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ABSTRACT. The class of rings with projective left socle is shown to be closed

under the formation of polynomial and power series extensions, direct prod-

ucts, and matrix rings. It is proved that a ring R has a projective left socle if

and only if the right annihilator of every maximal left ideal is of the form ¡R,

where / is an idempotent in R. This result is used to establish the closure

properties above except for matrix rings. To prove this we characterise the

rings of the title by the property of having a faithful module with projective

socle, and show that if R has such a module, then so does M„(R). In fact

we obtain more than Morita invariance. Also an example is given to show

that eñe, for an idempotent e in a ring R with projective socle, need not have

projective socle. The same example shows that the notion is not left-right

symmetric.

1. Introduction. We recall that a study of rings with projective socle and

containing no infinite sets of orthogonal idempotents was make by Gordon [8]. In

the same paper he showed that S = Soc rR is projective and essential if and only

if S has zero right annihilator. More recently Baccella [4] has provided a number

of necessary and sufficient conditions for R to have projective socle, conditions

originally given by Manocha [9] when the socle was known to be essential. One

such condition is that soc rR is nonsingular. However all these statements explicitly

involve the socle. Our characterizations are somewhat different in that they involve

either the maximal left ideals of R or modules with projective socles. Theorem 2.4

provides a number of conditions equivalent to the statement that R has a projective

socle.

As examples of rings with projective socles we have semiprime rings, nonsingular

rings, and PP-rings. It is well known that R is a semiprime ring if and only if R[x]

is semiprime. It is an easy consequence of a theorem of Shock [11, Theorem 2.7]

that the same holds for nonsingular rings. For PP-rings Armendariz [2] has shown

that given a reduced ring R, R is a PP-ring if and only if R[x] is a PP-ring. The

same result holds for Baer rings and Burgess [6] remarks in his review of [2] that

the Baer ring result is true for R\[x]} whilst for PP-rings it is false. Further, the

polynomial results are not true if the restriction to reduced rings is removed. In

Theorem 3.1 we show that if R has a projective socle, then so does R[x] (and i?[[a;]]),

but the converse is false.

In the final section we establish Morita invariance. Our proof of this uses an

extension of an idea of Amitsur [1].    We call a module a PS-module if it has
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444 W. K. NICHOLSON AND J. F. WATTERS

projective socle. A ring R has projective socle if and only if it has a faithful PS-

module; this is part of Theorem 2.4. If [w s] is a Morita context and M is a left

Ä-module, there is a related 5-module M° which inherits some properties from M

under mild restrictions on the context and we show in Proposition 4.4 that being

a PS-module is such a property. Morita invariance is an easy consequence of this.

Throughout the paper, all rings have a unity and all modules are unitary. Mod-

ules are left modules unless otherwise stated and module homomorphisms are writ-

ten opposite the scalars. The left and right annihilators of a subset X of a ring are

written ¿(X) and r(X) respectively.

2. Characterizations.

2.1 DEFINITION. A left R-module rM is called a PS-module if every simple
submodule is projective; equivalently ifsoc(iiM) is projective.

2.2 EXAMPLES. 1. If soc(RM) = 0 then M is a PS-module.

2. Any projective semisimple module is a PS-module.

3. Every regular module (in the sense of Zelmanowitz [12]) is a PS-module

because every principal submodule is a projective summand.

4. Every nonsingular module is a PS-module because nonsingular simple modules

K are projective. Indeed, if 0 ^ k € K then i{k) is not essential in R so l{k)C\X = 0

for some left ideal X ^ 0. It follows that R = l{k) ® X so K = X is projective.

5. The class of PS-modules is closed under direct sums, submodules, and essential

extensions.

2.3 DEFINITION.   A ring R is called a {left) PS-ring if rR is a PS-module.

The PS-rings are defined by the requirement that their simple left ideals are pro-

jective. However the next result gives several characterizations involving maximal

left ideals.

2.4 THEOREM.   The following are equivalent for a ring R:

(1) R is a PS-ring.

(2) R has a faithful PS-module.
(3) // L is a maximal left ideal of R then either *-{L) — 0 or L — Re where

e2 =eeR.

(4) If L is an essential maximal left ideal of R then s-(L) = 0.

(5) If L is a maximal left ideal of R then /-(L) = fR where f2 = f G R.
(6) If L is a maximal left ideal of R and t G s{L), then t € s(L)t (that is R//-(L)

is flat as a right R-module [3]).

(7) Every simple module rK is either projective or Kd = 0 where the dual module

is denoted by Kd = hom(K,R).

(8) soc(rR) is projective.

PROOF. (1) =*> (2). This is clear.

(2) => (3). Let rM be a faithful PS-module and let L Ç R be a maximal left

ideal. If /■(£) ^ 0 write T = /-(£) so that LT = 0. On the other hand RT ¿ 0

so RTM t¿ 0 by hypothesis, say Rm ¿ 0 with m € TM. Thus L Ç t(m) / R so

L — ¿(m). But then R/L = Rm is projective by hypothesis and (3) follows.

(3) => (4). This is clear.

(4) =>■ (5). This is because maximal left ideals are either essential or summands.
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(5) *> (6). If t G &{L) as in (6) let M(L) = fR, f2 = /. Then t = ft e 3l(L)t.
(6) => (3). If /-(L) = 0 take / = 0. Otherwise let 0 ¿ a G /-(L). Then a G /■(L)a,

say o = /a with / G /■(£). We claim that 1 — / G L. For if not then, since L is

maximal, 1 = t + r(l — /), t G L. Then a = ta + r(a — fa) = 0, a contradiction.

So ß(l - f) Ç L whence (1 - /)/ G Lf = 0, that is f2 = f. On the other hand
Lf = 0 gives L = 1(1 - /) C Ä(l - /) so L = R{1 - /). Thus ,{L) = fR.

(3) => (7). Let K = Äfc be simple so that L = i(k) is maximal and R/L = K.
If L = fle, e2 = e, then Ä" £ ¿2(1 - e) is projective. If /•(£) = 0 let A G ¿fd. If

kX = a E R then La = L(fcA) = (Lk)X — 0A = 0, so a = 0. This means A = 0 and
so proves Kd — 0.

(7) => (8). This is clear since Kd ¿ 0 for all left ideals ¿Í # 0.

(8) => (1). This is clear.    D

2.5 EXAMPLES. 1. Every semiprime ring is a PS-ring. In fact it is enough

that R has no nilpotent simple left ideals. On the other hand, if A is a division

ring and R = [0 A] then soc(¿j¿í) = [0 0 ] is projective (and homogeneous) but

J(R)= [oo] is nilpotent.

2. Every PP-ring is a PS-ring (where a PP-ring has every principal left ideal

projective). In particular every Baer ring is a PS-ring (where R is Baer if every

left (or right) annihilator is generated by an idempotent). Of course this follows

directly from (5) of Theorem 2.4.

3. Every left nonsingular ring is a PS-ring by (4) of Theorem 2.4 since these

rings are characterized by /-(L) = 0 for every essential left ideal L. In fact R is a

PS-ring if Z(soc RR) = 0 by 4 of Example 2.2.

4. A ring for which every simple singular module is injective is a PS-ring (these

are the GV-rings of Baccella [5]). In fact if K is a simple left ideal it is either

projective or Z(K) = K, in which case it is a summand of R (being injective) and

so again is projective. Of course, this shows that V-rings are PS-rings.

5. If /-[J(R)\ = 0 then R is a PS-ring. In fact J{R) Ç L for every maximal left

ideal so /-(L) = 0.

The next result will be used to give an example of a (left) PS-ring which is not

a right PS-ring.

2.6 LEMMA. Let R and S be rings, let rVs be a bimodule, and consider the

ringC=[R0vs}.

(1) // C is a PS-ring then R is a PS-ring.

(2) M is a maximal left ideal of C if and only if either M = [Jj], where L is

a maximal left ideal of R, or M = [!: ^] where K is a maximal left ideal of S.

PROOF. (1) If L Ç R is maximal then \^vs] is maximal in C. If /-c[q Vs] = 0

then sr(L) = 0; while if [£ ^] = Cg, g2 = g, and g = [qV,], then e2 = e e R and

Re = L.

(2) Given M as in (2) let K0 = {s G S\[r0vs] G M for some r,v}. This is a left

ideal of S so either K0 — S or K0 Ç K C S, K maximal. In the latter case M =

[*£]; in the former case [°vs] = C[°°] ç M so let L0 = {r G R\[r0°0] G M}.

Then L0 is a left ideal of R and Lo ^ R so, ií Lo Q L C R with L maximal, it

follows as before that M=[Jj].     D
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2.7 Example. Let S = Z2[x]/{x2) and let R = [z02 f ]. Then

(1) ¿2 is a (left) PS-ring which is not a right PS-ring.

(2) If e = [° j ] then e2 = e G ¿2 and e¿2e is not a left PS-ring.

PROOF. (1) We have S = 7.2® Z2í, t2 = 0. The only maximal left ideals of

Z2 and S are 0 and St respectively so [°|] = ¿2[q°] and [z02 gt] are the only

maximal left ideals of ¿2, and /- [ 02 st] =0. On the other hand, X = [Zq fs] is a

maximal right ideal of ¿2 and £(X) = [® *|] is not of the form ¿2/, f2 = f.

(2) We have e¿2e = S, a commutative local ring with unique maximal ideal

J = tS. Clearly /■(J) = tS is not of the form fS, f2 = /.    D

3. Closure properties. If ¿2 is a PP-ring it is known that R[x] need not be

a PP-ring (although this is true if ¿2 is reduced—see [2]). However we do have

the following result for PS-rings. We use the notation ¿2[[x]] to denote the ring of

formal power series.

3.1 THEOREM.   ¿/¿2 is a PS-ring so also are R[x\ and R\[x]\.

PROOF. We prove the result for ¿2[x] only; the proof for ¿2[[x]] is similar. If L is a

maximal ideal of R[x] we show that r(L) = eR[x] for an idempotent e2 = e G ¿2[x].

Let I denote the left ideal of ¿2 consisting of the set of all trailing coefficients of

polynomials in L with 0 adjoined. If I = ¿2 then s(L) = 0. So we assume I / ¿2

and show that I is a maximal left ideal of ¿2.

Let a G ¿2 — I. Then a^Iso R[x] = L + R[x]a. Hence, considering constant

terms, 1 = Iq + r0a in ¿2 where Iq + l\x + l^x2 -t-G L. If Iq = 0 then 1 G ¿2a and

so I + Ra = ¿2. If ¿o / 0 then ¡06/ and again I + Ra = ¿2. Hence I is a maximal

left ideal of ¿2.

By hypothesis /-(¿) = e¿2 with e2 = e G ¿2, and we complete the proof by showing

that r{L) = e¿2[x]. If Le <£ L then R[x] = L + Le so (by considering constant

terms) le/, a contradiction. Hence Le Ç L and it follows (by considering trailing

coefficients of elements of Le) that Le = 0. Hence s-(L) 2 eR[x].

To establish the opposite inclusion take g G s-{L) — e¿2[a;], say g = bnxn +

bn+ixn+1 + ■ ■ ■ where bn ^ 0. If bn G e¿2 then 0 — bnxn G *-(L) so we may assume

bn £ eR. Then if h G L we have hg = 0 so (considering trailing terms) we find

that Ibn = 0. This means bn G /■(/) = e¿2, a contradiction. Thus /-(L) = e¿2[i] as

required.    G

The converse to this result is false.

3.2 EXAMPLE. If R = Z4 then R[x] and R[[x}} are PS-rings but R is not a

PS-ring.

PROOF. It is not difficult to show that J(R[x]) = 2¿2[x] and /(¿2[[x]]) = 2¿2[[x]]+

2¿2[[x]]. Hence if L is a maximal (left) ideal of ¿2[x] (or ¿2[[x]]) then L contains an

element with 1 as trailing coefficient. Hence *-{L) = 0. Thus ¿2[x] and ¿2[[x]] are

PS-rings by (3) of Theorem 2.4.    D

3.3 THEOREM. Let ¿2 = FLe/^ ^e a direct product of rings. Then R is a

PS-ring if and only if Ri is a PS-ring for all i G I.

PROOF. Let L be a maximal left ideal of ¿2 and, for each t G I, define

Lt = {r G ¿2t|(r,) G L where r, = 0 for 1' ̂  t and rt = r}.
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Then Lt is a left ideal of ¿2t for each t and L Ç f|¿ Li. If some Lt ^ ¿2t suppose Lt Ç

Mt C Rt, Mt maximal. Taking M, = ¿2, for i ^ t gives L C Y[Li C ]jMi ^ R,

contradicting the maximality of L. Thus Lt = ¿2t or Lt is maximal in ¿2t for every

t. Either way our hypotheses guarantee that *-{Lt) = ftRt where f2 = ft G ¿2t

for all t. If / = (fi) we claim s{L) = fR. It is clear that Lf C {f\Li)f = 0 so
/¿2 Ç '{L). On the other hand, if La = 0 where a = (a¿) G ¿2 then Ltat = 0 for

each t so at G /t¿2t. It follows that a G /¿2 so /-(£) = /¿2. Hence ¿2 is a PS-ring by

(5) of Theorem 2.4.

Conversely, if ¿2 is a PS-ring and Lt is a maximal left ideal of ¿2t, take L¿ = ¿2¿ for

all i t¿ t. Then JT¿ ¿¿ is a maximal left ideal of ¿2 so /-(L) = /¿2 where f2 = f G ¿2.
If / = (/i) it follows that /-(¿t) = /t¿2í, so ¿2t is a PS-ring for each t G ¿.    D

We do not know if a subdirect product of PS-rings is again a PS-ring. However,

for PS-rings which are also normal (that is, every idempotent is central [7]) we do

have subdirect closure. The next result is needed.

3.4 PROPOSITION. Let R be a normal ring. Then ¿2 is a PS-ring if and only

ifJ{socRR) =0.

PROOF. Let ¿2 be a PS-ring. If J(soc ñ¿2) ^ 0 then there is a minimal left ideal

M of ¿2 with M Ç J(¿2). But M is projective by hypothesis, so M = ¿2e for some

0 t¿ e2 = e G ¿2. This means (1 - e)M = 0 since e is central so that M Ç e¿2 = ¿2e.

But then M = ¿2e (because ¿2e is minimal) so e G .¿(¿2), a contradiction. Therefore

J(socñ¿2) =0.

Conversely, if M is a minimal left ideal of ¿2 then J(socrR) = 0 implies M2 ^ 0

so M — Re where e2 = e G ¿2. Thus M is projective and ¿2 is a PS-ring.    D

3.5 PROPOSITION. A subdirect product of normal PS-rings is again a normal

PS-ring.

PROOF. Let R/At be a normal PS-ring for each i G I where f]ieI Ai = 0. It is

clear that ¿2 is normal. If M is a minimal left ideal of ¿2 then M ^ A¿ for some i so

(M + Ai)/Ai is a minimal left ideal of R/Ai. It follows from Proposition 3.4 that

M2 £ Ai and so M2 = M. Therefore J(socfl¿2) = 0 and ¿2 is a PS-ring, again by

Proposition 3.4.    D

4. Morita invariance. A Morita context is a four-tuple [j£ g] where ¿2 and S

are rings and rVs and sWr are bimodules, together with multiplications V x W —*

¿2 and W x V —► S which induce bimodule homomorphisms V ®s W —► ¿2 and

W ¡Sir V —► S, and which satisfy the conditions (vw)vi = v(wvi) and (wv)u>i =

w(vu>i) for all v,V\ in V and all w,wi in W. ¿2 and S are said to be Morita

equivalent if there exists a context [,Jj] in which VW = ¿2 and WV = S, and the

aim of this section is to show that being a PS-ring is a Morita invariant, that is if

¿2 and 5 are Morita equivalent and ¿2 is a PS-ring then 5 is also a PS-ring. In fact

we establish the following more general result.

4.1 THEOREM.   Suppose [j^ g] is a Morita context such that

(a) VsW = 0, s G S, implies s = 0.

(b) S/WV is flat as a right S-module.
(c) VWr = 0, r G ¿2, implies r = 0.

If R is a PS-ring then S is also a PS-ring. In particular, being a PS-ring is a

Morita invariant.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



448 W. K. NICHOLSON AND J. F. WATTERS

The machinery we use to prove this result has been developed in [10]. Suppose

a Morita context [^ „] is given. If M is a left ¿2-module then

M° = {W®RM)/AM{V)

is a left 5-module, where

AM{V) = < ̂ 2 Wi ® rrii G W ®R M\ ^{vw^rrii = 0 for all v G V

I   t i

This construction provides a functor ( )° from ¿2-mod to S-mod which preserves

monomorphisms and epimorphisms. The coset w (g> m + Am{V) in M° is denoted

by w o m.

There is a dually defined functor ( )* : 5-mod —► ¿2-mod and the pair of functors

produce a relationship

6M:(M°)*^M

for each module rM given by Ç%2vj * xj)6m = J2vj ° xh where v3 G V and

Xj G M°, and where, if x = Y^wiomi then »oi= ^(tw¡)m¿. Note that woi = 0

for all V € V if and only if x = 0. It is shown in [10] that this is a well-defined

map if and only if VWm ^ 0 for all 0 ^ m G (VW)M, and in this case 6m is an

¿2-monomorphism and im#M = {VW)M. Furthermore 6m is a well-defined map

for all ¿2-modules M if and only if R/VW is flat as a right ¿2-module and, when

this holds, 6: ( )°* —► lfi-mod is a natural transformation of functors. The dual

relationship is denoted by ç>n : (N*)° —► N for all 5-modules s¿V.

A number of properties are known to pass from M to M°, sometimes with

conditions imposed on the context. However it is always the case that if rM is

simple and M° ^ 0 then M° is simple. If rM is faithful and the context satisfies

condition (a) in Theorem 4.1 then M° is faithful. The first step in our proof of

Theorem 4.1 is to show that M° is projective under suitable conditions on M and

the context.

4.2 LEMMA. Let [^ g] be a Morita context and let M be a left R-module such

that (yW)M = M and <£>m° is well-defined (which holds in particular if S/WV is

flat as a right S-module).  Then fM° is an isomorphism.

PROOF. From the results in [10] cited above all that remains is to show that

im^A/o = M°, that is that (WV)M° = M°. However (WV)M° = [(WV)M}° =

M°, so the lemma is proved.    G

4.3 PROPOSITION. Let [y^] be a Morita context such that S/WV is flat as

a right S-module. Let M be a left R-module.

(1) If M is projective and (VW)M = M, then sM° is projective.

(2) If (M°)* is projective and <pm° is an isomorphism, then sM° is projective.

PROOF. (1) By Lemma 4.2, £>m° has an inverse tp\ M —* (M0)*. Given a

diagram
M°

V
X —?—*   Y   -► 0
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in S-mod there exists an ¿2-homomorphism A : M —» X* such that the diagram

/.M

(M°y

X* —^     Y*     -► 0

in ¿2-mod is commutative. Since <p is a natural transformation the diagram

M°

is commutative in 5-mod. Thus \°ipxß = ip°{<PM°)°v = v and it follows that M°

is projective.

(2) A similar proof works only now we take A : (M°)* -»!'.    D

4.4 PROPOSITION.   Suppose [^ §] is a Morita context such that

(a) VsW = 0, s G S, implies s = 0; and

(b) S/WV is flat as a right S-module.

Let rM be a faithful PS-module such that 6m is well-defined. Then sM° is a
faithful PS-module.

PROOF. Condition (a) is enough to ensure that M° is faithful (if sM° = 0,

s G S, then (V oW)M = 0). We claim first that (WV)x = 0 where x G M° implies

x = 0. Indeed,

o = v o \(wv)x) = (vw)(y o x)

and, since V o x Ç (VW)M, the fact that 6m is well-defined implies Voi = 0. But

then x = 0 as required.

Now let SX Ç M° be simple. Then [WV)X ^ 0 by the above so (WV)X = X.

In particular X* ^ 0 and so X* is simple. But X* is a submodule of (M°)*,

which is isomorphic to (VW)M under 6m, and so X* is projective because M is a

PS-module. Furthermore

{VW)X* = (VW)[V * X] = V * \{WV)X] =v*x = x*

and so (X*)° is projective by Proposition 4.3. But <px ■ X*° —* X is an isomorphism

(using condition (b)) and so X is projective. This shows M° is a PS-module and

so completes the proof.    D
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450 W. K. NICHOLSON AND J. F. WATTERS

PROOF OF THEOREM 4.1. If ¿2 is a PS-ring then fi¿2 is a faithful PS-module.

Condition (c) in Theorem 4.1 ensures that 6r is well-defined and so ¿2° is a faithful

PS-module in 5-mod by Proposition 4.4. Hence S is a PS-ring by Theorem 2.4.    D
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