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RINGS WITH FINITE GORENSTEIN INJECTIVE DIMENSION
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Abstract. In this paper we prove that for any associative ring R, and for
any left R-module M with finite projective dimension, the Gorenstein injective
dimension GidRM equals the usual injective dimension idRM . In particular,
if GidRR is finite, then also idRR is finite, and thus R is Gorenstein (provided
that R is commutative and Noetherian).

1. Introduction

It is well known that among the commutative local Noetherian rings (R,m, k),
the Gorenstein rings are characterized by the condition idRR <∞. From the dual
of [10, Proposition (2.27)] ([6, Proposition 10.2.3] is a special case) it follows that
the Gorenstein injective dimension GidR(−) is a refinement of the usual injective
dimension idR(−) in the following sense:

For any R-module M there is an inequality GidRM 6 idRM , and if idRM <∞,
then there is an equality GidRM = idRM .

Now, since the injective dimension idRR of R measures Gorensteinness, it is only
natural to ask what does the Gorenstein injective dimension GidRR of R measure?
As a consequence of Theorem (2.1) below, it turns out that:

An associative ring R with GidRR < ∞ also has idRR < ∞ (and hence R is
Gorenstein, provided that R is commutative and Noetherian).

This result is proved by Christensen [2, Theorem (6.3.2)] in the case where
(R,m, k) is a commutative local Noetherian Cohen-Macaulay ring with a dualizing
module. The aim of this paper is to prove Theorem (2.1), together with a series
of related results. Among these results is Theorem (3.2), which has the nice, and
easily stated, Corollary (3.3):

Assume that (R,m, k) is a commutative local Noetherian ring, and let M be an
R-module of finite depth, that is, ExtmR (k,M) 6= 0 for some m ∈ N0 (this happens
for example if M 6= 0 is finitely generated). If either

(i) GfdRM <∞ and idRM <∞ or (ii) fdRM <∞ and GidRM <∞,

then R is Gorenstein.
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This corollary is also proved by Christensen [2, Theorem (6.3.2)] in the case
where (R,m, k) is Cohen-Macaulay with a dualizing module. However, Theorem
(3.2) itself (dealing not only with local rings) is a generalization of [8, Proposition
2.10] (in the module case) by Foxby from 1979.

We should briefly mention the history of Gorenstein injective, projective and flat
modules: Gorenstein injective modules over an arbitrary associative ring, and the
related Gorenstein injective dimension, was introduced and studied by Enochs and
Jenda in [3]. The dual concept, Gorenstein projective modules, was already intro-
duced by Auslander and Bridger [1] in 1969, but only for finitely generated modules
over a two-sided Noetherian ring. Gorenstein flat modules were also introduced by
Enochs and Jenda; please see [5].

1.1. Setup and notation. Let R be any associative ring with a nonzero mul-
tiplicative identity. All modules are—if not specified otherwise—left R-modules.
If M is any R-module, we use pdRM , fdRM , and idRM to denote the usual pro-
jective, flat, and injective dimension of M , respectively. Furthermore, we write
GpdRM , GfdRM , and GidRM for the Gorenstein projective, Gorenstein flat, and
Gorenstein injective dimension of M , respectively.

2. Rings with finite Gorenstein injective dimension

Theorem 2.1. If M is an R-module with pdRM < ∞, then GidRM = idRM .
In particular, if GidRR < ∞, then also idRR < ∞ (and hence R is Gorenstein,
provided that R is commutative and Noetherian).

Proof. Since GidRM 6 idRM always, it suffices to prove that idRM 6 GidRM .
Naturally, we may assume that GidRM <∞.

First consider the case where M is Gorenstein injective, that is, GidRM = 0.
By definition, M is a kernel in a complete injective resolution. This means that
there exists an exact sequence E = · · · → E1 → E0 → E−1 → · · · of injective
R-modules, such that HomR(I,E) is exact for every injective R-module I, and
such that M ∼= Ker(E1 → E0). In particular, there exists a short exact sequence
0 → M ′ → E → M → 0, where E is injective, and M ′ is Gorenstein injec-
tive. Since M ′ is Gorenstein injective and pdRM <∞, it follows by [4, Lemma 1.3]
that Ext1

R(M,M ′) = 0. Thus 0 → M ′ → E → M → 0 is split-exact;
so M is a direct summand of the injective module E. Therefore, M itself is
injective.

Next consider the case where GidRM > 0. By [10, Theorem (2.15)] there exists
an exact sequence 0 → M → H → C → 0 where H is Gorenstein injective and
idRC = GidRM − 1. As in the previous case, since H is Gorenstein injective, there
exists a short exact sequence 0 → H ′ → I → H → 0 where I is injective and H ′

is Gorenstein injective. Now consider the pull-back diagram with exact rows and
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columns:
0 0

0 // M

OO

// H

OO

// C // 0

0 // P

OO

// I

OO

// C // 0

H ′

OO

H ′

OO

0

OO

0

OO

Since I is injective and idRC = GidRM − 1 we get idRP 6 GidRM by the second
row. Since H ′ is Gorenstein injective and pdRM <∞, it follows (as before) by [4,
Lemma 1.3] that Ext1

R(M,H ′) = 0. Consequently, the first column 0→ H ′ → P →
M → 0 splits. Therefore P ∼= M ⊕H ′, and hence idRM 6 idRP 6 GidRM . �

The theorem above has, of course, a dual counterpart:

Theorem 2.2. If M is an R-module with idRM <∞, then GpdRM = pdRM . �
Theorem (2.6) below is a “flat version” of the two previous theorems. First recall

the following.

Definition 2.3. The left finitistic projective dimension LeftFPD(R) of R is defined
as

LeftFPD(R) = sup{ pdRM | M is a left R-module with pdRM <∞ }.
The right finitistic projective dimension RightFPD(R) of R is defined similarly.

Remark 2.4. When R is commutative and Noetherian, we have that LeftFPD(R)
and RightFPD(R) equals the Krull dimension of R, by [9, Théorème (3.2.6) (Sec-
onde partie)].

Furthermore, we will need the following result from [10, Proposition (3.11)]:

Proposition 2.5. For any (left) R-module M the inequality

GidRHomZ(M,Q/Z) 6 GfdRM

holds. If R is right coherent, then we have GidRHomZ(M,Q/Z) = GfdRM . �
We are now ready to state:

Theorem 2.6. For any R-module M , the following conclusions hold:
(i) Assume that LeftFPD(R) is finite. If fdRM <∞, then GidRM = idRM .
(ii) Assume that R is left and right coherent with finite RightFPD(R). If

idRM <∞, then GfdRM = fdRM .

Proof. (i) If fdRM < ∞, then also pdRM < ∞, by [11, Proposition 6] (since
LeftFPD(R) <∞). Hence the desired conclusion follows from Theorem (2.1) above.

(ii) Since R is left coherent, we have that fdRHomZ(M,Q/Z) 6 idRM < ∞,
by [12, Lemma 3.1.4]. By assumption, RightFPD(R) < ∞, and therefore also
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pdRHomZ(M,Q/Z) < ∞, by [11, Proposition 6]. Now Theorem (2.1) gives that
GidRHomZ(M,Q/Z) = idRHomZ(M,Q/Z). It is well known that

fdRM = idRHomZ(M,Q/Z)

(without assumptions on R), and by Proposition (2.5) above, we also get GfdRM =
GidRHomZ(M,Q/Z), since R is right coherent. The proof is done. �

3. A theorem on Gorenstein rings by Foxby

We end this paper by generalizing a theorem [8, Proposition 2.10] on Gorenstein
rings by Foxby from 1979. For completeness, we briefly recall:

3.1. The small support. Assume that R is commutative and Noetherian. For
an R-module M , an integer n, and a prime ideal p in R, we write βRn (p,M),
respectively, µnR(p,M), for the nth Betti number, respectively, nth Bass number,
of M at p.

Foxby [8, Definition p. 157] or [7, (14.8)] defines the small (or homological)
support of an R-module M to be the set

suppRM = { p ∈ SpecR | ∃n ∈ N0 : βRn (p,M) 6= 0 }.
Let us mention the most basic results about the small support, all of which can be
found in [8, pp. 157− 159] and [7, Chapter 14]:

(a) The small support, suppRM , is contained in the usual (large) support,
SuppRM , and suppRM = SuppRM if M is finitely generated. Also, if
M 6= 0, then suppRM 6= ∅.

(b) suppRM = { p ∈ SpecR | ∃n ∈ N0 : µnR(p,M) 6= 0 }.
(c) Assume that (R,m, k) is local. If M is an R-module with finite depth, that

is,
depthRM := inf{ m ∈ N0 | ExtmR (k,M) 6= 0 } <∞

(this happens for example if M 6= 0 is finitely generated), then m ∈
suppRM , by (b) above.

Now, given these facts about the small support, and the results in the previous
section, the following generalization of [8, Proposition 2.10] is immediate:

Theorem 3.2. Assume that R is commutative and Noetherian. Let M be any
R-module, and assume that any of the following four conditions is satisfied:

(i) GpdRM <∞ and idRM <∞,
(ii) pdRM <∞ and GidRM <∞,
(iii) R has finite Krull dimension, and GfdRM <∞ and idRM <∞,
(iv) R has finite Krull dimension, and fdRM <∞ and GidRM <∞.

Then Rp is a Gorenstein local ring for all p ∈ suppRM . �
Corollary 3.3. Assume that (R,m, k) is a commutative local Noetherian ring. If
there exists an R-module M of finite depth, that is,

depthRM := inf{ m ∈ N0 | ExtmR (k,M) 6= 0 } <∞,
and which satisfies either

(i) GfdRM <∞ and idRM <∞, or
(ii) fdRM <∞ and GidRM <∞,

then R is Gorenstein. �
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