λ} of R_{λ} is 0 , or $G F(2)$, or $G F(3)$. Now we may regard Z as a subring of the direct product $\prod_{\lambda \in \Lambda} Z_{\lambda}$. Hence Z satisfies the identify $x^{3}=x$. Then, by Theorem 1 , every element of Z is the sum of two idempotents in Z.

Proof of Theorem 2: In view of Lemma 1, it suffices to show that every prime factor ring of R is commutative. Suppose, to the contrary, that a prime factor ring R^{\prime} of R is not commutative. By [3, Corollary 1], the ring $Q\left(R^{\prime}\right)$ of central quotients of R^{\prime} is a full matrix ring over a division ring. Then, by Lemma 4, we have that $R^{\prime}=Q\left(R^{\prime}\right)$. Now, Lemmas 1 and 3 force a contradiction that R^{\prime} is either $G F(2)$ or $G F(3)$.

Corollary 2. Let R be an Azumaya Z-algebra in which every element is the
sum of two idempotents. Then R satisfies the identity $x^{3}=x$.
Proof: By [1, Lemma II.3.1], Z is a Z-direct summand of R, say $R=Z \oplus T$. Then $P=(P \cap Z) \oplus(P \cap Z) T$ by [1, Corollary II.3.7]. As is well-known (see, for example, $[1$, Theorem II.3.4]), R is a finitely generated Z-module, and therefore R is a PI-algebra. Hence, by Theorem $2, R / P$ is commutative. Then, by [1, Proposition II.1.11], we obtain $(P \cap Z) T=T$. Since $P \cap Z$ is a nil ideal of Z, and T is a finitely generated Z-module, we conclude that $T=0$, and hence $R=Z$. Now, by Theorem $1, R$ satisfies the identity $x^{3}=x$.

Proof of Theorem 3: By [2, Theorem 4.6], R is the finite direct sum of full matrix rings over local rings. Hence, by Lemmas 1 and $3, R$ is the finite direct sum of copies of $G F(2)$ and/or $G F(3)$.

Remark. As is shown in [5] (see also [4]), the following conditions are equivalent:

1) There exists an involution * of R such that $x x^{\star} x=x^{\star}$ for all x in R;
2) $\quad R$ is an anti-inverse ring, that is, every element x in R has an anti-inverse $x^{\star} ; x x^{\star} x=x^{\star}$ and $x^{\star} x x^{\star}=x ;$
3) For each element x of R there exists x^{\star} in R such that $x^{2} x^{\star}=x^{\star}$ and $x^{\star 2} x=x ;$
4) $\quad R$ is a (dense) subdirect sum of fields isomorphic to $G F(2)$ or $G F(3)$
5) $\quad R$ satisfies the identity $x^{3}=x$.

References

[1] F. DeMeyer and E. Ingraham, 'Separable algebras over commutative rings', in Lecture Note In Math. 181 (Springer-Verlag, Berlin-Heidelberg-New York, 1971).
[2] Y. Miyashita, 'Quasi-projective modules, perfect modules, and a theorem for modular lattices', J. Fac. Sci. Hokkaido Univ. Ser I 19 (1966), 86-110.
[3] L. Rowen, 'Some results on the center of a ring with polynomial identity', Bull. Amer. Math. Soc. 70 (1973), 219-223.
[4] B.M. Schein, 'O-rings and LA-rings', Izv. Vyš̆. Učeb. Zaved. Matematika 2(51) (1966), 111-122. Amer. Math. Soc. Transl. (2) 96 (1970), 137-152. .
[5] H. Tominaga, 'On a theorem of M. Yamada', Proc. 9th Sympos. Semigroups and Related Topics (1985), 40-42.

Department of Mathematics
Okayama University
Okayama 700
JAPAN

[^0]: Received 20 March 1987
 Dedicated to Professor Adil Yaqub on his 60th birthday

[^1]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

