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RINGS WHOSE RIGHT MODULES ARE DIRECT SUMS OF

INDECOMPOSABLE MODULES

BIRGE ZIMMERMANN-HUISGEN

Abstract. It is shown that, given a module M over a ring with 1, every

direct product of copies of M is a direct sum of modules with local

endomorphism rings if and only if every direct sum of copies of M is

algebraically compact. As a consequence, the rings whose right modules are

direct sums of indecomposable modules coincide with those whose right

modules are direct sums of finitely generated modules.

1. Introduction and notation. It is well known that the rings whose right

modules are direct sums of finitely generated modules are characterized by

the fact that their pure exact sequences of right modules split (Gruson and

Jensen [9]). According to Auslander [3], Ringel and Tachikawa [10], and

Fuller and Reiten [7], the rings enjoying this property on both sides are

precisely the rings of finite representation type. Moreover, as was shown by

Chase [4], if a ring R has the condition on the right, then every right

A-module possesses an indecomposable decomposition (RR being artinian).

For R commutative, the converse was established by Warfield [13] who left

the general case open. From our main theorem (Theorem A) it will follow

that Warfield's result remains true for arbitrary rings. Evidence that this

might be true has recently been provided by Fuller [8] who proved that the

rings whose right modules are direct sums of finitely generated modules

coincide with those whose right modules have decompositions that comple-

ment direct summands in the sense of [1]. Theorem A also furnishes a more

general background for this result.

An intermediate step in the proof of Theorem A deserves emphasis: Every

2-algebraically compact module M (i.e. all direct sums of copies of M are

algebraically compact) has the exchange property which in turn implies a

certain cancellation property for M (Theorem B).

Throughout, R is an associative ring with identity and A-module means

unitary right A-module. Recall that MR is algebraically compact (abbreviated

by a.c. in proofs) if each finitely solvable system of equations E,e/A,ai;/ = m-

(j £ J), where (a¡j)¡e¡J(Ej is a column-finite A-matrix and mj G M, is solv-

able (finitely solvable means that for each finite subset J' of J there is an

element («,) E Ml with S,6/«,a¡, = m. for j G J'). More manageable char-
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192 BIRGE ZIMMERMANN-HUISGEN

acterizations of (S-)algebraically compact modules and large classes of exam-

ples can be found in [14], [15]. We will make constant use of Warfield's

observation that algebraically compact = pure-injective [11, Theorem 2], as

well as of the fact that the endomorphism ring of an indecomposable

algebraically compact module is local [15, Theorem 9].

The author would like to express her gratitude to Professor C. U. Jensen

for a stimulating conversation in which he conjectured a modified version of

(1) => (3) of Theorem A.

2. Theorems.

Theorem A. For an R-module M the following statements are equivalent:

(1) The countably infinite product MN of copies of M is a direct sum of

submodules with local endomorphism rings.

(2) Every (pure submodule of a) direct product of copies of M has a

decomposition that complements direct summands.

(3) M is 2-algebraically compact.

Before giving a proof of Theorem A, we point out several consequences.

Corollary 1. Suppose that MR is algebraically compact (resp., infective).

Then every (countable) direct product of copies of M is a direct sum of

indecomposable modules iff M is 2-algebraically compact (resp., 2,-injective).

Note that the second statement includes the well-known theorem of

Matlis-Papp, see [6].

Proof. In view of Theorem A the first claim follows from the fact that

direct products of a.c. modules are again a.c, and indecomposable a.c.

modules have local endomorphism rings. The second is a special case of the

first.    □

Corollary 2. The following statements about a ring R are equivalent:

(1) Every (algebraically compact) right R-module is a direct sum of indecom-

posable modules.

(2) Every right R-module has a decomposition that complements direct

summands.

(3) All pure inclusions of right R-modules split.

Proof. (3) => (2). Since all pure inclusions split, all right Ä-modules are

(2-)a.c. Apply Theorem A. (2) => (1) is clear, since the decompositions in (2)

are necessarily indecomposable. (1) => (3). As is well known [11, Corollary 6],

each module MR can be embedded as a pure submodule into an a.c. module

which by hypothesis and Corollary 1 is even 2-a.c. But since 2-algebraic

compactness is inherited by pure submodules (see the criterion preceding

Lemma 4), M is in turn algebraically compact, which implies (3).

Remark. As mentioned above, (2)<=>(3) of Corollary 2 is known. Apart

from Chase's contribution, the proof given here is completely different from
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Fuller's proof [8]; in particular, it does not use Harada's results on rings with

enough idempotents.

As was discovered by Anderson and Fuller [1, Theorems 5, 6], right perfect

(resp., semiperfect) rings are characterized by the fact that their projective

(resp., finitely generated projective) right modules have decompositions that

complement direct summands. We pursue this line of results in the following

specialized version of Theorem A.

Corollary 3. For a ring R the following statements are equivalent:

(1) Every pure submodule of a direct product of copies of RR has a decomposi-

tion that complements direct summands.

(2) RR has a decomposition that complements direct summands.

(3) RR is ^.-algebraically compact.

Remark. A right 2-a.c. ring R need not be left coherent; in particular, the

products considered in Corollary 3 need not be projective. For typical

examples of 2-a.c. rings see [15].

An important tool in the proof of (1) => (3) of Theorem A is the following

adaptation of Chase's [5, Theorem 1.2]. To his ideas we only add the concept

of a p-functor of Mod R. This is a subfunctor of the forgetful functor

Mod R -» Mod Z that commutes with direct products, see [14]. Such a

functor automatically commutes with direct sums. The p-functorial subgroups

of a module MR include several important types of subgroups: All subgroups

Ma, where a is a finitely generated left ideal of R, all annihilators in M of

subsets of R and all finitely generated End(A/Ä)-submodules of M, more

generally, all subgroups WomR(A, M)(a) where A is an A-module and a G A.

By [14, 3.4], MR is 2-algebraically compact iff M satisfies the minimum

condition on subgroups PM where F is a (pure left exact) p-functor.

Lemma 4. Suppose that the direct product X\isXSM¡ of a family (M,),eN of

R-modules is a direct sum of submodules Q¡, l G L. Then, given a descending

chain Px D P2 D P3 D ■ • ■ of p-functors, there exist a natural number n0 and

a finite subset L' of L such that

q,(pno n m\ c n p„q,
V        i>n0        I        «GN

for all l G L \ L' (q¡: ®keLQk-*Qi w the natural projection).

We sketch the proof, since Chase's argument (see [4, Theorem 3.1] and [5,

Theorem 1.2]) is slightly clarified by the use of p-functors.

Proof. Assume the conclusion to be false. Then a standard induction

yields a sequence («,-),-eN of natural numbers with ni+x > n¡ and sequences of

pairwise different elements /, £ L resp., m¡ G Pn¡(Uj>n.Mj) so that

(1) q^mj G P^Q, and

(2) qAjnj) = 0 for y < f.
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Note that m = 2,eNw, E RJSNMj is well defined (since the sums of the

components are finite in view of m¡ E Uj>n¡Mj), and that for k E N we have

a,t(m) = q,k(mk) + q,[ 2 m¡) i- 0,

since the first summand does not lie in P„ Q, whereas the second does. But

this contradicts m E © /eL Q,.   □

The next lemma is considerably stronger than is required for the proof of

Theorem A.

Lemma 5. IfUie¡M¡ is a direct sum of submodules with local endomorphism

rings and if P, D P2 D P3 D • • ■ is a chain of p-functors of Mod R, there is a

natural number n0 such that for each family (A¡)iel of indecomposable direct

summands A¡ of M¡ we have P„A¡ = Pn Ai for n > n0 and almost all i E I. In

particular, each summand Aj whose isomorphism type occurs an infinite number

of times in the family (At)i&1 is 2-algebraically compact.

Proof. First, suppose that / is countable and write / = N for simplicity.

Let M = n,eNA/,. = © ,eL Qi be a decomposition as in the hypothesis.

Choose n0 E N and a finite subset L' of L according to Lemma 4, and for

m > \L'\ let /,, . . . , im > n0 be pairwise different natural numbers. Since each

A¡ has in turn a local endomorphism ring, the finite sum A¡ ® • • • ®A¡ has

the exchange property by [12, Proposition 1], hence there are pairwise

different elements /,,..., lm of L with

m

M=  © A,® © Q,
k=\ ieL\[l,./„}

or, equivalently, the canonical projection q: M = © ¡eLQ, -» © k^iQ¡ in-

duces an isomorphism ©™_i^4(i -* © "-îôf ^n order to show that (P„)n>„

is stationary on at least one of the A( 's let / £ {/,,..., lm) \ L' (such an /

exists, because m > \L'\). Adopting the notation of Lemma 4, we have

Pnfil =  *(   ©/-.At)  -  «'*( ¿/-A)  =  q'{k®iP"A)  C QNP"Q*

that is, P„Q, = P„0Qi for n > n0. But by the Krull-Schmidt theorem Q¡ is

isomorphic to one of the A¡ 's.

We have proved PnAj = PnAj for n > n0, provided that Aj is isomorphic to

an infinite number of A¡s, i E N. The same argument as above shows that for

j > «0 each Aj which is not isomorphic to any Q¡, I E L', also satisfies

PnAj = PnAj for n > n0. Thus the number of Afs violating this equation must

be finite.

Now let / be arbitrary. If our claim were false, there would be a family

(Aj)ieJ, a sequence (i'^)^eN of pairwise different elements of / and a strictly

increasing sequence (nk)keIS of natural numbers so that P^Ai ^ P^+ A¡ for

each k. Divide / into pairwise disjoint subsets Ik, k E N, with ik E Ik and

define Mk = II/e/ A/,-. Then each Aik is a direct summand of M'k, and our
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claim is also violated for the countable product M = IIteNM^ and the family

(A¡)keN. But this we have already proved to be impossible.    □

Remark. The same arguments as employed in the proof of Lemma 5 yield

the following generalization of the implications (1) => (3) and (2) =s> (3) of

Theorem A (the latter will be deduced directly from Lemma 5 in the sequel):

If n,e/Ai, possesses a direct-sum decomposition which complements direct

summands, or if each product II,e/Af, with I G I is a direct sum of modules

with local endomorphism rings, then, for each descending chain F, d P2D

P3D ■ • ■ of p-functors of Mod R, there is a natural number «0 so that

P. M i = P„ M, for n > «n and almost all /' E /.

Proof of Theorem A. (1) =* (3). Let M¡ = MN for i G N. By hypothesis

each M¡ is a direct sum of modules with local endomorphism rings, and so is

nieNM,. s A/N. An application of Lemma 5 shows that MN is 2-a.c, hence

M has the same property. (2)=>(1) follows from [2, Proposition 12.10]. For

the remaining implication (3) => (2) note that 2-algebraic compactness is

inherited by all pure submodules of direct products of copies of M (see the

criterion preceding Lemma 4). Since moreover every 2-a.c. module has an

indecomposable decomposition [14, p. 1100], our claim is covered by Theo-

rem B following.

Theorem B. Every 2-algebraically compact module MR has the exchange

property (i.e., M' © A = (&ieIA¡ with M' s M implies the existence of

submodules C¡ of A¡ such that M' © N = M' © ©,e/Q.

Proof. Suppose that A = M' © A = ©ie/v4, with M' at M. Since M' is

again 2-a.c, we may assume M' = M. By Zorn's lemma there is a maximal

submodule C = ©,e/C, of A with C, c A¡ for all /', so that M n C = 0 and

the canonical monomorphism M —» A/C at ®í^jA¡/C¡ is pure. The canoni-

cal image M of M in A = A/C being also 2-a.c, we have A = M ffi X. We

wish to show X = 0. In order to simplify the notation, we replace A by A and

M by M, i.e. we assume the following situation: A = M © X = ©,e/.4(

with M 2-a.c. so that, for 0 ¥= A¡ c A¡ with M n A'¡ = 0, the sum M © A¡ is

not a direct summand of A (the latter is a consequence of the choice of C).

First, we recognize that in this setting A is 2-a.c: M has the finite exchange

property by [15, p. 87(2)], so, fixing h G I, we have A = M © A'h © A' with

A'h G Ah and A' G ®¡ei\{h)A¡- It follows that A'h = 0, hence Ah is isomor-

phic to a direct summand of M, and our first claim is established. In

particular, all of the A¡s, as well as A, can be decomposed into submodules

with local endomorphism rings, say A¡ = ©/eIf^lV and X = ©,EjA,, see

[14, p. 1100]. If A were nonzero, i.e. J nonempty, say k £ J, then the module

M © ®jej\(k}Xj would be a maximal direct summand of A. Since by

Azumaya's theorem (see, e.g., [2, Theorem 12.6]) the decomposition A =

© ieI.jBL¡Au complements maximal direct summands, we would infer
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A=(m®     ©     x\®A„
V jeJ\{k)      I

for some i and /, which is incompatible with the initial situation. Thus, we

conclude X = 0.   □

Given a 2-algebraically compact module M, write M = © ,e/A/, with

EndÄ(A/,) local (by [14, p. 1100] such a decomposition always exists). Accord-

ing to [12, Proposition 2], each finite sum M' = © ierM¡ has the cancella-

tion property (i.e., A © M' « B © M' implies A » B), but of course this fails

for infinite sums. Before being allowed to cancel M in a relation A © M ss 5

© M, we must clear /I and B of direct summands of M. More precisely, the

following is true:

Corollary 6. Let M be ^.-algebraically compact, M = ©lS/A/, an inde-

composable decompositon. Then every R-module A can be uniquely (up to

isomorphism) decomposed in the form A = Ax © A2 where Ax is isomorphic to a

direct sum of M ¡'s and A2 and M have no common nonzero direct summand. In

particular, A © M » B © M with A = Ax © A2 and B = Bx © B2 as above

implies A22* B2and Ax® M s* Bx® M.

Proof. Existence: By Zorn's lemma there is a maximal family (Cj)jeJ of

submodules of A with the following properties:

(1) each Cj is isomorphic to some A/,;

(2) the sum 2yeyC, is direct;

(3) each finite subsum 2/6yC, is a direct summand of A.

Since Ax = © j^jCj is 2-a.c. and a pure submodule of A, we have

A = Ax® A2 for some submodule A2 of A. The maximality of (Cj)JfEj

guarantees that A2 contains no direct summand isomorphic to one of the

A/,'s. It follows that M and A2 have no nonzero isomorphic direct summand

at all, because direct summands of M are in turn 2-a.c. and hence direct sums

of indecomposable modules (necessarily isomorphic to certain A//s).

Uniqueness: Suppose A = Ax® A2 = Dx® D2 are two decompositions of

the considered type. By investing the exchange property of A, (Theorem B),

we obtain an equation A = Ax® D'x® D2 with D¡ c D¡ for / = 1, 2, say

D¡ = D¡ ® D¡". From the property of A2 we infer D[ = 0, and, in view of

Ax — Dx ® D2", we obtain further D2 = 0. This means Ax a Dx and A =

Ax © D2. But the latter shows that also A2 a D2.   □

We restate Theorem B (resp., Corollary 6) for a special class of 2-a.c.

modules.

Corollary 7. Let (M¡)is¡ be a family of R-modules containing only finitely

many isomorphism types and suppose that the modules M¡ are artinian over their

endomorphism rings. Then every direct summand M of the direct sum or the

direct product of the M ¡'s has the exchange property and the cancellation

property of Corollary 7. Moreover, M has a decomposition that complements

direct summands.
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For R commutative, this extends [2, Corollary 29.6], for R a Dedekind

domain we rediscover classical theorems on bounded A-modules. Moreover,

we infer that, for R right 2-algebraically compact (e.g., for R left artinian),

every right A-module A has (uniquely up to isomorphism) a decomposition

A = Ax® A2 where Ax is projective and A2 has no projective direct

summand; in particular, given an isomorphism of A-modules A © M ss. B ©

M, where M is projective and A, B have no nonzero projective direct

summands, M may be cancelled.
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