
RINGS OF POLYNOMIALS

A. EVYATAR AND A. ZAKS

Abstract. For an algebra R over a field k, with residue field K

to be a ring of polynomials in one variable over k it is necessary

that tr• deg K/k = 1. We prove that under the hypothesis tr • deg K/k

= 1, R is a ring of Krull-dimension at most one. This is used to

derive sufficient conditions for R to be a ring of polynomials in one

variable over k.

1. Let k be a subfield of the commutative ring R. Let K be the

quotient field of R. The problem we are concerned with is: When is R

a ring of polynomials?

In a previous paper [l ] we obtained the following result:

If R is a subring of k [xi • ■ ■ xn] such that with every element of R

all of its factors in k[xi • ■ ■ xn] already lie in R, and if tr-deg K/k

= n, then R is a ring of polynomials.

One of the results that we get in this paper is that R is a ring of

polynomials also in case tr-deg K/k — 1.

We start by studying rings R for which tr-deg K/k^ 1. We prove

that if R is a unique factorization domain, and R is a subring of the

ring of polynomials k[xi • • • xn], then R is a ring of polynomials.

For subrings of the rings of polynomials over k we prove that

(i) if 2? is a principal ideal domain then R is a ring of polynomials,

and

(ii) if R has a principal ideal M so that R/M is canonically iso-

morphic to k, then R is a ring of polynomials.

Some possible generalizations and modifications are also pointed

out.

2. The main object of this section is the study of the rings R for

which tr-deg K/k^l.

Theorem I. If kER, and if tr-deg K/k^l, then Krull-dim i?±£l.

Proof. If tr-deg K/k<l, then R is a field and the result follows.

Therefore let tr-deg K/k = l. Assume Krull-dim R>1, and let us

derive a contradiction. Since there exist prime ideals P, Q in R so that
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Oy^P^Q, we may choose two elements p, q in R so that Oy^pEP,

qEQ, and qEP-
Since Oy^pEP, p is not algebraic over k. Since tr-deg K/k = l it

follows that there exists an equation

(*)   E«',i kijpiq' = 0, kij in k and not all of them zero.

We may assume that p is not a factor of (*), and this yields an

expression e= ^Zmkmqmy^0, with kmEk, such that eEP■ Since e, q

are elements of Q, it follows that k0 = 0. If we presume that e is an

expression of smallest possible degree, this leads to a contradiction

unless qEP, since P is a prime ideal. But this is a contradiction to

the hypothesis q(^P. This proves that Krull-dim F>1, or Krull-

dim R ^ 1 as was asserted.

Remark that if R is a Krull-domain, it follows from the preceding

theorem that R is a Dedekind-domain (see [2, p. 24]). If moreover R

is a unique factorization domain, then every minimal ( = maximal)

prime ideal is a principal ideal, and it results that R is a principal

ideal domain (see [3, I, p. 244]). Summarizing we have:

Corollary A. Let R a unique factorization domain, kER, and

tr-deg K/k^ 1. Then R is a principal ideal domain.

3. In this section we will apply the result of §2 to subrings of rings of

polynomials. The point is that of using induction arguments. We

presume for the rest of this section that R is a subring of k [xi • ■ • x„].

Recall that the grade of the monomial x™1 ■ ■ ■ x™n is (mi, • • • , mn).

For a polynomial p we set its grade to equal the maximum in the

lexicographic order of the grade of its monomials (which has a non-

zero coefficient of course), and we denote it by | p\. It is easy to verify

by straightforward computation that |pr/>2| =|/'i| +|p2|, and that

every decreasing sequence of grades \pi\ ^ \p2\ s£ ■ • • becomes

eventually stationary. Finally \p\ = (0, • • • , 0) if and only if pEk.

Theorem II. Let R be a principal ideal domain, then R is a ring of

polynomials over k, or else R = k.

Proof. If R = k we are done. If not, let pER, p(£k andp of smallest

possible grade. Let qi be any other element of R not in k. Then for

some ai, biEk, the ideal I generated by p —0i and q\—bi is a proper

ideal of R (just take for 0i and br the constant terms of p and qi respec-

tively). Since R is a principal ideal domain we have an element r in R

so that I = Rr. Hence p—ai = sr and qi—bi = tr lor appropriate ele-

ments s, t in R. Since \p\ =\p — ai\, it follows by the minimality of

|^>| that |s| =(0, • • • , 0), whence sEk. In particular r'GJ?, and

therefore qi — bi = ts~1(p — ai). By the properties of the grade we have

(setting ts'1 = q2)
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| g |   =  | g — bi |   =   | g21   +  | p — ax \   >  | g21 .

In particular, if q2$zk we repeat the above procedure with g2 re-

placing qi. As we obtain this way a strictly decreasing sequence of

grades, this procedure must come to an end, namely after a finite

number of steps q,Ek. We thus get:

qi — bi        = q2ip — ai)    or       qi = bi + q2ip — ai)

q2 — b2        = qsip — az)    or       g2 = bi + q3ip — ai)

g,_i — 6<_i = qtip — ai)    or    g,_i = J,-_i + gj(/> — ai)

and since qiEk, one obtains by successive substitutions that g,- is a

polynomial in p for every/, j = i—l, • • ■ , 1.

We therefore proved that every element in R can be expressed as a

polynomial in p with coefficients in k. Since R is a domain, and p is not

invertible in R it follows that E^* p* = 0 if and only if &, = 0 for all

i's. Therefore R is a ring of polynomials in one variable over k.

Remark that this theorem also tells us that every element of mini-

mal (nonzero) grade can serve as a variable. In view of Corollary A

of §2 we have:

Theorem III. Let R be a unique factorization domain, and let

tr • deg K/k ^ 1. Then R = k or else R is a ring of polynomials.

A related problem of interest is: Is a subring R of k[xi ■ ■ ■ xn] a

ring of polynomials if R is a Dedekind domain?

A case of particular interest is that of factorable rings. Recall that

for a ring R, kEREkyxi ■ ■ ■ x„], to be factorable means that with

every element of R all of its factors in k [xi ■ ■ • x„] already lie in R.

Since the factorization in a factorable ring is inherited from

k[xi ■ • ■ xn], a factorable ring is necessarily a unique factorization

domain. As a consequence we have

Corollary B. If R is a factorable ring and tr-deg K/k = 1, then R

is a ring of polynomials over k.

Combining this with the result that a factorable ring is a poly-

nomial ring if tr-deg K/k = n (see [l]) we have:

Theorem IV. Every factorable ring in k[xi, x2] is a ring of poly-

nomials over k.

4. In this section we discuss some possible generalizations of

Theorem II.

Theorem V. Let M be a principal ideal in R, such that R/M is
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canonically isomorphic to k. If R is a subring of k [xi • • • x„], then R

is a ring of polynomials over k, or else R = k.

Proof. The proof is easily adapted from the proof of Theorem II.

The result is obvious if 17 = 0. If not, let p be an element in R that is

not in k, and is of smallest grade. For any element q in R there exists

an element q0 in k so that q — qoEM. Since M is a principal ideal there

exists an r in R so that M = Rr. Let qi be any element in R. There

exist 01 and bt in k so that p — ai = sr and qi — bi = tr for suitable ele-

ments s, t in R. We now proceed to complete the proof as in the proof

of Theorem II.

Remark. A closer look at the proof suggests that the condition

REk[xi - ■ • xn] is not essential. What is needed for the induction

method to work is to have on R a function / into the nonnegative

integers such that (i) f(r) =f(r+kx) for rER — k and kiEk and

(ii) /(rir2)>max(/(ri), f(r2)) for every pair of elements ri, r2 in R

that are noting.

Another modification is obtained by assuming that on R we have

a function g into the nonnegative integers so that g(ri+r2)^g(ri)

+gfa), andg(rir2)^max(g(ri), g(r2)).

A particular case arises if R is a Euclidean domain whose norm

satisfies the triangle inequality, and such that the set of elements of

minimal norm form a subfield of R.

A similar proof applies to the following:

Theorem V. Let M be a principal prime ideal in R, let tr-deg K/k

g 1, and let k be algebraically closed. If R is a subring of k [xi • • • x„]

then R is a ring of polynomials.

We are indebted to Professor D. Zelinsky for suggesting that a

similar argument to the one used in the proof of Theorem V leads to:

Theorem VI. Let R contain a principal ideal M so that R/M is k-

isomorphic to k. If R is complete in the M-adic topology then R is either

a ring of power series in one variable over k, or else R is an Artinian ring,

residue ring of a ring of power series in one variable over k.
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