PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 5, Pages 1279–1283 S 0002-9939(03)07466-5 Article electronically published on November 7, 2003

RINGS WITH FINITE GORENSTEIN INJECTIVE DIMENSION

HENRIK HOLM

(Communicated by Bernd Ulrich)

ABSTRACT. In this paper we prove that for any associative ring R, and for any left R-module M with finite projective dimension, the Gorenstein injective dimension $\operatorname{Gid}_R M$ equals the usual injective dimension $\operatorname{id}_R M$. In particular, if $\operatorname{Gid}_R R$ is finite, then also $\operatorname{id}_R R$ is finite, and thus R is Gorenstein (provided that R is commutative and Noetherian).

1. INTRODUCTION

It is well known that among the commutative local Noetherian rings (R, \mathfrak{m}, k) , the *Gorenstein rings* are characterized by the condition $\mathrm{id}_R R < \infty$. From the dual of [10, Proposition (2.27)] ([6, Proposition 10.2.3] is a special case) it follows that the *Gorenstein injective dimension* $\mathrm{Gid}_R(-)$ is a *refinement* of the usual injective dimension $\mathrm{id}_R(-)$ in the following sense:

For any *R*-module *M* there is an inequality $\operatorname{Gid}_R M \leq \operatorname{id}_R M$, and if $\operatorname{id}_R M < \infty$, then there is an equality $\operatorname{Gid}_R M = \operatorname{id}_R M$.

Now, since the injective dimension $id_R R$ of R measures Gorensteinness, it is only natural to ask what does the Gorenstein injective dimension $Gid_R R$ of R measure? As a consequence of Theorem (2.1) below, it turns out that:

An associative ring R with $\operatorname{Gid}_R R < \infty$ also has $\operatorname{id}_R R < \infty$ (and hence R is Gorenstein, provided that R is commutative and Noetherian).

This result is proved by Christensen [2, Theorem (6.3.2)] in the case where (R, \mathfrak{m}, k) is a commutative local Noetherian Cohen-Macaulay ring with a dualizing module. The aim of this paper is to prove Theorem (2.1), together with a series of related results. Among these results is Theorem (3.2), which has the nice, and easily stated, Corollary (3.3):

Assume that (R, \mathfrak{m}, k) is a commutative local Noetherian ring, and let M be an R-module of finite depth, that is, $\operatorname{Ext}_{R}^{m}(k, M) \neq 0$ for some $m \in \mathbb{N}_{0}$ (this happens for example if $M \neq 0$ is finitely generated). If either

(i) $\operatorname{Gfd}_R M < \infty$ and $\operatorname{id}_R M < \infty$ or (ii) $\operatorname{fd}_R M < \infty$ and $\operatorname{Gid}_R M < \infty$,

then R is Gorenstein.

O2003 American Mathematical Society

Received by the editors January 28, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13D02, 13D05, 13D07, 13H10; Secondary 16E05, 16E10, 16E30.

Key words and phrases. Gorenstein dimensions, homological dimensions, Gorenstein rings.

HENRIK HOLM

This corollary is also proved by Christensen [2, Theorem (6.3.2)] in the case where (R, \mathfrak{m}, k) is Cohen-Macaulay with a dualizing module. However, Theorem (3.2) itself (dealing not only with local rings) is a generalization of [8, Proposition 2.10] (in the module case) by Foxby from 1979.

We should briefly mention the history of Gorenstein injective, projective and flat modules: *Gorenstein injective* modules over an arbitrary associative ring, and the related Gorenstein injective dimension, was introduced and studied by Enochs and Jenda in [3]. The dual concept, *Gorenstein projective* modules, was already introduced by Auslander and Bridger [1] in 1969, but only for finitely generated modules over a two-sided Noetherian ring. *Gorenstein flat* modules were also introduced by Enochs and Jenda; please see [5].

1.1. Setup and notation. Let R be any associative ring with a nonzero multiplicative identity. All modules are—if not specified otherwise—*left* R-modules. If M is any R-module, we use pd_RM , fd_RM , and id_RM to denote the usual projective, flat, and injective dimension of M, respectively. Furthermore, we write Gpd_RM , Gfd_RM , and Gid_RM for the Gorenstein projective, Gorenstein flat, and Gorenstein injective dimension of M, respectively.

2. Rings with finite Gorenstein injective dimension

Theorem 2.1. If M is an R-module with $pd_R M < \infty$, then $Gid_R M = id_R M$. In particular, if $Gid_R R < \infty$, then also $id_R R < \infty$ (and hence R is Gorenstein, provided that R is commutative and Noetherian).

Proof. Since $\operatorname{Gid}_R M \leq \operatorname{id}_R M$ always, it suffices to prove that $\operatorname{id}_R M \leq \operatorname{Gid}_R M$. Naturally, we may assume that $\operatorname{Gid}_R M < \infty$.

First consider the case where M is Gorenstein injective, that is, $\operatorname{Gid}_R M = 0$. By definition, M is a kernel in a complete injective resolution. This means that there exists an exact sequence $E = \cdots \to E_1 \to E_0 \to E_{-1} \to \cdots$ of injective R-modules, such that $\operatorname{Hom}_R(I, E)$ is exact for every injective R-module I, and such that $M \cong \operatorname{Ker}(E_1 \to E_0)$. In particular, there exists a short exact sequence $0 \to M' \to E \to M \to 0$, where E is injective, and M' is Gorenstein injective. Since M' is Gorenstein injective and $\operatorname{pd}_R M < \infty$, it follows by [4, Lemma 1.3] that $\operatorname{Ext}^1_R(M, M') = 0$. Thus $0 \to M' \to E \to M \to 0$ is split-exact; so M is a direct summand of the injective module E. Therefore, M itself is injective.

Next consider the case where $\operatorname{Gid}_R M > 0$. By [10, Theorem (2.15)] there exists an exact sequence $0 \to M \to H \to C \to 0$ where H is Gorenstein injective and $\operatorname{id}_R C = \operatorname{Gid}_R M - 1$. As in the previous case, since H is Gorenstein injective, there exists a short exact sequence $0 \to H' \to I \to H \to 0$ where I is injective and H'is Gorenstein injective. Now consider the pull-back diagram with exact rows and

1280

columns:

Since I is injective and $\mathrm{id}_R C = \mathrm{Gid}_R M - 1$ we get $\mathrm{id}_R P \leq \mathrm{Gid}_R M$ by the second row. Since H' is Gorenstein injective and $\mathrm{pd}_R M < \infty$, it follows (as before) by [4, Lemma 1.3] that $\mathrm{Ext}^1_R(M, H') = 0$. Consequently, the first column $0 \to H' \to P \to M \to 0$ splits. Therefore $P \cong M \oplus H'$, and hence $\mathrm{id}_R M \leq \mathrm{id}_R P \leq \mathrm{Gid}_R M$. \Box

The theorem above has, of course, a dual counterpart:

Theorem 2.2. If M is an R-module with $id_R M < \infty$, then $Gpd_R M = pd_R M$. \Box

Theorem (2.6) below is a "flat version" of the two previous theorems. First recall the following.

Definition 2.3. The *left finitistic projective dimension* LeftFPD(R) of R is defined as

LeftFPD(R) = sup{ $pd_BM \mid M$ is a *left* R-module with $pd_BM < \infty$ }.

The right finitistic projective dimension RightFPD(R) of R is defined similarly.

Remark 2.4. When R is commutative and Noetherian, we have that LeftFPD(R) and RightFPD(R) equals the Krull dimension of R, by [9, Théorème (3.2.6) (Seconde partie)].

Furthermore, we will need the following result from [10, Proposition (3.11)]:

Proposition 2.5. For any (left) R-module M the inequality

 $\operatorname{Gid}_R\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \leq \operatorname{Gfd}_R M$

holds. If R is right coherent, then we have $\operatorname{Gid}_R\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) = \operatorname{Gfd}_R M$. \Box

We are now ready to state:

Theorem 2.6. For any *R*-module *M*, the following conclusions hold:

- (i) Assume that LeftFPD(R) is finite. If $\operatorname{fd}_R M < \infty$, then $\operatorname{Gid}_R M = \operatorname{id}_R M$.
- (ii) Assume that R is left and right coherent with finite RightFPD(R). If $id_R M < \infty$, then $Gfd_R M = fd_R M$.

Proof. (i) If $\mathrm{fd}_R M < \infty$, then also $\mathrm{pd}_R M < \infty$, by [11, Proposition 6] (since LeftFPD(R) < ∞). Hence the desired conclusion follows from Theorem (2.1) above. (ii) Since R is left coherent, we have that $\mathrm{fd}_R \mathrm{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \leq \mathrm{id}_R M < \infty$,

by [12, Lemma 3.1.4]. By assumption, RightFPD(R) < ∞ , and therefore also

1281

 $\mathrm{pd}_R\mathrm{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) < \infty$, by [11, Proposition 6]. Now Theorem (2.1) gives that $\mathrm{Gid}_R\mathrm{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) = \mathrm{id}_R\mathrm{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$. It is well known that

$$\operatorname{fd}_R M = \operatorname{id}_R \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$$

(without assumptions on R), and by Proposition (2.5) above, we also get $\operatorname{Gfd}_R M = \operatorname{Gid}_R \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$, since R is right coherent. The proof is done.

3. A THEOREM ON GORENSTEIN RINGS BY FOXBY

We end this paper by generalizing a theorem [8, Proposition 2.10] on Gorenstein rings by Foxby from 1979. For completeness, we briefly recall:

3.1. The small support. Assume that R is commutative and Noetherian. For an R-module M, an integer n, and a prime ideal \mathfrak{p} in R, we write $\beta_n^R(\mathfrak{p}, M)$, respectively, $\mu_R^n(\mathfrak{p}, M)$, for the *n*th Betti number, respectively, *n*th Bass number, of M at \mathfrak{p} .

Foxby [8, Definition p. 157] or [7, (14.8)] defines the small (or homological) support of an R-module M to be the set

$$\operatorname{supp}_{R} M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \exists n \in \mathbb{N}_{0} \colon \beta_{n}^{R}(\mathfrak{p}, M) \neq 0 \}.$$

Let us mention the most basic results about the small support, all of which can be found in [8, pp. 157 - 159] and [7, Chapter 14]:

- (a) The small support, $\operatorname{supp}_R M$, is contained in the usual (large) support, $\operatorname{Supp}_R M$, and $\operatorname{supp}_R M = \operatorname{Supp}_R M$ if M is finitely generated. Also, if $M \neq 0$, then $\operatorname{supp}_R M \neq \emptyset$.
- (b) $\operatorname{supp}_R M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \exists n \in \mathbb{N}_0 \colon \mu_R^n(\mathfrak{p}, M) \neq 0 \}.$
- (c) Assume that (R, \mathfrak{m}, k) is local. If M is an R-module with finite depth, that is,

 $\operatorname{depth}_{R} M := \inf\{ m \in \mathbb{N}_{0} \mid \operatorname{Ext}_{R}^{m}(k, M) \neq 0 \} < \infty$

(this happens for example if $M \neq 0$ is finitely generated), then $\mathfrak{m} \in \operatorname{supp}_R M$, by (b) above.

Now, given these facts about the small support, and the results in the previous section, the following generalization of [8, Proposition 2.10] is immediate:

Theorem 3.2. Assume that R is commutative and Noetherian. Let M be any R-module, and assume that any of the following four conditions is satisfied:

- (i) $\operatorname{Gpd}_R M < \infty$ and $\operatorname{id}_R M < \infty$,
- (ii) $\operatorname{pd}_R M < \infty$ and $\operatorname{Gid}_R M < \infty$,
- (iii) R has finite Krull dimension, and $Gfd_RM < \infty$ and $id_RM < \infty$,
- (iv) R has finite Krull dimension, and $\operatorname{fd}_R M < \infty$ and $\operatorname{Gid}_R M < \infty$.

Then $R_{\mathfrak{p}}$ is a Gorenstein local ring for all $\mathfrak{p} \in \operatorname{supp}_R M$.

Corollary 3.3. Assume that (R, \mathfrak{m}, k) is a commutative local Noetherian ring. If there exists an R-module M of finite depth, that is,

$$\operatorname{lepth}_{B} M := \inf\{ m \in \mathbb{N}_{0} \mid \operatorname{Ext}_{B}^{m}(k, M) \neq 0 \} < \infty,$$

and which satisfies either

(i) $\operatorname{Gfd}_R M < \infty$ and $\operatorname{id}_R M < \infty$, or

(ii) $\operatorname{fd}_R M < \infty$ and $\operatorname{Gid}_R M < \infty$,

then R is Gorenstein.

Acknowledgments

I would like to express my gratitude to my Ph.D. advisor Hans-Bjørn Foxby for his support, and our helpful discussions.

References

- M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, American Mathematical Society, Providence, RI, 1969. MR 42:4580
- [2] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math. 1747, Springer-Verlag, Berlin, 2000. MR 2002e:13032
- [3] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611-633. MR 97c:16011
- [4] E. E. Enochs and O. M. G. Jenda, Gorenstein Balance of Hom and Tensor, Tsukuba J. Math. 19, No. 1 (1995), 1-13. MR 97a:16019
- [5] E. E. Enochs and O. M. G. Jenda, Gorenstein Injective and Flat Dimensions, Math. Japonica 44, No. 2 (1996), 261 – 268. MR 97k:13019
- [6] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, de Gruyter Expositions in Math. **30**, Walter de Gruyter, Berlin, 2000. MR **2001h**:16013
- [7] H.-B. Foxby, Hyperhomological Algebra & Commutative Rings, notes in preparation.
- [8] H.-B. Foxby, Bounded complexes of flat modules, J. Pure and Appl. Algebra 15, No. 2 (1979), 149 - 172. MR 83c:13008
- [9] L. Gruson and M. Raynaud, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1 – 89. MR 46:7219
- [10] H. Holm, Gorenstein Homological Dimensions, J. Pure and Appl. Algebra (to appear)
- [11] C. U. Jensen, On the Vanishing of $\varprojlim^{(i)}$, J. Algebra 15 (1970), 151 166. MR 41:5460
- [12] J. Xu, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, Berlin, 1996. MR 98b:16003

Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, 2100 København
 Ø, Danmark

E-mail address: holm@math.ku.dk