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BY
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0. Introduction. In this paper rings of continuous integer-valued functions are
studied, with particular attention paid to their maximal residue class domains.
These domains correspond bijectively to minimal prime ideals, rendering the
space of these ideals of particular interest. Since these domains are either the
integers or are nonstandard models of the integers, questions about nonstandard
arithmetic will also be considered.

In §1 the space of minimal prime ideals of C(X, Z), the ring of continuous func-
tions from a nonempty Hausdorff space X into Z, the ring of integers, is showed to
be homeomorphic to 6.X (1.2), the Boolean space of the algebra of open-and-closed
sets of X. The maximal ideal space of C(X, Z)is shown to map continuously onto
06X (1.3). The space, doX, of points of X that give rise to integer residue class
domains, is studied in §2. The map of X into §,X strongly resembles the real-
compactification injection [GJ]. A representation theorem of C(X,Z) over
00X 1is also given (2.4).

It is shown in §3 that points in 6X — §,X give rise to Z, a nonstandard model
of Z (3.1). Here some of the relevant background material in model theory is dis-
cussed. The algebraic theory of nonstandard arithmetic is studied in §4. In §5 we
return to study Z, its maximal ideal space, and its quotient field Q, which is a non-
standard model of the rational field Q. In §6, the most technical section of the
paper, the valuations of Q associated with maximal ideals of Z are computed (6.3).
The value groups that arise are analysed ((6.4), (6.5), and (6.6)), followed by some
rather striking results in case the maximal ideal in question is principal.

The ideals of Z are analyzed in §7 along classical lines: i.e., we proceed from the
study of maximal and prime ideals, through the study of primary ideals, to a
decomposition theorem for ideals in terms of primary ideals (7.4). Ideals in
C(X,Z) are decomposed in §8, first into coprimary ideals (8.4), and then into
primary ideals (8.9). In the process, the sets of maximal, prime, coprimary, and
primary ideals of C(X,Z) are analyzed.

In §9 some model-theoretic results are obtained on the residue class fields of
C(X,Z), the principal result being that any such field is elementarily equivalent
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to some residue class field of any fixed nonstandard Z (9.7). In addition, two
questions raised by Pierce are settled [P, 7.2 and 7.3].

The paper is built on the foundations laid down by Pierce in Rings of integer-
valued continuous functions [P].

1. Minimal prime ideals in C(X, Z). Let It be the space of maximal ideals of
C(X,Z) under the Stone topology [GJ, TM]. (Note: whenever we speak of the
maximal (prime) ideal space of a commutative ring with identity, it will be under-
stood to have the Stone (Zariski) topology.) 9 is a compact T;-space [P, 3.1].
Let IT be the set of (positive) prime numbers. Given fe C(X, Z), let
D(f)={(x, p) € X xII: f(x) = Omod p}. D has the following properties [P, 2.2.1]:
D(f) Y D(g) = D(fg), D(f) " D(g) = D(f — g), and D(f) ND(g) = D((, &),
where (f, g) denotes the ideal (d) generated by f and g in C(X,Z) [P, 1.3.2].
Clearly, D induces a mapping on subsets of C(X, Z) into subsets of X x IT; let
this mapping also be denoted by D. Let £ = DC(X, Z) and let D be the space
of all ultrafilters of 2, under the hull-kernel topology [P, 3]. (Note: whenever
we speak of a space of ultrafilters it will be understood to have the hull-kernel
topology.) D is a homeomorphism of 3t onto D [P, 3.1.2].

Let & be the first projection of X x II. & induces a mapping of £ onto &, the
open-and-closed subsets of X, which we will call £.

Let 6X be the space of ultrafilters of %. Then 6X is a totally disconnected
Hausdorfl space [P, 1.6]. Let & be the mapping of D into X induced by &. It is
easy to see that £ maps D onto X. Then % = £D maps M onto §X.

Given fe C(X, Z), let {(f)={xe X:f(x)=0}. { maps C(X,Z) onto % [P, 1.2],
and has the following properties: {(f) U {(g) = {(fg), {(f) N{(g) = {(f - &),
and {(f) N L) = LS, &) = L(f?* + g%). (Cf. [G], 1.10].) ¢ induces a map ¢ of
subsets of C(X, Z) into subsets of &. For pedX, let { ~'(u) = P, ={feC(X,Z):
{(f) € u}. It is easily seen that P, is a prime ideal of C(X, Z) [GJ, 2.3 and 2.12].

THEOREM 1.1. Let MM, p = %M), and let P, = (" '(p). P, is the unique
minimal prime ideal of C(X,Z) that is contained in M,

Proof. Let P be a prime ideal of C(X, Z) that is contained in M, let feP,,
and let {(f) = U. Since P, = {"'(w), U is in p. As a result, g = 3, the char-
acteristic function of U on X, is in C(X, Z). Since %(g) = X — U is not in pu,
g¢M. By hypothesis, P = M, therefore, g¢ P; but fg = 0e P. We conclude that
fe P, showing that P, < P, proving the theorem. (Cf. [GJ, 7.15].)

Let B, be the space of minimal prime ideals of C(X,Z). By (1.1), {"'is a
mapping of 6X onto P,. Clearly, {(P,) = {{(f) : fe P,} = u, showing that {1
is injective. Since { ™' preserves intersection, we have the foliowing. (Cf. [P, 3.1.2])

ProposITION 1.2. { is a homeomorphism of B, onto 6X.

ReMARK. Let C(X, Q) denote the ring of continuous maps of X into Q, the
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rationals, under the discrete topology. Given fe C(X,Q) let {'(f)={xe X: f(x)=0},
and let N’ be the space of maximal ideals of C(X, Q). {’ is then a homeomorphism
of M’ onto 6X (cf. [G), 7.11]). Given M'e ', M’ NC(X,Z) = P,, where
p={_{M"). Thus M’ > M' N C(X, Z) is homeomorphism of I’ onto P, that
commutes with the mappings ¢’ and (™.

Let ¢ = { %D, and consider the following commutative diagram,

2| N\
AN . /

Since D, &, and ¢ ~!are surjective, so is o.

THEOREM 1.3. ¢ is a continuous mapping of M onto P, that takes a
maximal ideal to the unique minimal prime ideal contained in it. Since D and
{ are surjective homeomorphisms, & and % are continuous.

Proof. Given fe C(X,Z), let Po(f) = {PePo: fe P}. The set of all sets of
this form constitutes a base of the closed sets of P,. Let g = | f | V 1, and note
that Po(g) = Po(f). Clearly o™ ' Py(g) =« Mg) = {(MeM: ge M}. We will
show that these two sets are equal, proving that ¢ is continuous. By construction,
D(g) = {(g) x II; thus MeMi(g) implies {(g)e % M) = {a(M), proving that
o(M) € PBo(2), Therefore, M(g) = 6~ P(g), proving the theorem.

ProrosiTioN 1.4. Let fe C(X,Z). Then Po(f) is an open-and-closed subset
of Po.

Proof. Let{(f)=UandletV =X — U. U and V are in &% and partition X.
Let 6 be the natural injection of X into X. Since §X is the space of ultrafilters
of &, cl;x0U and cl;x0V partition 6X. Since 6 ~'cl,;x0U = Po(f), the proposition
is proved.

2. Maximal residue class domains of C(X, Z), standard theory. Maximal residue
class domains of C(X,Z) correspond bijectively with minimal prime ideals of
C(X,Z). Let Pe P, and let Z = C(X, Z)/P. Given fe C(X, Z), let f be its image
in Z. Conversely, given fe Z, let f be a pre-image of f in C(X, Z). Given a subset
S of Z let S be the pre-image of § in C(X, Z) and given S in C(X, Z) let S be its
image in Z.

PROPOSITION 2.1. Z has a unique total ordering under which f— f is a lattice-
homomorphism. The subring of Z generated by 1, called Z, is the smallest non-
zero convex subring of Z.
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Proof. Given fe P and ge C(X,Z) such that |g| = |f|; then {(f) = {(g).
Since P = {~*(u) for some p e 6X and since p is a filter, g € P. This shows that the
natural order on C(X, Z) induces a unique lattice ordering on Z under which
f — f is a lattice-homomorphism [GJ, 5.3]. To see that Z is totally ordered under
this ordering, let fe C(X, Z), let U= {xeX: f(x) 20}, and Ilet
V ={xeX:f(x) <0}. U and V are in & and partition X. Since y is an ultra-
filter in &, either U or V is in u. Accordingly, either f = fyy (mod P) or f = fxy
(mod P). Since fyy = 0 and fx, < 0, the proposition is proved. (Cf. [GJ, 5.5].)

Let m be the space of maximal ideals of Z. mt is a compact T; space that is not
Hausdorff [GJ, 7M]. The inverse of f— f induces an injection M - M of m
onto ¢ ~!(P), the fibre of M over P.

PROPOSITION 2.2. The injection M—M of m onto 6~ (P) is a homeomorphism.

Proof. Sets of the form m(f) = {Mem: feM}, for feZ, form a base for the
closed sets in m. Tt suffices to show that given fe C(X, Z), the image of m(f) in
¢~ 1(P) is M(f) N g ~*(P); but this is immediate, proving the proposition.

X is said to be Z-pseudocompact if C(X,Z) = C*X, Z), the set of bounded
continuous maps of X into Z [P, 1.8.1].

PRrOPOSITION 2.3. X is Z-pseudocompact if and only if Z = Z for all PP,

Proof. If X is Z-pseudocompact, then Z is cofinal in Z for all P € 3,. Converse-
ly, assume that X is not Z-pseudocompact. There exist fe C(X, Z) — C¥(X, Z).
LetU, = {xeX: | f(x) | = n}. Clearly (U,), .y is a family of subsets of # having
the finite intersection property. By Zorn’s Lemma, (U,),.y is contained in some
pedX. Let P={ ~'(u) and let Z = C(X,Z)/P. Then |f| 2= n for all neN,
proving the proposition. (Cf. [GJ, 8.4].)

Given xe X let 6(x) be the set of all subsets of # that contain x. 0 is
a continuous mapping of X onto a dense subset of 56X [P, 1.5.2]. Let
50X = {nedX: C(X,Z)/P, = Z}. Then X < §,X < 6X and by (2.3) 60X = 6X
if and only if X is Z-pseudocompact.

THEOREM 2.4. Every fe C(X, Z) extends uniquely, by duality, to fe C(5,X, Z).
The map f— f is a surjective lattice-isomorphism. §,X = {nedX: u has the
countable intersection property}. 5,X is the largest space (up to homeomorphism)
in which 0X is dense, such that each fe C(X,Z) extends to fe C(5,X,Z), the
functions {f: fe C(X, Z)} separating the points of 5,X.

Since this sort of theorem is by now familiar, its proof will only be sketched.
(Cf. [GJ, Chapter 8].)

By duality, fe Z%X Clearly, f — fis a lattice-isomorphism. To show that f is
continuous, it suffices to show that, given any neZ, f~(n) is open-and-closed
in 6oX. 6%, the adjoint of 6, is a lattice-isomorphism of C*(6X, Z) onto C*(X, Z)
[P, 1.5.2]. Given heCX(X,Z), let h® = (6*)"'(h). Clearly, h’|5oX = h. Let
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g=(|n| + 1)/\f\/(—|n| —1). Since geC*X,Z), (g) (n)=U is an
open-and-closed subset of X. Therefore U N §,X is an open-and-closed subset
of 6,X, but this set is f~(n), showing that f is continuous. By [P, 1.2], f— fis
surjective.

To show that §,X = {uedX: p has the countable intersection property}
(see [GJ, 0.3] for definition), it suffices to show that X — 8,X is {uedX: u does
not have the countable intersection property}. Given such u, let (U,),.n be a
subset of u having an empty intersection. Let f = E,,E,,,xun. Clearly, fe C(X, Z)
and fe C(X, Z)/P,—Z. Conversely, if e 6X —3,X, there exists fe C(X, Z)/P,—Z.
Let U, = {xeX:lfl 2 n}.Each U, isin p and(,eaU, = .

To prove the last assertion, let ¢ be a homeomorphism of §,X onto a dense
subset of a Hausdorff space Y such that, for each fe C(6,X,Z), there exists
fe C(Y, Z) such that f = 7, the maps fseparating the points of Y. ¢* is a lattice-
isomorphism of C(Y,Z) onto C(6,X,Z). Further, f - f— f defines surjective
isomorphisms of the following rings: C(X,Z) —» C(6,X,Z) - C(Y,Z). A point
ye Y gives rise, by means of evaluation, to a homomorphism of C(Y, Z) onto Z,
and thus the kernel P of this mapping pulled back to C(X, Z)is in { ~'(5oX).
Let pu = {(P), and note that the homomorphism pulled back to C(6,X,Z) is
f - f(1). We conclude that f(y) = f(¢(w)) for all fe C(Y, Z). By hypothesis, these
functions fseparate the points of Y, showing that ¢(u) = y, and that ¢ is a homeo-
morphism of §,X onto Y, concluding our sketch of the proof of (2.4).

ExaMpLE. Let W be the space of ordinals less than the first uncountable
ordinal, under the order topology. Then 6W # 3,W. (See [GJ, 5.12] for details.)

Historical note. Many of the results of this section are similar to results
obtained by Hewitt [H,] for real-valued functions.

3. Maximal residue class domains of C(X,Z), nonstandard theory. Unless
otherwise stated, assume henceforth that X is not Z-pseudocompact. We have
seen (2.3) that there exist uedX — §,X, and that Z = C(X, Z)/P, is a proper
extension of Z.

THEOREM 3.1. Z is a nonstandard model of Z.

Let us recall some definition from model theory, in order to clarify the meaning
of this theorem.

Let A be the category of all totally ordered integral domains and order-preserv-
ing homomorphisms. For such domains, equality, addition, multiplication,
and order are the atomic relations [R, Chapter IT]. The lower predicate calculus
as applied to objects in A, L(A), is built up by means of certain rules from atomic
relations, object symbols, and variables; the logical connectives of negation, dis-
junction, conjunction, implication, and equivalence; and the universal and
existential quantifiers, together with brackets [R, 1.2]. Let ¢ e L(), and let
Xgs s X oo+ be its free variables [R, p. 5]. Let a4, +++, 4, --+ be elements in an
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object 4 in U, and let (a) be the vector (a,, -+, a, , ---). (@) is said to satisfy ¢ if,
when aq, is substituted for x, in ¢, the resulting statement ¢(a) holds in 4. For
example, if ¢ is equivalent to the mathematical statement, x; = x,, then ¢(a)
holds in A if and only if a; = a,. ¢ is said to be valid in A if ¢(a) holds in A4 for
all (a). For example, if ¢ is equivalent to the mathematical statement,
Xy + X3 = x, + x;, then ¢ is valid in 4. A sentence in L() is an element in
L) without free variables. By an elementary theorem about A is meant a theorem
concerning A that can be stated as a sentence in L(). Two objects in U are said
to be elementarily equivalent, if every elementary theorem valid in one is valid
in the other. Clearly isomorphic objects are elementarily equivalent. However,
elementarily equivalent objects in U need not be isomorphic. An object in U
that is elementarily equivalent to Z but is not isomorphic to it will be called a
nonstandard model of Z; thus the meaning of (3.1) is clear.

Z can be written as an inductive limit as follows (see, e.g., [ES, Chapter VIII, §4]
for definition): given U e u, the restriction mapping of C(X,Z) to C(U,Z) is a
lattice-homomorphism (which, in this case, is surjective [P, 1.2]). The kernel of
the canonical homomorphism of C(X,Z) onto indlimy ., C(U, Z) is P, ; thus
this inductive limit may be identified with Z. If X is discrete we may apply [K, 5.1]
to prove (3.1). We will now refine the proof of [K, 5.1] a bit to cover the non-
discrete case. Generalizing the setting slightly, let 4 be a countable object in A
and let A have the discrete topology. For fe C(X, A) let {(f) = {x e X: f(x) = 0}.
Then {(C(X, A)) = #. Finally, let 4 = indlimy ., C(U, 4).

LemMmA 3.2. Let ¢ e L(N), let f,e C(X, A), and let f, be the image of f, in A
for all neN. Let (f)=(f1.fn>) let (f)=(1sfn) and let
U={xeX: ¢(f(x)) holds in A}. Then U is in B. Further, ¢(f) holds in A
if and only if Ue p.

Proof. Let ¢ and ¢ € L(N), let U = {xe X: ¢(f(x)) holds in A}, and let
V = {xeX: y(f(x)) holds in A}. By the definition of equality, addition, mul-
tiplication, and order in ind lim ;; . , C(U, A), the theorem is true if ¢ is atomic.

Assume that the lemma holds for ¢ and for . The set, {x € X: ¢(f(x)) A ¥ (f(x))
holds in A}, is U N V. Since % is closed under finite intersection, U NV is in 4.
If ¢(f) A ¥(f) holds in 4, ¢(f) holds in 4 and ¥(f) holds in 4 ; thus, by hypothesis,
U, V e pu. Since u is a filter, U N V e u. Conversely, assume that U N V e u. Since
uis a filter in & and since U and V are in &, U and V are in u. By hypothesis,
¢(f) and Y(f) hold in A4, proving that ¢(f) A Y(f) holds in 4.

Assume that the lemma is true for ¢, and let ¥y =(~ ¢). The statement, (~ ¢) (f)
holds in A, is equivalent to U ¢ u. Since &, the algebra of open-and-closed sets in
X, is closed under complementation, ¥V = X ~ U is in #. Since p is an ultrafilter
in 4, V e u. (Cf. [G], 2.13].) Conversely, assume that Ve pu. Since Fé¢p, Uép,
proving that ( ~ ¢) (f) is valid in A2
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Let = (3x;)¢. First we will show that V € 8. (This is the first point at which
the proof in the nondiscrete case is more involved than the proof in the discrete
case. Cf. [K, p. 227].) By definition, for each x € V there exists ¢ € 4 such that

(*) ¢(f1(X), ‘ "’fj— 1(X), t, fj+ l(x)s "') holds in 4.

Let T be the set of all such e 4. For each te T let X, be the set of all xe X for
which (%) is true. Since the constant function of value ¢ is in C(X, 4), we can invoke
the induction hypothesis and conclude that X, e 4. Clearly U, e7X, = V. Since 4
is, by hypothesis, countable, T is countable and can be properly indexed as follows:
T = (#(n)),n+» where N’ is an initial segment of N. Let V,=X,), V,=X,5,— V1,
and let V; = X,y — V; UV, ; continuing in this fashion, by finite induction,
defines a partition (V,), .- of V by elements of #. Let g| V, = t(n) and gl X-V
=0; then geC(X,4) (cf. [P, 1.2]). Let (f)=(f1,**s fi-1» & fj+1,++) and
let W={xeX: ¢(f'(x)) holds in A}. By hypothesis We %, and by the con-
struction of g, W = V, showing that V e 4. Assume now that V € u. By hypoth-
esis, ¢(f") holds in A: i.e., Y(f) holds in A. Conversely, assume that ¥(f) holds
in A. Then there exists he C(X, A) such that if (f") =(fr, - fi-v B e,
then ¢(f”) holds in 4. Let Y = {x e X: ¢(f"(x)) holds in 4} and note that Y = V.
It was shown above that V e #. By hypothesis, Y € u, therefore Ve u. Since all
formulas in L(W) can be built up from atomic formulas in a finite number of
steps of the kind treated above, the lemma is proved.

Applying (3.2) to sentences proves (3.1).

Historical note. Scott [S] has considered this method of constructing non-
standard models of Z, in case X is discrete.

4. The algebraic theory of nonstandard models of Z. Let 4 be an object in 2.
It is easily seen that the following notions about 4 can be formulated in L():
a is a divisor of b in A4, a is a unit in A4, d is a greatest common divisor of a,,---,a,
in A, p is a prime element of 4, and a = b (mod ¢) in 4. Throughout the remainder
of this section, let A be a nonstandard model of Z.

THEOREM 4.1. The following hold in A:

1. The group of units in A is {1, — 1}.

2. Every finitely generated ideal is principal.

3. (EucLiD’s FIRsT THEOREM). If p is a prime in A and p|ab, then p|a or p|b.

4. Every nonunit has a prime factor.

5. Every element of A that can be written as a (finite) product of primes and
units is uniquely expressible in this fashion, except for a unit factor and the
order of the prime factors.

6. Given a prime p in A, (p) is a maximal ideal.

7. The intersection of all principal maximal ideals in A is the zero ideal:

i.e., the set of principal maximal ideals is dense in the space of maximal ideals
of A.
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8. (FERMAT’S THEOREM). Given a finite prime p of A and ae A — (p), then
a’~! =1 (mod p).

9. (LAGRANGE’S THEOREM). Every non-negative element of A is the sum of four
squares.

Proof. Since A is elementarily equivalent to Z, and all of the theorems hold
in Z, it suffices to show that each of the theorems is elementary. Since the notion
of a unit in 4 is expressible in a sentence in L(A), 1 holds. 2 is equivalent to the
statement that a finite number of elements in A has a greatest common divisor,
an elementary statement. Since the notion of a prime in A4 is elementary, 3 is ele-
mentary. Since the notion of a prime and of a nonunit are elementary concepts,
4 and 5 hold. 6 is equivalent to the following elementary statement: for all primes
pin Aandforallae A — (p), (a, p) = 1. 7 is equivalent to the following elementary
statement: for all nonzero a in A, there exists a prime p in 4 such that pta.
Clearly 8 and 9 are elementary statements. Thus the theorem has been proved.

ExamMpie. Let X = N, let pedoX — 6,X, let f(n) = n!; and let
Z =indlimy.,C(U,Z). Every finite prime in Z divides f, but f# 0; thus the
finite principal maximal ideals of Z are not dense in the maximal ideal space of Z.
Using (4.1.7) we see that there must exist infinite primes in Z. Further, in spite
of (4.1.5), the unique factorization theorem does not hold in Z.

CoRrOLLARY 4.2. If p is a finite prime in A, then A/(p) = Z/(p).

Proof. Clearly Z/(p) = A/(p). Using (4.1.8) (Fermat’s Theorem), equality is
established.
Let F be the quotient field of A.

COROLLARY 4.3. The orders on A and on F are the only orders under which
they are totally ordered rings.

Proof. By (4.1.9) (Lagrange’s Theorem), the order on A is defined algebraically.
Since squares must be non-negative in any totally ordered ring, the order on A4 is
unique. The order on F uniquely determines, and is uniquely determined by,
the order on 4, proving the corollary. (Cf. [S].)

One of the most far-reaching results thus far obtained for A is (4.1.2): i.e.,
that every finitely generated ideal in A4 is principal. Such an integral domain will be
called locally a principal ideal domain. Z is such a domain that is not a principal
ideal domain (5.7). Another such example is the algebra of all analytic functions
on an open Riemann surface [A,]. One can readily check that (4.1.3), (4.1.5)
and (4.1.6) hold for locally principal ideal domains.

Given an integral domain B and a prime ideal P in it, let B, = {a/b: ae B and
be B — P}. B, is, of course, a local ring whose maximal ideal Pp is {a/b: ae P
and be B — P}. Further, a—a/l is an injective homomorphism of B into Bp.
(See [ZS,, pp. 221-228] for details.)
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THEOREM 4.4. Let B be locally a principal ideal domain and let P be a prime
ideal in B. Bp is a valuation ring.

Proof. Let K be the quotient field of B and let fe K — B,. Then f = a/b, for
a, be B and b # 0. By hypothesis, (a, b) = (d). Since d | a and d | b, we may assume
that d = 1. Since f¢ Bp, be P. If ae P, then (a,b) = (1) < P, a contradiction.
Thus a ¢ P and f~'e B, proving that B is a valuation ring.

Applying (4.4) to various classical results about localization [ZS,, p. 228] and
the prime ideals in a valuation ring [ZS,, p. 40] allows us to conclude that the
prime ideals of B contained in M form a chain, under inclusion, and are in natural,
bijective, order-reversing correspondence with the convex subgroups of the
value group of B,,. In §6 this group will be computed in case B = Z (6.4).

As a consequence of the following theorem, we will see that F, the quotient
field of A, is a nonstandard model of the rational number field Q.

THEOREM 4.5. Two objects in W that are elementarily equivalent have
elementarily equivalent quotient fields.

Frequently one reduces algebraic statements about say Q, to statements about
Z. We will formalize this process into the following lemma, which has (4.5) as an
immediate consequence.

LEMMA 4.6. Let B be an object in W, let K be its quotient field (again an object
inN), leta,,---,a,,-- bein B, and let b,,---, b,, --- be positive elements in B. There
exists a mapping ¢ — ¢’ of L(N) into itself, such that ¢(a;/b,,+-,a,/b,, )
holds in K if and only if ¢'(ay, by, -+, a,,b,, ) holds in B.

Proof. The atomic relation of equality in K, E(a,/b,,a,/b,), meaning
a,/b, = a,/b,, will be taken to E’(a,, b, a,,b,), meaning a,b, = a,b,. Addition
in K, expressed by S(a, /by, a,/b,, as/bs;), meaning a,/b, + a,/b, = as/b;, will be
taken to S’(a,, b,,a,, b,,as,bs), meaning a,b,b; + a,b,b; = asbb,. The prod-
uct relation will be treated similarly. The order relation in K, O(a, /by, a,/b,),
meaning a,/b; < a,/b,, will be taken to O’(a,, b,,a,,b,), meaning a.b, < a,b,.
(Note: by hypothesis, b; and b, are positive.) Thus we have defined the mapping
¢— ¢’ on the atomic formulas. Let the mapping be extended by requiring that it pre-
serve A and ~ . Assuming ¢’ to be defined, let (3z,)¢)' =(3x,)(Tv,) (¢’ A (y,>0)).
One can easily verify that this mapping satisfies the conditions of the lemma.

Using (4.6), (4.5) follows immediately.

CoROLLARY 4.7. The quotient field F of A is a nonstandard model of Q. Thus
A is integrally closed in F.

Since the last statement is elementary and holds for Z, it holds for A.
The following is a special case of a theorem due to Frayne (see [K, 9.1]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] INTEGER-VALUED FUNCTIONS AND NONSTANDARD ARITHMETIC 507

THEOREM 4.8 (FRAYNE). Let B and B’ be objects in W that are elementarily
equivalent. There exists a discrete space X, pedX, and an order-preserving
isomorphism that maps B’ into B = indlimy., C(U, B). Finally, X may be
chosen to have the same cardinal number as B’'.

Using this, we can regard 4 as a subdomain of Z and F as a subfield of
Q = indlimy ,C(U, Q).

COROLLARY 4.9. Any element in F — Q is transcendental over Q.

Proof. Let F be imbedded in Q, let fe F, and assume that f is algebraic over Q.
Let m(t) =" + a;t" '+ --- + a, be the minimal monic polynomial of f in
Q[t]. Let f be a pre-image of f in C(X, Q). There exists U e u such that for all
xeU, m(f(x)) =0. Let q,, ---, g, be the distinct rational roots of m(t) and let
U;={xeX: f(x) = q;}. Clearly, (U N U));~ .-, is a partition of U by elements
in #. Since Uepy, one and only one UNU; =V is in pu. f| V = ¢q;, showing
that fe Q, proving the corollary.

ReMARK. In spite of this corollary, F is not a pure transcendental extension
of Q, for the order on F is unique (4.3).

5. On the structure of Z and its quotient field. Since Z is a nonstandard model
of Z (3.1), the results of §4 apply to Z. Since Z has an explicit representation as
ind limy ., C(U, Z), one can translate questions on the existence of elements in
Z back to C(X, Z), where elements can, in many cases, easily be constructed; thus
when dealing with Z we can go beyond the results of §4.

An element f in C(X, Z) will be called a prime-valued function if |f(x) | ell
for all xe X (cf. [P, 4.3. 1]).

THEOREM 5.1. If f is a prime-valued function in C(X, Z), then f is a prime in Z,
Conversely, every prime f in Z has a prime-valued pre-image in C(X, Z).

Proof. Let f be a prime-valued function in C(X, Z) and let a, b e C(X, Z) such
that f = ab. There exists U e u such thatfl U= ab] UletV=a(+1)NU
and W=b'(+1)NU. Clearly, V, We®, U=VUW, and VNW=(.
Since yu is an ultrafilter in 4, either V or W is in u; accordingly, either a or b is a
unit in Z, showing that f is prime.

Conversely, assume that f is a prime element in Z. We may assume, without
loss of generality, that f > 0. Let g be a positive pre-image of f in C(X, Z). Since
fis not a unit, X, = g~ ' (1) is not in pu. Since X; € # and p is an ultrafilter in %,
X — X,ep Assume for a moment that Xy = g !(II) is not in pu. Let
N ' =N-—ITuU{1}). Clearly g "Y(N')=U is equal to (X—Xp) N(X —X,)
and is in p. For each ne N’, let U, = g “!(n). (U,),.n is a partition of U by
elements of #. For each ne N’', there exist nonunits a, and b, in N such that
n=a,b,. Let a l U,=a,, b| U,=b, for all ne N’, and a[X—-U=0=b|X—U.
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Since U € y, f = ab. Further, by construction, a and b are nonunits in Z. Since f
is prime, this is a contradiction, and we conclude that X e u. Let f | Xn=g | X
and let f |X — Xy =2. f is a prime-valued function and f— f, proving the
theorem,

Before proceeding to consider corolaries of (5.1), we will need a technical
result, which follows. Since u is, by hypothesis, in §X — §,X, u does not have
the countable intersection property. We will see (5.2) that this implies the existence
of a family (U,), .y of u such that U, = X, and U,,; < U, for all ne N. Let
V,=U,— U,4 for all ne N. Then (V}), .y is a family of nonempty sets of #
that partition X and such that U,,;,,, V,e u for all me N. Such a partition of X
will be called a distinguished partition of X relative to p.

LEMMA 5.2. Given uedX, there exists a distinguished partition of X relative
to u, if and only if u¢doX.

Proof. Assume that pé¢d,X. By the definition of §,X, there exists feZ — Z.
Assume that £ > 0 and let f be a pre-image of f in C(X, Z) such that f = 1. Let
U ={xeX:n=<f(x)}. Clarly, U,e®, U, =X, U,y U, and U,ep
Further, n"e ~ U, = J, showing that, on reindexing (U,),.y, W€ can require
that U,,, < U,. Let V,=U, — U, ; then (V), .y is a distinguished partition
of X relative to u. To prove the converse, let (V,), .y be such a partition, and let
f | V, =n for all n. Then feZ — Z, showing that pu¢d,X, proving the lemma.

Let ¢ denote the power of the continuum,

COROLLARY 5.3. There exist at least ¢ infinite primes in Z.

Proof. Let (V,),.y be a distinguished partition of X relative to u. Let IT be
partitioned into two infinite sets, IT, and IT,, and let p; be the least element of IT;.
Let ﬁl V; = p;. Let IT; — {p;} be partitioned into two infinite subsets, II; ;, and
let p; ; be the least element of this set. Let f; ; extend f; and let f; j| Vo=pi-
Continuing in this fashion, by finite induction, one defines prime-valued functions
f. in C(X, Z) for each 7€{0,1}" By (5.1), f,isa prime in Z. Since (V,), yis dis-
tinguished, U, = U”gm V,is in p. Since f, l U, = m, f, is not in Z. Given distinct
rand ¢ € {0, 1}", let m be the least integer for which t(m) # o(m). By construction,
f(U,) Nnf(U,) = @, showing that f, # f,, proving the corollary.

ReMARK. Let ¢, = (3x) (x # n), for ne Z. To the sentences in L() used to
define Z, adjoin (¢,), .z . The resulting axiom system is for nonstandard models
of Z. By the Lowenheim-Skolem theorem [R, 1.5.13], there is a countable non-
standard model 4 of Z. By (5.3), A4 is not isomorphic to Z.

Let f be a prime-valued function in C(X,Z) and let M(f, p) = {ge C(X,Z):
D(f) N (U x IT) < D(g), for some U e u}. It has been shown that M(f, u) is a
maximal ideal in C(X, Z) [P, 4.3.4]. By (5.1) and (4.1.6), we arrive at another
corollary.
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COROLLARY 5.4. Let f be a prime-valued function in C(X,Z). Then M(f))
is the pre-image of the maximal ideal (f) in Z.

Let m be the set of finite maximal ideals of Z (i.e., {M ¢ m: M N Z is a maximal
ideal in Z}), and let m, be the set of all principal maximal ideals of Z. Clearly,
m, < m, < m. By (5.3), we know that m, — m, is of power at least ¢, and by
(4.1.7) we know that m, is dense in nt.

COROLLARY 5.5. my is closed inm,.

Proof. Recall that the closure of m, in m is {Mem:(),.n() = M}. To
prove this corollary, it suffices to show that, given any infinite prime f in Z, there
exists g € N, . n(p) such that g ¢(f). Without loss of generality, we may assume
that f > 0. Let f be a positive, prime-valued pre-image of f(5.1). Let X, = f ~!(p)
and note that (X ), . is a partition of X by elements of #. Since f¢ Z, no X, is
in u, Let (p(n)), .y be a proper indexing of Il. Let g | X,a1y=1and, forn>1,
let g|X,m=p1):--p(n—1). Then geC(X,Z), (gf)=(1) and thus
(9,f) = (1), showing that g ¢ (f). Since p is an ultrafilter in £ and since X, ¢ u for
any pell, given me N, then Ulgnng p(m i MOt in g, Since p is an ultrafilter
in 4, there exists U € p such that (U 12nsm Xpm) NU = 8. Given xe U, xe X,;
implies j > m; thus p(1), ---, p(m) divide g(x), showing that g € (p) for all peIl,
proving the corollary.

The mapping p — (p) is a bijection between IT and m,. As the maximal ideal
space of Z, IT is a compact T;-space, a base for the closed sets of II being its
finite subsets, The next result implies that, under this topology, p — (p) is not
continuous.

PROPOSITION 5.6. The topology of my, induced from m, is the discrete topology.

Proof. Since Z < Z, all finite subsets of m, are closed in my,. Let m; be an
infinite subset of m, and let IT" be the pre-image of m, in II. Let (p(n)), .y be
a proper indexing of II' and let (V,),.n be a distinguished partition of X rel-
ative to u. Let flV, = p(1)- - p(n). Then feC(X,Z), feZ - Z, and
{Mem;: feM} = mj, proving the proposition.

COROLLARY 5.7. m, # mt.

Proof. Were m, = m, then m, would be compact. Since m, is closed in m,
(5.5), m; would be compact. Since m, has the discrete topology (5.6), it would
have to be finite, a contradiction.

Since m; is closed in m,, (5.5), (cl,, m,) — m, < m—m,. Since m, is a discrete
space (5.6) and m is compact, the boundary of n, in m is nonempty.

THEOREM 5.8. (cl,, my) — my is a proper subset of m — m,,.
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Proof. Let (V,),.y be a distinguished partition of X relative to u. Let
(p(n)), .y be an enumeration of II, and let f l V,=p(1)- - p(n). Then
fer]pE n(p). We will use [P, 4.4] to construct M em — m, such that f¢ M.
Let ®, = {p(m): n <m <2n} and let B=|J,.xV, x ®,. We will show that
b={BND())° N "D NU x II: fy, -+, f,, being prime-valued func-
tions in C(X, Z) and U e u} is a filter base in 2 =D(C(X, Z)), where the super-
script ¢ means complementation. Since (V,), .y is a distinguished partition of X
relative to u, given m > k, U, = U,,g,,, V,is in p. Given xe U, xe V, for some
n > k. Among the n primes of ®, there must be one which is distinct from
f1(x), «--, fi(x), showing that b is a filter base of &. Let b be an ultrafilter in 2 that
contains b, and let M = D ~!(b). By construction, 6(M) = u. Since D(f) N B =,
fé M. By construction, M ¢ m,, proving the theorem.

REMARK. Pierce [P, 5.2] has shown that any fixed cardinal number can be
exceeded by the power of C(X, Z)/M, for suitable X and M. A fortiori, a Z can be
found whose power exceeds any given cardinal number. The following is a variant
of this argument.

PrOPOSITION 5.9. Let X be a discrete space of infinite power n. There exists
pedX — 60X such that m, has power greater than .

Proof. Let (F,),.x be a proper indexing of the nonempty finite subsets of X.
Given ye X, let X, = {xe X: ye F,}. The family (X,), . x has the finite, but not
the countable intersection property. Let u be an ultrafilter on X containing
(X,)yex s then p¢6oX. Let Z = C(X, Z)/P, . Assume for a moment that the power
of m, does not exceed n. Let m, = ((9,)),x - By (5.1), choose a prime-valued
pre-image g, in C(X,Z) of each prime g,. Since F, is a nonempty finite set,
{g,(x)}, < F, is a finite set of prime numbers. Let f(x) be the least prime number
greater than all g(x), y € F,. By construction, f is a prime-valued function and,
by (5.1), f is a prime in Z. Since g, | X, < f| X, and since X, € 1, g,< f, showing
that (f) ¢ m,, a contradiction, proving that the power of m, exceeds n. (Cf.
[G], 12.7])

Given fe C(X,Q), Q having the discrete topology, there exist unique a,
be C(X, Z)such that b > 0, (a, b) =(1), and f = a/b. Clearly, f = a/b, (a, b) = (1),
and b > 0. Whenever we write f(f) as a quotient of elements of C(X, Z)(Z), it
will be assumed, unless otherwise stated, that such a quotient has this form.,
Clearly, Q = ind limy ., C(U, Q) is the quotient field of Z in Q.

We will close the section with an analysis of the order structure of Q and Z.
Let T be a nonempty, totally ordered set and let A and B be subsets of T. One
writes A < B (4 < B) if given ae A and be B, then a < b (a £ b). T is called
an 7,-set [H,, p. 180] (a near n,-set [A;, §4]) if given two countable (nonempty)
subsets A and B of T such that A < B(A4 < B), there exists te T such that
A<t<B(AZLt<B).
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THEOREM 5.10. Z is a near n,;-set in which no countable set is cofinal. Q is an
ﬂl-set.

Proof. Let A and B be two nonempty, countable subsets of Z(Q) such that
A < B. Using [GJ, 13.5], we can choose (f,), cx and (g,), .5 in C(X, Z) (C(X, Q))
such that f, £ f, £ g, = g, Whenever k < n, (f,),n is cofinal in 4, and (g,),cn
is coinitial in B. Let (V,),.n be a distinguished partition of X relative to u and
let t| V, = f,,l V, for all neN. Clearly, ¢t is in C(X,Z)(C(X,Q)). Further,
fi £t < g, for all ke N, showing that Z and Q are near #n,-sets. To show that Z
has no countable cofinal set, omit B from the construction above. Applying
[GJ, 13.8] shows that Q is, in addition, an #,-set, proving the theorem.

REeMARK. Since Q is an #,-set, the residue class field of its order valuation is

the reals [A,], [A,]. However, by (4.9),Q contains no subfield of coset represent-
atives of this field.

6. Valuations of Q associated with maximal ideals of Z. We have seen (4.4) that,
given a maximal ideal M of Z, Z), is a valuation ring of Q. It will be shown (6.3)
that the value group of this valuation can be computed in the following round-
about fashion: by means of a divisor map d, we can go from C(X, Q)* to Z**1,
and then pass, by means of an inductive limit along D(M), to a totally ordered
group G. We will see that Q* maps onto G in such a way as to give the desired
valuation. (Note the similarity between this and the method of obtaining value
groups in [A,, §2].) Having done this, it will be quite easy to study G.

Since Z,, is a local ring of Q whose maximal ideal is M, the group of units U
of (Zy)* is Zy — My,. Recall that a valuation of @ associated with Z,,is a homo-
morphism V of the multiplicative group of Q*, whose kernel is U. Let I" be the
range of V. Since Z,, is a valuation ring, V(Z*) serves as a set of non-negative
elements (= (= 0)) of I', and makes I" into a totally ordered group. Extend V
to Q by letting V(0) =co, cc being a symbol greater than all elements in I', such
that 0o +y =7y + oo = oo for all yel. Then V(a £ b) = min {V(a), V(b)},
and V(ab) = V(a) + V(b) for all @ and b in Q.

Given fe C(X, Q), let d(f) be the following mapping defined on X x II:
given (x, p)e X x II, let d(f)(x, p) = v,(f(x)), where v, is the p-adic valuation
on Q. Clearly, d is a homomorphism of C(X,Q)* (= {f¢C(X,Q): f(x) #0
for all x € X}) into Z**™. Let the range of d be given pointwise addition and order.
Then d(f + g) = d(f) A d(g), and d(fg)=d(f) + d(g). Clearly, feC(X,Z)
if and only if d(f) 2 0.

By the support of d(f) is meant the set {(x, p)e X x II: d(f)(x, p) # 0}.

PROPOSITION 6.1. Let aeC(X,Z). D(a) is the support of d(a).

Proof. It suffices to observe that the following are equivalent: (x, p) e D(a),
a(x) = 0(p), v,(a(x)) > 0, and d(a) (x, p) > 0. ‘
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Let A be the canonical homomorphism of dC(X, Q)* onto
ind lim,, . dC(X, Q)* | D(m) = G.

Since dC(X, Q)* [D(m) is a partially ordered group, G is a partially ordered group
and A is an order-preserving mapping.

LemMA 6.2. dC(X,Q)* is a lattice-ordered subgroup of Z**™, G is
a totally ordered group, AdC(X,Z)* = G (2 0), and the kernel U of Ad is
{a/b: a,be C(X,Z)* — M}.

Proof. Let fe C(X, Q)* equal a/b, where

a, beC(X,Z)* (= {ge C(X, 2): {(g) =&})-

By convention, (a, b) = (1); thus d(f) = d(a) — d(b), where d(a),d(b) = 0 and
d(a) A d(b) = 0. Using [B, p. 215], one sees that dC(X, Q)* is a lattice-ordered
group. Since (a, b) = (1), at most one of @ and b is in M: i.e., at most one of D(a)
and D(b) is in D(M). By (6.1), D(a) (D(b)) is the support of d(a) (d(b)). Thus
aeM if and only if Ad(f) = Ad(a) > 0, be M if and only if Ad(f) = — Ad(b) < 0,
and a and b are not in M if and only if 1d(f) = O, proving the lemma.

Let 5 be the canonical homomorphism of C(X, Q)* onto Q*.

THEOREM 6.3. There exists a unique, order-preserving isomorphism 6 of T
onto G such that the following diagram is commutative.

cx, 0 —* . ¢
1
n : 6
o —7Y T

Proof. By (6.2), the kernel U of Ad is {a/b: a, be C(X, Z)* — M}. By definition,
the kernel U of V is Zy,—M,: i.e., {a/b: a, be Z*—M},showing that n ~'(U)=U.
We conclude that a unique group isomorphism 6 of I' into G exists, making
the diagram commutative. Since Ad is surjective, 6 is surjective. By (6.2),
AdC(X,Z2)*=G(=20), nC(X,Z)* =Z*, and V(Z*) =T ( = 0), showing that 0 is,
order preserving, proving the theorem.

Let ¥ .= 0V and let V(0) = co. Then V'is a valuation of Q whose valuation ring
is Z,; and whose value group is G. Let us now investigate the structure of G.

THEOREM 6.4. G is a near ny-set, with a least positive element g,, in which
no countable set is cofinal. If M=(f), then V(f) = g,.

Proof. Pierce has observed [P, Proof of 4.5.4] that there exists me M such
that for all x € X, either m(x) = 1 or m(x) is the product of distinct primes. Thus
d(m) |D(m) = 1, and Ad(m) is g,. Note that if M contains a prime-valued function
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f (e, if M =(f)), then Ad(f) is go, showing that V(f) = g,. Let A and B be
nonempty, countable subsets of G such that A < B. Since dC(X, Q)* is a lattice-
ordered group, we may invoke [GJ, 13.5] and obtain f, and g, C(X, Q)* such
that the following conditions hold: d(f)) < d(f,) < d(g,) = d(g,) for all k<n,
(Ad(f))nen s cofinal in A4, and (Ad(g,)),<n is coinitial in B. Let (V,),.x bea dis-
tinguished partition of X relative to u (5.2). Let t] V,= f,,l V, for all ne N; then
te C(X,Q)*. By definition, | ), ¥, = U, is in p. Since P (= P,) is the minimal
prime ideal contained in M, there exists m € M such that U, = %(m) (= {xe X:
there exists peIl such that (x,p)eD(m)}). Let (x,p)eD(m); then xeV, for
some ne N. Since %(m) = U, n = k. Clearly,

d(f) (x, p) = d(f,)(x, p) = d(1) (x, ) = d(g,)(x, P) = d(g) (%, P),

showing that d(f,) | D(m) £ d(t)| D(m) < d(g,) | D(m). Thus Ad(f,) < Ad(?) < Ad(g)
for all k e N, showing that A < 1d(t) £ B, proving that G is a near 5,-set. To prove
the last assertion of the theorem, let B = @ and proceed as above, proving the
theorem, (Cf. [A4, 2.6].)

A subset G’ of G will be called convex if, given g’ € G’ and ge G such that
|g| <|g’|, then geG’. The convex subgroups of G form a totally ordered set
under inclusion. Given ge G let W(g) be the smallest convex subgroup of G that
contains g. Clearly, W(g + h) = W(g) U W(h) for all g, he G. W is called the
order valuation on G. Let S = {W(g): ge G*}. S, a totally ordered set, is called
the value set of G. The convex subgroups of G are in bijective, order-preserving
correspondence with the lower sets of S under the mapping G’ - W(G') N S.
(See, e.g., [A,] for references.)

Applying [A,, 5.1 (ii)] and (6.4) we arrive at the following.

COROLLARY 6.5. The value set S of G has a least element sy, and S—{s,} is an
n,-set. Thus the nonzero convex subgroups of G are in natural bijective corre-
spondence with the Dedekind completion S of S.

Given seS, let W(Zs) (W™ (<)) ={geG: W(g)<s} (={geG: W(g)<s)}).
Both W™(< s) and W™ (< s) are convex subgroups of G. Further, W™(< s) is
the largest proper, convex subgroup of W ~!(< s). Let H(s)=W (£ s)/W (<),
inherit the order on W ~(< s). H(s) is then an Archimedian totally ordered group,
and hence can be imbedded in the additive group of real numbers. (See, e.g.,
[A.] for references.)

THEOREM 6.6. H(s) is isomorphic to the integers if s =5, and to the reals
ifs>s,.

Proof. If s =s,, then H(s) is isomorphic to the subgroup of G generated by
g0, the least positive element of G, proving the first assertion. Assume that s > s,,.
It will first be shown that every element in H(s) is divisible by 2 in H(s). Let h € H(s)
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be positive, and let g be a pre-image of h in W ™!(< s). Since g = 0, there exists
fe C(X,Z)* such that f>0 and Ad(f)=g. Since g>0, feM (6.1); thus
U=%(f)ep. Let V equal {xeU:v,(f(x)) =0(2) for all peIl}. To see that
VeB, note that V=UNf""{neN:v,(n)=0Q2) for all pel}. If Vep, let
a | vV =f1/2| V and let aIX — V¥V =1. By the definition of V, aeC(X,Z)*.
24d(a) = Ad(f) = g, showing that h, the image of g in H(s), is divisible by 2 in H(s).
Assume now that V ¢ u. Since U € p, and pis an ultrafilterin 4, Y = U — V is in p.
Let Y,=Y Nnf~'(n) for all ne N. (Y,),.y is a partition of Y by elements of 4.
Given xe Y, there exist ne N such that xeVY,. Let n=p$'- --- - pS% where
e, e =160, =02),and e, 4, -+, €, = 1(2). Let

A Yy= 2 Tl O IR,
and let blY,,=p,+1 +e - p, forall neN. Let a]X - Y=b|X— Y =1. Then

a,be C(X,Z)*. g=Ad(f) = Ad(a®b) = 2Ad(a) + Ad(b). Since 0 < d(b) £ 1, Ad(b)
is either zero or the least positive element of G. In either case, Ad(b)e W™ !(<s),
since s > 5. Thus h is divisible by 2 in H(s). Since every element of H(s) is divis-
ible by two in H(s), H(s) is not isomorphic to the integers. By (6.4) and[A3, 5.1 (i)],
H(s) is order isomorphic to the additive group of real numbers, proving the
theorem.

Having studied G in complete generality, let us now assume that M is a principal
ideal (f). Let f be a prime-valued pre-image of f in C(X,Z). By (6.4), Ad(f) is the
least positive element of G. We will define f* for all h e Z and show that k—>V(f*)
is an order-preserving isomorphism of the additive group of Z onto G (6.9).
Elements of the form f*, for h > 0, will also be of use in studying the ideal theory
of Z in §7.

Let feC(X,Q)*, let heC(X,Z), let U, =f"Yq) for all geQ* and let
V,=h"'(n) for all neZ. Since U, NV, is in B, letting f"l U,NV,=4q" defines
f", an element in C(X, Q)*. Given ge C(X,Q)* and ke C(X,Z), then f*+k= fhrk
and (fg)* =f"g". Let f* be the image of " in Q*. Note that f*is dependent only
on feQ* and ke Z. Clearly, f***= f*f*and (fg)* = f"", showing that Q* is
a unitary Z-module.

We digress a bit to give the following.

PROPOSITION 6.7. Let f be a prime element of Z, and let h be a positive element
in Z. The only maximal ideal of Z that contains f* is (f).

Proof. Since f*=f*"f, and h — 120, f*<(f). Let f be a prime-valued pre-
image of f in C(X,Z) (5.1), and let h be a positive pre-image of h in C(X, Z).
Then, by definition, f* - f* Since D(f*) = D(f), f*in a maximal ideal M implies
fe M, proving the proposition.

Let us now make Z*¥*™ into a unitary C(X,Z)-module as follows: given
heC(X,Z) and aecZ*", let (ha)(x,p) = h(x)a(x,p). If «=0, then h— ha
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is order preserving. Since h(x)(d(f)(x, p)) = h(x)v,(f(x)) = v,(f "(x)) = d(f*)(x,p),
we see that dC(X,Q)* is a submodule of Z**™, Further, the C(X,Z)-module
structure on dC(X,Q)* induces a natural unitary Z-module structure on G such
that, given g 2 0, h — hg is order preserving. Clearly, A(hd(f)) = hAd(f), which,
in turn, is Ad(f*). Utilizing the Z-module structure on Q* and (6.3), we see that
V(f*) = hV(f): i.e, Vis a Z-homomorphism. We will now summarize these results.

ProPOSITION 6.8. G is a unitary Z-module. Given g = 0, the mapping h —hg
is an order-preserving mapping of Z into G.V is a Z-homomorphism of @* onto G.

Unfortunately, (6.8) does not shed much additional light on the relation
between Z and G. However, if M is principal, more can be deduced.

THEOREM 6.9. Let M be the principal ideal (f). Then V(f) is a generator of G
as a Z-module and h — WV (f) is an order-preserving isomorphism of the additive
group of Z onto G.

Proof. Let f be a prime-valued pre-image of f in C(X, Z) (5.1). By (5.4),
M = M(f, p); thus {D(f) N (U x II):U e p} is a base for D(M). Let g be a positive
element of G and let a e C(X,Z)* such that Ad(a) = g (6.2). Since g > 0, there
exists U € p such that d(a) ID( )N (U x II) > 0. Given x e U, then, f(x) is prime
and vy, (a(x)) > 0, showing that a(x) is a multiple of f(x). Let U,=a"'(n)
forallneZ* and let V, =f ~Y(p) for all peIl. Let h| U,nV,NU =v,(n)and let
h| X = U =0. Given xe U, x is in U, N V(5. Then

(@) (x, £ (%)) = v@(x)) = h(x) = 070y (f* (%)) = d(f*) (. £ (x)),

showing that (d(a) — d(f)) | D(f) N(U x I)=0. We conclude that Ad(a)=1d(f"),
and hence that g = hV(f), proving the theorem.

THEOREM 6.10. Let M be a maximal ideal of Z that is not principal and let g,
be the least positive element of G. Then k — hg, does not map Z onto G,

Proof. We have observed (proof of (6.4)) that there exists fe M such that
f(x) is 1 or is the product of distinct primes, and that V(f) = g,. Let X, = f!(n)
for all neN. Given xe€ X, xe X, for a unique neN. If n=1, let a(x) = 1.
If n#1, then n=p; - p,, py,*,p, being distinct prime numbers. Let
a(x) = py - p> - -+~ - pi.Clearly, a e C(X,Z) and V(a) = g, . Assume, for a moment,
that there exists h e C(X,Z) such that hg, = V(a). Since V(a) = go, h =1 and
we can assume, without loss of generality, that h > 0. Since V(a) > 0, there
exists mye M such that d(a)|D(m0) > 0. Since hg, = V(a), there exists m, e M
such that (d(a) — hd(f)) |D(m1) =0. D(my) ND(m,) = D((m,, m,)), by [P,
2.2.1, (¢)]. But (m,, my) = (m), where me M [P, 1.3.2]. Since me M, U = %(m)
is in p. By definition, given x € U there exists p € Il such that (x, p) e D(m). Since
D(m) < D(my,), d(a)(x,p) > 0: ie., p divides a(x). Since D(m) < D(m,),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



516 N. L. ALLING [June

v(a(x)) = h(x)o,(f(x)). But a(x)=p,-p3----py and f(x) = py- " p,
showing that p = pj), where 1 < h(x) < n:ie., m(x) is the prime p,,,. We
conclude that ml U is a prime-valued function in C(U,Z). Let m’] U= m| U
and let m'| X — U =2. Then m' is a prime-valued function in C(X,Z), m = m’
and hence, by (5.1), M contains a prime m. This shows that M is principal, which
is a contradiction, proving the theorem.

THEOREM 6.11. Let M be a maximal ideal of Z and let g, be the least positive
element in G. Then Zg, is cofinal in G.

Proof. If M is principal we may apply (6.9) to obtain the theorem. Assume
that M is not principal. There exist fe M such that f(x) is 1 or is the product of
primes. Then Ad(f) = g,, the least positive element of G (6.4). Let ae C(X,Z)
such that Ad(a) = g,. There exists m € M such that d(a) |D(m) Zd(f) |D(m) > 0.
Let U = %(m). For n, ke Z let U,=UN f~!(n) and V, = U Nna ~!(k). Clearly,
(U 0 Vi)(n.ky e zxz is a partition of U by elements of #. Assume that U, NV, # &.
Then n=p, - p; and k= pi' - --- - pj, where ¢; is a non-negative integer.
Let h|U,NV, = maxe;, and let h|X — U = 1. Then heC(X,Z), and
d(a)|D((m, ) = d( f")lD((m, f)), proving the theorem.

7. The ideal theory of Z. Let p be the space of prime ideals of Z. p is, of course,
a compact Ty-space. Under inclusion p is an inductive, partially ordered set,
having {0} as a least element and having m as the set of maximal elements. Given
Mem,let p(cM)={Pep: P < M}.

Given an ideal I in Z, let I, = IZ,,, the extended ideal of I in Z,,. Let M be
a fixed maximal ideal in Z, let ¥}, be the valuation of Q associated with Z,,, and
let Gy, be the value group of V},. Clearly, W,(I) = W,(I)4). Since I, is an ideal in Z,,,
V(L) is an upper set in Gy, U {0}, Let Gy(I) be {ge GM:|g| < Vu(f), for all
fel}.Clearly, Gy(I)is a convex symmetric subset of Gy . Let us now apply these
notations to the prime ideals in Z.

THEOREM 7.1. The mapping P — Gy(P) is a bijective, order-reversing mapping
of p(< M) onto the chain of convex subgroups of Gy. Thus the order type of
p( <= M) is that of the Dedekind completion of an n,-set with a greatest element
adjoined: i.e., p(= M) is anti-isomorphic to Sy . Finally, given Pep(< M)
such that P #M, P is not a principal ideal.

Proof. By [ZS,, p. 228] and [ZS,, p. 40], the first assertion is true. We have
shown that the convex subgroups of Gy, are in bijective, order-preserving cor-
respondence with the lower sets of the value set Sy, of Gy, that S;, has a least
element s, and that S, — {so} is an #,-set (6.5), proving the second statement.
To prove the last assertion, assume for a moment that there exists a prime ideal P
of Z, properly contained in M, that is principal. Let P = (f); then V,(f) is the least
element of ¥;/(P) and Gy(P) is a convex subgroup of Gy,. Since P #M, V,(f) = g,
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is greater than g,, the least positive element of G,. Since G, (P) is a subgroup
of Gy, W(g,) = s, > 5o = W(go). By (6.6), H(s,) is order isomorphic to the reals.
Thus there exists g, € Gy, such that 0 < g, < g, < 2g,. Hence g, € Gy(P), but
2g, ¢ Gy(P), a cantradiction, proving the theorem. (Note: we have not used the
full force of (6.6), only the fact that H(s,) is not discrete.)

Before considering the general ideal theory of Z, let us generalize the setting
and consider an integral domain A, with an identity. Let m be the maximal
ideal space of A, let I be an ideal in A4, and let m(I) = {Mem: I <« M}. m(I),
the variety of 1, is a closed subset of m.

LeMMA 7.2. Let I be a proper ideal in A. Then I is ﬂMem(,)IM N A.

Proof. LetJ = \yemmyIuNA.IffeA—Llet B={acA:afel}. ThenBisa
proper ideal of A containing I, and is contained in a maximal ideal M. Clearly,
[ &Ly, so f¢éJ, showing that J < I. Since I = J, the lemma is proved. (I am indebted
to the referee for supplying this short proof.)

An ideal I in A will be called primary if it is contained in a unique maximal
ideal. (Although this terminology is used in Banach algebra, it is at variance with
the use of the term in classical ring theory.) Equivalently, I is primary if m(I)
consists of one point.

Let us now return to the study of Z.

LEMMA 7.3. Let M and M’ be distinct elements of m, the maximal ideal
space of Z. Given a positive element g of Gy, there exists fe€ Z such that Vy(f)=g
and Vi (f)=0.

Proof. Without loss of generality we may assume that }j, =0V and that
Gy = indlim,,, .,y dC(X, Q)*ID(m) (6.3). Let aeC(X,Z)* such that Ad(a)=g.
Since M # M’ and since g >0, there exist meM and m’'eM’ such that
D(m)ND(my= & and d(a)ID(m) >0. Let U=%(m) and let U’ =%(m").
Since P, is contained in M and in M’, U N U’'=W is in . Since D(m) N D(m')= &,
given x e W, (m(x), m'(x)) = (1). Let X; = m-l(i),XJ’- =(m")"(j)and U, =a~ '(k),
for all i, j, ke Z. Assume that X; N X N U, "W is nonempty. Then (i,j) = (1)
and v,(k) >0 for all prime divisors p of i. Let k= & p{* - --- - pJ5 where
D1, > D, are distinct primes, and e;,---,e,€ N. Let p,---, p, be the prime divisors
of k that are also prime divisors of i. Let fIXi NX;NUNW=pi - pr
and let f| X — W = 1. D(yx_w) = W x II, and xx_w € M; thus

D((m, xx-w)) = D(m) "W x I,

this set being in D(M). By construction, (d(f)— d(a)) I D((m, xx-w)) =0; thus
Vu(f) = g. By construction, d( f)]D((m’, 1x—w)) =0, showing that V,.(f)=0,
proving the lemma.

Using these results together, we get the following.
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THEOREM 7.4. Let I be a nonzero, proper ideal in Z, and let Mem(I).
Iy NZ =] is a primary ideal contained in M. Further,J = {fe Z : V,(f) € (D)}.
Finally, I = Ny ey NZ is a decomposition of I into primary ideals.

Proof. Since Z,, is a valuation ring, Iy = {f € Zy,: V3,(f) > Gp(Ly)} [ZS,, p. 40].
Since Gp(I) = Gy(Iyy), Iy = {feZy;: Vy(f) € Vy(D)}. Assume, for a moment, that
J is not primary; then it is contained in a maximal ideal M’ # M. Since I # (0),
there exists ge¥,(I) NG, By (7.3), there exists feZ such that ¥, (f)=g and
Wi f) =0. Thus, feJ and f¢M’', a contradiction. We conclude that J is primary,
proving the theorem.

Applying this theorem now to the special case of primary ideals yields the
following,

COROLLARY 7.5. Let J be a primary ideal of Z contained in M. Then,
uNZ=J={feZ:V,(f)eVu(D}.

Let j be the set of all primary ideals of Z. Under inclusion, § is an
inductive partially ordered set whose set of maximal elements is m. Given M € m let
(ceM)={Jej:J<M}. Let p*=p—{0} and let p*(cM)=p(<M)Np*.

THEOREM 7.6. The mapping J — Gy(J) is a bijective, order-reversing mapping
of i{( = M) onto the proper, nonempty, symmetric, convex subsets of G, Thus
i( = M) is totally ordered under inclusion, and p*( = M) is a subset of i( = M).
Finally, { and p* are disjoint unions of chains, j( = M) and p*( < M),* respec-
tively, one for each M e m.

Proof. By (7.5), J - Gy,(J) is an injection of j(< M) into the set of
nonempty, proper, symmetric, convex subsets of G,,. Let G’ be such a subset of
Gy. Then J' ={feZy: V,((f)> G'} is an ideal in Z,,. Let J=J' N Z and note that
Gy(J) = G’, proving that the mapping is surjective (7.3). Clearly, these convex
subsets of Gy form a chain, showing that j( = M) is a chain. We noted before
(7.1) that, if Gy(J) is a convex subgroup, then J is a prime ideal in Z, and con-
versely, showing that p*( « M) < {( = M). By definition, if M and M’ are distinct
maximal ideals, j(« M) Nj( = M’')= &, proving the last assertion.

Let us turn our attention briefly to the classical radical of an ideal in Z.

PROPOSITION 7.7. Let Jei(=M). Then JV? ei(c M), and Gyu(J ) is the
largest, proper, convex subgroup of Gy (J); thus J *'* is prime.

Proof. Since J/? contains J and is a proper ideal, it is primary, proving the
first assertion. By definition, ¥(J'/*)= {V,(a): there exists ne N such that
n¥(a) € Vy(J)}, showing that ¥,(J'/?) is indeed such a subgroup, proving the
proposition.

LemMMA 7.8. Let I be a proper ideal in a commutative integral domain with
identity A. Then I'*={ s cmnIn N A4)'".
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Proof. Given feI'/? there exists ne N such that f"eI. By (7.2), f"e I, N A4 for
all M e m(D); thus f €[\ memnUu NA) > = L. If Mem —m(I), (Iy N 4)'? = 4,
showing that L =)y cm(ly N A4)"%. Let fe L. Given M em, there exists ne N
such that f*el,, N A: i.e., there exists ael and be A — M such that f" = a/b.
Using the fact that m is compact, there exist by,---,b €A, ay,---,a,€l, and
n;e N such that b;f"'=a; for i = 1m,---,k and (by, -+, b;) = (1). Using the last
fact, there exist ¢,---,c,€A such that ¢;b; + - +¢b,=1. We see that
fm=cbyf"+ -+ ;b f" €l, for some m in N, showing that f e I'/2,

Application to general nonstandard arithmetic. Let A be a nonstandard
model of Z and let I be a nonzero, proper ideal in A. ThenI = ﬂ memnly DA,
and Iy N A = {ae A: Vy(a)e V,(I)}; however, unless it is known that a result
like (7.3) holds for 4, we cannot conclude that I,; N A is primary.

In case M is a principal ideal (f), we have additional results to utilize. By
applying these to ideals J in {( < (f)), we obtain the following.

THEOREM 7.9. Let f be a prime element in Z and let J € j( < (f)). Let g, be the
least positive element of G = Gy, ). There exists (h;);. 1, a subset of positive
elements of Z, such that (hg,); . ; is coinitial in Vy(J). Further, (f*);. is a set
of generators of I. Conversely, given any set (h;); . ; of positive elements of Z, the
ideal J generated by (f*), . is in i( = (f)) and (hg,); . 1 is coinitial in Vi(J).

Proof. By (6.9), such a subset (h;,),.  exists. By (6.8) Vi (f*) = h;g, ; thus, by
(6.7), (f*); ., is a set of generators of Jy,. Since J is primary, Jy NZ =J (7.5),
proving the first assertion. By construction, (f*) is in j( = (f)), for each i€,
showing that J is a union of elements in the chain j( < (f)), and hence is primary.
Since ¥, (f*) = h,g,, this set is coinitial in ¥;,(J), proving the theorem.

CoroLLARY 7.10. Let f be a prime element in Z. The minimal cardinal number
of generating sets of elements of i{( = (f)) can be 1,3, or ¥;.

8. The ideal theory of C(X, Z). The space ‘B of prime ideals of C(X, Z) is a
compact Ty-space. As a partially ordered set, B is inductive, having 9 as the set
of maximal elements and B,, the space of minimal prime ideals, as the set of
minimal elements. The topology on M and B, is the induced topology. As was
seen in §1, given M € M there exists a unique minimal prime ideal 6(M) contained
in M. Further, ¢ is a continuous surjection (1.3).

Given M eI, let P(<= M) ={PeP: P < M}.

ProrosITION 8.1. Given M e IR, P( < M) is a chain having a greatest element
M and a least element 6(M) = P,. Let Z = C(X, Z)/o(M). P(< M) is naturally,
order isomorphic to p( <= M); thus P(< M) consists of two points if pedyX,
and is of power at least P if u¢d6oX. Finally, if u¢doX, no PeP(<= M) is
principal.
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Most of the proposition follows from the analysis of p( = M) in §7. The power
of P( = M) in case u ¢ 5,X is computed by using (7.1) and [GJ, 13.24].

Proof. (8.1) implies all but the statement, that if pu¢d,X, M is not principal.
Assume for a moment that M = (f). Since p =%(M) (according to the diagram
preceding (1.3)), u={UeB: %(f) < U}:ie., % (f) consists of a single point
x € X. This implies that pe dyX, proving the theorem.

Let I be an ideal in C(X,Z) and let M) = {M eIM: I = M}. Clearly, this is a
closed subset of M. Let Po(I) = a(I(I)). Clearly, an element Pe Py, is in Py(I)
if and only if the image of I in C(X, Z)/P is a proper ideal.

ProrosiTION 8.2. B(I) is a closed set in P,.

Proof. Since IMN(I) is a closed subset of a compact space M, it is compact.
Since o is continuous (1.3), B,(I) is compact. Since P, is homeomorphic to
86X (1.2) and since 6X is Hausdorff [P, 1.5.2], B, is Hausdorff. We conclude that
PBo(I) is closed, proving the proposition.

An ideal I of C(X, Z) will be called coprimary if By(I) consists of a single point.

PROPOSITION 8.3. Let I be an ideal in C(X,Z). If Pe Bo(I), then Po(I+ P)={P}:
in other words, I + P is a coprimary ideal.

Proof. Since Pe Py(I), there exists M eIN(I) such that o(M)= P. Clearly
I + P < M, proving that Pe Py(I + P). Let P' € Py(I + P) and let M' e (I + P)
such that o(M’)=P’, Then Pc I+ P< M’, and P’ = P by (1.1), proving the
proposition.

THEOREM 8.4. Let I be a proper ideal in C(X,Z). Then I ={)pcgon+ P:
i.e., I is expressible as the intersection of coprimary ideals I + P, one for each

Pe Bo(D).

Proof. Since I<I+P for all Pe By, I= (Vpepony] +P=J. If PePo—Po(D),
then the image of I in C(X,Z)/P is contained in no maximal ideal, showing that
I+ P=C(X,Z); thus J= ﬂpemol + P. Let feJ. It suffices to show that
f el. By definition, given Pe P, there exists geI, depending on P, such that
f —geP. By (1.4), Bo(f — g) is an open set in P,. Since P, is compact, there
exist g,---,g,€l such that By(f — g0, Po(f — g, cover P,. As a con-
sequence, U, = {(f — g1),---, U, = {(f — g,) constitute a cover of X by elements
of . Let V,=U,, V,=U, — Vj, and V; = U; — (V; UV,). Proceeding in this
fashion, by finite induction, one can define a partition ¥y, -, V, of X by elements
of # that is a refinement of U,,---,U,. Let g = g%y, + -+ + g,xv, Since gl
and V;e %, gel. Given xe X there exists a unique i, 1 < i < n, such that xe V].
Weknow that V, < U, = {(f - g;), thus f(x) = g/(x). Since i is unique, g(x)=g,(x),
showing that f = g. Since gelI, we have shown that f eI, proving the
theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] INTEGER-VALUED FUNCTIONS AND NONSTANDARD ARITHMETIC 521

THEOREM 8.5. Let I be a proper ideal in C(X, Z). Then I'"*= (" pegoyI +P)'%
Further, (I + P)"'* is a coprimary ideal.

Proof. Given f € I'?, by definition there exists n € N such that f*e I. By 1(8.4),
frel+P for all PePy(I); thus fe(\pepon{ + P)'/?= L. Conversely, let
feL. Clearly, L = ﬂpe%(I + P)'%; thus, given Pe PB,, there exist ne N and
gel such that f"— geP. By (1.4), Po(f"— g) is an open set in P,. Clearly,
sets of this form constitute a cover of B,. Since P, is compact, there exist
g1,8€I and neN such that PBo(f" — gy), -+, Bo(f~ g) cover P,. Let
U;=Uf"—g), i=1,--+,k. Clearly, (U,) is a cover of X composed of elements
of A. Using the method described in the proof of (8.4), we can choose a refinement
(V) of (U) that partitions X and is made up of elements of #. Let
g=gyxv, + - + gxvi- Then gel, and g = f", showing that f eI'/?, completing
the proof.

Let I be a coprimary ideal and let Po(I) = {P}. Let Z = C(X,Z)/P and let I
be the image of I in Z. By (7.4), I =(\yemwIu NZ, Iy NZ being a primary
ideal in Z. Since I is coprimary, I is the full pre-image of I, in C(X,Z). The pre-
image of m(I) in I is IN(I). Further, the pre-image of I, NZ is primary and is
{fe C(X,Z):bf =ael for some beC(X,Z)—M}=15L,NC(X,Z). Finally,
= nMem(I)(IM NZ)'*(1.8).

THEOREM 8.6. Let I be a coprimary ideal in C(X,Z). Then the following decom-
positions hold: I = (yemnIuNCX,2)), and I'* = (| yemn(Iu NC(X, Z)) 12,
the ideals (I; N C(X, Z)) '/? being prime.

Combining (8.4), (8.5), and (8.6), one obtains the following.

THEOREM 8.7. Let I be a proper ideal in C(X, Z). The following decompositions
hold: I = np emo(l)nu e+ Iy NC(X,Z)), and

= N N @unCx,z)'2.
PePo(I) MeWM(I+P)
LemMMA 8.8. Let I be a proper ideal in C(X,Z). M) = Ups%m M + P),
and given distinct points P and P’ in Py(D), MI + P)"MIT+ PY= .

Proof. Let M eM(I). Let P=o(M); then M eIN(I + P) and P& Py(I). Conversely,
let M eI+ P) for some PePy(I). Then IcI+P<M, and MeMM(I), proving
the first assertion. Let P, P’ e P, and let M e M{I + P) "IMM(I + P’). Since P and
P’ are contained in M, we may apply (1.1) and conclude that P = P’, proving the
lemma.

Applying (8.8) to (8.7), we obtain the following.

COROLLARY 8.9. Let I be a proper ideal in C(X,Z). Then the following de-
co mpositions of I in terms of primary ideals, and prime ideals respectively, hold:

I= ﬂM eIy NC(X,2Z)) and 1'? = nMemu)(IM NCX,Z2) "2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



522 N. L. ALLING [June

With the aid of this decomposition theorem we can now analyze the set J of
primary ideals of C(X,Z). Given Je3, J = Jyy NC(X,Z), where {M} =IN(J)
(8.9). If P and P’ are in Py(J), then P = g(M) = P’ (1.1), showing that J is co-
primary. Given Pe P, let J(> P)={Je J:J > P}. Since each primary ideal
is coprimary, J is a disjoint union of J( > P), where P runs over L3,. Let Pe P,
and let Z = C(X, Z)/P. The mapping J —» J of J( = P) into the ideals of Z is a
bijection onto i, the set of primary ideals of Z. By (7.6), | is a disjoint union of
chains j( «M). Given MeI, let J(cM)={JeJ:J < M}. Summarizing,
we have the following.

THEOREM 8.10. The set X of primary ideals of C(X,Z) is a disjoint union
of chains J( < M), one for each M € M. J( = M) is naturally order isomorphic
to i( = M), the set of primary ideals in C(X,Z)[c(M) contained in M.

Let I be a proper ideal in C(X,Z). By [P, 2.3.4], D(I) is a proper filter in 2
(=DC(X,Z)). By [P, 2.3.4], D™'D(I) is a proper ideal in C(X,Z). Clearly it
contains I. I will be called a D-ideal if I = D™ 'D(I). (Cf. the notion of a z-ideal
in [GJ].) By [P, 2.5.1], a proper D-ideal I is ﬂMEw,)M. If I is now merely a
proper ideal of C(X,Z), then J = D™ 'D(I) is the smallest D-ideal that contains I.
By (8.9), I = ﬂM emn(Iy NC(X,Z)), and J = nM emw)yM. Since D(J) = D(I),
M) = M)

Using these results we can obtain additional information about the ideal
I= ﬂpE n(p) inZ =C(X,Z)/P,, where pedX —6,X. Let I be the pre-image
of I in C(X,Z). Clearly, fe I if and only if for all peII there exists U € u such
that f(x)=0(p) for all xeU: ie., for all pelIl there exists Uepu such that
U x {p} = D(f). Since this is a condition on D(f), I is a D-ideal and is, by
[P, 2.5.1.], an intersection of maximal ideals. We conclude that I is the inter-
section of maximal ideals, and thus is () Mect m M.

9. Some remarks on the residue class fields of C(X, Z). Pierce has obtained a
great deal of information about the residue class fields of C(X,Z). One of his
most striking results deals with the elementary theory of these fields [P, 6.4.1].
Before this theorem is stated, consider the following background material. Let
7 be the projection mapping of X x IT onto I1. Given f € C(X, Z), let Z(f) = aD(f).
Given an ideal I in C(X, Z), let Z(I) = {A < I1: Z(f) < A for some f € I}. Clearly,
2(I) is a filter on II. Assume that X is not Z-pseudocompact; then X has an
infinite partition (U,),.y made up of elements of #. Let Ae #(I) and let fel
such that Z(f) < A. Let A =(p,), .y and let g| U,=py* - p.- Then Z(g) = A,
Jgel, and Z(fg) = A, showing that Z(I) = nD(I) in case X is not Z-pseudo-
compact. It has been shown that, if M eI, then Z(M) is in BII, the space of
ultrafilters on I [P, 4.1.4]. Let ¢ € L(A) (see §3 for definitions), where R is the
category of all commutative rings aud ring homomorphisms, let I1(¢) = {peI1: ¢

is valid in R/(p)}.
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Tueorem 9.1 (PiERCE [P, 6.4.1]). Let M e and let e L(R). ¢ is valid in
C(X,Z)/M if and only if II(¢) e Z(M).

Thus, the elementary theory of C(X,Z)/M is determined by Z(M). Let peIl
be identified with the fixed ultrafilter at p. IT is imbedded as a discrete, dense
subspace of BII. If #(M)=p, we may use [P, 3.3.3] and conclude that C(X,Z)/M
is isomorphic to Z/(p), and conversely (see also (4.2)). By [P, 4.2.2], # maps M
onto SIN, if X is not Z-pseudocompact.

Let peéX, Z=C(X,Z)/P,, and let Me% '(u). Clearly, the mapping
C(X,Z)- C(X,Z)/M factors through Z and C(X,Z)/M is isomorphic to Z/M.
Thus the choice of u has a decisive effect on the residue class fields that can arise.

PROPOSITION 9.2. Let ped,X. Then P maps %~ () onto T, Let I1 be topo-
logized by letting the finite subsets be a basis of closed sets; then Z is a homeo-
morphism of %~ () onto II. Conversely, let pe X and assume that 2 maps
%~ (y) into T1; then ped X.

Proof. Let uedyX and let Z = C(X,Z)/P,. By definition, Z is isomorphic
to Z. By (2.2), M > M is a homeomorphism of #~'(u) onto m. Each Mem is
of the form (p) for some peIl; thus M = M(p, 1) (5,4), and #(M) = p, proving
the first assertion. Conversely, assume that yedX such that & maps %~ '(p)
into IT. Assume for a moment that Z = C(X, Z)/P, is not isomorphic to Z. By (5.3),
there exists an infinite prime f in Z. By (5.1), f has a prime-valued pre-image f
in C(X, Z). By (5.4), M(f, 1) = (f). Since f is an infinite prime in Z, Z(M(f, 1)) ¢ 11
[P, 3.3.3], a contradiction, showing that Z = Z, and proving the proposition.

THEOREM 9.3. % x Pis a homeomorphism of U~ (6,X) onto 5,X x II, I1
having the topology determined by letting the finite sets of Il be basic closed sets.

Proof. By (9.2), % x 2 is an injective map of %~ '(§,X) onto §,X x IT. The
map% x & composed with both the first and second projection of §,X x IT is
continuous, by (1.3) and (9.2); thus # x &£ is continuous. (Since doX x IT is not
a T,-space we can not use the usual argument to prove that % x & is a homeomor-
phism.) By (2.4), C(X,Z) and C(6,X,Z) are naturally isomorphic. Thus we may
assume that X = 6,X, without loss of generality. ((f)); . c(x,z) is a basis of the
closed sets of M; thus it suffices to prove that (% x PYM(f) N %~ (X)) is closed
in X x IT. Using (5.4) it is easy to see that this set is D(f). To show that D(f) is
closed in X x IT note that X,,=f""(n) is in 4 for all ne Z; thus T,={(x,p)e X x IT:
x € X, implies n = 0(p)} is closed in X x II. Since D(f) = ﬂ,, ez I, the theorem
is proved.

Given pedX — 8,X, we will consider the map & of #~!(y) into BIT; but first
some technical results.

LeMMA 9.4. Let pe o0X —0,X, let pe pIl, and let Aje p. There exists
fe€C(X,Z) such that D(f) = A,, and such that P{(f, xx-v))€p for all Ue pu.
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Proof. Since u¢d,X, there exists a distinguished partition (V,),.y of X
relative to u (5.2). Let Ay =(p,), n and let fl V,=p; - p,. Then fe C(X,Z)
and Z(f)=Aq. Let U, = U,,g,,,V,,; then, by the definition of (V,),cn> Un€ U
Let Ue pand A€ p. Since p is a filter, there exists p,,€ AN A,. Since p is a filter,
U,NU# . Let x be a point in this set; then xe V, for some n = m. Since
JxX)=py - pus (x,p) €D(f). Hence P((f,xx- )N A # & for all Aep. Since
p is an ultrafilter, the result obtained above shows that Z((f, xx-u)) € p, proving
the lemma.

Given pedX and pepIl, let J(u,p)={feC(X,Z): P(f,xx-v))ep for all
U € u}. Clearly, J(u, p) is a proper D-ideal.

COROLLARY 9.5. Let pedX —6,X and let pepIl. Then P,< J(u,p) and
P(J(u,p)) = p.
Proof. If fe P,, then Z((f, xx-y)) =1II for all Ue pu, showing that feJ(u,p).

Let Ay e p and let f be a function satisfying the conditions of (9.4). Then f e J(u, p)
and Z(f) = A, , proving the corollary.

THEOREM 9.6. Let pedX — 6,X. Then & maps %~ ' (u) onto BII.

Proof. Let p e IT and let M be a maximal ideal that contains J(u, p). By (9.5),
P, < M; thus %(M) = p. Again using (9.5), p = P(J(u,p)) =« #(M), proving the
theorem.

Combining [P, 6.4.1] ( = (9.1)) and (9.6), we obtain the following.

THEOREM 9.7, Let X and Y be nonempty Hausdorff spaces, let K be any
residue class field of C(Y,Z), let peéX —6,X, and let Z = C(X,Z)/P,. There
exists a maximal ideal M in Z such that K and Z{M are elementarily equivalent.

ProrosiTiON 9.8. Let M € IR such that p = %(M). Then p = P(M) if and only
if M = M(p, p).

Proof. If p = #(M), then there exists me M such that D(m) = X x {p}. This
implies that pe M, peM, and, by (5.4), that M = M(p,p). If M = M(p, ), then
p € #(M), proving the proposition.

Pierce has raised several questions concerning these residue class fields [P, §7].
One [P, 7.2] asks about relations between #(M) and %(M). (9.2), (9.6), and (9.8)
effectively answer this question. Pierce goes on to inquire [P, 7.3] whether two
maximal ideals M and M’ of C(X,Z) are equal if #(M)=P(M’) and %(M)
AUM'). If U(M) = pedyX, then (M) =p and M = M(u,p) =M’ (9.8). In (5.9)
we saw that X and p could be chosen so that m, exceeds any preassigned cardinal
number. Thus %~ *(u) can have power greater than that of BIT, and 97" £ ()
cannot be injective in this case, showing that M need not equal M’, settling
[P, 7.3].

By [P, 6.4.1] (=(9.1)) and [K, 5.1], if we let p run through BIT and let
Z/(p) = indlim, ., 1T, rlZ/(p)|A, then these fields form a set of representatives
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of the equivalence classes of elementarily equivalent residue class fields of C(X, Z),
in case X is not Z-pseudocompact. The power of BIT is 2¢, where ¢ is the power
of the continuum. That this is a very redundant set of representatives can be
seen by applying the Lowenheim-Skolem theorem [R, 1.5.13] and choosing a
countable field K, for each p e BII—II that is elementarily equivalent to Z/(p).
For p = p, let K,=Z/(p). By (9.8), p¢Il implies K, is of characteristic zero.
Let Q be an algebraically closed field of characteristic zero whose transcendence
degree over Q is X,. Thus Q is countable and each K, can be imbedded in Q,
p ¢ I1. We conclude that there are at most ¢ equivalence classes of elementarily
equivalent residue class fields of C(X,Z), and that the elementary theory of
C(X,Z)/M does not determine 2(M).
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