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0. Introduction. In this paper rings of continuous integer-valued functions are
studied, with particular attention paid to their maximal residue class domains.
These domains correspond bijectively to minimal prime ideals, rendering the
space of these ideals of particular interest. Since these domains are either the
integers or are nonstandard models of the integers, questions about nonstandard
arithmetic will also be considered.

In §1 the space of minimal prime ideals of C(X, Z), the ring of continuous func-
tions from a nonempty Hausdorff space X into Z, the ring of integers, is showed to
be homeomorphic to ¿>X (1.2), the Boolean space of the algebra of open-and-closed
sets of X. The maximal ideal space of C(X,Z)is shown to map continuously onto
oX (1.3). The space, o0X, of points of ¿X that give rise to integer residue class
domains, is studied in §2. The map of X into <50X strongly resembles the real-
compactification injection [GJ]. A representation theorem of C(X,Z) over
o0X is also given (2.4).

It is shown in §3 that points in SX — o0X give rise to Z, a nonstandard model
of Z (3.1). Here some of the relevant background material in model theory is dis-
cussed. The algebraic theory of nonstandard arithmetic is studied in §4. In §5 we
return to study Z, its maximal ideal space, and its quotient field Q, which is a non-
standard model of the rational field Q. In §6, the most technical section of the
paper, the valuations of Q associated with maximal ideals of Z are computed (6.3).
The value groups that arise are analysed ((6.4), (6.5), and (6.6)), followed by some
rather striking results in case the maximal ideal in question is principal.

The ideals of Z are analyzed in §7 along classical lines: i.e., we proceed from the
study of maximal and prime ideals, through the study of primary ideals, to a
decomposition theorem for ideals in terms of primary ideals (7.4). Ideals in
C(X,Z) are decomposed in §8, first into coprimary ideals (8.4), and then into
primary ideals (8.9). In the process, the sets of maximal, prime, coprimary, and
primary ideals of C(X,Z) are analyzed.

In §9 some model-theoretic results are obtained on the residue class fields of
C(X,Z), the principal result being that any such field is elementarily equivalent
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INTEGER-VALUED FUNCTIONS AND NONSTANDARD ARITHMETIC     499

to some residue class field of any fixed nonstandard Z (9.7). In addition, two
questions raised by Pierce are settled [P, 7.2 and 7.3].

The paper is built on the foundations laid down by Pierce in Rings of integer-
valued continuous functions [P].

1. Minimal prime ideals in C(X, Z). Let 9Ji be the space of maximal ideals of
C(X,Z) under the Stone topology [GJ, 7M]. (Note: whenever we speak of the
maximal (prime) ideal space of a commutative ring with identity, it will be under-
stood to have the Stone (Zariski) topology.) 9Jt is a compact T^-space [P, 3.1].
Let n be the set of (positive) prime numbers. Given / e C(X, Z), let
£)(/) = {{x,p)eXxTl:f(x) = 0mod p). D has the following properties [P, 2.2.1]:
D(f) U D(g) = D(fg), D(f) O D(g) cz D(f - g), and D(f) nD(g) = D((f, g)),
where (/, g) denotes the ideal (d) generated by / and g in C(X, Z) [P, 1.3.2].
Clearly, D induces a mapping on subsets of C(X, Z) into subsets of X x U; let
this mapping also be denoted by D. Let S> = DC(X, Z) and let X> be the space
of all ultrafilters of S¡, under the hull-kernel topology [P, 3]. (Note: whenever
we speak of a space of ultrafilters it will be understood to have the hull-kernel
topology.) D is a homeomorphism of SDÏ onto î) [P, 3.1.2].

Let c; be the first projection of X x n. ¿; induces a mapping of & onto 88, the
open-and-closed subsets of X, which we will call ¿;.

Let bX be the space of ultrafilters of ¿¡§. Then ÔX is a totally disconnected
Hausdorff space [P, 1.6]. Let ¿; be the mapping of ÎJ into OX induced by ¿;. It is
easy to see that ¿; maps T> onto SX. Then ^ = ¿;D maps 9JÎ onto ÔX.

GiwenfeC(X,Z), let Ç(f) = {xeX:f(x) = 0}. Ç maps C(X,Z) onto SB [P, 1.2],
and has the following properties: £(/) U Ç(g) = Ç(fg), C(/) O Ç(g) c £(/- g),
and C(f) n C(g) = £((/, g)) = C(f2 + g2). (Cf. [GJ, 1.10].) Ç induces a map ¿J of
subsets of C(X, Z) into subsets of Se. For pebX, let C~\p) = Pß = {fe C(X, Z):
£(/) e ¿i}. It is easily seen that £„ is a prime ideal of C(.Y, Z) [GJ, 2.3 and 2.12].

Theorem 1.1. Let MeSOÎ, /i = <^(M), and /ei £p = Ç-1(j«). Pp is ine unique
minimal prime ideal of C(X, Z) that is contained in M.

Proof. Let £ be a prime ideal of C(X, Z) that is contained in M, let fe Pß,
and let £(/) = U. Since Pp = Ç -1(ji), Í/ is in /¿. As a result, g = Xv > the char-
acteristic function of U on A", is in C(X, Z). Since ^(g) = X — U is not in ¿i,
g$M. By hypothesis, P <= M, therefore, g$P; but fg = 0eP. We conclude that
/e £, showing that P„ c P, proving the theorem. (Cf. [GJ, 7.15].)

Let ^po be the space of minimal prime ideals of C(X,Z). By (1.1), ¿J-1 is a
mapping of ÖX onto ^B0- Clearly, £(£„) s {C(/) :/e £„} = p., showing that £-1
is injective. Since C-1 preserves intersection, we have the following. (Cf. [P, 3.1.2].)

Proposition 1.2. £ is a homeomorphism o/^30 onto 5X.

Remark. Let C(X, g) denote the ring of continuous maps of X into g, the
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rationals, under the discrete topology. Given fe C(X,Q) let £'(/) = {x e X :f(x) = 0},
and let SCR' be the space of maximal ideals of C(X, Q). £' is then a homeomorphism
of W onto oX (cf. [GJ, 7.11]). Given M'eW, M'nC(I,Z) = P,, where
p = Ç'(M'). Thus M' -+M' n C'X,Z) is homeomorphism of 9Jc' onto <B0 that
commutes with the mappings £' and Ç-1.

Let a = £ -i^D, and consider the following commutative diagram.

9W
D

¿X

Since D, <;, and Ç _1 are surjective, so is cr.

Theorem 1.3. a is a continuous mapping of 9JÎ onto 5ß0 that takes a
maximal ideal to the unique minimal prime ideal contained in it. Since D and
£ are surjective homeomorphisms, £ and °tt are continuous.

Proof. Given /eC(X,Z), let <p0(/) = {Pe<B0:/eP}. The set of all sets of
this form constitutes a base of the closed sets of 5B0. Let g — \f\ \J 1, and note
that <BoGr) = $o(/). Clearly tr"1^) c 9jc(g) = {Mg9Jc: geM). We will
show that these two sets are equal, proving that o is continuous. By construction,
D(g) = (fe)xn; thus MeDflig) implies (ig)e<Br(M) = £<r(M), proving that
*s(M) e ^Po(g)' Therefore, 2R(g) <= <t~ ' 5po(g), proving the theorem.

Proposition 1.4. Let /eC(X, Z). Tben ^80(/) IS an open-and-closed subset
o/»Po.

Proof. Let Ç (/) = 17 and let F = X - [/. 1/ and F are in ^ and partition X.
Let 9 be the natural injection of X into <5X. Since 5X is the space of ultrafilters
of SS, clâX9U and clMÖF partition <5X. Since ö~1clsx9U = ^ß0(/)>the proposition
is proved.

2. Maximal residue class domains of C(X, Z), standard theory. Maximal residue
class domains of C(X, Z) correspond bijectively with minimal prime ideals of
C(X, Z). Let PeSßo and let Z = C(X, Z)/P. Given fe C(X, Z), let / be its image
in Z. Conversely, given feZ, let/ be apre-imageoff in C(X, Z). Given a subset
S of Z let S be the pre-image of S in C(X, Z) and given S in C(X, Z) let S be its
image in Z.

Proposition 2.1. Z has a unique total ordering under which f^yfisa lattice-
homomorphism. The subring of Z generated byl, called Z, is the smallest non-
zero convex subring ofZ.
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Proof. Given feP and geC(X,Z) such that \g| g |/|; then £(/) c £(g).
Since P — Ç~l (p) for some peôX and since p is a filter, g e P. This shows that the
natural order on C(X, Z) induces a unique lattice ordering on Z under which
f-+ fis a lattice-homomorphism [GJ, 5.3]. To see that Z is totally ordered under
this ordering, let fe C(X, Z), let U = {x e X : f (x) ^ 0}, and let
V = {xeX:f(x) < 0}. U and V axe in 38 and partition X. Since /i is an ultra-
filter in 38, either U or F is in p. Accordingly, either / = f%v (mod P) or / = f%v
(modP). Since fio ^ 0 and fiv < 0, the proposition is proved. (Cf. [GJ, 5.5].)

Let tn be the space of maximal ideals of Z. m is a compact Tx space that is not
Hausdorff [GJ, 7M]. The inverse of /-»/ induces an injection M -> M of m
onto a~\P), the fibre of 9JÎ over P.

Proposition 2.2. Tne injection M-^M of m onto a~1(P) is a homeomorphism.

Proof. Sets of the form rrt(/) = {Mem: feM], for feZ, form a base for the
closed sets in tn. It suffices to show that given fe C(X, Z), the image of tn(/) in
a~1(P) is 9Jc(/) n cr_1(P); but this is immediate, proving the proposition.

X is said to be Z-pseudocompact if C(X, Z) = C*(X, Z), the set of bounded
continuous maps of X into Z [P, 1.8.1].

Proposition 2.3. X is Z-pseudocompact if and only if Z = Zfor all P e ^S0.

Proof. If X is Z-pseudocompact, then Z is cofinal in Z for all P e ^ß0- Converse-
ly, assume that X is not Z-pseudocompact. There exist feC(X,Z) — C*(X,Z).
Let U„ = {x e X: \f(x) | ^ n}. Clearly (U,¡)n eN is a family of subsets of 8$ having
the finite intersection property. By Zorn's Lemma, (Un)neNis contained in some
peôX. Let P = C _1(m) and let Z = C(X,Z)/P. Then |/| ^ n for all neN,
proving the proposition. (Cf. [GJ, 8.4].)

Given xeX let 9(x) be the set of all subsets of 3S that contain x. 9 is
a continuous mapping of X onto a dense subset of bX [P, 1.5.2]. Let
Ô0X = {peôX: C(X, Z)lPß = Z}. Then 9X <=. ÔQX c ¿X and by (2.3) S0X = <5X
if and only if X is Z-pseudocompact.

Theorem 2.4. Every fe C(X, Z) extends uniquely, by duality, to fe C(ô0X, Z).
The map /->/ is a surjective lattice-isomorphism. ö0X = {peSX: p has the
countable intersection property}. ö0X is the largest space (up to homeomorphism)
in which 9X is dense, such that each fe C(X, Z) extends to fe C(5QX, Z), the
functions {}: feC(X,Z)} separating the points of ô0X.

Since this sort of theorem is by now familiar, its proof will only be sketched.
(Cf. [GJ, Chapter 8].)

By duality, feZs°x. Clearly,/-»/is a lattice-isomorphism. To show that /is
continuous, it suffices to show that, given any neZ, j'1 (n) is open-and-closed
in 50X. 9*, the adjoint of 9, is a lattice-isomorphism of C*(dX, Z) onto C*(X, Z)
[P,  1.5.2].  Given heC*(X,Z), let hb = (9*)~\h). Clearly, hâ\ 50X = k Let
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¿?-(|n| + l)A/V(-|n|-l). Since geC*(X,Z), (g) (n) = U is an
open-and-closed subset of SX. Therefore U n <50X is an open-and-closed subset
of <50X, but this set is /-1(n), showing that /is continuous. By [P, 1.2],/-»/is
surjective.

To show that <50X — {peôX: p has the countable intersection property}
(see [GJ, 0.3] for definition), it suffices to show that <5X — <50X is {p e <5X: p does
not have the countable intersection property}. Given such p, let (Un)nsN be a
subset of ft having an empty intersection. Let / = E„ sNXu„ • Clearly, fe C(X, Z)
and/e C(X, Z)IPß-Z. Conversely, if pe ÔX-Ô0X, there exists fe C(X, Z)/P^-Z.
Let U„ = {xeX:|/| ^ n}. Each U„ is in p andC>\„eNUl, = 0.

To prove the last assertion, let cb be a homeomorphism of <50X onto a dense
subset of a Hausdorff space Y such that, for each fe C(50X, Z), there exists
fe C(Y, Z) such that / = fcb, the maps/separating the points of Y. cb* is a lattice-
isomorphism of C(Y, Z) onto C(50X, Z). Further, / -> /-*/ defines surjective
isomorphisms of the following rings: C(X, Z) -» C(Ô0X, Z) -» C(Y, Z). A point
yeY gives rise, by means of evaluation, to a homomorphism of C(Y, Z) onto Z,
and thus the kernel P of this mapping pulled back to C(X,Z) is in Ç~1(ô0X).
Let p = r(P), and note that the homomorphism pulled back to C(50X, Z) is
/-► f(p). We conclude that f(y) = f(eb(p)) for all fe C(Y, Z). By hypothesis, these
functions/separate the points of Y, showing that eb(p) = y, and that cb is a homeo-
morphism of <50X onto y concluding our sketch of the proof of (2.4).

Example. Let W be the space of ordinals less than the first uncountable
ordinal, under the order topology. Then 9W =¿ ô0W. (See [GJ, 5.12] for details.)

Historical note. Many of the results of this section are similar to results
obtained by Hewitt [H2] for real-valued functions.

3. Maximal residue class domains of C(X,Z), nonstandard theory. Unless
otherwise stated, assume henceforth that X is not Z-pseudocompact. We have
seen (2.3) that there exist peôX — ô0X, and that Z = C(X, Z)/P/i is a proper
extension of Z.

Theorem 3.1. Z is a nonstandard model of Z.

Let us recall some definition from model theory, in order to clarify the meaning
of this theorem.

Let $1 be the category of all totally ordered integral domains and order-preserv-
ing homomorphisms. For such domains, equality, addition, multiplication,
and order are the atomic relations [R, Chapter II]. The lower predicate calculus
as applied to objects in %, L(3I), is built up by means of certain rules from atomic
relations, object symbols, and variables; the logical connectives of negation, dis-
junction, conjunction, implication, and equivalence; and the universal and
existential quantifiers, together with brackets [R, 1.2]. Let cbeL(%), and let
xi> '">xn> "' oe its free variables [R, p. 5]. Let ait •■•,an, ■■• be elements in an
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object A in 31, and let (a) be the vector (ax, •••, an, ■■•). (a) is said to satisfy cb if,
when an is substituted for x„ in cb, the resulting statement cb(a) holds in A. For
example, if cb is equivalent to the mathematical statement, xx = x2, then c/>(a)
holds in A if and only if ax = a2. cb is said to be valid in A if 0(a) holds in A for
all (a). For example, if cb is equivalent to the mathematical statement,
xx + x2 = x2 + xx, then cb is valid in A. A sentence in L(3I) is an element in
L(3I) without free variables. By an elementary theorem about A is meant a theorem
concerning A that can be stated as a sentence in L(3I). Two objects in 31 are said
to be elementarily equivalent, if every elementary theorem valid in one is valid
in the other. Clearly isomorphic objects are elementarily equivalent. However,
elementarily equivalent objects in 31 need not be isomorphic. An object in 31
that is elementarily equivalent to Z but is not isomorphic to it will be called a
nonstandard model of Z; thus the meaning of (3.1) is clear.

Z can be written as an inductive limit as follows (see, e.g., [ES, Chapter VIII, §4]
for definition): given Uep, the restriction mapping of C(X,Z) to C(U,Z) is a
lattice-homomorphism (which, in this case, is surjective [P, 1.2]). The kernel of
the canonical homomorphism of C(X,Z) onto ind limy e/lC(U, Z) is Pp ; thus
this inductive limit may be identified with Z. If X is discrete we may apply [K, 5.1]
to prove (3.1). We will now refine the proof of [K, 5.1] a bit to cover the non-
discrete case. Generalizing the setting slightly, let A be a countable object in 31
and let A have the discrete topology. For/e C(X, A) let Ç(f) = {xeX:f(x) = 0}.
Then Ç(C(X, A)) = 38. Finally, let A = indlim^CtcJ,,!).

Lemma 3.2. Let </>eL(3I), let fneC(X,A), and let f„ be the image off in A
for all neN. Let (f) = (f ,-,fn,-), let (f) = (fi,-,fn,-), and let
U = {xeX: cb(f(x)) holds in A}. Then U is in 38. Further, cb(f) holds in A
if and only if U e p.

Proof. Let cb and \¡i e L(3I), let U = {xeX: cj>(f(x)) holds in A}, and let
V = {xeX: i¡/(f(x)) holds in ,4}. By the definition of equality, addition, mul-
tiplication, and order in ind lim,, S/I C(t7, A), the theorem is true if cb is atomic.

Assume that the lemma holds for cb and for \\i. The set, {xeX: cb(f(x)) A «A (f(x))
holds in A}, is U n F. Since 38 is closed under finite intersection, U n F is in 38.
If 0(/) A "K/) holds in A, cb(f) holds in A and i/>(/) holds in A ; thus, by hypothesis,
U, V ep. Since p is a filter, U n V e ft. Conversely, assume that U (~\V ep. Since
p is a filter in 38 and since U and V are in 38, U and V axe in p. By hypothesis,
cb(f) and \j/(f) hold in A, proving that cb(f) A «K/) holds in A.

Assume that the lemma is true for cb, and let \j/=(~ cb). The statement, (~ cb) (/)
holds in A, is equivalent to U $ p. Since 38, the algebra of open-and-closed sets in
X, is closed under complementation, F = X — U is in 38. Since p is an ultrafilter
in 38, V ep. (Cf. [GJ, 2.13].) Conversely, assume that Vep. Since 0$p, U$p,
proving that ( ~ cb) (f) is valid in A\.
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Let \¡/ = (3Xj-)c6. First we will show that V e3S. (This is the first point at which
the proof in the nondiscrete case is more involved than the proof in the discrete
case. Cf. [K, p. 227].) By definition, for each xeV there exists te A such that

(*) <K/i00> -,/j-iW. t,fJ+y(x),•■■) holds in A.
Let T be the set of all such te A. For each t e T let Xt be the set of all x e X for
which (*) is true. Since the constant function of value t is in C(X, ^4), we can invoke
the induction hypothesis and conclude that XteSS. Clearly M(eTX, = V. Since A
is, by hypothesis, countable, T is countable and can be properly indexed as follows :
T = (f(n))neJV., where N' is an initial segment of JV. Let Vy =Xt(1), F2 = Xr(2)— Vx,
and let F3 = Xt(3) — Vy U V2 ; continuing in this fashion, by finite induction,
defines a partition (V„)neN, of V by elements of äS. Let g\ V„ = i(n) and g\ X — V
= 0; then geC(X,A) (cf. [P, 1.2]). Let C/')=(/i,-, fj-u g, /,+i,-) and
let W = {xeX: c/>(/'(x)) holds in A). By hypothesis We 38, and by the con-
struction of g, W = V, showing that V eSS. Assume now that F e p. By hypoth-
esis, epif) holds in A: i.e., ikif) holds in A. Conversely, assume that ibif) holds
in A. Then there exists heCiX,A) such that if (/") = ify,•••,/,-_.,h,fJ+i,---),
then c6(/") holds in ¿. Let Y = {xeX: c/>(/"(x)) holds in A] and note that Y c F.
It was shown above that FeS. By hypothesis, yew, therefore Fe/z. Since all
formulas in L(jH) can be built up from atomic formulas in a finite number of
steps of the kind treated above, the lemma is proved.

Applying (3.2) to sentences proves (3.1).
Historical note. Scott [S] has considered this method of constructing non-

standard models of Z, in case X is discrete.

4. The algebraic theory of nonstandard models of Z. Let A be an object in 3Í.
It is easily seen that the following notions about A can be formulated in L(3I):
a is a divisor of b in A, a is a unit in A, d is a greatest common divisor of alt • ■ -, an
in A, p is a prime element of A, and a = b (mod c) in A. Throughout the remainder
of this section, let A be a nonstandard model of Z.

Theorem 4.1. The following hold in A:
1. The group of units in A is {1, — 1}.
2. Every finitely generated ideal is principal.
3. (Euclid's First Theorem). Ifp is a prime in A and p\ab, then p | a or p j b.
4. Every nonunit has a prime factor.
5. Every element of A that can be written as a ifinite) product of primes and

units is uniquely expressible in this fashion, except for a unit factor and the
order of the prime factors.

6. Given a prime p in A, (p) is a maximal ideal.
1. The intersection of all principal maximal ideals in A is the zero ideal:

i.e., the set of principal maximal ideals is dense in the space of maximal ideals
of A.
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8. (Fermat's Theorem). Given a finite prime p of A and aeA — (p), then
a"'1 = l(modp).

9. (Lagrange's Theorem). Every non-negative element of A is the sum of four
squares.

Proof. Since A is elementarily equivalent to Z, and all of the theorems hold
in Z, it suffices to show that each of the theorems is elementary. Since the notion
of a unit in A is expressible in a sentence in L(3I), 1 holds. 2 is equivalent to the
statement that a finite number of elements in A has a greatest common divisor,
an elementary statement. Since the notion of a prime in A is elementary, 3 is ele-
mentary. Since the notion of a prime and of a nonunit are elementary concepts,
4 and 5 hold. 6 is equivalent to the following elementary statement : for all primes
p in A and for all a e A — (p), (a, p) = 1. 7 is equivalent to the following elementary
statement: for all nonzero a in A, there exists a prime p in A such that p)(a.
Clearly 8 and 9 are elementary statements. Thus the theorem has been proved.

Example. Let X = N, let pebX — S0X, let f(n) = n!; and let
Z = indlimUefiC(U,Z). Every finite prime in Z divides /, but f¥=0; thus the
finite principal maximal ideals of Z are not dense in the maximal ideal space of Z.
Using (4.1.7) we see that there must exist infinite primes in Z. Further, in spite
of (4.1.5), the unique factorization theorem does not hold in Z.

Corollary 4.2. If p is a finite prime in A, then Aj(p) = Z/(p).

Proof. Clearly Z¡(p) <= A¡(p). Using (4.1.8) (Fermat's Theorem), equality is
established.

Let £ be the quotient field of A.

Corollary 4.3. The orders on A and on F are the only orders under which
they are totally ordered rings.

Proof. By (4.1.9) (Lagrange's Theorem), the order on A is defined algebraically.
Since squares must be non-negative in any totally ordered ring, the order on A is
unique. The order on £ uniquely determines, and is uniquely determined by,
the order on A, proving the corollary. (Cf. [S].)

One of the most far-reaching results thus far obtained for A is (4.1.2): i.e.,
that every finitely generated ideal in A is principal. Such an integral domain will be
called locally a principal ideal domain. Z is such a domain that is not a principal
ideal domain (5.7). Another such example is the algebra of all analytic functions
on an open Riemann surface [A4]. One can readily check that (4.1.3), (4.1.5)
and (4.1.6) hold for locally principal ideal domains.

Given an integral domain fl and a prime ideal P in it, let BP = {a/b: aeB and
beB — P}. BP is, of course, a local ring whose maximal ideal £> is {a/b: aeP
and b e B - £}. Further, a -» a/1 is an injective homomorphism of fl into BP.
(See [ZSt, pp. 221-228] for details.)
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Theorem 4.4. Let B be locally a principal ideal domain and let P be a prime
ideal in B. BP is a valuation ring.

Proof. Let X be the quotient field of B and let feK — BP. Then / = a/b, for
a,beB and b # 0. By hypothesis, (a, b) = (d). Since d| a and d| b, we may assume
that d — 1. Since f$ BP, be P. If a e P, then (a, b) = (1) c £, a contradiction.
Thus a£P and/"1 e£>, proving that BP is a valuation ring.

Applying (4.4) to various classical results about localization [ZS^ p. 228] and
the prime ideals in a valuation ring [ZS2, p. 40] allows us to conclude that the
prime ideals of 5 contained in M form a chain, under inclusion, and are in natural,
bijective, order-reversing correspondence with the convex subgroups of the
value group of BM. In §6 this group will be computed in case B = Z (6.4).

As a consequence of the following theorem, we will see that £, the quotient
field of A, is a nonstandard model of the rational number field Q.

Theorem 4.5. Two objects in 21 that are elementarily equivalent have
elementarily equivalent quotient fields.

Frequently one reduces algebraic statements about say Q, to statements about
Z. We will formalize this process into the following lemma, which has (4.5) as an
immediate consequence.

Lemma 4.6. Let B be an object in 31, let X be its quotient field iagain an object
in 31), let ay,---,a„, ■■■ be inB, and let by,••»,&„••• be positive elements inB. There
exists a mapping eb^cb' of L(3I) info itself, such that eb(ay¡by,---,ajbn,---)
holds in X if and only if eb'(ay,by, ■■■,an, b„, •••) holds in B.

Proof. The atomic relation of equality in X, Eiaylby,a2lb2), meaning
ay/by = a2/b2, will be taken to E'iay,by,a2,b2), meaning ayb2 = a2by. Addition
in X, expressed by S(ay\by, a2\b2, a3\b3), meaning Oyjby + a2\b2 = a3\b3, will be
taken to S'iay,by,a2,b2,a3,b3), meaning ayb2b3 + a2byb3 = a3byb2. The prod-
uct relation will be treated similarly. The order relation in X, 0(ay/by, a2\b2),
meaning ay/by i% a2\b2, will be taken to 0'(ay,by,a2,b2), meaning üyb2 ^ a2by.
(Note: by hypothesis, by and b2 are positive.) Thus we have defined the mapping
eb-ycb' on the atomic formulas. Let the mapping be extended by requiring that it pre-
serve A and ~ . Assuming $' to be defined, let ((3z„)cb)' =(3x„)(3yn)(cb' A(yn>0)).
One can easily verify that this mapping satisfies the conditions of the lemma.

Using (4.6), (4.5) follows immediately.

Corollary 4.7. The quotient field F of A is a nonstandard model of Q. Thus
A is integrally closed in F.

Since the last statement is elementary and holds for Z, it holds for A.
The following is a special case of a theorem due to Frayne (see [K, 9.1]).
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Theorem 4.8 (Frayne). Let B and fl' be objects in 31 that are elementarily
equivalent. There exists a discrete space X, peôX, and an order-preserving
isomorphism that maps fl' into B = indlimUeilC(U,B). Finally, X may be
chosen to have the same cardinal number as fl'.

Using this, we can regard A as a subdomain of Z and £ as a subfield of
Q = indlimt7^C({7,g).

Corollary 4.9. Any element in F — g is transcendental over g.

Proof. Let £ be imbedded in Q, let fe F, and assume that / is algebraic over g.
Let m(t) = t" + ají""1 + •■• + a„ be the minimal monic polynomial of / in
g[r]. Let / be a pre-image of/ in C(X, g). There exists U ep such that for all
xeU, m(f(x)) = 0. Let qx,---,qk be the distinct rational roots of m(t) and let
Ut = {xeX:f(x) = q¡}. Clearly, (U n E/f)i = !,•••,* is a partition of U by elements
in SÜ. Since U ep, one and only one 17 0(7,= V is in p. f | V = q¡, showing
that /eg, proving the corollary.

Remark. In spite of this corollary, £ is not a pure transcendental extension
of g, for the order on £ is unique (4.3).

5. On the structure of Z and its quotient field. Since Z is a nonstandard model
of Z (3.1), the results of §4 apply to Z. Since Z has an explicit representation as
indlimv £flC(U, Z), one can translate questions on the existence of elements in
Z back to C(X, Z), where elements can, in many cases, easily be constructed; thus
when dealing with Z we can go beyond the results of §4.

An element / in C(X,Z) will be called a prime-valued function if |/(x)|en
forallxeXícf. [P, 4.3. 1]).

Theorem 5.1. Iff is a prime-valued function in C(X, Z), then f is a prime in Z.
Conversely, every prime f in Z has a prime-valued pre-image in C(X, Z).

Proof. Let/ be a prime-valued function in C(X, Z) and let a, be C(X, Z) such
that / = ab. There exists 17ep such that /| Î7 = ab | U. Let V = a~1( ± 1) n U
and W = b~1(±l)f\U. Clearly, F, W e <%, U =VkjW, and V O W= 0.
Since p is an ultrafilter in 38, either V or W is in p; accordingly, either a or fe is a
unit in Z, showing that / is prime.

Conversely, assume that / is a prime element in Z. We may assume, without
loss of generality, that / > 0. Let g be a positive pre-image of / in C(X, Z). Since
/ is not a unit, Xx = g~1 (1) is not in p. Since Xxe38 and p is an ultrafilter in &,
X — Xxe p. Assume for a moment that Xn= g~1(TT) is not in p. Let
N' = N - (II U {1}). Clearly g ~\N') = U is equal to (X-Xn) n (X - Xx)
and is in p. For each neN', let ¡7„ = g~l(n). (U„)neir is a partition of U by
elements of 38. For each n e N', there exist nonunits a„ and bn in N such that
n = a„bn- Let a|[/„ = a„, b\Un = bn for all neN', and a \ X-U=0=b \ X-U.
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Since U e p, f = ab. Further, by construction, a and b are nonunits in Z. Since /
is prime, this is a contradiction, and we conclude that Xn e p. Let /1 Xn = g | Xn
and let /| X — Xn = 2. / is a prime-valued function and /->/, proving the
theorem.

Before proceeding to consider corollaries of (5.1), we will need a technical
result, which follows. Since p is, by hypothesis, in <5X — <50X, p does not have
the countable intersection property. We will see (5.2) that this implies the existence
of a family (U„)neN of p such that Ux = X, and U„+1 < U„ for all neN. Let
V„ = U„— Un + 1 for all neN. Then (V„)„bN is a family of nonempty sets of M
that partition X and such that \]n^m V„ep for all meN. Such a partition of X
will be called a distinguished partition of X relative to p.

Lemma 5.2. Given p e dX, there exists a distinguished partition of X relative
to p, if and only if p£ô0X.

Proof. Assume that p£ô0X. By the definition of o0X, there exists feZ — Z.
Assume that / > 0 and let / be a pre-image of / in C(X, Z) such that / ¡fc 1. Let
U ={xeX:nz%f(x)}. Clearly, Une@, Ut=X, Un + 1 c Un, and U„ e p
Further, Ç\neNUn = 0, showing that, on reindexing (Un)nEN, we can require
that Un+1 < U„. Let Vn = U„ — Un+1 ; then (Vn)neN is a distinguished partition
of X relative to p. To prove the converse, let (V„)„ eJV be such a partition, and let
f\ Vn = n for all n. Then feZ — Z, showing that p£50X, proving the lemma.

Let c denote the power of the continuum.

Corollary 5.3. There exist at least c infinite primes in Z.

Proof. Let (V„)nsN be a distinguished partition of X relative to p. Let n be
partitioned into two infinite sets, n0 and Hy, and let p¡ be the least element of II».
Let f | Vy = px. Let n¡ — {p¡} be partitioned into two infinite subsets, nfjJ-, and
let ptJ be the least element of this set. Let fj extend /¡ and let fj | F2 = ptj.
Continuing in this fashion, by finite induction, one defines prime-valued functions
/, in C(X, Z) for each x e {0,1}N. By (5.1), fz is a prime in Z. Since (F„)„ eN is dis-
tinguished, Um = (JnSm V» is m w- Since f \Um^m, fz is not in Z. Given distinct
t and er e {0, 1}N, let m be the least integer for which x(m) i= a(m). By construction,
fz(Um) nf„(Um) = 0, showing that /t # fa, proving the corollary.

Remark. Let cbn = (3x) (x =¿ ri), for n e Z. To the sentences in L(%) used to
define Z, adjoin (cbn)„ e z. The resulting axiom system is for nonstandard models
of Z. By the Löwenheim-Skolem theorem [R, 1.5.13], there is a countable non-
standard model A of Z. By (5.3), A is not isomorphic to Z.

Let / be a prime-valued function in C(X, Z) and let M(f p) = {ge C(X, Z) :
D(f) n([/xll)c D(g), for some U e p). It has been shown that M(f p) is a
maximal ideal in C(X,Z) [P, 4.3.4]. By (5.1) and (4.1.6), we arrive at another
corollary.
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Corollary 5.4. Let f be a prime-valued function in C(X, Z). Then M(f,}p)
is the pre-image of the maximal ideal (/) in Z.

Let Vitf be the set of finite maximal ideals of Z (i.e., {M £m: M n Z is a maximal
ideal in Z}), and let mp be the set of all principal maximal ideals of Z. Clearly,
rrty c mp c m. By (5.3), we know that rrtp — mf is of power at least c, and by
(4.1.7) we know that mp is dense in m.

Corollary 5.5. mf is closed in mp.

Proof. Recall that the closure of mf in m is {Aient: Qpen(p) <= M}. To
prove this corollary, it suffices to show that, given any infinite prime / in Z, there
exists g e npe n(p) such that g $ (f). Without loss of generality, we may assume
that/ > 0. Let/be a positive, prime-valued pre-image of / (5.1). Let Xp=f~1(p)
and note that (^p)p 6 n is a partition of X by elements of 38. Since f$Z, no Xp is
in p, Let (p(n))„eff be a proper indexing of n. Let g | XP,X) = 1 and, for n > 1,
let   g\XpW = p(l).p(n-l).   Then   geC(X,Z),   (g,f) = (l)   and   thus
(g> f) = (1)> showing that g $ (f). Since p is an ultrafilter in 88 and since Xp$p for
any pen, given meN, then {Ji^n¿mXp(n) is not in p. Since p is an ultrafilter
in 38, there exists U ep such that ([J x%„¿,m Xp,ny) t~\U = 0. Given x e U, x e XpU)
implies j > m; thus p(l), •••,p(m) divide g(x), showing that g e(p) for all pen,
proving the corollary.

The mapping p -* (p) is a bijection between n and nt/. As the maximal ideal
space of Z, n is a compact T^space, a base for the closed sets of n being its
finite subsets, The next result implies that, under this topology, p -*(p) is not
continuous.

Proposition 5.6. The topology ofmf, induced from m, is the discrete topology.

Proof. Since Z czZ, all finite subsets of vas are closed in nty. Let m} be an
infinite subset of nty and let n' be the pre-image of rrt/ in n. Let (p(n))neN be
a proper indexing of n' and let (V„)„eN be a distinguished partition of X rel-
ative  to   p.   Let /lF„ = p(l).p(n).   Then feC(X,Z), feZ-Z,   and
{Ment/: fe M} = m}, proving the proposition.

Corollary 5.7. mp # m.

Proof. Were mp = m, then mp would be compact. Since rrty is closed in mp
(5.5), rrty would be compact. Since rrty has the discrete topology (5.6), it would
have to be finite, a contradiction.

Since mf is closed in mp (5.5), (cL^nty) - mf c m-tnp. Since mf is a discrete
space (5.6) and m is compact, the boundary of mf in tn is nonempty.

Theorem 5.8. (cl,,, mf) — rrt/ is a proper subset of m — mp .
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Proof. Let (V„)neN  be  a  distinguished  partition  of X  relative  to  p.   Let
(p(n))neN   De   an  enumeration   of n,   and  let /| V„ = p(l).p(n).   Then
fef]P<¡n(p)- We will use [P, 4.4] to construct Mem — mp such that f$M.
Let <P„ = {p(m): n < m < 2ri\ and let B = [JneN V„ x a>n. We will show that
b= {B n (D(fy))c n--- n (D(fk))c r\U xU:fy, -,fk being prime-valued func-
tions in C(X,Z) and Uep} is a filter base in SeD(C(X,Z)), where the super-
script c means complementation. Since (V„)neN is a distinguished partition of X
relative to w, given m > k, Um = U„èm F„ is in p. Given x e Um, xeV„ for some
n > k. Among the n primes of d>„ there must be one which is distinct from
fy(x), ••■j/fcOe), showing that b is a filter base of 3i. Let b be an ultrafilter in S¡ that
contains b, and let M = D ~ 1ib). By construction, <r(M) = p. Since D(/) n £ =0,
/^ M. By construction, M £ mp, proving the theorem.

Remark. Pierce [P, 5.2] has shown that any fixed cardinal number can be
exceeded by the power of C(X, Z)\M, for suitable X and M. A fortiori, a Z can be
found whose power exceeds any given cardinal number. The following is a variant
of this argument.

Proposition 5.9. Let X be a discrete space of infinite power n. There exists
peôX — o0X such that rrtp has power greater than rt.

Proof. Let (Fx)x e x be a proper indexing of the nonempty finite subsets of X.
Given y e X, let Xy = {x e X: yeFx}. The family (Xy)yeX has the finite, but not
the countable intersection property. Let p be an ultrafilter on X containing
(Xy)yeX ; then p $ o0X. Let Z = C(X, Z)¡P¡¡. Assume for a moment that the power
of mp does not exceed n. Let mp = ((gy))yt=x- By (5-1), choose a prime-valued
pre-image gy in C(X, Z) of each prime gy. Since Fx is a nonempty finite set,
{gy(x)}yeFx is a finite set of prime numbers. Let/(x) be the least prime number
greater than all gy(x), yeFx. By construction,/is a prime-valued function and,
by (5.1), /is a prime in Z. Since gy\Xy <f\Xy and since Xye p, gy< f, showing
that (/) £ trip, a contradiction, proving that the power of mp exceeds n. (Cf.
[GJ, 12.7].)

Given / e C(X, Q), Q having the discrete topology, there exist unique a,
b e C(X, Z) such that b > 0, (a, b) = (1), and/ = a\b. Clearly, / = a\b, (a, b) = (1),
and b > 0. Whenever we write /(/) as a quotient of elements of C(X, Z) (Z), it
will be assumed, unless otherwise stated, that such a quotient has this form.
Clearly, Q = ind hmv e/tC(U, Q) is the quotient field of Z in Q.

We will close the section with an analysis of the order structure of Q and Z.
Let T be a nonempty, totally ordered set and let A and B be subsets of T. One
writes A < B (A :£ B) if given a e A and b e B, then a < b (a z% b). T is called
an Hi-set [Ht, p. 180] (a near rjy-set [A3, §4]) if given two countable (nonempty)
subsets A and £ of T such that 'A < B (A <; £), there exists t e T such that
A<t<B(A^t£B).
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Theorem 5.10. Z is a near nx-set in which no countable set is cofinal. Q is an
nx-set.

Proof. Let A and B be two nonempty, countable subsets of Z(Q) such that
A < B. Using [GJ, 13.5], we can choose (/„),,e/v and (g„)n.N in C(X,Z)(C(X, Q))
such that fk Sf„ ^ g„ = gk whenever k < n, (fn)„eN is cofinal in A, and (gn)„<=N
is coinitial in fl. Let (F„)„6/v be a distinguished partition of X relative to p and
let t\Vn=f„\Vn for all neN. Clearly, t is in C(X,Z)(C(X, g)). Further,
fk = t^gk for all k e N, showing that Z and Q axe near Mi-sets. To show that Z
has no countable cofinal set, omit fl from the construction above. Applying
[GJ, 13.8] shows that Q is, in addition, an nx-set, proving the theorem.

Remark. Since Q is an nx-set, the residue class field of its order valuation is
the reals [AJ, [A2]. However, by (4.9),Q contains no subfield of coset represent-
atives of this field.

6. Valuations of Q associated with maximal ideals of Z. We have seen (4.4) that,
given a maximal ideal M of Z, ZM is a valuation ring of Q. It will be shown (6.3)
that the value group of this valuation can be computed in the following round-
about fashion: by means of a divisor map d, we can go from C(X, g)* to ZXxn,
and then pass, by means of an inductive limit along D(M), to a totally ordered
group G. We will see that Q* maps onto G in such a way as to give the desired
valuation. (Note the similarity between this and the method of obtaining value
groups in [A4, §2].) Having done this, it will be quite easy to study G.

Since ZM is a local ring of Q whose maximal ideal is MM, the group of units U
of (ZM)* is ZM — MM. Recall that a valuation of Q associated with ZM is a homo-
morphism F of the multiplicative group of Q*, whose kernel is U. Let T be the
range of V. Since ZM is a valuation ring, V(Z*) serves as a set of non-negative
elements (=r(^ 0)) of T, and makes T into a totally ordered group. Extend V
to Q by letting F(0) = oo, oo being a symbol greater than all elements in T, such
that oo + y = y + oo = oo for all yeT. Then V(a ± fe) ̂  min {V(a), F(fc)},
and V(ab) = V(a) + V(b) for all a and fe in Q.

Given feC(X, g), let d(f) be the following mapping defined on X x U:
given (x, p) e X x U, let d(f) (x, p) = vp(f(x)), where vp is the p-adic valuation
on g. Clearly, d is a homomorphism of C(X, g)* ( = {f$C(X,Q): f(x) ± 0
for all x e X}) into Z Xx n. Let the range of d be given pointwise addition and order.
Then d(f ± g) k d(/) A d(g), and d(/g) = d(/) + d(g). Clearly, /e C(X,Z)
if and only if d(f) ^ 0.

By the support of d(f) is meant the set {(x,p)eXx IT: d(f)(x, p) # 0}.

Proposition 6.1. Let aeC(X,Z). D(a) is the support of d(a).

Proof. It suffices to observe that the following are equivalent: (x,p)eD(a),
a(x) = 0(p), vp(a(x)) > 0, and d(a) (x, p) > 0.
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Let k be the canonical homomorphism of dC(X, Q)* onto

ind limm eM dC(X, Q)* | D(m) = G.

Since dC(X, Q)* \D(m) is a partially ordered group, G is a partially ordered group
and k is an order-preserving mapping.

Lemma 6.2. dC(X, Q)* is a lattice-ordered subgroup of Zxxn, G is
a totally ordered group, kdC(X, Z)* = G ( ^ 0), and the kernel U of kd is
{a/b : a, be C(X, Z)* - M}.

Proof. Let/eC(X, Q)* equal a/b, where

a, b e C(X, Z)* ( = {ge C(X, Z): Ç(g) =0}).

By convention, (a, b) = (1) ; thus d(f) = d(a) — d(b), where d(a), d(b) ^ 0 and
d(a) A d(b) = 0. Using [B, p. 215], one sees that dC(X, Q)* is a lattice-ordered
group. Since (a, b) = (1), at most one of a and b is in M: i.e., at most one of D(a)
and D(b) is in D(M). By (6.1), D(a)(D(b)) is the support of d(a) (d(b)). Thus
a e M if and only if kd(f) = kd(a) > 0, b e M if and only if kd(f) = - kd(b) < 0,
and a and b are not in M if and only if kd(f) = 0, proving the lemma.

Let n be the canonical homomorphism of C(X, g)* onto Q*.

Theorem 6.3. There exists a unique, order-preserving isomorphism 9 of T
onto G such that the following diagram is commutative:

C(X, QT -—^  G
Î
¡0i

F 'Q*      --—► r.
Proof. By (6.2), the kernel U of kd is {a/b: a, be C(X, Z)* - M}. By definition,

the kernel U of F is ZM-MM: i.e., {a/b: a, b eZ*-M}, showing that n~ \U) = U.
We conclude that a unique group isomorphism 0 of T into G exists, making
the diagram commutative. Since kd is surjective, 0 is surjective. By (6.2),
kdC(X,Z)* = G ( ^ 0), nC(X,Z)* = Z*, and V(Z*) = T ( ^ 0), showing that 0 is,
order preserving, proving the theorem.

Let V = 9V and let K(0) = oo. Then Fis a valuation of Q whose valuation ring
is ZM and whose value group is G. Let us now investigate the structure of G.

Theorem 6.4. G is a near tjy-set, with a least positive element g0, in which
no countable set is cofinal. IfM—(f), then V(J) = g0.

Proof. Pierce has observed [P, Proof of 4.5.4] that there exists me M such
that for all xeX, either m(x) = 1 or m(x) is the product of distinct primes. Thus
d(m) I D(m) = 1, and kd(m) is g0. Note that if M contains a prime-valued function
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/ (i.e., if M = (/)), then Xd(f) is g0, showing that V(f) = g0. Let A and fl be
nonempty, countable subsets of G such that A^B. Since dC(X, g)* is a lattice-
ordered group, we may invoke [GJ, 13.5] and obtain/, and g„eC(X,g)* such
that the following conditions hold: d(fk) :g d(/„) :g d(g„) 5¡ d(gk) for all k<n,
(Xd(f„))neN is cofinal in A, and (Xd(g„))neN is coinitial in fl. Let (V„)nsN be a dis-
tinguished partition of X relative to p (5.2). Let /1 F„ =/„| V„ for all neN; then
í e C(X, g)*. By definition, U„gt F„ = 17^ is in p. Since £ ( = Pp) is the minimal
prime ideal contained in M, there exists me M such that f7t = ^(m) ( = {xeX:
there exists pen such that (x,p)eD(m)}). Let (x,p)eD(m); then xeF„ for
some neN. Since "^(m) = Uk, n ^ k. Clearly,

d(fk) (x, p) ^ d(f„) (x, p) = dit) (x, p) £ d(g„) (x, p) g d(gk) (x, p),

showing that d(fk) \ D(m) ^ d(t) \ D(m) g d(gk) \ D(m). Thus Xd(fk) g Xd(t) £ Xd(gk)
for all k e N, showing that A ^ Xd(t) ^ fl, proving that G is a near nx-set. To prove
the last assertion of the theorem, let fl = 0 and proceed as above, proving the
theorem. (Cf. [A4, 2.6].)

A subset G' of G will be called convex if, given g'eG' and geG such that
\g\ Ú Ig'I» then geG'. The convex subgroups of G form a totally ordered set
under inclusion. Given ge G let W(g) be the smallest convex subgroup of G that
contains g. Clearly, W(g ± h) £ W(g) U W(h) for all g, h e G. W is called the
order valuation on G. Let S = {W(g): geG*}. S, a totally ordered set, is called
the value set of G. The convex subgroups of G are in bijective, order-preserving
correspondence with the lower sets of S under the mapping G'->W(G')nS.
(See, e.g., [A2] for references.)

Applying [A3, 5.1 (ii)] and (6.4) we arrive at the following.

Corollary 6.5. The value set S of G has a least element s0,andS — {s0} is an
nx-set. Thus the nonzero convex subgroups of G are in natural bijective corre-
spondence with the Dedekind completion S of S.

Given seS, let W~\^s) (JF_1(<s)) ={geG: W(g)^s} ( = {geG:W(g)<s}).
Both IF_1(^ s) and W~1(< s) axe convex subgroups of G. Further, W~x(< s) is
the largest proper, convex subgroup of W-1(^ s). Let H(s)=W~1(^ s)¡W~2(<s),
inherit the order on TF_1(^ s). H(s) is then an Archimedian totally ordered group,
and hence can be imbedded in the additive group of real numbers. (See, e.g.,
[A2] for references.)

Theorem 6.6. H(s) is isomorphic to the integers if s = s0, and to the reals
ifs>s0.

Proof. If s = s0, then H(s) is isomorphic to the subgroup of G generated by
g0, the least positive element of G, proving the first assertion. Assume that s> s0.
It will first be shown that every element in H(s) is divisible by 2 in H(s). Let h e H(s)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



514 N. L. ALLING [June

be positive, and let g be a pre-image of b in W~*iz% s). Since g S: 0, there exists
feCiX,Z)* such that />0 and kd(f) = g. Since g > 0, feM (6.1); thus
U = °U(f)ep. Let F equal {x e U : vp(fix)) = 0(2) for all pen}. To see that
Ve@, note that F = U n/"1 {ne N: vpin) = 0(2) for all pen}. If V e p, let
a\v=fil2\V and let a | X - F = 1. By the definition of F, aeC(I,Z)*.
2kdia) = kdif) = g, showing that h, the image of g in His), is divisible by 2 in LT(s).
Assume now that V $ p. Since U e p, and p is an ultrafilter in 3ä, Y = U — F is in p.
Let í¡,= Y n/_1(n) for all neN. (yn)„Efi is a partition of y by elements of 3$.
Given x e y there exist neJV such that x e Yn.  Let n = p*1.pkek,  where
e1( —,ek£ï 1, ßi,---,^ = 0(2), ander+1,---,et= 1(2). Let

a\V  - nes'2.„*r/2   (e,+ i-l)/2 .  ... .     (eic-l)/2
U\1n — Pl Pr      Pr+1 Pk >

and let b| y„ = pr+1 ■ ••■ ■ pt, for all n eAT. Let a \X - Y = b\ X - Y = 1. Then
a,beC(X,Z)*. g = Ad(/) = /W(a2b) = 2Ad(a) + Ad(b). Since 0 ^ </(b) ̂  1, kd<b)
is either zero or the least positive element of G. In either case, kd(b) eW~1i<s),
since s > s0. Thus b is divisible by 2 in His). Since every element of His) is divis-
ible by two in H(s), H(s) is not isomorphic to the integers. By (6.4) and [A3,5.1 (i)],
H(s) is order isomorphic to the additive group of real numbers, proving the
theorem.

Having studied G in complete generality, let us now assume that M is a principal
ideal (/). Let /be a prime-valued pre-image of/in C(Ar,Z). By (6.4), kd(f) is the
least positive element of G. We will define/* for all heZ and show that h-*V(fh)
is an order-preserving isomorphism of the additive group of Z onto G (6.9).
Elements of the form /*, for h > 0, will also be of use in studying the ideal theory
of Z in §7.

Let /eC(X,g)*, let heC(X,Z), let l/,=/-1(-?) for all a eg*, and let
Vn = b-1(«) for all neZ. Since Uq n F„ is in S8, letting fh\Uqr\Vn = q" defines
/*, an element in C(X,g)*. Given geC(X,g)* and fceC(X,Z), then fh+k=:fhfk
and ifgf =fhgh. Let /fcbe the image of/* in Q*. Note that /* is dependent only
on f eQ* and h eZ. Clearly, fh+k = fhfk and ifg)" = fY, showing that Q* is
a unitary Z-module.

We digress a bit to give the following.

Proposition 6.7. Let f be a prime element ofZ, and let h be a positive element
in Z. The only maximal ideal of Z that contains fk is if).

Proof. Since fh = f"~1f, and h - 1 ^ 0, /he(/). Let/ be a prime-valued pre-
image of / in CiX,Z) (5.1), and let h be a positive pre-image of h in CiX,Z).
Then, by definition, f ->/*. Since D(/A) = D(/), /Ä in a maximal ideal M implies
feM, proving the proposition.

Let us now make zx*n into a unitary C(X,Z)-module as follows: given
beC(X,Z) and aeZXxn,  let (ba) (x, p) = b(x) a (x, p).  If a ^ 0, then  b-> ba
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is order preserving. Since h(x)(d(f)(x,p)) = h(x)vp(f(x)) = vp(fh(x)) = d(fh)(x,p),
we see that dC(X,g)* is a submodule of ZXxn. Further, the C(X,Z)-module
structure on dC(X, g)* induces a natural unitary Z-module structure on G such
that, given g ^ 0, h -> hg is order preserving. Clearly, X(hd(f)) = hXd(f), which,
in turn, is Xd(fh). Utilizing the Z-module structure on Q* and (6.3), we see that
V(fk) — hV(f): i.e, Fis a Z-homomorphism. We will now summarize these results.

Proposition 6.8. G is a unitary Z-module. Given g ^ 0, the mapping h-+hg
is an order-preserving mapping of Z into G. V is a Z-homomorphism ofQ* onto G.

Unfortunately, (6.8) does not shed much additional light on the relation
between Z and G. However, if M is principal, more can be deduced.

Theorem 6.9. Let M be the principal ideal (/). Then V(f) is a generator of G
as a Z-module and h -+ hV(f) is an order-preserving isomorphism of the additive
group of Z onto G.

Proof. Let / be a prime-valued pre-image of / in C(X, Z) (5.1). By (5.4),
M = M(f,p); thus {£)(/) n(U x Tl):Uep} is a base for D(M). Let g be a positive
element of G and let a e C(X,Z)* such that Xd(a) = g (6.2). Since g > 0, there
exists U ep such that d(a)\D(f) (~\(U xTV)>0. Given xeU, then, f(x) is prime
and vf,x)(a(x))>0, showing that a(x) is a multiple of f(x). Let U„ = a~1(n)
for all neZ* and let Vp=f~1(p) for all peU.Let h\Unr\VpnU = vp(n) and let
h | X — U = 0. Given x e U, x is in UaM n F/(x). Then

d(a)(x,f(x)) = i>/(x)(a(x)) = h(x) = vf(x)(fh(x)) = d(f")(x,f(x)),

showing that (d(a) - d(f))\D(f) r\(U x n)=0. We conclude that Xd(a) = Xd(f"),
and hence that g = hV(f), proving the theorem.

Theorem 6.10. Let M be a maximal ideal ofZ that is not principal and let g0
be the least positive element of G. Then h -* hg0 does not map Z onto G,

Proof. We have observed (proof of (6.4)) that there exists feM such that
f(x) is 1 or is the product of distinct primes, and that V(f) = g0. Let Xn =f~1(n)
for all neN. Given xeX, xeX„ for a unique neN. If »=»1, let a(x) = 1.
If n # 1, then n = px ■ ■■■ ■ p„, px,---,p„ being distinct prime numbers. Let
a(x) = Px • p\ • ■ ■ ■ ■ p". Clearly, a e C(X, Z) and V(a) ^ g0. Assume, for a moment,
that there exists h e C(X, Z) such that hg0 = V(a). Since V(a) ^ g0, ft ^ 1 and
we can assume, without loss of generality, that n > 0. Since V(a) > 0, there
exists m0eM such that d(a)\D(m0) > 0. Since ftg0 = V(a), there exists mxeM
such that (d(a)-nd(/))|D(m1) = 0. D(m0) r\D(mx) =D((m0, mx)), by [P,
2.2.1, (c)]. But (m0, mx) = (m), where m e M [P, 1.3.2]. Since meM, U = %(m)
is in p. By definition, given xeU there existspen such that (x,p)eD(m). Since
D(m) c D(m0), d(a)(x,p) > 0:   i.e.,   p divides   a(x).   Since D(m) c D(mx),
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vpiaix)) = b(x)yp(/(x)).    But   a(x) = Py- p\.p"   and   /(x) = pt.p„,
showing that p = pA(;c), where 1 ^ b(x) ^ n : i.e., m(x) is the prime pA(x). We
conclude that m\ U is a prime-valued function in C(I/,Z). Let m'\U = m\U
and let m'| X — U = 2. Then m' is a prime-valued function in C{X,Z), m = m'
and hence, by (5.1), M contains a prime m. This shows that M is principal, which
is a contradiction, proving the theorem.

Theorem 6.11. Let M be a maximal ideal ofZ and let g0 be the least positive
element in G. Then Zg0 is cofinal in G.

Proof. If M is principal we may apply (6.9) to obtain the theorem. Assume
that M is not principal. There exist fe M such that f(x) is 1 or is the product of
primes. Then kd(f) = g0, the least positive element of G (6.4). Let aeC(X,Z)
such that kd(a) ^ g0. There exists me M such that d(a) | D(m) ^ d(f) \ D(m) > 0.
Let U = W(m). For n, keZ let Un = Ur\f~l(ri) and Vk = ¡7 na_1(/c). Clearly,
(I/,, O Ft)(n>f;)6Zxz is a partition of Í/ by elements of âê. Assume that UnC\Vkj= 0.
Then n = py.pj and /c = pf1.p*', where e¡ is a non-negative integer.
Let h\U„C\Vk = maxe¡, and let b|X - U = 1. Then A6C(I,Z), and
d(a)|D((m,/))^d(/*)|l>((m,/)), proving the theorem.

7. The ideal theory of Z. Let p be the space of prime ideals of Z. p is, of course,
a compact T0-space. Under inclusion p is an inductive, partially ordered set,
having {0} as a least element and having m as the set of maximal elements. Given
Mem, let p(cM) = {Pep: Pc M}.

Given an ideal / in Z, let IM = IZM, the extended ideal of / in ZM. Let M be
a fixed maximal ideal in Z, let VM be the valuation of Q associated with ZM, and
let GM be the value group of VM. Clearly, VM(I) = VM(IM). Since IM is an ideal in ZM,
VM(IM) is an upper set in GMu{oo}. Let GM(1) be {geGM:\g\ < VM(f), for all
/e/}. Clearly, GM(I) is a convex symmetric subset of GM. Let us now apply these
notations to the prime ideals in Z.

Theorem 7.1. The mapping P -> GM(P) is a bijective, order-reversing mapping
of p(cM) onto the chain of convex subgroups of GM. Thus the order type oj
p(cM) is that of the Dedekind completion of an ny-set with a greatest element
adjoined: i.e., p(cM) is anti-isomorphic to SM. Finally, given Pep(cM)
such that P t^M,P is not a principal ideal.

Proof. By [ZSt, p. 228] and [ZS2, p. 40], the first assertion is true. We have
shown that the convex subgroups of GM are in bijective, order-preserving cor-
respondence with the lower sets of the value set SM of GM, that SM has a least
element s0, and that SM— {s0} is an t]y-set (6.5), proving the second statement.
To prove the last assertion, assume for a moment that there exists a prime ideal P
of Z, properly contained in M, that is principal. Let P = (/); then VM(f) is the least
element of VM(P) and GM(P) is a convex subgroup of GM. Since P ^M, VM(f) = gy
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is greater than g0, the least positive element of GM. Since GM(P) is a subgroup
of GM, W(gx) = sx > s0 = W(g0). By (6.6), H(sx) is order isomorphic to the reals.
Thus there exists g2 e GM such that 0 < g2 < gx < 2g2. Hence g2 e GM(P), but
2g2£GM(P), a contradiction, proving the theorem. (Note: we have not used the
full force of (6.6), only the fact that H(sx) is not discrete.)

Before considering the general ideal theory of Z, let us generalize the setting
and consider an integral domain A, with an identity. Let m be the maximal
ideal space of A, let / be an ideal in A, and let m(/) = {Mem: / c M}. m(/),
the variety of I, is a closed subset of rrt.

Lemma 7.2. Let I be a proper ideal in A. Then I is f^Metmi)^ n^-

Proof. Let J = P)Msm(/)4i ̂ A IffeA- I,letB = {aeA: afel}. Then fl is a
proper ideal of A containing /, and is contained in a maximal ideal M. Clearly,
/^ IM, sof£ J, showing that Jal. Since IaJ, the lemma is proved. (I am indebted
to the referee for supplying this short proof.)

An ideal I in A will be called primary if it is contained in a unique maximal
ideal. (Although this terminology is used in Banach algebra, it is at variance with
the use of the term in classical ring theory.) Equivalently, / is primary if mil)
consists of one point.

Let us now return to the study of Z.

Lemma 7.3. Let M and M' be distinct elements of m, the maximal ideal
space of Z. Given a positive element g of GM, there exists feZ such that VM(f) = g
andVM.(f) = 0.

Proof. Without loss of generality we may assume that VM = 9V and that
GM = indlimm6MdC(Ar,g)*|D(m) (6.3). Let aeC(X,Z)* such that Xd(a) = g.
Since M=±M' and since g > 0, there exist me M and m'eM' such that
D(m)r\D(m') = 0 and d(a)|D(m)>0. Let U = %(m) and let U'=<%(m').
Since P„ is contained in M and in M', U n U' = W is in p. SinceD(m) C\D(m') = 0,
given xeW, (m(x), m'(x)) = (1). Let X¡ = m'^i),X] = (m')~\j) and Uk=a~ \k),
for all i, j, keZ. Assume that X¡ n Xj n Uk n W is nonempty. Then (i,j) = (I)
and vp(k) > 0 for all prime divisors p of i. Let fc = ± pex  .pes*, where
Pi,--,ps axe distinct primes, and ex,---,eseN. Let px,---,pr be the prime divisors
of k that are also prime divisors of i. Let f\ X¡ CiX'j r\UkC\W = p*1.per*
and let/1X - W = 1. D(xx-W) =W xTl, and Xx-w e M; thus

D((m,Xx-w)) = Dim) nWxU,

this set being in D(M). By construction, (d(f) — d(a))\D((m,Xx-w)) = 0; thus
VM(f) = g- By construction, d(f)\D((m',xx-w)) = 0» showing that VM.(f) = 0,
proving the lemma.

Using these results together, we get the following.
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Theorem 7.4. Let I be a nonzero, proper ideal in Z, and let Metrt(L).
IM C\Z = / isa primary ideal contained in M. Further, J = {feZ : VM(f) e VM(I)}.
Finally, I = nMem(/)/M C\Z is a decomposition of I into primary ideals.

Proof. Since ZM is a valuation ring, IM = {feZM: VM(f) > GM(IM)} [ZS2, p. 40].
Since GM(I) = GM(IM), IM = {feZM : Vu(f)e VM(I)}. Assume, for a moment, that
J is not primary; then it is contained in a maximal ideal M' # M. Since / # (0),
there exists geVM(I)r\GM. By (7.3), there exists feZ such that VM(f) = g and
Ki'(f) — 0. Thus, fe J and f$M', a contradiction. We conclude that / is primary,
proving the theorem.

Applying this theorem now to the special case of primary ideals yields the
following.

Corollary 7.5. Let J be a primary ideal of Z contained in M. Then,
JMnZ = J = {feZ: VMif)eVMiJy).

Let j be the set of all primary ideals of Z. Under inclusion, j is an
inductive partially ordered set whose set of maximal elements is rrt. Given M e m let
j(cM) = {Jej: JcM}.  Let p* = p - {0}  and let   p*(cM) = p(cM) Op*.

Theorem 7.6. The mapping J -> GMiJ) is a bijective, order-reversing mapping
of j( c M) onto the proper, nonempty, symmetric, convex subsets of GM. Thus
j( c M) is totally ordered under inclusion, and p*( c M) is a subset of j( cz M).
Finally, \ and p* are disjoint unions of chains, j( c M) and p*( c M),' respec-
tively, one for each Mem.

Proof. By (7.5), / -* GM(J) is an injection of j( c: M) into the set of
nonempty, proper, symmetric, convex subsets of GM. Let G' be such a subset of
GM. Then J' = {feZM: VMif)> G'} is an ideal in ZM. Let J = J' C\Z and note that
GleJ) — G', proving that the mapping is surjective (7.3). Clearly, these convex
subsets of GM form a chain, showing that j( c M) is a chain. We noted before
(7.1) that, if GM(/) is a convex subgroup, then J is a prime ideal in Z, and con-
versely, showing that p*( c M) c j(c M). By definition, if M and M' are distinct
maximal ideals, j( cr M) n j( c M') = 0, proving the last assertion.

Let us turn our attention briefly to the classical radical of an ideal in Z.

Proposition 7.7. Let J e {( c M). Then J1'2 e j( c M), and GM(/ 1/2) is the
largest, proper, convex subgroup of GMiJ); thus J 1/2 is prime.

Proof. Since /1/2 contains J and is a proper ideal, it is primary, proving the
first assertion. By definition, VM(J1,2)= {VM(a): there exists neN such that
nVM(a)eVM(J)}, showing that VM(J112) is indeed such a subgroup, proving the
proposition.

Lemma 7.8. Let I be a proper ideal in a commutative integral domain with
identity A. Then I1/2=(~)Metn(I)(IM nA)1'2.
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Proof. Given/e I1'2, there exists neN such that/" e /. By (7.2), /" e IM n A for
all Mem(/); thus/eflMetn(/)(/Mn^l)1/2= L. If Mem - nt(/), (IM r\A)m = A,
showing that L = Ç)Mem(IM(~\Ay12. Let/eL. Given Mem, there exists ne AT
such that /" e IM O A: i.e., there exists a e I and be A — M such that /" = a/b.
Using the fact that m is compact, there exist bx,---,bkeA, ax,---,akel, and
n¡eN such that bJ'H= a¡ for i = lm,---,k and (bx,---,bk) =(1). Using the last
fact, there exist cx,---,ckeA such that cxbx + ■■• + ckbk = 1. We see that
fm = cxbxfm+ ••• + ckbjm el, for some m in N, showing that/e/1/2.

Application to general nonstandard arithmetic. Let A be a nonstandard
model of Z and let / be a nonzero, proper ideal in A. Then / = Ç\M etn(IjIM <~\A,
and IMC\A = {aeA: VM(a) e VM(I)} ; however, unless it is known that a result
like (7.3) holds for A, we cannot conclude that IM n A is primary.

In case M is a principal ideal (/), we have additional results to utilize. By
applying these to ideals J in j( a (/)), we obtain the following.

Theorem 7.9. Let f be a prime element in Z and let J e j( a (/)). Let g0 be the
least positive element of G = GM(p/). There exists (h¡)¡e ¡, a subset of positive
elements of Z, such that (ft¡g0)ie / ÍS coinitial in VM(J). Further, (fh')ie ¡ is a set
of generators of J. Conversely, given any set (h¡)ie ¡ of positive elements ofZ, the
ideal J generated by (/*')< e / !S '" K c (/)) an& (ft;go)¡e / 's coinitial in VM(J).

Proof. By (6.9), such a subset (ft¡)¡, x exists. By (6.8) VM(fhi) = h¡g0 ; thus, by
(6.7), (/*'); e / is a set of generators of JM. Since J is primary, JM C\Z = J (7.5),
proving the first assertion. By construction, (/*') is in j( c (/)), for each i el,
showing that / is a union of elements in the chain j( a (/)), and hence is primary.
Since VM(fhi) = h¡g0, this set is coinitial in VU(J), proving the theorem.

Corollary 7.10. Let f be a prime element in Z. The minimal cardinal number
of generating sets of elements of j( a (/)) can be 1, K0, or Hv

8. The ideal theory of C(X,Z). The space ty of prime ideals of C(X,Z) is a
compact T0-space. As a partially ordered set, ^B is inductive, having 9JÏ as the set
of maximal elements and ^B0, the space of minimal prime ideals, as the set of
minimal elements. The topology on SR and ty0 ¡s the induced topology. As was
seen in §1, given Me9Jl there exists a unique minimal prime ideal a(M) contained
in M. Further, a is a continuous surjection (1.3).

Given MeSJl, let «ß( a M) = {Pe <B: P a M}.

Proposition 8.1. Given Me9JÎ, ^B( c M) is a chain having a greatest element
M and a least element a(M) = Pp. Let Z = C(X,Z)/a(M). ty( a M) is naturally,
order isomorphic to p(aM); thus ^3( a M) consists of two points if peô0X,
and is of power at least 2 ' if p£ô0X. Finally, if p£ô0X, no Pety(aM) is
principal.
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Most of the proposition follows from the analysis of p( c M) in §7. The power
of ip( cz M) in case p $ 50X is computed by using (7.1) and [GJ, 13.24].

Proof. (8.1) implies all but the statement, that if p$ö0X, M is not principal.
Assume for a moment that M = (/). Since p =$¿iM) (according to the diagram
preceding (1.3)), p = {Ue38: <%if)<zz 17}: i.e., % if) consists of a single point
xeX. This implies that peô0X, proving the theorem.

Let I be an ideal in CiX,Z) and let 3JÎ(T) = {MeäR: I c M}. Clearly, this is a
closed subset of 501. Let 5B0(i) = «7(501(7)). Clearly, an element P e 5B0 is in 5ß0(7)
if and only if the image of I in C(X, Z)\P is a proper ideal.

Proposition 8.2. 5ß0(T) is a closed set in 5B0.

Proof. Since 501(F) is a closed subset of a compact space 501, it is compact.
Since cr is continuous (1.3), 5B0(J) is compact. Since 5po is homeomorphic to
<5X (1.2) and since <5X is Hausdorff[P, 1.5.2], 5ß0 is Hausdorff. We conclude that
5ß0CD is closed, proving the proposition.

An ideal I of C(X, Z) will be called coprimary if 5f30(/) consists of a single point.

Proposition 8.3. Let I bean ideal in C'X,Z). IfPetyoil), then 5B0(J+P) = {P}:
in other words, I + P is a coprimary ideal.

Proof. Since Pe5B0(7), there exists Me 501(7) such that rj(M) = P. Clearly
I + P^M, proving that P e 5B0(J + P). Let P' e <po(/ + P) and let M' e 501(7 + P)
such that rj(M') = P'. Then P c 7 + P c M', and P' = P by (1.1), proving the
proposition.

Theorem 8.4. Let I be a proper ideal in C(X,Z). Then I = flPeWI)/ +£:
i.e., I is expressible as the intersection of coprimary ideals I + P, one for each
PeVoW.

Proof. Since IcI + Pfor all Pe5B0, Icf^Pe^oa)I + P=J. If Pe5ß0-<po(T),
then the image of I in C(X, Z)\P is contained in no maximal ideal, showing that
I + P = C(X,Z); thus J = f)Pey0I + P. Let feJ. It suffices to show that

f el. By definition, given Pe5ß0, there exists geJ, depending on P, such that
f — geP. By (1.4), 5D0(/ — g) is an open set in 5B0. Since 5po is compact, there
exist gy,--,gnel such that ^0(f - gi),---,^o(f ~ gn) cover 5ß0. As a con-
sequence, Uy = £(/ — gy),---,U„ = £(/ — g„) constitute a cover of X by elements
of âS. Let Vy = Uy, V2 = U2-Vy, and F3 = U3 - {Vy U F2). Proceeding in this
fashion, by finite induction, one can define a partition Vy, ■•-, V„ of X by elements
of 88 that is a refinement of Uy, •••, U„. Let g = gyXv¡ + ■■■ + g„Xv„- Since g¡e I
and F¡ e âS, gel. Given x e X there exists a unique i, 1 zi i ;£ n, such that xeV¡.
We know that F, c 17» = £(/ — g¡), thus /(x) = g¡ix). Since i is unique, g(x) = g((x),
showing that / = g. Since gel, we have shown that f el, proving the
theorem.
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Theorem 8.5. Let I be a proper ideal in C(X,Z). Then I1/2= nPeip0(i)(/ + P)1/2.
Further, (I + P)1/2 is a coprimary ideal.

Proof. Given fel1'2, by definition there exists neJV such that pel. By 1(8.4),
/"e/ + £ for all Pe^0(I); thus /ef|Pe!Po(i)(/ + P)1,2= L. Conversely, let
feL. Clearly, L = P|Pe!Po(/+ £)1/2; thus, given Pe^S0, there exist neJV and
gel such that/"-ge£. By (1.4), ç^0(f-g) is an open set in <B0. Clearly,
sets of this form constitute a cover of ^50. Since ^J0 is compact, there exist
gx,-,gkel and neN such that $„(/" - gx),-,^0(f- gk) cover <B0. Let
U¡ = C(/" — g¡), i = 1, •■•,&. Clearly, ([/¡) is a cover of X composed of elements
of ¿%. Using the method described in the proof of (8.4), we can choose a refinement
(F¡) of (U¡) that partitions X and is made up of elements of SS. Let
g = giXvt + ■■■ + gtXvk- Then gel, and g =/", showing that/ e/1/2, completing
the proof.

Let / be a coprimary ideal and let <B0(/) = {£}. Let Z = C(X,Z)/P and let /
be the image of / in Z. By (7.4), / = f>\Mem(nIM <~\Z, IM(~^Z being a primary
ideal in Z. Since / is coprimary, / is the full pre-image of /, in C(X, Z). The pre-
image of m(/) in 9)1 is 9Jl(/). Further, the pre-image of IM n Z is primary and is
{/e C(X,Z):bf = ael for some beC(X,Z)-M} = IMr\C(X,Z). Finally,
lm =rWem(7)(ÍAfnZ)1/2(7.8).

Theorem 8.6. Let I be a coprimary ideal in C(X,Z). Then the following decom-
positions hold: /= Ç\M smi)(IMnC(X,Z)), and I112 = f)Msmi)(IMnC(X,Z))1/2,
the ideals (IM O C(X, Z))1/2 being prime.

Combining (8.4), (8.5), and (8.6), one obtains the following.

Theorem 8.7. Let I be a proper ideal in C(X,Z). The following decompositions
hold: I - xr\PeVo,i)Ç\Msmi^p)(IMC\C(X,Z)), and

/1/2=      fl H       (IMnC(X,Z))1/2.
Ps!Po(/)     Ms<Bl(I + P)

Lemma 8.8. Let I be a proper ideal in C(X,Z). W(I) = {JPsVo(¡) 9Jc(Z + P),
and given distinct points P and P' in S\i0(I), 9Ji(/ + P) n3Jl(/i+ P') = 0.

Proof. Let M e 3Jl(/). Let P=<r(M) ; then M e 2Jt(/ + P) and P e <ß0(/). Conversely,
let Me9JÎ(/ + P) for some £e<po(/). Then Ial+PaM, and Me9Jt(/), proving
the first assertion. Let P, P'e 930 and let Me3Jl(/ + P) n9Jt(/+P'). Since P and
P' are contained in M, we may apply (1.1) and conclude that P = P', proving the
lemma.

Applying (8.8) to (8.7), we obtain the following.

Corollary 8.9. Let I be a proper ideal in C(X,Z). Then the following dé-
co mpositions of I in terms of primary ideals, and prime ideals respectively, hold:
I = r\Mema)(IM^C(X,Z)) and I1'2 - C\Msmi)(IM nC(X,Z))1/2.
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With the aid of this decomposition theorem we can now analyze the set 3 of
primary ideals of CiX,Z). Given Je % J = JMC\CiX,Z), where {M} = 50i(J)
(8.9). If P and P' are in 5ß0(J), then £ = cr(M) = P' (1.1), showing that J is co-
primary. Given Pe5p0, let %(zz> P) = {Je%: J zz> P). Since each primary ideal
is coprimary, 3 is a disjoint union of 3( ^ P), where £ runs over 5Tj0. Let £e 5B0
and let Z = C(X, Z)/£. The mapping J -» J of 3( =5 £) into the ideals of Z is a
bijection onto j, the set of primary ideals of Z. By (7.6), j is a disjoint union of
chains j(cM). Given Me 501, let %(<zz M) = {J e%:J <zz M}. Summarizing,
we have the following.

Theorem 8.10. The set 3 of primary ideals of C(X,Z) is a disjoint union
of chains 5( <= M), one for each Me50l. 3( c AT) is naturally order isomorphic
to j( c M), fbe se/ of primary ideals in C(X,Z)fa(M) contained in M.

Let I be a proper ideal in C(X,Z). By [P, 2.3.4], D(l) is a proper filter in S
(=DC(X,Z)). By [P, 2.3.4], D_1D(7) is a proper ideal in C(X,Z). Clearly it
contains 7. I will be called a D-ideal if I = D~lD(I). (Cf. the notion of a z-ideal
in [GJ].) By [P, 2.5.1], a proper D-ideal I is Ç~]M eW(I)M. If 7 is now merely a
proper ideal of C(X,Z), then J = D~XD(I) is the smallest D-ideal that contains I.
By (8.9), I = f)Memn(IM HC(X,Z)), and J = C\m.mj)M- Since D(J) = D(I),
iVlil) = 50C(J).

Using these results we can obtain additional information about the ideal
/ = P|pe n(p) in Z = C(X,Z)/P„, where peôX — Ô0X. Let I be the pre-image
of / in C(X, Z). Clearly, /e 7 if and only if for all p e n there exists U e p such
that f(x) = 0(p) for all xeU: i.e., for all pen there exists Uep such that
U x {p} c D(/). Since this is a condition on D(/), 7 is a D-ideal and is, by
[P, 2.5.1.], an intersection of maximal ideals. We conclude that 7 is the inter-
section of maximal ideals, and thus is f}M e c. mfM.

9. Some remarks on the residue class fields of C(X, Z). Pierce has obtained a
great deal of information about the residue class fields of C(X, Z). One of his
most striking results deals with the elementary theory of these fields [P, 6.4.1].
Before this theorem is stated, consider the following background material. Let
% be the projection mapping of X x n onto n. Given/ e C(X, Z), let 0*(f) = nD(f).
Given an ideal I in C(X,Z), let 0>(î) = {A c n: @(f) c A for some f el). Clearly,
£P(I) is a filter on n. Assume that X is not Z-pseudocompact ; then X has an
infinite partition (Un)„eN made up of elements of aß. Let AeSP(I) and let/el
such that 0>(f) c A. Let A = (pr)neN and let g\ U„ = p,.p„. Then 3P(g) = A,
fg e I, and 3P(fg) = A, showing that 3P(T) = nD(I) in case X is not Z-pseudo-
compact. It has been shown that, if M e 50Í, then 3P(M) is in ßU, the space of
ultrafilters on n [P, 4.1.4]. Letc/>eL(2f) (see §3 for definitions), where 5R is the
category of all commutative rings aud ring homomorphisms, let Tl(cb) = {peïl:cb
is valid in 5R/(p)}.
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Theorem 9.1 (Pierce [P, 6.4.1]). Let Me9Ji and let cbeLÇR). cb is valid in
C(X,Z)/M if and only if U(cb) e&(M).

Thus, the elementary theory of C(X, Z)\M is determined by ^(M). Let pen
be identified with the fixed ultrafilter at p. n is imbedded as a discrete, dense
subspace of ßU. If 0>(M) = p, we may use [P, 3.3.3] and conclude that C(X,Z)/M
is isomorphic to Zj(p), and conversely (see also (4.2)). By [P, 4.2.2], 3e maps 9JÍ
onto ßTl, if X is not Z-pseudocompact.

Let peôX, Z = C(X,Z)¡PI¡, and let Me^~1(p). Clearly, the mapping
C(X,Z)->-C(X,Z)IM factors through Z and C(X,Z)jM is isomorphic to Z¡M.
Thus the choice of p has a decisive effect on the residue class fields that can arise.

Proposition 9.2. Let peô0X. Then S? maps f^~1(p) onto U, Let Tl be topo-
logized by letting the finite subsets be a basis of closed sets; thenéPis a homeo-
morphism of °ll~ (p) onto Tl. Conversely, let p e ÔX and assume that 3" maps
^¿~1(p) into Tl; then peö0X.

Proof. Let peô0X and let Z = C(X,Z)\Pil. By definition, Z is isomorphic
to Z. By (2.2), M-vM is a homeomorphism of e?/~l(p) onto rrt. Each Mem is
of the form (p) for some pen; thus M = M(p,p) (5,4), and 3P{M) = p, proving
the first assertion. Conversely, assume that pebX such that 3P maps c^~1{p)
into n. Assume for a moment that Z = C(X, Z)!?^ is not isomorphic to Z. By (5.3),
there exists an infinite prime / in Z. By (5.1),/ has a prime-valued pre-image/
in C(X, Z). By (5.4), M(f, p) -> (/). Since / is an infinite prime in Z, S?(M(f, p)) ¿ Tl
[P, 3.3.3], a contradiction, showing that Z = Z, and proving the proposition.

Theorem 9.3. °llx88is a homeomorphism of $/,~ (ô0X) onto ô0X x Tl, Tl
having the topology determined by letting the finite sets offl be basic closed sets.

Proof. By (9.2), W x 0> is an injective map of û?r1(b'oX) onto 50X x Tl. The
xnan^l x 8P composed with both the first and second projection of Ô0X x Tl is
continuous, by (1.3) and (9.2); thus °U x 8P is continuous. (Since <50X x n is not
a T2-space we can not use the usual argument to prove that ^ x 0* is a homeomor-
phism.) By (2.4), CYA'.Z) and C(ô0X,Z) axe naturally isomorphic. Thus we may
assume that X = ô0X, without loss of generality. (Xil(f))f e C(x,z) is a basis of the
closed sets of 9JÎ; thus it suffices to prove that (<% x ,^)(9JÎ(/) n<W~1(X)) is closed
in X x Tl. Using (5.4) it is easy to see that this set is £•(/). To show thatD(/) is
closed inlxn note that X„=f~ l(n) is in 38 for all n eZ; thus Tn = {(x,p) eXxTl:
xeXn implies n = 0(p)} is closed in X x Tl. Since D(f) = p)„eZT„, the theorem
is proved.

Given peôX — ô0X, we will consider the map 8P of ^/_1(p) into ßTl; but first
some technical results.

Lemma 9.4. Let p e SX — Ö0X, let p e ßTl, and let A0 e p. There exists
feC(X,Z) such that D(f) = A0, and such that 8P{ff,Xx-ví)eP for a" U e p.
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Proof. Since p$ô0X, there exists a distinguished partition (V„)neN of X
relative to u (5.2). Let A0 = (p„),16jv and let/| F„ = p,.p„. Then feC(X,Z)
and 0s(f) = Ao. Let t7m = (J„§mFn; then, by the definition of (F„)neJV, C/mep.
Let 17 e p and À e p. Since p is a filter, there exists pm e A n A0. Since p is a filter,
UmC\U # 0. Let x be a point in this set; then xeVn for some n ^ m. Since

/(*) = Px.P„, (x,Pm)eDif). Hence &iif,Xx-v))n A ¥= 0 for all Aep. Since
p is an ultrafilter, the result obtained above shows that ¿P((f,Xx-u))eP> proving
the lemma.

Given peôX and peßll, let J(p,p) = {feC(X,Z): ^((f,Xx-v))^ P for all
U e p}. Clearly, J(p, p) is a proper D-ideal.

Corollary 9.5. Lei peôX — ô0X and let peßTl. Then PßczJ(p,p) and
0>(J(p,p)) = p.

Proof. If/ePp, then 0>((f,Xx-v)) = H for all Uep, showing that fe J(p,p).
Let A0 e p and let/ be a function satisfying the conditions of (9.4). Then/e J(p,p)
and ^(f) = A0, proving the corollary.

Theorem 9.6. Let peôX- ¿>0X. Then & maps ^~\p) onto ßll.

Proof. Let peßU and let M be a maximal ideal that contains J(p,tp). By (9.5),
Pp c M; thus <%(M) = p. Again using (9.5), p = 0>(J(p,p)) c 0>(M), proving the
theorem.

Combining [P, 6.4.1] ( = (9.1)) and (9.6), we obtain the following.

Theorem 9.7, Let X and Y be nonempty Hausdorff spaces, let K be any
residue class field of C(Y,Z), let peôX - Ô0X, and let Z = C(X,Z)IPß. There
exists a maximal ideal M in Z such that K andZ/M are elementarily equivalent.

Proposition 9.8. Let Me50l such that p = W(M). Then p = 0>(M) if and only
ifM = M(p,u).

Proof. If p = ¿P(M), then there exists me M such that D(m) = X x {p}. This
implies that peM, peM, and, by (5.4), that M = M(p, p). If M = M(p, p), then
p e ¡?(M), proving the proposition.

Pierce has raised several questions concerning these residue class fields [P, §7].
One [P, 7.2] asks about relations between 0>(M) and %(M). (9.2), (9.6), and (9.8)
effectively answer this question. Pierce goes on to inquire [P, 7.3] whether two
maximal ideals M and M' of C(X,Z) are equal if 0>(M) = 0>(M') and W(M)
<W(M'). If <%(M) = pe<50X, then 0>(M) = p and M = M(p,p) = M' (9.8). In (5.9)
we saw that X and p could be chosen so that mp exceeds any preassigned cardinal
number. Thus lW~1(p) can have power greater than that of ßTl, and 0>\'^~l(p)
cannot be injective in this case, showing that M need not equal M', settling
[P, 7.3].

By [P, 6.4.1] ( = (9.1)) and [K, 5.1], if we let p run through ßll and let
Z\(p) = indlimAepnpenZ/(p)| A, then these fields form a set of representatives

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965]   INTEGER-VALUED FUNCTIONS AND NONSTANDARD ARITHMETIC   525

of the equivalence classes of elementarily equivalent residue class fields of C(X, Z),
in case X is not Z-pseudocompact. The power of ßTl is 2C, where c is the power
of the continuum. That this is a very redundant set of representatives can be
seen by applying the Löwenheim-Skolem theorem [R, 1.5.13] and choosing a
countable field Kp for each p e ßTl — Tl that is elementarily equivalent to Z¡(p).
For p = p, let Kp = Z\(p). By (9.8), p£Tl implies Kp is of characteristic zero.
Let Í2 be an algebraically closed field of characteristic zero whose transcendence
degree over g is K0. Thus Í2 is countable and each Kp can be imbedded in £2,
p$Tl. We conclude that there are at most c equivalence classes of elementarily
equivalent residue class fields of C(X,Z), and that the elementary theory of
C(X,Z)/M does not determine &(M).
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